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1 Introduction

There has been a renewed interest in asynchronous design, because of their potential for high-performance,
modularity and avoidance of clock skew [43, 33, 22, 4, 16, 19]. This paper focuses on one class of asynchronous
designs: asynchronous state machines. The design of asynchronous state machines has been an active area
of research for the last 40 years. However, asynchronous state machine design remains a subtle problem,
since to ensure correct dynamic behavior, hazards and critical races [42] must be eliminated.

Several methods have recently been introduced for the synthesis of asynchronous state machines [33, 29,
47, 7, 28]. These methods have been automated and produce low-latency machines which are guaranteed
hazard-free at the gate-level. The design tools have benefited from a number of hazard-free optimization
algorithms: exact two-level logic minimization [30], multi-level logic optimization [42, 14, 17], technology
mapping [39] and synthesis-for-testability [13, 31]. However, none of these methods includes algorithms for
optimal state assignment. The contribution of this paper is a general method for the optimal state assignment
of asynchronous state machines.

Optimal state assignment of synchronous machines has been an active area of research. De Micheli [26]
formulated and solved an input encoding problem, which approximates an optimal state assignment for
PLA-based state machines. His program, KISS, performs symbolic logic minimization, and then solves a
resulting set of encoding constraints to produce a state assignment. Other formulations as an output encoding
or input/output encoding problem have also been developed [25, 44, 36, 5]. Other methods have targeted
multi-level [18, 8] implementations.

Synchronous state assignment methods are inadequate for asynchronous designs, since the resulting
machines may have critical races and logic hazards. In this paper, we consider two related problems in the
synthesis of asynchronous state machines: critical race-free state encoding and hazard-free logic minimization.
In existing synthesis trajectories [46, 7, 28], these problems are solved separately. First, state encoding is
performed to ensure critical race-free operation [41]. This step is typically performed without regard to the
optimality of the eventual logic implementation, which may lead to unnecessarily expensive solutions. For
the second step, techniques are used to synthesize combinational logic that avoids all combinational hazards
for a specified set of multiple-input changes [30, 14, 17]. This work goes beyond Eichelberger’s early work
on static hazards [9], to address the more complex problem of dynamic hazards [2]. Although a recent exact
hazard-free two-level minimization algorithm [30] can be used, the quality of an implementation still depends
heavily on the choice of state encoding.

Recently, we introduced algorithms to solve two constrained optimal state assignment problems for asyn-
chronous state machines [12]. The first solved an optimal critical race-free assignment problem, but ignored
hazard issues. The second solved a combined hazard-free/critical race-free assignment problem limited to
single-input change (SIC) asynchronous state machines. In this paper, we generalize this work, and solve a
combined hazard-free/critical race-free assignment problem for a class of multiple-input change (MIC) state
machines, called burst-mode [27, 46, 7, 28].

Analogous to a paradigm successfully used for the optimal state assignment of synchronous machines,
such as KISS [26], the problem is formulated as an input encoding problem. In particular, we solve the
combined problem by formulating a symbolic hazard-free minimization problem for asynchronous
synthesis. In this formulation, a symbolic logic specification, where state variables are encoded as multiple-
valued variables, is first minimized to obtain a minimal multi-valued two-level representation. As in KISS,



we assume each output and symbolic next-state is treated as a binary output function, where the co-domain
has only the values 0 and 1. Unlike KISS, however, we introduce an exact hazard-free multi-valued logic
minimization procedure.

After symbolic minimization, a constrained encoding step is performed. Encoding constraints in the
form of dichotomies [41, 36] are introduced, which must be satisfied in the context of MIC asynchronous state
machines. These constraints are related to the critical race-free constraints introduced by Tracey [41] and
the face-embedding constraints introduced by De Micheli [26], but subsume both. In particular, we extend
the KISS n-to-1 dichotomy constraints to n-to-2 constraints.

Finally, encoding constraints are solved using exact and heuristic techniques (our previous work used
only exact techniques [12]). The exact procedure makes use of an existing tool, dichot [36], and the heuristic
procedure uses the simulated annealing mode of nova [45]. For the heuristic problem, we propose a novel
partitioning of constraints into compulsory and non-compulsory constraints; a weighted annealing algorithm
is used to ensure that compulsory constraints are solved.

