COMS 6998-2 Advanced Topics in Spring 2005
Computational Learning Theory

Lecture 2 : January 27, 2005
Lecturer: Rocco A. Servedio Scribe: David Goldberg

1 Introduction to the Online Mistake Bound
Learning Model

In the mistake bound learning model, the learning algorithm is told the concept class
C to which the target concept ¢ belongs. The learner works with a class of hypotheses
H (not necessarily the same as C'), and chooses an initial hypothesis h € H. Since
the learner knows nothing about ¢ other than its general form (that it is from the
class C), this initial hypothesis will not likely be a good approximation to C. Now
the learner is given an instance z from the domain of c. The learner has no control
over what instance is given. The learner calculates h(x) and is then told ¢(z). The
learner then updates h. It is possible that the same instance x can be repeated, and
thus the learner may or may not have already been given c¢(z). In this model, the
goal of the learner is to make the fewest mistakes possible. We say that the concept
class the learning algorithm has mistake bound M if for any concept ¢ € C the total
number of mistakes made by the learner will never exceed M. The concept class C is
learnable in time 7' = M -t if there exists a learning algorithm A with mistake bound
M and runs for ¢ time steps after each example.

2 The Halving Algorithm

The halving algorithm is an online learning algorithm that can be used to learn
any finite concept class. The learner’s initial hypothesis consists of a lookup table
containing all of the concepts in the concept class C. To evaluate the hypothesis, the
learner will evaluate an instance z on every concept in the lookup table, and return
the majority vote. If h(z) = c(z), the learner makes no update to h. If h(x) # c(x),
the learner updates h by removing all concepts h' from the lookup table such that

K (z) # c(x).

2 3 THE ELIMINATION ALGORITHM

Theorem 1 For any finite concept class C, the Halving Algorithm has mistake bound
M =1log(|C)).

Proof: Suppose the learner makes a mistake on some example x. Then at least
half of the hypothesis A’ in the lookup table predicted incorrectly on z and will be
eliminated. In other words, the number of hypothesis in the lookup table after m
mistakes is at most L%‘ Since the table must have at least one target concept, we
have that ‘2%' > 1 or, equivalently, m < log(|C|)m

Note that although the Halving Algorithm has a small mistake bound, the size of the
table is initially |C|. Since every hypothesis must be evaluated in the first step, the
running time is at least |C/.

3 The Elimination Algorithm

We consider a simple algorithm for learning the class of monotone disjunctions. By
monotone we mean that there are no occurences of negative literals in the disjunction.
The learning algorithm’s initial hypothesis h is a monotone disjunction containing all
n variables. After getting an instance z and evaluating h(z), if h(z) = c(x) the
algorithm makes no update to h. If h(z) = 1 while ¢(z) = 0, then the algorithm
removes all variables x; that were set to 1 in z. It is easy to see that none of the
x; can be contained in the target disjunction or else ¢(x) would have evaluated to 0.
Thus the algorithm will never receive an example such that hA(z) = 0 and ¢(z) = 1,
since h will never remove any variables from h that are in the target disjunction.

Theorem 2 The mistake bound of the elimination algorithm is n.

Proof: We have already shown that the algorithm will never predict h(z) = 0 when
c(z) = 1. We need now to show that after each mistake the algorithm will eliminate
at least one variable. This is easy to see since in order for h to predict 1 while ¢
predicts 1 on zx, there must be some variable in A not in ¢ that is set to 1 under z.
Since there are n variables in the initial disjunction, the algorithm can never make
more than n mistakes. B

A slightly better bound comes from realizing that once all variables not in the target
concept have been removed from the hypothesis, the hypothesis will be exactly the

target concept. If the target concept contains r variables, then at most n —r variables
can be removed from the hypothesis. Since evaluating an n-variable disjunction and
eliminating variables can be done in O(n) time by simply individually examining each
variable in the disjunction, the algorithm runs in time O(n?). It should be noted that
for the class of monotone disjunctions, as demonstrated earlier, |C| = 2", and thus
an algorithm that runs in time O(n?) is pretty good.

