
OPTIMIST:
State Minimization for Optimal 2-Level Logic Implementation

Robert M. Fuhrer Steven M. Nowick∗

Department of Computer Science
Columbia University
New York, NY 10027

Abstract
We present a novel method for state minimization
of incompletely-specified finite state machines. Where
classic methods simply minimize the number of states,
ours directly addresses the implementation’s logic com-
plexity, and produces an exactly optimal implementa-
tion under input encoding. The method incorporates
optimal “state mapping”, i.e., the process of reducing
the symbolic next-state relation which results from state
splitting to an optimal conforming symbolic function.
Further, it offers a number of convenient sites for ap-
plying heuristics to reduce time and space complexity,
and is amenable to implementation based on implicit
representations. Although our method currently makes
use of an input encoding model, we believe it can be ex-
tended smoothly to encompass output encoding as well.

1 Introduction
State minimization is the problem of finding a machine
realizing the input/output behaviour of a given FSM,
with fewer internal states [11, 17, 12]. This is an impor-
tant step in sequential synthesis: implementing unmin-
imized FSM’s often leads to considerably larger and/or
slower implementations. However, it is well known that
the classic formulation for state minimization expresses
a heuristic – reducing the number of states only tends
to decrease logic complexity. Early on, Hartmanis ob-
served [9] that this heuristic sometimes fails; realiza-
tions having more states may be simpler to implement.
Moreover, there may be many minimum-state realiza-
tions of a given FSM, and their logic complexity can
vary significantly [18, 16]. Hence, simply targeting any
minimum-state solution is insufficient.

The major contribution of this paper is a state min-
imization method which, in contrast to existing ones,
directly targets logic complexity. In particular, we de-
fine and solve the optimal state minimization problem,
that of finding for a given FSM a realization having
minimum 2-level logic complexity over all realizations.

Classic sequential synthesis comprises several steps:
state minimization, state encoding, 2-level logic min-
imization, multi-level optimization and technology
mapping. Each step has traditionally been treated
as an isolated problem, which limits early steps most

∗This research was funded in part by NSF CAREER Award
MIP-9501880 and by an Alfred P. Sloan Research Fellowship.

severely. In [7], a key insight into optimal state en-
coding was presented: symbolic logic minimization can
be performed concurrently with state encoding. More
recent methods for optimal encoding have been devel-
oped [20, 8] based on the same insight, but yielding
even better results.

We borrow this insight, and take it one step fur-
ther: symbolic logic minimization is performed con-
currently with both state minimization and state en-
coding. Our method is cast as a unique form of gen-
eralized prime implicant minimization [8]. Specifically,
symbolic prime implicants are generated, and a binate
covering problem is formed and solved, yielding a re-
duced machine and logic cover.

Our paper offers a novel theoretical framework for
formulating and solving the optimal state minimiza-
tion problem. We demonstrate that our method identi-
fies optimal solutions which are inaccessible to existing
tools, due to their focus on minimum cardinality state
covers. In addition, we provide initial results of a CAD
tool implementation.

The structure of the paper is as follows. Section 2,
provides background on state minimization, state as-
signment and related work. Section 3 then gives a gen-
eral overview of our method, with a focus on the ma-
jor issues. Sections 4, 5 and 6, provide greater detail
on the three major components of our method: sym-
bolic prime generation, binate constraint generation,
and symbolic instantiation, respectively. Two exam-
ples in Section 7 demonstrate the procedure and show
results unattainable by existing methods. Finally, Sec-
tion 8 provides some experimental results, and Sec-
tion 9 presents conclusions and future work.

2 Background and Related Work
A completely-specified Finite State Machine (FSM)M
is defined [16, 6] by the tuple 〈 I, O, S, S0, T , F 〉,
where I is the input alphabet, O is the output alpha-
bet, S is the set of states, S0 ⊂ S is the (set of) initial
state(s), T = T (i, s) ∈ S, i ∈ I, s ∈ S is the transi-
tion function, and F = F(i, s) ∈ O, i ∈ I, s ∈ S is the
output function.

An incompletely-specified FSM (ISFSM) is de-
fined similarly, except that T ⊂ I × S × S and
F ⊂ I × S ×O are relations, rather than functions.1

1Where clear, a functional notation will be used for ISFSM’s.



For the unreduced machine, we restrict attention to the
common subclass of ISFSM’s where, ∀i ∈ I, ∀s ∈ S,
the next-state T (i, s) is either a singleton state or else
is completely unspecified (denoted T (i, s) = S). Like-
wise, it is assumed that output O(i, s) is either a single
value or unspecified.
2.1 State Minimization

We now review basic definitions given in [11].
A pair of states (sa, sb) implies states (sc, sd) under

input Ik iff {T (Ik, sa), T (Ik, sb)} = {sc, sd}.
A pair of states is output-compatible iff correspond-

ing output values agree wherever both are specified.
A pair of states is compatible iff they are output-

compatible and imply no incompatible pair of states.
A set of states is a compatible iff it consists of

pairwise-compatible states.
Compatible ca implies compatible cb under input Ik

iff {T (Ik, s), ∀s ∈ ca} = cb.
Compatible c is a maximal compatible iff it is a

proper subset of no other compatible.
The implied set P (c) of a compatible c is the set

of compatibles implied by c over all inputs, excluding
singleton states, subsets of c, and proper subsets of
compatibles in P (c).

Compatible ca excludes cb iff cb ⊂ ca and P (ca) ⊆
P (cb).