A key contribution of our method is that it produces exactly minimal hazard-free output logic (two-level),
over all possible critical race-free assignments. This result is significant since the latency of an asynchronous
machine is determined by its output logic: there are no clock or latches. For next-state logic, our approach
leads only to an approximate solution. However, in practice, high quality solutions are produced for next-
state logic as well, ranging up to 17% improvement. We believe this is the first general method for the
optimal state assignment of hazard-free MIC asynchronous state machines.

1.1 Organization of the Paper

The paper is organized as follows. Section 2 reviews an existing synchronous optimal state assignment
method, KISS, and gives background on burst-mode asynchronous state machines and related work. Sec-
tion 3 gives an overview of our new asynchronous state assignment algorithm. Section 4 gives definitions
and theorems on hazard-free multi-valued logic, and Section 5 describes an exact multi-valued hazard-free
two-level minimization algorithm. In Section 6, the symbolic minimization procedure is applied to the asyn-
chronous optimal state assignment problem. Encoding constraints are presented in this section along with
methods for solving them. Section 7 presents theoretical results, Section 8 describes the program implemen-
tation, and Section 9 presents the application of our new method to a number of examples.

2 Background

2.1 Optimal State Assignment for Synchronous Machines

In KISS [26], De Micheli formulated the optimal state assignment problem as an input encoding problem. The
goal is to find a binary encoding of symbolic inputs to ensure an optimal sum-of-products implementation.
The algorithm has three steps:

1. Generate a minimal symbolic cover

2. Generate a set of encoding constraints

3. Solve these constraints to produce a state assignment

The first step is symbolic logic minimization [26]. The next-state function is effectively treated as a set of
functions, one for each possible next-state value, since no information is yet available as to the relation of the
various next-state values to one another. As a result, the symbolic minimization problem can be formulated
as a multiple-output multiple-valued-input minimization problem and solved using espresso-mv [26]. A
minimal symbolic cover is formed, consisting of a set of symbolic implicants. Each implicant has four parts:
binary inputs, symbolic present state, symbolic next state, and binary outputs. Present and next state can
be represented using either symbolic or positional-cube notation.

A key goal in this approach is to ensure the correctness of the symbolic cover after it is instantiated with
binary state codes. To understand the problem, consider the state table of Figure 1, having 2 inputs, 4
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symbolic states, and 1 output, and the given 2-variable state assignment. A minimal symbolic cover for the
output consists of 2 symbolic implicants: p1 =<0* {D}> and p2 =<*1 {B,C}>. 1 Implicant p1 contains a
single symbolic state, D, and therefore can be instantiated as binary product <0* 11>. However, implicant
p2 contains a pair of symbolic states, B and C, forming a state group. The smallest single binary cube,
or group face, which contains the state codes for B and C is the supercube of the two codes: ∗∗. In this
case, the resulting binary product, <*1 **>, is invalid, since it also contains an OFF-set minterm <11 00>

corresponding to symbolic minterm <11 {A}>.

inputs
00 01 11 10 state codes

A A,0 A,0 D,0 A,0 00
B B,0 B,1 B,1 A,0 01
C A,0 B,1 C,1 C,0 10
D D,1 D,1 D,0 C,0 11

Figure 1: Example state table with state assignment

To avoid this problem, in the second step, face embedding constraints are imposed:

For each symbolic implicant p, with state group Sp, the corresponding group face must not intersect the
code of any state s not in Sp. [26]

The third step is to find a state assignment satisfying these encoding constraints. A final step, after state
assignment, is to produce a binary logic implementation. Typically, espresso or espresso-exact are used, since
the resulting cover may have smaller cardinality than the symbolic cover (see [26]).

The above encoding constraints can be described using dichotomies [5, 41]. Given a set of states S, a
dichotomy is a bipartition (U, V ) of a subset T of states of S. In a given state assignment, a binary state
variable yi covers the dichotomy (U, V ) if yi = 0 for every state in U and yi = 1 for every state in V (or
vice-versa) [42, 41]. For the given problem, a set of n-to-1 dichotomies is formed, i.e., between each state
group Sp (containing n states) and each single disjoint state s 6∈ Sp. In the above example, dichotomies
(BC;A) and (BC;D) are generated to prevent invalid state assignments with respect to the output. Exact
dichotomy solvers have been developed which produce minimum-length assignments [5, 36].