A bonus - learning non-monotone disjunctions: Now consider the problem of
learning a concept from the class of all disjunctions over n variables, in which some
of the variables may be negated. Consider the following transformation: for the
negation of each variable x;, create a new variable x,,; which is implicitly defined
by z; by saying that in any instance in which z; = 1, z,,; = 0, and visa-versa.
As far as evaluating the hypothesis goes, treat these special variables like standard
variables: if any of them is set to 1, the disjunction evaluates to 1. Thus let your
initial hypothesis contain all variables, and all the negations of these variables (in
the form of these transformed z;,,). Since the target concept can contain only these
variables and special negated variables, running the same algorithm as before on these
2n variables will succeed by the same logic. Thus this transformation reduces the
problem of learning non-monotone disjunctions over n variables to that of learning
monotone disjunctions over 2n variables, which can be learned by the elimination
algorithm with mistake bound O(2n) = O(n) and runtime O((2n)?) = O(n?)

4 An Algorithm for Learning Decision Lists

A generalized decision list is a decision list which, unlike normal decision lists in which
each box of the decision list contains one rule (i.e. ;7 — 1), each box is allowed to
contain multiple rules. The generalized decision list is evaluated on an instance x
by looking at the first box, and scanning the set of rules sequentially until a rule
is reached that applies to the instance x. If no such rule is found, the next box is
examined in the same way, and so on until a rule that applies is found. Since every
such decision list has a default value rule, which applies in all situations, an applicable
rule will always be found.

Example 1 If the first boz of the generalized decision list contained the rules ;1 — 1,
23 — 1, 21 — 0, and the instance was 001, the first box would be scanned sequentially
as follows. Since the instance x does not have x1 = 1, the first rule does not apply and
s skipped. Since the instance does not have £3 = 1, this rule is also skipped. Since
the instance does have ©1 = 1, this rule is applied and 0 is returned.

4 5 LEARNING DECISION TREES

The initial hypothesis is a generalized decision list that has every possible rule in the
first box, and no other boxes. For example, on 2 variables, the set of rules would be
r, =1,z 2072 =21, 51 =0, 29 > 1, 29 > 0,29 — 1, 25 — 0, 1, 0. The last
two rules are the default rules, which always evaluate to 1 or 0 respectively. Thus
for a set of n variables, there are a total of 4n + 2 rules, since there are 4 rules for
each variable (z; —» 1, z; — 0, ©; — 1, ©; — 0), and two default rules (0,1). The
order in which these rules are initially placed in the first box is not important. Given
an instance x, the learning algorithm evaluates the hypothesis generalized decision
list on x as described above. This will result in an applicable rule R being selected.
If A(xz) = ¢(z), no modification is made to the hypothesis decision list. However, if
h(z) # c(z), the rule R is pushed down the list to the next box in the hypothesis
decision list. If there is currently no next box, that box is created and rule R is made
the first rule in the box. If the box already exists, rule R is placed at the bottom of
the list of rules already in the box. We now prove the following claim which helps us
determine the mistake bound of our algorithm.

Claim 1 Let ¢ be a decision list or length v made of rules ¢q,co,...,c.. Then for
1 <4 <r, rule ¢; 1s never pushed below box i in h.

Proof: Let ¢; be the first rule that would be pushed below box ¢ in a run of the
algorihtm. Then A maked a mistake on z using rule ¢;. Since all rules began in box
1 and ¢; is the first rule to be demoted below its correct level, rules cq, ..., c¢;_; reside
in boxes 1...7 and ¢; resides in box 7. Then rules ¢, ..., ¢;_1 must not have been
satisfied by x in h. Furthermore, x must satisfy rule ¢; for h to predict using it. But
then ¢;(z) gives the correct output so our algorithm would not denote it. B

Since ¢ has r rules, we see that our algorithm will never demote any rule more than
7+ 1 times(those rules not in ¢ will be pushed to the r + 1-st box). The hypothesis h
has (4n + 2) rules, and a rule is demoted each time the algorithm makes a mistake.
This gives a mistake bound of (4n + 2)(r + 1) = O(nr). Each update and prediction
takes O(n) time, so the running time of our algorithm is O(n?r).

5 Learning Decision Trees

Definition 1 A k-Decision List is a decision list in which each box may hold a con-
junction of size < k

We can view a k-decision list as a normal decision list over {0, 1}"’“, where we have
a variable for each possible conjunction of size at most k. It is easy to see that our
algorithm above can learn any k-decision list over {0,1}" in n°®) time. We may
also use this algorithm to learn decision trees by converting the decision tree to a
k-decision list, as we show in the following theorem.

Theorem 3 Any s-leaf decision tree over n variables is expressible as a k-decision
list with k = log s.