Compatible c is a prime compatible iff it is excluded
by no other compatible.

A set C of compatibles is closed iff every element of
the implied set of each compatible c ∈ C is contained
by some compatible in C.

A set C of compatibles is a cover forM iff for every
state s ∈ S there exists a compatible c ∈ C such that
s ∈ c.

The classic state minimization problem can now be
defined as finding a minimum cardinality closed cover
of prime compatibles ofM. In the sequel, we designate
the resulting reduced machine as M′.
2.2 The State Mapping Problem

Given an incompletely-specified FSM, a state re-
duction often defines a set of compatible realiza-
tions [17, 11]. In this case, the next-state behaviour
of the resulting ISFSM forms a relation, so that dif-
ferent next-state bindings are possible. This flexibility
gives rise to the state-mapping problem [15], in which
the symbolic relation is reduced to a conforming sym-
bolic function. The function is obtained by choosing a
specific next-state wherever a choice exists. This choice
has a direct impact on logic quality, and is a pivotal
issue for optimal state minimization.
M 0 1
s0 s0,0 s2,0
s1 s1,0 s1,-
s2 s1,- s0,1

M′ 0 1
s′0 = {s0, s1} s′0,0 s′1,0
s′1 = {s1, s2} {s1},0 s′0,1

Figure 1: State table before and after minimization
The state mapping problem is illustrated in Fig-

ure 1, taken from [15]. A choice of next-state inM′ at
total state 〈 0 s′1 〉 exists; it can be assigned to either s′0

or s′1. The best cover achievable2 when state mapping
s1 to s′1 in that total state has 4 terms. In contrast,
state mapping to s′0 yields a 3-term cover.
2.3 Optimal State Assignment as Input En-

coding
As our strategy for optimal state minimization is the

concurrent reduction and assignment of states, we now
review basic concepts in optimal state assignment.

The problem of optimal state assignment is that of
finding an assignment of N-bit binary values to the in-
ternal states of an (IS)FSM so as to minimize the logic
complexity of the resulting realization. One useful ap-
proximation to this problem is known as input encod-
ing. As we use an input encoding formulation in our
approach to optimal state minimization, we briefly give
an overview. For further details, see [7], or, for recent
extensions for hazard-free encoding of asynchronous
machines, see [10].

Input encoding, like several approaches to optimal
encoding, has two steps:

1. Symbolic 2-level logic minimization
2. Constrained encoding

In input encoding, symbolic logic minimization is
performed by temporarily “1-hot encoding” the states.
The present state is then treated as a multi-valued
input [19], while each next state is treated as a dis-
joint binary output function. Multi-valued minimiza-
tion [19] produces the desired 2-level symbolic cover.
The structure of this symbolic cover reflects that of
the target realization.

Using this cover, encoding constraints are generated.
The constraints are then solved, yielding an encoding
with which the symbolic cover can be “instantiated” to
produce a correct binary implementation. The result-
ing 2-level realization has identical cardinality to the
original symbolic cover.3

2.4 Previous Work
The topic of state minimization has been researched

extensively over several decades. Hartmanis observed
in [9] that the minimum cardinality solution does not
always yield the best implementation. The problem
was later approximated as a search for a closed cover
of minimum cardinality and solved exactly in [11].
In [13], the relationship of state reduction to implemen-
tation complexity was explored via an elegant theoret-
ical framework, which unfortunately did not provide a
solution to the problem.

Several recent methods have been focused on pro-
ducing minimum cardinality covers. Efficient algo-
rithms have been produced for solving the problem
exactly ([12], [14]), and heuristics ([12]) have been de-
veloped for inexact solutions. These two fronts have
seen considerable progress.

Only a few recent attempts have been made to ad-
dress the more general problem of optimal state min-
imization. In STAMINA [12], some attention is paid

2assuming an input-encoded implementation
3Modulo the well-known “all-0 code” issue; see [6].



to implementation complexity, but no attempt at di-
rect nor exact solutions was made. A somewhat more
direct approach was taken by Avedillo et al. [1], but
results were less than encouraging (they were not even
compared with a state reduction tool, but rather with
NOVA, a state assignment tool, which did better on
already-minimized FSM’s), and no theoretical results
are given. Finally, Calazans [3] offers a framework
within which both optimal encoding and state mini-
mization can be expressed. In it, state reduction is
modeled as the assignment of two or more states to
the same code. This insight constitutes one of the cor-
nerstones of our method. Unfortunately, the only so-
lution method given is a simple, greedy method which
fares relatively poorly. Worse, it is not evident how
to express a high-quality solution method within that
formulation.

Two recently developed CAD optimization tech-
niques are also relevant to our work, though created
for other purposes. First, Devadas and Newton [8] ad-
dress the problem of exact state encoding via GPI min-
imization. In this method, generalized symbolic primes
(GPI’s) are formed, and a constrained binate cover-
ing problem is then solved which both selects a set of
GPI’s and produces a compatible state encoding. The
basic flow – symbolic prime generation followed by con-
strained covering – is used in our present method, but
with considerably different symbolic primes and con-
straints.

Second, Lin and Somenzi [15] introduce a technique
for the exact minimization of symbolic relations. Of
particular interest is its application to exact state en-
coding, incorporating an elegant method for state map-
ping. The symbolic relation they minimize, however,
is the result of state minimization; state minimization
itself is not addressed.

3 Optimal State Minimization: Overview
This section provides a general overview of our optimal
state minimization method.