A 1-hot encoding [42, 26] always satisfies the above constraints, and can be used to implement the symbolic
cover. This canonical state assignment has an important property:

Property #1: The instantiated binary cover using a 1-hot code has the same cardinality as the
original symbolic cover.

This property indicates that the cardinality of the symbolic cover is an upper bound on the size of a binary
solution.

2.2 Burst-Mode Asynchronous State Machines

In this subsection, we give an overview of burst-mode machines, a class of multiple-input change asynchronous
state machines.

Burst-Mode Specifications

An asynchronous state machine allowing multiple-input changes is specified by a form of state diagram, called
a burst-mode specification [29]. A state diagram contains a finite number of states, a number of labelled arcs
connecting pairs of states, and a distinguished start state (initial wire values are either specified or assumed

1For simplicity, we consider only single-output implicants in this example, though in general the method produces multiple-
output implicants.
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Initial values:
       abc = 000
       yz = 01

c+ /
  z−

a+ c− /
   z+

c+ /
   y+
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   y−

b− c+ /
   z+

a+ b+ /
   y+ z−

c− /
   −−

Figure 2: Example burst-mode specification.

0). Burst-mode specifications, and variants, have been used for several recent asynchronous design methods
[29, 46, 28, 7]. Arcs are labelled with possible transitions, taking the system from one state to another. Each
transition consists of a non-empty set of input changes (an input burst) and a set of output changes (an
output burst). Note that every input burst must be non-empty; if no inputs change, the system is stable.

In a given state, when all the inputs in some input burst have changed value, the system generates the
corresponding output burst and moves to a new state. Inputs in a given input burst may arrive in any order
at arbitrary times. However, once an input burst is complete, no further input changes may occur until the
resulting output changes have occurred (see next subsection for details). There are two further restrictions to
specifications. First, no input burst in a given state can be a subset of another, since otherwise the behavior
may be ambigorous. This restriction is called the maximal set property. Second, a given state is always
entered with the same set of input values; that is, each state has a unique entry point.

An example of a burst-mode specification is shown in Figure 2. Each transition is labelled with an
input burst followed by an output burst. Input and output bursts are separated by a slash, /. A rising
transition is indicated by a “+” and a falling transition is indicated by a “−”. This specification describes
a simple controller having 3 inputs (a, b, c) and 2 outputs (y, z). Note that, in a burst-mode specification,
only specified input changes may occur. For example, in Figure 2, input change a− is disallowed in state B,
since it is not described by the specification.

Target Implementation

A burst-mode specification can be realized as a Huffman machine, as shown in Figure 3. The machine
consists of combinational logic with primary inputs, primary outputs and fed-back state variables [42]. State
is stored on the feedback loops, which may have attached delay elements.

The machine behaves as follows. Initially, the machine is stable in some state. Inputs in a specified input
burst may then change value in any order and at any time. Throughout this input burst, the machine outputs
and state remain unchanged. When the input burst is complete, the outputs change value monotonically as
specified. A state change may also occur concurrently with the output change. In this case, the machine
will be driven to a new stable state. Only a single feedback cycle occurs. Alternatively, no state change
may occur. In either case, no further inputs may arrive until the machine is stable. That is, the machine
operates in fundamental mode [42]. When the machine is stable, the cycle is complete and the machine is
ready to receive new inputs. Throughout the entire machine cycle, outputs and state variables must be free
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Figure 3: Block diagram of Huffman machine.

of glitches.

2.3 Previous Work

The state encoding problem for asynchronous machines has been studied by researchers for over 30 years.
Several methods have been proposed for minimal-length critical race-free assignment, which ignore logic
complexity and hazards: Liu [20] and Tracey [41] targeted USTT codes, while Saucier [37] and Datta
et al. [6] achieved shorter codes with non-STT assignments. Tan [40] and Saucier [38] proposed race-free
STT encoding algorithms which heuristically minimize next-state logic; however, the former only provides a
hazard-free implementation for SIC operation, and both ignored output logic.

More recent work by Fisher et al. [10] seeks race-free (but non-STT) assignments for large machines,
again heuristically minimizing code length while ignoring logic complexity. Finally, Lam et al. [15] present
a greedy algorithm which reduces the number of state bits, but only for a limited class of delay-insensitive
circuits.

3 Overview of Synthesis Strategy

3.1 Problem Statement

We can now define the synthesis problem:

Problem: Optimal Hazard-Free/Critical Race-Free Assignment for Burst-Mode (MIC)
Asynchronous State Machines. Find a critical race-free assignment for a burst-mode flow table
having a hazard-free sum-of-products implementation of minimal cost.