First we prove the following claim:
Claim 2 :An s-leaf Decision Tree has at least one leaf at depth < log(s)

Proof: By definition, every internal node of a DT has two children. Assume that
some s-leaf DT has all leaves at depth > log(s). Since all leaves are at depth > log(s),
it must be that all nodes at depth log(s) and below in the tree are internal nodes, and
thus each have two children. Thus the number of nodes at level 0 will be 1(just the
root), which will have two children and thus the number of nodes at level 1 will be 2,
at level 2 will be 4,...and at level k will be 2*. Since every node at depth < log(s) has
two children, the number of internal nodes at depth log(s) will be 2'°8(*) = 5. Since
each of these nodes will have two children, the total number of leaves in the tree will
be > 2s. But this is impossible since the DT has only s leaves. Thus a contradiction
is reached, and it must be that an s-leaf DT has at least one leaf at depth < log(s) B

Proof:

Setup: Consider an s-leaf descision tree T. Denote the root of T by ROOT. As was
proven above, T must have at least one leaf at depth < log(s). Call this leaf X.
Denote X’s parent by P. Since all internal nodes of T have two children by the
properties of DT, X must have a sibling, which we will call S.

Initial Step: Trace out the unique path through the DT leading to the leaf X. By
the properties of DT, this path K represents a series of boolean conditions on
the internal nodes that appear on that path, where each internal node represents
some variable z; and each edge on the path represents an internal node being
set to 1(if the right edge leaving an internal node appears on the path) or 0 (if
the left edge leaving an internal node appears on the path). Thus this leaf is
reached on the DT < this path is traversed, which occurs <> the variables that

6 5 LEARNING DECISION TREES

appear on the path are assigned the truth values necessary to create the path.
In the case that the leaf is reached, the DT outputs the value of the leaf, which
is a 0 or 1. Thus if the nodes appearing on the path K are z,x,,...x, and if the
path K leaves nodes z1,xs,...z; to the right and nodes x;,1,;19,...T;13t0 the left,
this path will be traced out in the DT, and the value of the leaf X returned,
“ T1=29...=2;=1 and z;11 = x;y9...=2;=0, which is equivalent to requiring
T1=To=...T; = Tit1 = Tire...=Tp = 1. But this is equivalent to the conjunction
C = 2129..2;2;11%i32.... Since if this conjunction C is true, the DT outputs
the value of leaf X, val(X),the leaf X of the DT can be fully described by: if
C, output val(X). Since the leaf X was at depth < log(s), it must be that the
number of nodes on the path to the leaf X was < log(s), and thus the number of
variables appearing in the conjunction C is < log(s) and thus this is equivalent
to a valid rule R in a log(s)-DL.

Followup step: Now since the DT will reach the leaf X and return val(X) if and
only if that exact conjunction C is satisfied, this condition entirely treats the
situation in which the conjunction C holds for some instance x and the DT is
to be evaluated on x. Thus the DT is equivalent to the DT without leaf X
combined with the rule R. However, all other paths and leaves on the DT must
be unchanged. Consider the following transformation on the tree T: replace X’s
parent P with X’s sibling S.

Transformation Justification: Since X is a leaf, it has no children, and thus there
is nothing to consider with regard to any children of X. Consider any leaf L. that
can be reached on a path going through the node S. Since S and X were siblings,
they had a common parent P. Thus the path to get from the root to X differs
only in one condition from the path to get from the root to S, namely that the
edge traversed from P is in the opposite direction as it was to get to X. This
must be since there is only one path from the root to any node, and thus there
is only one path from the root to P, and thus this last edge which leaves P is
the only way in which the two paths can differ. However, if all the variables are
set so that P is reached AND P evaluates so that the edge needed to reach X
is traversed, then the DL extracted in the previous step will output the correct
value. Thus the DL will only reach the sibling S if the path to P is traversed
and P evaluates so that the edge needed to reach X is not traversed, aka P has
the opposite truth value as it did when X was reached. Now consider creating
a DL, and placing the extracted rule R in the first box. If all the variables are
set so that the path to P is traversed and P evaluates so X is reached, then
since R is in the first box and R is satisfied for any such instance, the DL will
correctly output the value the DT would have given. Now, since in this DL