Optimal state minimization is defined as finding, for
a machineM, a reduced machineM′ with compatible
behaviour and minimum logic complexity. Our method
is cast as a form of symbolic GPI (generalized prime
implicant) minimization which encapsulates both state
encoding and state minimization. The method has 5
steps:

1. Generate state compatibles
2. Generate symbolic primes
3. Generate binate constraints
4. Solve constraints
5. Instantiate symbolic cover

First, state compatibles are formed by any of var-
ious standard methods (e.g., STAMINA [12]). Next,
a novel form of symbolic prime called RGPI’s, based
on GPI’s [8], is generated. A set of binate constraints
which identify the valid realizations is then formed.
These constraints are solved so as to minimize logic car-
dinality using a binate solver (e.g., Scherzo [5]). The
solution is a set of selected compatibles and a set of

selected RGPI’s. These are trivially combined during
cover instantiation, to produce the reduced machine
M′ and its symbolic realization. From there, input en-
coding constraints can be immediately generated and
solved to produce an optimal encoding.

We now give an overview of the 3 steps unique to our
method: symbolic prime generation, binate constraint
generation, and cover instantiation. Further details are
provided in Sections 4 through 6.

3.1 Symbolic Primes

A symbolic product is a product of literals over an
mvi domain [6]. Each value taken by a symbolic out-
put is called a symbolic part. A symbolic implicant is
a symbolic product which satisfies the following two
properties: (i) it contains no OFF-set minterm of any
binary output to which it contributes; (ii) for each
symbolic output to which it contributes, it asserts all
symbolic parts specified in the minterms which it con-
tains. A symbolic implicant of an FSM is expressed
as a 4-tuple p : 〈 in ps ns out 〉, denoting the input,
present-state, next-state and output fields.

Our procedure forms a set of symbolic implicants
on the unreduced machine, which can be used to cover
portions of various reduced machines, after a suitable
transformation. These implicants are maximal overM
in an intuitive sense. Specifically, we define a novel
type of symbolic prime implicant, called a restricted
generalized (prime) implicant, or RG(P)I, a variant of
a GPI, formed on the unreduced machine.

GPI’s were introduced in [8] as a kind of symbolic
prime implicant, each “tagged with” (i.e., having a field
comprising) a set of next-states. The tag contains all
next-states which are specified in all total states the
GPI contains. For example, in Figure 1, the symbolic
implicant ga : 〈− s0 s0, s2 0 〉 is a GPI, where ns=
{s0, s2}.

We now formally define RGI’s, and an easily-
calculated subset of RGPI’s called RGPI seeds.

Definition 3.1 An RGI is a symbolic implicant
whose next-state field consists of compatible states.

Intuitively, the selection of an RGI corresponds to
a state-mapping choice. Note that the next-state field
of an RGI (if non-empty) is a set of states, i.e. a com-
patible, in the unreduced machine. This compatible, if
selected, will appear as a single state in the reduced ma-
chine. Therefore, the RGI will be bound to (at most)
one symbolic next-state in the reduced machine, as re-
quired by the input encoding formulation.

Definition 3.2 An RGI p1 contains RGI p2 iff each
field of p1 contains the corresponding field of p2.

Definition 3.3 An RGPI seed is an RGI which is
contained only by RGI’s with unequal next-state fields.

Example: Figure 1 has the following RGPI seeds:
p0 : 〈 0 s0 s0 0 〉 p1 : 〈 0 s0, s1, s2 s0 , s1 0 〉
p2 : 〈 0 s1, s2 s1 0 〉 p3 : 〈 0 s2 s1 1 〉
p4 : 〈 1 s0 s2 0 〉 p5 : 〈 1 s1 s1 1 〉
p6 : 〈− s1 s1 0 〉 p7 : 〈 1 s0, s1 s1 , s2 0 〉



p8 : 〈 1 s1, s2 s0, s1 1 〉 p9 : 〈 0 s1 , s2 s1, s2 0 〉
p10 : 〈− s1, s2 s0, s1 0 〉 p11 : 〈− s2 s0, s1 1 〉

Note that {s0, s1} is a compatible, but {s0, s2} is not.
Therefore, p1 is an RGI, but GPI ga : 〈− s0 s0, s2 0 〉
is not. Furthermore, pb : 〈 0 s0 , s1 s0, s1 0 〉 is an
RGI, but is not an RGPI, since p1 contains pb and has
the same next-state field. On the other hand, although
p1 contains p0, its next-state field is different, and so
p0 is a distinct RGPI. 2

We generate RGPI seeds by a slightly modified ver-
sion of a GPI generation algorithm [8], which will be
described in Section 4.

While RGPI seeds are the basic covering objects
which will be used, it will be shown in Section 4 that
a more general class, RGPI’s, is in fact needed.4

Definition 3.4 An RGPI is an RGI which is con-
tained only by RGI’s with unequal input or next-state
fields.

The class of RGPI’s includes RGPI seeds, as well as
smaller RGPI’s which result from reducing seeds in the
input dimension, to allow finer-grained covering.

3.2 Constraint Generation

Once RGPI’s are generated, constraints are for-
mulated to insure a valid and optimal implementa-
tion. The solution is a set of selected compatibles and
RGPI’s. There are 3 main objectives. First, reduced
machine M′ must be a realization of M. Second, the
selected set of RGPI’s must constitute a cover forM′.
Third, the resulting cover must have minimum car-
dinality. We now outline the constraints; details are
provided in Section 5.