Optimal synchronous assignment methods are inadequate, not only because they do not consider critical
races and transient behavior, but because they do not target a hazard-free implementation.

Our synthesis method follows the 3 basic steps of the KISS algorithm, but with modifications. In the
first step, it formulates a hazard-free symbolic covering problem. In the second step, modified encoding
constraints are generated. These constraints are not the union of the KISS and Tracey constraints, but
subsume both. After solving these encoding constraints (Step 3), a binary hazard-free minimizer is used to
find a hazard-free implementation. A sketch of this formulation is described next.

3.2 Problem Formulation

A burst-mode specification is first transformed into an unminimized, or primitive, flow table [28]. An
example primitive flow table, indicating specified transitions, is shown in Figure 4. In [28], the problem of
state minimization is then addressed (an alternative method is described in [46]). We assume the same state
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Next State,
 Outputs Y Z

Figure 4: Example flow table

minimization strategy to obtain a minimized flow table that is guaranteed to have a hazard-free two-level
logic realization. The interested reader is referred to these literature [42, 46, 28] for details.

Starting from the minimized flow table, we are confronted with the problem of encoding the minimized
states with unique state codes that avoids critical race problems [41]. To ensure that an unstable state leads
directly to a new stable state, a unicode single-transition time (USTT) assignment is used [42]. Such an
assignment ensures that only one feedback cycle is required during a state change. In our target implemen-
tation, delays are added along the feedback path (cf. Figure 3) as needed to avoid essential hazards [42].
These delays separate an input burst (where the machine receives input changes) from a state burst (where
the machine receives changes in its current state). As a result, the sequential synthesis problem is trans-
formed into a combinational logic problem, for which there exists efficient hazard-free two-level minimizers
[2, 30].

We now intuitively describe how the symbolic minimization and encoding problems are formulated and
depict the overall trajectory. First, the minimized flow table is translated to a (multiple-output) multiple-
valued function, f: Bm ×X 7→ Br , with m binary input variables that correspond to the external inputs of
the flow table and a single multiple-valued input (mvi) variable X that represents the possible states. The
mvi-variable X can take on n = |X| possible values corresponding to the number of possible states. The
multiple-valued function can have only binary output values. This translation is analogous to the synchronous
approach proposed by De Micheli [26] where the “next-state-output” is temporarily “one-hot” encoded to
produce a binary-output multiple-valued function for symbolic minimization. Thus, the multiple-valued
function f has r = n + p binary outputs corresponding to the n possible next-states and the p external
outputs of the flow table.

An important difference between a synchronous and asynchronous flow table is that in the latter, the
dynamic behavior is specified. In particular, an asynchronous flow table has a set of specified input and state
changes (implicit or explicit), for which its operation must be hazard-free (see Figure 4).

After the minimized flow table has been translated to a multiple-valued function, a hazard-free multiple-
valued minimization step (cf. Section 5) is carried out to ensure that the cover for this multiple-valued func-
tion is free of all static and dynamic hazards for all specified transitions. When the multiple-valued function
is extracted from a burst-mode specification, the possible (multiple-input change) transitions correspond
exactly to the input bursts and state bursts. A further property inherited from a burst-mode specification
is that the state burst transitions correspond to static transitions, meaning all outputs and the next-state
remain unchanged. However, the input burst transitions may correspond to static or dynamic transitions,
meaning that some external outputs and the next-state can change value. However, from the point of view
of the hazard-free multiple-valued minimizer, this distinction is not important.

After the symbolic minimization step, a constrained encoding step (cf. Section 6) is performed to ensure
the following:
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1. critical race-free operation [41];

2. the hazard-free properties are preserved; and

3. the cardinality of the solution is preserved.