only one rule will be allowed to appear in each box, and once a rule is placed
in a box it will not be moved into another box, this means that all other rules
extracted from the DT will appear in later boxes of the DL. In light of this fact,
reconsider the condition for the sibling to be reached in the DT. The path to
K must be traversed, and P must evaluate to the opposite of the value needed
to reach X. Since any rule R’ either containing the variable in node S in its
conjunction (if S is an internal node) or using val(S) as its output (if S is a
leaf) must appear after the rule R in the DL, since R appears in the first box,
it will be the case that R’ is only reached if P evaluates so that S is reached
instead of X, for if it evaluated so that X was reached then rule R would come
into effect instead of rule R’. Thus the structure of the DL implicitly limits R’
to the situation in which P evaluates so that S is reached instead of X. Thus
by placing rule R’ further down in the DL then the rule R, the fact that P
evaluates to the S-condition is implicit in the DL having reached R’, and thus
need not be included in the conjunction describing R’. Thus after the initial
rule R is extracted, the parent P of X need not be included in any conjunctions
that appear in the DL, and thus need not be considered at all. Thus, assuming
that all possible rules that define the DT are eventually extracted in this way,
one can replace P by X’s sibling S and still be certain that the DL consisting of
these rules extracted in this order will be equivalent to the original DT.

Recurse: Now to consider the recursive step, examine the DT after the transforma-
tion. Since this tree has s-1 leaves, it must be that the tree has a leaf at depth
< log(s — 1) < log(s). Thus one can turn to this leaf and repeat the same
process by the same logic as above, extracting a second rule and placing it in
the second box of the DL. Since this process always removes a leaf, at stage i
there will be s-i leaves, and thus by the same logic there must exist a leaf at
depth <log(s —7) <log(s). Thus all rules extracted from the DT in this way
will have associated paths of length < log(s) and thus associated conjunctions
of length < log(s). Thus, repeating this process until all rules are extracted
from the DT and placed into the DL will yield a DL in which each box contains
a conjunction of length at most log(s) which evaluates all instances x in the
same exact way as the original DT.

Conclusion: The conclusion is that the above algorithm converts any s-leaf DT into
an equivalent log(s)-DL, and thus every s-leaf DT must be equivalent to some
log(s)-DL.

8 5 LEARNING DECISION TREES

Since this conversion involves, for every stage of the conversion, locating a leaf node of
depth < log(s), walking the path to the leaf node, and performing a constant number
of update operations which take constant time, the runtime will be dominated by
locating shallow leaf nodes and walking the paths to the leaf nodes. Since the shallow
leaf node must be at depth < log(s), and a binary tree has at most 2¢ nodes at depth
d as proven earlier, it must be that the first log(s) levels of the tree (collectively)
contain at most Y18 21 = 9los(s)+1 = 95 nodes, scanning these levels of the tree
for a leaf node can be done in time O(s). Since all leaves handled will be at depth
< log(s), walking the path to each node can be done in time O(log(s)), and thus the
runtime is dominated by the time to find a shallow node, which can be done in O(s)
time. Since a shallow node must be found at each stage of the conversion algorithm,
and the algorithm has one stage for each of the s leaves, the runtime of the conversion
algorithm is O(s?).

Thus we may conclude that since every s-leaf DT can be converted to an equivalent
log(s)-DL, and every log(s)-DL is learnable in time O(n?0%6()) every s-leaf DT is
learnable in time O(n®U°8()). This term dominates the O(s?) time necessary for the
conversion, and thus s-leaf DT are learnable in O(n?(°8()) time

5.1 The rank of a DT

Definition 2 The rank of a DT, or for any binary tree for that matter, is defined
recursively as follows:

H1

Example:

Figure 1: Here is the original DT

5.1 The rank of a DT 9

HE

7N

o 1

Figure 2: A shallow leaf, the right child of x;, was extracted by the above algorithm.
The leaf was deleted, and its parent x; was replaced by the leaf’s sibling,

¥l ->= 1

Figure 3: the path to get to the recently removed node was to move right from the z;
node, which means the conjunction representing the path is just z;. Since val(leaf)
= 1, the extracted rule will be z; — 1. This rule is put in the first box of a DL

Figure 4: A shallow leaf, the right child of z,, was extracted by the algorithm. The
leaf was deleted, and its parent x5 was replaced by the leave’s sibling, which happens
to be a leaf with value 0

10 5 LEARNING DECISION TREES

21l -= 1 HE-=1

Figure 5: The path to get to the recently removed node was to move right from the
x9 node, which means the conjunction representing the path is just xs. Since val(leaf)
= 1, the extracted rule will be x5 — 1, and it will be placed in the second box of the
DL