The first objective is ensured by two sets of con-
straints. Each corresponds to a classic state mini-
mization constraint: that the state compatibles form
a cover, and that the cover be closed. State covering
constraints are precisely as described in [11].

The second objective, covering M′ , is met by a
novel set of constraints. Each selected compatible iden-
tifies a unique state in the reduced machine. Our con-
straints ensure that each ON-set minterm of this re-
duced state is covered by some (instantiated) RGPI.

The third objective, minimum logic cardinality, is
met by the binate solver, which finds a minimum-cost
solution. To make cost a straightforward calculation,
we introduce one extra column variable per RGPI.
Only these column variables have non-zero cost.

3.3 Symbolic Instantiation

Symbolic instantiation is the process by which se-
lected RGPI’s are transformed one-for-one into a sym-
bolic realization of M′. To describe the process, we
consider each of the 4 fields of an RGPI.

Formally, for p = 〈I, PS, NS, O〉 we define

p′ = Instantiate(p) = 〈I, PS′, NS′, O〉

4Note that RGPI seeds are GPI’s, while RGPI’s in general
are not.

The input and output fields of p are unchanged by
instantiation.

The next-state field of p is a compatible ofM . Note
that this compatible corresponds to a single row in the
reduced machine. Hence, an RGPI’s next-state field
identifies a unique state ofM′, and is mapped trivially:

NS′ = the unique state of M′ corresponding to NS

The role of the RGPI in the reduced machine is thus
to contribute to (at most) a single symbolic next-state.
This role reflects our use of an input encoding formu-
lation, where each next-state in the reduced machine
is treated as a distinct function. Therefore, each RGPI
embodies a uniform state mapping over some cube of
M′ to a specific reduced state of M′ .

Finally, the present-state field of an RGPI contains
one or more symbolic states. To a first approximation,
an RGPI will be mapped so as to cover all selected
compatibles c which contain the present state field of
that RGPI. That is, the RGPI is regarded as covering
the class of compatibles which are contained within its
present state field.
Example: RGPI p8 : 〈 1 s1, s2 s0, s1 1 〉 in Fig-
ure 1 contributes to (compatible) next-states {s0, s1}
of M , and has present states {s1, s2}. Therefore,
in the reduced table M′ , p8 maps to the product
p′8 : 〈 1 s′1 s′0 1 〉. The resulting present state field
contains s′1 = {s1, s2}; the next-state field consists of
the single reduced next-state s′0 (which corresponds to
the original compatible set {s0, s1}). 2

As indicated, for the present state, we can include
in PS′ all selected compatibles contained by PS. This
scheme works in some cases, but fails to capture the full
flexibility of state mapping in others. In Section 6, we
define the precise mapping for PS which circumvents
this problem.
Example: One solution to the constrained covering
problem, for Figure 1, consists of (i) compatibles s′0 ≡
{s0, s1} and s′1 ≡ {s1, s2}, and (ii) RGPI’s {p1, p7, p8}
shown below.
p1 : 〈 0 s0, s1, s2 s0 , s1 0 〉
p7 : 〈 1 s0, s1 s1, s2 0 〉
p8 : 〈 1 s1, s2 s0, s1 1 〉

p′1 : 〈 0 s′0, s
′
1 s′0 0 〉

p′7 : 〈 1 s′0 s′1 0 〉
p′8 : 〈 1 s′1 s′0 1 〉

The selected RGPI’s, {p1, p7, p8}, can be instantiated
as symbolic implicants {p′1, p

′
7, p
′
8} of reduced machine

M′ . It is easy to verify that the result is a cover for
M′ . Observe that the input and output fields are un-
changed; only the present-state and next-state fields
are transformed. Further, each mapped implicant con-
tributes to at most 1 state. Note that the state map-
ping choice at 〈 0 s′1 〉 is resolved to s′0 by the binding
effected by p′1. 2

4 Symbolic Primes: RGPI’s
The structure of this section is as follows. First, we
present an RGPI seed generation algorithm. Next, we
highlight the problem arising from restricting solutions
to RGPI seeds. Finally, we describe the solution to this
problem – use of a larger set of symbolic primes, the



complete set of RGPI’s.

4.1 Generating RGPI Seeds

RGPI seeds are generated by a modified version of
an existing “k-cube” algorithm [8]. First, “0-cubes” are
generated, which essentially record the next-state and
output in each total state. Then, an iterative “merge-
and-dominate” step is performed. The algorithm pro-
duces seeds with “tight-fitting” next-state fields, which
exactly equal the set of next-states specified within
each cube. Finally, a simple post-processing step (not
shown) expands the next-state fields to larger compat-
ibles, yielding the remaining seeds.

merge(sa, sb) :=
sa ∪ sb if compatible(sa, sb) and neither = φ,
sa if sb = DC,
sb if sa = DC,
φ otherwise

generate-0-cubes() {
cubes0 := φ;
foreach total state τ = 〈 IN PS 〉 do

OUT := {oi | output i 6= 0 in τ };
NS := {s} iff T (IN, PS) = s, else DC;
cubes0 := cubes0 ∪ { 〈 IN PS OUT NS 〉 }; }

generate-k-cubes() {
generate-0-cubes();
for k := 1 to kMax do

cubesk := φ;
for each pair pi, pj in cubesk−1 do

if distance(pi, pj) = 1 then
IN′ := INi ∪ INj ;
PS′ := PSi ∪PSj;
NS′ := merge(NSi,NSj);
OUT′ := OUTi ∩OUTj ;
if (¬empty(NS′) ∧ ¬empty(OUT′)) then

cubesk := cubesk ∪ {〈 IN
′,PS′,NS′,OUT′ 〉};

if (OUT′ = OUTi) ∧ (NS′ = NSi)
mark pi dominated;

if (OUT′ = OUTj) ∧ (NS′ = NSj)
mark pj dominated; }

4.2 Non-Seed RGPI’s

It is not always possible to construct an optimal
solution using only RGPI seeds. The reason is the
incompatibility of RGPI’s which intersect and imple-
ment next-state, but disagree. Their incompatibility
results from their commitment to bind the next-state
entries of contained total states to conflicting states.
Lacking finer-grained cubes, this interference results in
cases where only sub-optimal solutions are produced,
or where no cover exists.