For the output logic, we show in Section 7 that it is always possible to find an encoding that ensures all
three above properties. This means that the exact symbolic solution achieved in the symbolic minimization
step can be directly translated to a binary cover of the same cardinality. Therefore, our solution framework
indeed achieves an exact solution to the hazard-free minimization problem for the output logic under all
possible critical race-free encodings. This is crucial since, for performance-critical applications, output logic
usually determines the latency of an asynchronous machine. Also, it often represents a substantial part
of the overall area. For the next-state logic, our approach only leads to an approximate solution for two
reasons: First, we have made an approximation of the “next-state-output encoding” problem by assuming
a “one-hot” next-state output. Second, some modifications are required to the cover after the expansion of
encodings to ensure that all hazard-free properties are preserved. Both of these issues are discussed in later
sections. The resulting instantiated hazard-free cover is then run through an exact hazard-free minimizer
(with now only binary variables) in the final stage. Though the solution achieved for the next-state logic is
not exact, in practice our method leads to high quality solutions.

4 Multiple-Valued Functions and Hazards

For the following, we assume basic familiarity with the terminology of multi-valued logic minimization (see
[34]).

4.1 Circuit Model

This paper considers combinational circuits having arbitrary finite gate and wire delays (unbounded wire
delay model [24]). A pure delay model is assumed [1].

4.2 Multiple-Valued Multiple-Input Changes

In this section, we generalize the notions of multiple-input changes and transition cubes from the binary
domain [30] to the multiple-valued domain.

Definition 4.1 (Multiple-valued transition cube) A multiple-valued transition cube is a cube with
a start point and an end point. Let A and B be two minterms in a multiple-valued space D. The multiple-
valued transition cube, denoted as [A,B], from A to B has start point A and end point B and contains all
minterms that can be reached during a transition from A to B. More formally, if A and B are described by

products, with i-th literals A
SAi
i and B

SBi
i , respectively, then the i-th literal for the product of T = [A,B] is

the literal T
SAi∪SBi
i .

Definition 4.2 (Multiple-valued open transition cube) The (multiple-valued) open transition cube
[A,B) from A to B is defined as: [A,B]− B.

Definition 4.3 (Multiple-valued input transition) A (multiple-valued) input transition or (multiple-
valued) multiple-input change from input state A to B is described by transition cube [A,B].

An intermediate state X ∈ [A,B] is potentially reachable during the input transition from A to B if for
all variables Xi, the corresponding literal Xi is either equal to Ai or Bi. A multiple-input change specifies
what variables are permitted to change value and what the corresponding starting and ending values are.
Input variables are assumed to change simultaneously. (Equivalently, since inputs may be skewed arbitrarily
by wire delays, inputs can be assumed to change monotonically in any order and at any time.) Once a
multiple-input change occurs, no further input changes may occur until the circuit has stabilized. An input
transition occurs during a transition interval, tI ≤ t ≤ tF , where inputs change at time tI and the circuit
returns to a steady state at time tF .
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Definition 4.4 (Static and dynamic transitions) An input transition from input state A to B for a
multiple-valued function f is a static transition if f(A) = f(B); it is a dynamic transition if f(A) 6=
f(B).

In this paper, we consider only static and dynamic transitions where f is fully defined; that is, for every
X ∈ [A,B], f(X) ∈ {0, 1}.

4.3 Multiple-Valued Function Hazards

A function f which does not change monotonically during an input transition is said to have a function
hazard in the transition.

Definition 4.5 (Static function hazard) A multiple-valued function f contains a static function haz-
ard for the input transition from A to C if and only if: (1) f(A) = f(C), and (2) there exists some input
state B ∈ [A,C] such that f(A) 6= f(B).

Definition 4.6 (Dynamic function hazard) A multiple-valued function f contains a dynamic func-
tion hazard for the input transition from A to D if and only if: (1) f(A) 6= f(D); and (2) there exist a
pair of input states B and C (A 6= B,C 6= D) such that (a) B ∈ [A,D] and C ∈ [B,D], and (b)f(B) = f(D)
and f(A) = f(C).

If a transition has a function hazard, no multiple-valued implementation of the function is guaranteed
to avoid glitch on the transition, assuming arbitrary gate and wire delays. This can easily be seen by
generalizing of the result shown by [9, 3]. Therefore, we consider only transitions which are free of function
hazards.

4.4 Multiple-Valued Logic Hazards

If f is free of function hazards for a transition from input A to B, a corresponding encoded implementation
may still have hazards due to possible delays in the actual logic realization [42, 3, 1]. Here, we extend
notions of static and dynamic logic hazards to multiple-valued functions. To do so, we will provide these
definitions in terms of an abstract multiple-valued sum-of-products implementation. That is, each
multiple-valued product term in the multiple-valued cover is implemented as a single multiple-valued AND
gate. This multiple-valued AND gate will become an ordinary binary-valued AND gate after a constrained
encoding step, as described in Section 6. The circuit output is implemented as a Boolean OR gate that
combines the AND gates.