21l == 1 Ha—>1 a

Figure 6: Since the only remaining node was a leaf, it is extracted. Since it was the
root, there was no path needed to reach it, and thus the rule is simply 0, which is a
default rule. This is placed in the third box of the DL, and the process is complete
since the DT is empty

5.1 The rank of a DT 11

#1

Example:

Figure 7: To compute the rank of this DT recursively, first observe that the rank of
each of the subtrees rooted at a leaf = (0. Thus the rank of the subtree rooted at the
x9 node is 1 + 0 = 1 since both its left and right subtrees have equal rank (rank(R)
= rank(L) = 0). Thus the rank of the tree rooted at 1, which is the entire tree, is
the max(1,0) = 1 since the tree rooted at node z;’s left child has rank 1, while the
tree rooted at its right child has rank 0. Thus the tree has rank 1.

For a Tree T with left subtree L and right subtree R

0 if T is a leaf
rank(T) = rank(R) + 1 if rank(R) = rank(L)
max(Rank(R), Rank(L)) if rank(R) #rank(L)

Claim 3 Any rank-r DT T has at least 2" leaves

Proof: Use a proof by induction

Base case: if rank(T) = 0 it must be that T is just a leaf, since if T has any
internal nodes then it must be that some internal node has two leaf children, and
thus the rank of that internal node will be 1 by the definition of rank. Since moving
upward in the tree the parent of a node must have rank at least as great as the
node itself by the way rank has been defined (since rank(parent) is either equal to
rank(child)+1 or max(rank of its children)), and moving upward recursively parent to
parent from this internal node with two leaf children will eventually lead to the root,
it must be that the root and thus the tree itself has rank > 1 > 0. Thus, the only way
for the rank of a tree to be zero is for that tree to consist of just a leaf. In this case, the
tree has exactly one leaf. Since 2° = 1, in this base case the number of leaves is > 27"

Inductive case: assuming that a rank-r DT has at least 2" leaves, we must

12 6 LEARNING S-TERM DNF

show that a rank-(r+1) DT has at least 2"*! leaves. Assume the tree T has left
subtree L and right subtree R. There are two cases to consider. If rank(L) = rank(R),
then rank(T) = rank(L)+1 = r+1 and thus it must be that rank(L)=rank(R)=r.
But by the inductive hypothesis, any tree of rank r has at least 2" leaves. Thus each
of the two subtrees rooted at T has at least 2" leaves, and thus the entire tree rooted
at T has at least 2" + 2" = 27! leaves, and the induction is demonstrated. In the
other case, it must be that one of T’s children has rank r+1, and the other has rank
<r+1. One can simply recurse on this child C with r+1 rank. Thus if the left and
right subtrees of this child C have equal rank, the problem reduces to the solved
case. If again the children have uneven rank, simply recurse again on the child with
rank r+1. If this recursive step is performed 2" times without termination, it must
be that the tree has at least 2" internal nodes and thus at least 2" leaves since at
least that many nodes have been examined by the algorithm. Also, if the recursion
terminates, it must mean that some node had two children, each with rank r, and
thus the induction hypothesis is similarly satisfied. It is impossible for the recursion
to reach a leaf node since a leaf node has rank 0, and thus could not have been a
child with rank r+1. Thus one of the above two conditions will always be satisfied,
and thus either way the inductive hypothesis is proven. B

Claim 4 Any rank-r DT T is learnable in time O(n°))

Proof:Since any rank-r DT has at least 2" leaves, and as shown earlier any DT with
27 leaves is learnable in time O(n®108(2)) = O(n°") time. M

Claim 5 Any rank-r DT has a leaf at depth < r and is equivalent to some r-DL

Proof:This follows directly from the laws proven earlier for s-leaf DT and the result
guaranteeing that a rank-r DT has at least 2" leaves B