Example: The following table, when reduced using
compatibles {s1, s2} and {s2, s3}, cannot be covered by
RGPI seeds alone:

M 00 01 11 10
s0 s1,- s2,- s3,- s4,1
s1 s1,1 s1,1 s4,- s4,-
s2 s2,1 s2,- s4,0 s4,0
s3 s2,- s3,0 s4,0 s4,0
s4 s4,0 s4,1 s4,1 s4,1

Consider the RGPI seeds p1 : 〈 0− s0, s1, s2 s1 , s2 1 〉
and p2 : 〈−1 s0 s2, s3 1 〉. These seeds are incom-
patible: they intersect in total state 〈 01 s0 〉, but have
different next-state fields ({s1, s2} vs. {s2, s3}), repre-
senting conflicting state mappings. Yet, p1 and p2 are
both essential for covering minterms at 〈 00 s0 〉 and
〈 11 s0 〉, respectively. Hence no solution exists, using
only RGPI seeds. 2

Clearly, RGPI seeds are not fine-grained enough to
express the full flexibility of state mapping. In some
cases, no solution consisting solely of RGPI seeds ex-
ists; in others, no optimum solution exists. In general,
an optimum solution requires a combination of RGPI
seeds and finer-grained symbolic cubes. To see the kind
of cubes that are needed, consider following reduction
of the above machine.
Example:

M′ 00 01 11 10
s′0 = {s0} s′1,- {s2},- s′2,- s′3,1

s′1 = {s1, s2} s′1,1 s′1,1 s′3,0 s′3,0
s′2 = {s2, s3} {s2},1 s′2,0 s′3,0 s′3,0

s′3 = {s4} s′3,0 s′3,1 s′3,1 s′3,1

There are two state mapping choices in 〈 01 s′0 〉: s′1
and s′2. If we choose mapping s′1, we require an impli-
cant which covers the isolated s′2 minterm at 〈 11 s′0 〉;
however, no RGPI seed maps onto such an implicant.
If we choose s′2, two distinct implicants are required
to cover the minterms s′1 at 〈 00 s′0 〉 and 〈 01 s′1 〉; no
RGPI seed maps onto either implicant. 2

We need smaller RGPI’s to gain finer control over
state-mapping. Specifically, we require a set of impli-
cants with smaller input and/or present-state fields.
Example: An optimal cover can be constructed,
if the set of RGPI seeds is augmented with the fol-
lowing RGPI’s: p1a : 〈 00 s0 , s1, s2 s1, s2 1 〉, p1b :
〈 0− s1, s2 s1, s2 1 〉, and p2a : 〈 11 s0 s2, s3 1 〉. 2

We now show how such non-seed cubes as p1a, p1b,
and p2a above can be derived from RGPI seeds by re-
stricting their input and/or present-state fields. Two
distinct approaches are used. For cubes restricted in
the present-state field, we introduce decision variables
into constrained covering which determine the selected
subset of reduced states. For cubes restricted in the
input field, we simply refine RGPI seeds in the input
dimension. In the following sections, we describe both
approaches.

4.3 Present State Field
Non-seed RGPI’s which span fewer reduced states

are obtained, by associating a set of Boolean decision
variables {γp,c} with each RGPI p. Each γp,c is set
to true iff RGPI p is to be mapped so as to span the
reduced state corresponding to c. Thus, the present-



state mapping of p is incorporated into the constrained
covering step. The γp,c assignments chosen during cov-
ering are later used in symbolic instantiation.
γp,c is well-defined only for compatibles c which are

contained in PS(p), since including any other c would
not result in an implicant ofM′ . Therefore, we define
Γp = {c | c ⊆ PS(p), c ∈ C}, and reserve a γp,c for
each c in Γp.
4.4 Input Field

Non-seed RGPI’s which are smaller in the input
dimension are obtained, by simply “refining” RGPI
seeds, reducing them in all possible inputs, and adding
the resulting sub-cubes to the RGPI set.

5 Constraint Generation
Once RGPI generation is completed, constraints must
be generated. There are five distinct sets of constraints,
each addressing a specific requirement on valid realiza-
tions. Two (sets 1 and 3 below) correspond directly to
classic state minimization constraints, which ensure a
closed cover of state compatibles. One set (set 2) en-
sures that the ON-set of the reduced machine is covered
by the selected RGPI’s. An additional set (set 4) en-
sures that the machine is state-mapped consistently by
the selected RGPI’s. The final set of constraints (set 5)
provides the solver with a trivial means of determining
the cover’s cost.