Definition 4.7 (Static (Dynamic) logic hazard) A multiple-valued cover circuit implementing multiple-
valued function f contains a static (dynamic) logic hazard for the input transition from minterm A to
minterm B if and only if: (1) f(A) = f(B) (f(A) 6= f(B)), and (2) for some assignment of delays, the
circuit’s output is not monotonic during the transition interval.

That is, a static logic hazard occurs if f(A) = f(B) = 1 (0), but the circuit’s output makes an unexpected
1→ 0→ 1 (0→ 1→ 0) transition. A dynamic logic hazard occurs if f(A) = 1 and f(B) = 0 (f(A) = 0 and
f(B) = 1), but the circuit’s output makes an unexpected 1→ 0→ 1→ 0 (0→ 1→ 0→ 1) transition.

4.5 Problem Abstraction

The hazard-free multiple-valued minimization problem can now be stated as follows. Given a multiple-
valued function f , and a set, T , of specified function-hazard-free multiple-valued (static and dynamic) input
transitions of f , find a minimal-cost multiple-valued cover of f that is free of logic hazards for every specified
input transition t ∈ T .
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5 Symbolic Hazard-Free Multiple-Valued Minimization

In this section, we present an exact minimization algorithm for producing a hazard-free multiple-valued
cover. While the standard multiple-valued minimization problem without considerations for hazards has
been adequately addressed before [34], the corresponding problem in the context of asynchronous synthesis
and hazard-free synthesis has not yet been addressed. We first state the conditions that the cover must satisfy
in order to ensure hazard-freeness. These conditions will lead to a notion of multiple-valued DHF-prime
implicants (DHF stands for dynamic-hazard-free). Using these prime implicants, a constrained covering
step must be solved to select a hazard-free cover. These issues are addressed in the sequel.

5.1 Conditions for a Hazard-Free Transition

We now describe conditions to ensure that a sum-of-products implementation is hazard-free for a given input
transition. Assume that [A,B] is the transition cube corresponding to a function-hazard-free transition from
input state A to B for a multi-valued combinational function f . In the following discussion, we assume
that C is any multi-valued cover of f . The following lemmas present necessary and sufficient conditions to
ensure that a multi-valued AND-OR implementation of f has no logic hazards for the given transition. The
following results are extensions from the binary case [30].

Lemma 5.1 If f has a 0→ 0 transition in cube [A,B], then the implementation is free of logic hazards for
the input change from A to B.

Proof: In an AND-OR implementation, all gates are stable at 0 in a 0→ 0 transition. Thus, no spurious
transitions are possible. 2

Lemma 5.2 If f has a 1→ 1 transition in cube [A,B], then the implementation is free of logic hazards for
the input change from A to B if and only if [A,B] is contained in some cube of cover C.

Proof: ⇒ If there is a cube in cover C that is ON during the entire transition [A,B], then the output of
the OR gate will be stable at 1 during the entire 1→ 1 transition.
⇐ Suppose it is possible for the circuit output to make a spurious 1 → 0 → 1. Then it must be the case
that at some moment during the [A,B] transition all cubes have the value 0. This contradicts the statement
that [A,B] is contained in some cube of cover C. 2

The conditions for the 0 → 1 and 1 → 0 cases are symmetric. Without loss of generality, we consider
only a dynamic 1 → 0 transition, where f(A)=1 and f(B)=0. (A 0 → 1 transition from A to B has the
same hazards as a 1→ 0 transition from B to A.)

Lemma 5.3 If f has a 1→ 0 transition in cube [A,B], then the implementation is free of logic hazards for
the input change from A to B if and only if every cube c ∈ C intersecting [A,B] also contains A.

Sketch of Proof: This is an extension of results for the binary case from [42, 11, 30].
⇒ If every cube c ∈ C intersecting [A,B] also contains A, then all cubes that can be ON during the transition
[A,B] must all be monotonic in that they can make at most one 1→ 0 transition. If all cubes are monotonic,
then the output of the OR gate will also be monotonic.
⇐ Suppose there is some cube c ∈ C that intersects [A,B] but does not contain A. Then this cube can
make a 0 → 1→ 0 transition during the transition [A,B] under some delay assignment. Under some delay
assignment, the other cubes making 1→ 0 transitions can all be turned OFF before c is turned ON. There-
fore, the circuit output can make a spurious 1→ 0→ 1→ 0 transition. 2

Lemma 5.2 requires that in a 1→ 1 transition, some product holds its value at 1 throughout the transition.
Lemma 5.3 ensures that no product will glitch in the middle of a 1→0 transition: all products change value
monotonically during the transition. In each case, the implementation will be free of hazards for the given
transition.