6 Learning s-term DNF

6.1 A Beginning

Claim 6 Any s-term DNF over n variables is equivalent to an n-DL of length s

6.1 A Beginning 13

Proof:Since an s-term DNF over n variables is the disjunction of s conjunctions, each
of length < n, simply creating a DL in which each box holds a different one of the s
conjunctions and outputs 1 will suffice, with a default case of zero. To demonstrate
this, assume that the s-term DNF returns 1 on some instance x. Then it must be that
at least one of its terms was true in the instance. Since each of its terms appear in the
DL, the DL will find the first such term that applies to the instance and return the
output bit, which is one. Similarly, assume that the DL returns 1 on some instance x.
Then it must be that some rule in one of its boxes applied to the instance, and thus
evaluated to one on the instance, for if this was not the case the DL would reach the
default case and output 0. Thus it must be that some rule’s conjunction evaluated to
1 on the instance. But each rule’s conjunction is a term of the DNF. Thus, since some
term of the DNF evaluated to 1 on the instance, the DNF must have evaluated to 1.
Similarly, assume that the DL returns 0 on some instance x. Then it must be that
the default case was reached, and thus none of the conjunction’s from any of its rules
evaluated to 1 on the instance x, and since these are exactly the terms of the DNF it
must be that none of the DNF’s terms evaluated to 1, and thus the DNF evaluated
to 0. If the DNF returns 0 on some instance x, it must be because none of its terms
evaluated to 1 on x, and thus none of the conjunctions in the DL will evaluate to 1
and thus the default will be reached and 0 returned. Thus the DL returns 1 on an
instance x <+ the DNF returns 1, and the DL returns 0 on x <+ the DNF returns 0,
and the two are equivalent. B

Claim 7 Any n-DL over n wvariables of length s can be expressed as a

O(y/nlog(s)log(n))-DL

This will be proven later in the course. The proof relies on analyzing a DT-DL hybrid,
in which a DT is allowed to have DL for leaf nodes.

Claim 8 s-term DNF over n variables can be learned in time O(n®Vn1os()1os(m)y —

O(2V™108(s) 10g(n)3/2) ~ O(2V7)

This follows directly from the above claims and the results already proven about
learning DL.

14 7 SOME ODDS AND ENDS

7 Some odds and ends

7.1 Expressing DL as LTF

Claim 9 The weight of the LTF for a DL over n variables is €(2")

Proof sketch: Due to the structure of a DL, the rule in the first box must take
precedence over all other rules. Thus even if rules 2,3,4,...n all evaluate to true on
the input and all return an output bit of negative 1, as long as that first rule also
evaluates to true and returns an output bit of positive 1, the entire DL must evaluate
to 1. By the same logic, even if rules 3,4,5,...n all evaluate to true on the input and
all return an output bit of negative 1, as long as the first rule does not apply to the
input (evaluates to false) and the second rule does evaluate to true and returns an
output bit of positive 1, the DL must evaluate to positive 1. To simplify the analysis,
assume that x; appears in box i in the decision list, and that Yodd i, the DL rule
associated with z; returns an output bit of negative 1, and that V even i, the DL rule
associated with x; returns an output bit of positive 1. Let w; be the magnitude of the
coefficient of z; in the LTF, and assume that the LTF has threshold 0. Since even
if the only variables assigned a truth value 0£ 1 are x1,r9,74,%¢,...x, the LTF must
still evaluate to true, it must be that wy; > Y2 | wy;. Similarly, since even if the only
variables assigned a truth value 0£ 1 are x3,74,%¢,...Xn, the LTF must still e\;aluate
to true, it must be that w3 > Y 2, wy;. By the same logic, Vk,wop—1 > > 2, wo;.
But applying the same logic to the negative examgles yields a symmetric situation
for the even coefficients, namely that Vk,wo, > Zf:_kl wo;+1.- Thus any integer LTF
representation must satisfy these restrictions on the weights. It can be shown that
the smallest integer representation satisfying these conditions has weight 2™,

7.2 Conservative Learning Algorithms

Fact 1 Any online learning algorithm with mistake bound M can be converted to an
online learning algorithm with mistake bound M that never makes a change to its
hypothesis during rounds in which the hypothesis agreed with the target concept. Such
an algorithm is called conservative.

15

8 Recommended Reading

For a good survey of Online Learning Algorithms in general, read ” Online Algorithms
in Machine Learning” by Avrim Blum

For the original proofs regarding the conversion of DT to DL, read ”Rank-r
Decision Trees are a Subclass of r-Decision Lists” by Avrim Blum

To learn about the DNF claims that went unproved, read ”A Subexponential
Exact Learning Algorithm for DNF Using Equivalence Queries” by Nader Bshouty

For an excellent survey of graph and tree algorithms, check out my personal
favorite algorithmic bible CLRS.