The covering problem can be expressed as a con-
straint matrix, where each row is a constraint and
each column is a decision variable. The covering
matrix contains three kinds of columns: state com-
patibles, RGPI’s, and “γ” variables, which modulate
RGPI instantiation. Note that many constraints are
binate, as in state reduction [11] and relation mini-
mization [15, 2].
5.1 Constraints

The columns in the covering matrix are:

ci – include compatible ci in state cover
pi – include RGPI pi in symbolic cover

γpi,ci – make RGPI pi span ci in M′

The constraint clauses, which correspond to cover-
ing matrix rows, are shown below, grouped in five sec-
tions according to purpose. Each section consists of a
set of similar clauses, all of which must be satisfied.
The final Boolean expression is a conjunction of all
rows/clauses in all five sections.

1. State Covering
Each unreduced state must be covered by some
state compatible (reduced state).
∀ states s ofM

ci1 + ci2 + · · ·+ ciN
where s ∈ cik .

2. Compatible Selection ⇒ RGPI Selection
(“Functional Covering”)
Each ON-set minterm of each output and next-
state of M′ must be covered. Since selecting a
compatible corresponds to adding a row in the
reduced table, this constraint ensures that every
ON-set minterm in the reduced row is covered.

∀ compatibles ck∏
∀m′∈ck

{ck + γp1,ck + γp2,ck + · · ·+ γpN ,ck}

Here, m′ refers to the ON-set minterms lying in
ck, corresponding to either an output or the next-
state in the reduced machineM′. Each clause en-
sures that some RGPI pi will be mapped over ck
(i.e. γpi,ck will be true), and hence will cover m′

in M′.

Although the minterms m′ in row ck of the re-
duced machine are not yet explicitly available,
they can easily be derived. Let i ∈ I be any in-
put value. The corresponding minterm m′ is an
ON-set minterm of a binary output function fj in
reduced machineM′ iff, for some unreduced state
s ∈ ck, fj(s, i) = 1. Minterm m′ is considered an
ON-set minterm of the symbolic next-state of the
reduced machine M′ iff for some unreduced state
s ∈ ck, T (s, i) = s̃, for some singleton state s̃; that
is, the next-state is specified in s. In this case, the
next-state in m′ will also be specified.

For each ON-set minterm, m′, those γpi,ck are in-
cluded in the above constraints where (i) pi con-
tributes to the corresponding output or next-state,
and (ii) also contains the minterm (i.e. intersects
input column i).

3. RGPI Selection ⇒ Compatible Selection
If an RGPI which implements next-state is se-
lected, the corresponding state compatible must
also be selected.

∀ RGPI’s pi | NS(pi) 6= φ
pi + ck

where compatible ck = NS(pi).

This constraint corresponds to a classic closure
constraint [11]. An RGPI which implements next-
state identifies a unique reduced state to which the
next-state of all contained total states is uniformly
state mapped. Hence, RGPI selection implies a
commitment to select the compatible correspond-
ing to its next-state field. Note that an RGPI im-
plementing only outputs has no such constraint.

4. Implicant Incompatibility
Two RGPI’s are incompatible if they intersect in
some selected compatible, but disagree on next-
state.

∀ RGPI’s pi, pj | i 6= j, IN(pi) ∩ IN(pj) 6= φ,

NS(pi) 6= φ,NS(pj) 6= φ,NS(pi) 6= NS(pj ),

∀ compatibles ck ⊆ PS(pi) ∩ PS(pj)

and T (IN(pi) ∩ IN(pj), ck) 6= S

ck + γpi,ck + γpj ,ck

If two RGPI’s implement next-state and disagree,
and intersect in some compatible ck, they can both
be mapped over ck only if the next-state is un-
specified (T (Ia, s) = S) throughout the region of
intersection. Otherwise, there is a conflict: a to-
tal state would be simultaneously mapped in two



ways. We must either not select ck, or not map
one of the RGPI’s onto reduced state ck.

5. Implicant Cost
Mapping an RGPI over a reduced state implies
selecting that RGPI.

∀ RGPI’s pi, ∀ compatibles ck ∈ Γpi
γpi,ck + pi

This is a bookkeeping device to make it easier for
the solver to determine the solution cost (logic
cover cardinality). The variable pi is true when
pi is mapped over at least one reduced state.

5.2 Flow of Constraint Solution

The implications interconnecting the various con-
straints can be envisioned in a “flow” from, e.g., state
covering (set 1) to functional covering (set 2) to state
implication (set 3), and so on. To better illustrate the
relationships, we offer the following solution scenario5:

1. We start by selecting a compatible ci to cover some
state, say, s0. This satisfies the corresponding
clause from set 1.

2. The selection of compatible ci implies covering
conditions on the ON-set minterms m′ of M′ ly-
ing in ci (set 2). We choose one such minterm,
and map an eligible RGPI p over ci to cover it, by
setting γp,ci to true.

3. This now requires adding p to the cover (set 5).
4. Selecting p implies selecting the compatible cj as-

sociated with p’s next-state field, if any (set 3). If
cj was not previously selected, new covering con-
straints must be satisfied, and we recur on step
2.

5. If there are uncovered minterms in ci, continue at
step 2.

6. If there are uncovered states, continue at step 1.

At any point, the currently selected RGPI’s may be
incompatible (set 4) with RGPI’s mentioned in cover-
ing clauses (set 2) for a specific compatible. If so, the
latter RGPI’s cannot be mapped over that compatible,
and the corresponding γ’s are removed from consider-
ation in this sub-tree. There may then be no RGPI
eligible to cover some minterm in step 2. If so, the
sub-problem has no solution, and backtracking occurs.