An immediate consequence of Lemma 5.3 is that, if a dynamic transition is free of logic hazards, then
every static sub-transition will be free of logic hazards as well:
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Lemma 5.4 If f has a 1→ 0 transition from input state A to B which is hazard-free in the implementation,
then, for every input state X ∈ [A,B) where f(X) = 1, the transition subcube [A,X] is contained in some
cube of cover C.

Proof: Since C is a cover of function f , there exists some cube c ∈ C which contains X. Since f is hazard-
free in the transition from A to B, then, by Lemma 5.3, cube c contains A as well; therefore c contains
[A,X]. 2

Lemma 5.5 If f has a 1→ 0 transition from input state A to B which is hazard-free in the implementation,
then for every input state X ∈ [A,B) where f(X) = 1, the static 1→ 1 transition from input state A to X
is free of logic hazards.

Proof: Immediate from Lemmas 5.2 and 5.4. 2

Lemmas 5.2 and 5.4 are used to define the covering requirement for a hazard-free transition. The cube
[A,B] in Lemma 5.2 and the maximal subcubes [A,X] in Lemma 5.4 are called required cubes. These cubes
define the ON-set of the function in a transition. Each required cube must be contained in some cube of
cover C to ensure a hazard-free implementation. It can be more formally stated as follows.

Definition 5.1 (Required cube) Given a multiple-valued function f, and a set, T , of specified function-
hazard-free multiple-valued input transitions of f, every cube [A,B] ∈ T corresponding to a static 1 → 1
transition, and every maximal subcube [A,X] ⊂ [A,B] where f is 1 and [A,B] ∈ T is a dynamic 1 → 0
transition, is called a required cube.

Lemma 5.3 constrains the cubes which may be included in a cover C. Each 1 → 0 transition cube is
called a privileged cube, since no cube c in the cover may intersect it unless c contains its start point. If a
cube intersects a privileged cube but does not contain its start point, it illegally intersects the privileged
cube and may not be included in the cover. It can be more formally stated as follows.

Definition 5.2 (Privileged cube) Given a multiple-valued function f, and a set, T , of specified function-
hazard-free multiple-valued input transitions of f, every cube [A,B] ∈ T corresponding to a dynamic 1→ 0
transition is called a privileged cube.

5.2 Hazard-Free Covers

A hazard-free cover of function f is a cover of f whose multi-valued AND-OR implementation is hazard-free
for a given set of specified input transitions. The following theorem describes all hazard-free covers for
function f for a set of multiple-input transitions. (It is assumed below that the function is defined for all
specified transitions; the function is undefined for all other input states.)

Theorem 5.1 (Hazard-free covering) A sum-of-products C is a hazard-free cover for function f for all
specified input transitions if and only if:

a. No cube of C intersects the OFF-set of f;

b. Each required cube of f is contained in some cube of the cover, C; and

c. No cube of C intersects any privileged cube illegally.

Sketch of Proof: The result follows immediately from Lemmas 5.1– 5.5, and the definitions of hazard-free
cover, required cube and privileged cube. 2

Conditions (a) and (c) in Theorem 5.1 determine the implicants which may appear in a hazard-free
cover of a Boolean function f . Condition (b) determines the covering requirement for these implicants in
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a hazard-free cover. Therefore, Theorem 5.1 precisely characterizes the covering problem for hazard-free
two-level logic.

In general, the covering conditions of Theorem 5.1 may not be satisfiable for an arbitrary Boolean
function and set of transitions (cf. [42, 1, 11]). This case occurs if conditions (b) and (c) cannot be satisfied
simultaneously.