6 Symbolic Instantiation
We now define symbolic instantiation precisely, tak-
ing into account the γ variables associated with each
RGPI. These were introduced in section 4 to gain finer
control over the shape of instantiated implicants.

Symbolic instantiation is defined with respect to a
selected set of compatibles (and hence a reduced ma-
chineM′ ), along with the set of γ variable assignments
identifying specific reduced states to span. Specifically,

p′ = Instantiateγp(p)

5which can be regarded as a crude recursive-descent algorithm

where γp is a set of Boolean variables associated with
p. Each member of γp is associated with a compatible
contained in PS(p). We thus let

p′ = Instantiateγp(p) = 〈I, PS′, NS′, O〉

with NS′ as before, but, for the present state field:

PS′ = { reduced states s′ | γp,c = 1 and
s′ corresponds to c }

7 Examples

We now present two examples. The first illustrates
our procedure by giving partial results of each step
for the simple example in Figure 1. We show both
the optimal cover, corresponding to the optimal state
mapping, and a sub-optimal cover, resulting from sub-
optimal mapping. The second example demonstrates
results not obtainable by other existing methods.

Example: (from Figure 1)

M 0 1
s0 s0,0 s2,0
s1 s1,0 s1,-
s2 s1,- s0,1

Maximal compatibles:
MC = {{s0, s1}, {s1, s2}}.

Prime compatibles:
PC = {c0, . . . , c4} ≡
{{s0}, {s1}, {s2}} ∪ MC.

The RGPI seeds were given in section 3.1. There are no
non-seed RGPI’s. A subset of the constraints follows,
in POS form, and grouped by section:

State Covering (all shown):
(c0 + c3)(c1 + c3 + c4)(c2 + c4)

Functional Covering (shown for c0, c3, c4):
The first clause ensures that the minterm for s0

in 〈 0 s0 〉 is covered. p0 satisfies the clause when γp0,c0
is set to true, which maps p0 over c0.

(c0 + γp0,c0 + γp1,c0)(c0 + γp4,c0 + γp7,c0)
(c3 + γp1,c3)(c3 + γp7,c1)
(c4 +γp1,c4 +γp2,c4 +γp10,c4)(c4 +γp8 ,c4 +γp10 ,c4)
(c4 + γp8,c4) · · ·

Compatible Implication (shown for p0, . . . , p3):
(p0 + c0)(p1 + c3)(p2 + c1)(p3 + c1) · · ·

Implicant Incompatibility (shown for p0, p1):
(c0 + γp0,c0 + γp1,c0)(c1 + γp1,c1 + γp2,c1)
(c2 + γp1,c2 + γp2,c2)(c4 + γp1,c4 + γp2,c4)
(c2 + γp1,c2 + γp3,c2)(c1 + γp1,c1 + γp6,c1) · · ·

Implicant Cost (shown for p0, p1):
(γp0,c0 + p0)(γp1,c0 + p1)(γp1,c1 + p1)(γp1,c2 + p1)
(γp1,c3 + p1)(γp1,c4 + p1) · · ·

Selecting compatibles {s0, s1} and {s1, s2} gives two
state-mapping choices in 〈 00 s′1 〉, as observed earlier.
The sub-optimal 4-RGPI cover {p1, p7, p9, p11} corre-
sponds to choosing s′1. Our method instead finds the
minimum cover {p1, p7, p11}, with 3 RGPI’s, which cor-
responds to the optimal state-mapping of s′0. 2

Example: The following example demonstrates that
our method, which examines non-minimum cardinal-
ity state covers, forms the optimal solution which other
methods cannot find. In contrast, M, when fully re-
duced (as other methods would do), results in a sub-
optimal logic cover.



M 00 01 11 10
s0 s2,1 s1,0 s1,- s0,0
s1 s2,0 s1,- s1,- -,-
s2 s2,- s1,1 s1,1 s0,1

Prime compatibles:
{s0} and {s1, s2}.

M′ 00 01 11 10
s′0 s′1,1 s′1,0 s′1,- s′0,0
s′1 s′1,0 s′1,1 s′1,1 s′0,1

M, reduced via
{s0} and {s1, s2}.

The minimum logic covers for these two machines
are shown below, for M on the left (RGPI’s), and for
M′ on the right (instantiated RGPI’s):
p1 : 〈 00 s0, s2 s2 1 〉 p′1 : 〈 0− s′0, s

′
1 s′1 0 〉

p2 : 〈−1 s0, s1, s2 s1 0 〉 p′2 : 〈 00 s′0 s′1 1 〉
p3 : 〈 10 s0, s1, s2 s0 0 〉 p′3 : 〈−1 s′1 s′1 1 〉
p4 : 〈 00 s0, s1, s2 s2 0 〉 p′4 : 〈 10 s′0, s

′
1 s′0 0 〉

p5 : 〈−− s2 − 1 〉 p′5 : 〈 11 s′0, s
′
1 s′1 1 〉

p′6 : 〈 10 s′1 s′0 1 〉

It is not hard to show that these two state and logic
covers are two different solutions to our constraints.

Our method produces the optimal (unreduced) im-
plementation M, with cover p1, . . . , p5 and 3 states.
Consider p5, which is selected in our cover. Its use en-
ables a minimum cover, since it covers all the ON-set
minterms of the output in s2. In contrast, p5 cannot
be used in machine M′, since it cannot be mapped
over s′1. As a result, in M′, 2 RGPI’s are needed to
cover the output’s ON-set minterms in s2 . Our method
therefore finds the minimum cover based on the selec-
tion of compatible {s2}, and discards the sub-optimal
solution based on {s1, s2}.

It is important to observe that the minimum logic
cover was only achievable by using non-prime com-
patibles ({s1} and {s2}), which in turn necessitated
a non-minimum cardinality state cover. Thus, our
method finds the optimal solution, while existing tools,
which only consider minimum-cardinality state covers
of prime compatibles, cannot guarantee minimum logic
complexity. 2

8 Experimental Results

The algorithm was implemented in C++ and run un-
der MkLinux for PowerPC. Results appear below for
a small set of examples, using only RGPI seeds. For
comparison, STAMINA [12] was run on the same ta-
bles. For each, the number of compatibles, seeds, cov-
ering constraints, run-time and products is given. En-
tries marked with a † used all compatibles; others used
only prime compatibles.

FSM #productsa

i/o/s c seeds constr time OPT Stam

lisom 1/2/3 5† 16 142 0.3 3 3
minst 2/1/3 4† 20 226 0.4 5 6
lion9 2/1/9 5 42 219 1006 8 8
aSymbolic products after mvi minimization.

Figure 2: Experimental Results
9 Conclusions and Future Work

We have presented the first method for optimal state
minimization which directly and accurately targets
logic complexity, achieving a provably exactly optimal
result under input encoding. The method is computa-
tionally expensive, however, and would benefit greatly

from heuristic and inexact variations. Unlike some
methods, ours provides several opportunities to reduce
complexity, e.g. using prime or maximal compatibles,
RGPI seeds only, or heuristic binate solvers, while re-
taining a strong minimization framework. For more
efficient exact solution, recent innovations in implicit
methods [4, 14] hold particular promise. With all of
these choices, we believe our method offers a frame-
work encompassing a spectrum of solutions.

A limitation to the current work is the large size
of the RGPI set. Initial investigation suggests cases
where the set can be pruned, while still guaranteeing
an optimum solution. This is an important area for
further research.

Although we have only provided limited bench-
marks, we expect that future experimentation will
prove our method competitive with existing methods
(e.g. STAMINA, SMAS). Finally, we anticipate that
an extension to output encoding will yield a definitive
solution to this problem.
Acknowledgments. We greatly thank Dr. Olivier
Coudert (Synopsys) for early access to Scherzo, and
Dr. Ruchir Puri (IBM) for insightful discussions.

References
[1] M.J. Avedillo, J.M. Quintana, and J.L. Huertas. Smas: A program for the

concurrent state reduction and state assignment of finite state machines.
In ISCAS, pages 1781–1784, 1991.

[2] R.K. Brayton and F. Somenzi. An exact minimizer for boolean relations.
In ICCAD-1989, pages 316–319.

[3] N.L.V. Calazans. Boolean constrained encoding: A new formulation and
a case study. In ICCAD-1994, pages 702–706.

[4] O. Coudert and J. Madre. Implicit and incremental computation of primes
and essential primes of boolean functions. In DAC-1992, pages 36–44.

[5] O. Coudert and J.C. Madre. New ideas for solving covering problems. In
DAC-1995, pages 641–646.

[6] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,
1994.

[7] G. De Micheli, R.K. Brayton, and A. Sangiovanni-Vincentelli. Optimal
state assignment for finite state machines. IEEE Trans. on CAD, CAD-
4(3):269–285, July 1985.

[8] S. Devadas and A.R. Newton. Exact algorithms for output encoding, state
assignment, and four- level boolean minimization. IEEE Trans. on CAD,
CAD-10(1):13–27, January 1991.

[9] J. Hartmanis et al. Some dangers in state reduction of sequential machines.
Information and Control, pages 252–260, September 1962.

[10] R.M. Fuhrer, B. Lin, and S.M. Nowick. Symbolic hazard-free minimization
and encoding of asynchronous finite state machines. In ICCAD-1995, 1995.

[11] A. Grasselli and F. Luccio. A method for minimizing the number of in-
ternal states in incompletely specified sequential networks. IEEE TEC,
EC-14:350–359, June 1965.

[12] G. Hachtel, J.K. Rho, F. Somenzi, and R. Jacoby. Exact and heuristic
algorithms for the minimization of incompletely specified state machines.
IEEE Trans. on CAD, CAD-13(2):167–177, February 1994.

[13] J. Hartmanis and R.E. Stearns. Algebraic Structure Theory of Sequential Ma-
chines. Prentice-Hall, 1966.

[14] T. Kam, T. Villa, R.K. Brayton, and A. Sangiovanni-Vincentelli. A fully
implicit algorithm for exact state minimization. In DAC-1994.

[15] B. Lin and F. Somenzi. Minimization of symbolic relations. In ICCAD-1990,
pages 88–91.

[16] E.J. McCluskey. Logic Design Principles. Prentice-Hall, 1986.

[17] M. Paull and S. Unger. Minimizing the number of states in incompletely
specified sequential switching functions. IRE Trans. on Elec. Comp., EC-
8:356–367, Sept. 1959.

[18] R. Puri, 1995. Private communication.

[19] R. Rudell and A. Sangiovanni-Vincentelli. Multiple valued minimization
for PLA optimization. IEEE Trans. on CAD, CAD-6(5):727–750, Sept. 1987.

[20] T. Villa and A. Sangiovanni-Vincentelli. NOVA: state assignment of finite
state machines for optimal two-level logic implementation. IEEE Trans. on
CAD, 9(9):905–924, Sept. 1990.