5.3 Exact Hazard-Free Multiple-Valued Minimization

Many exact logic minimization algorithms, such as Espresso-MV-Exact [35, 34], are based on the Quine-
McCluskey algorithm [23]. The Espresso-MV-Exact algorithm solves the two-level multiple-valued minimiza-
tion problem in three steps:

1. Generate the multiple-valued prime implicants of a function;

2. Construct a prime implicant table; and

3. Generate a minimum cover of this table.

Here, we extend an existing exact hazard-free two-level minimizer [30] to multi-valued functions. Theo-
rem 5.1(a) and (c) determine the implicants which may appear in a hazard-free cover of a multiple-valued
function f . Such implicants will be called a multiple-valued dynamic-hazard-free implicant (or multiple-valued
DHF-implicant for short). It is defined as follows:

Definition 5.3 (Multiple-valued DHF-implicants) A multiple-valued DHF-implicant is an impli-
cant which does not intersect any privileged cube of f illegally. A multiple-valued DHF-prime implicant
is a multiple-valued DHF-implicant contained in no other multiple-valued DHF-implicant. An essential
multiple-valued DHF-prime implicant is a multiple-valued DHF-prime implicant which contains a re-
quired cube contained in no other multiple-valued DHF-prime implicant.

Only multiple-valued DHF-implicants may appear in a hazard-free cover, by Theorem 5.1(c).
Theorem 5.1(b) determines the covering requirement for a hazard-free cover of f : every required cube
of f must be covered, that is, contained in some cube of the cover. Thus, the two-level hazard-free
logic minimization problem is to determine a minimum cost cover of a function using only multiple-valued
DHF-prime implicants where every required cube is covered.

The modified hazard-free multiple-valued minimization algorithm is as follows:

1. Generate the multiple-valued DHF-prime implicants of a function;

2. Construct a multiple-valued DHF-prime implicant table; and

3. Generate a minimum cover of this table.

These steps are detailed below.

5.4 Generation of Initial Sets

Before generating the multiple-valued DHF-prime implicants, three sets must be constructed: the req-set,
the off-set, and the priv-set. The req-set contains the required cubes for function f ; it also defines the ON-set
of the function. The off-set contains cubes precisely covering the OFF-set minterms. The priv-set is the set
of privileged cubes along with their start points.

The sets are generated by a simple iteration through every specified transition of the given multi-output
multiple-valued function using Algorithm MVI-Make-Sets. The algorithm is a generalization of an existing
binary Make-Sets procedure [30] to the multi-valued case.

If a function has a 0→ 0 change for a transition, the corresponding transition cube is added to the off-set.
If the function has a 1 → 1 change, the transition cube is added to the req-set. If the function has a 1 → 0
transition (or symmetrically, a 0→ 1 transition), then the maximal ON-set cubes are added to req-set and
the maximal OFF-set cubes are added to off-set. In addition, the transition cube and its start point are also
added to the priv-set, since this transition cube may not be intersected illegally. (A 0 → 1 transition from
input state A to B is considered a 1→ 0 transition from input state B to A, so it has “start point” B.)
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5.5 Generation of Multiple-Valued DHF-Prime Implicants

Multiple-valued DHF-prime implicants for function f are generated in two steps. The new algorithm follows
the approach described in [30], but extended to multiple-value functions. First, multiple-valued prime
implicants of f are generated from the req-set (which defines the on-set) and the off-set, using existing
algorithms [34]. Second, the multiple-valued prime implicants are transformed into multiple-valued DHF-
prime implicants by iterative refinement. The new algorithm, MVI-PI-to-DHF-PI, checks each implicant
p for illegal intersection with any multiple-valued privileged cube, q. If such an intersection occurs, the
implicant is reduced in all possible ways to avoid intersection. In particular, p is replaced by the set
{p1, . . . , pn} of maximal subcubes of p which do not intersect q (i.e., ∀i ∈ {1, . . . , n}, pi ∩ q = φ). Note
that, in the multi-valued framework, reduction is uniformly performed across both input and output spaces.
The reduced implicants may have remaining, or new, illegal intersections with other privileged cubes. The
process continues until only dhf-implicants remain. Non-prime dhf-implicants are removed by a check for
single-cube containment.

5.6 Generation of the Multiple-Valued DHF-Prime Implicant Table

A multiple-valued DHF-prime implicant table is constructed for the given function. The rows of the table
are labelled with the multiple-valued DHF-prime implicants used to cover the columns. The columns are
labelled with the required cubes which must be covered. The table sets up the two-level hazard-free logic
minimization problem.

5.7 Generation of a Minimum Cover

The multiple-valued DHF-prime implicant table describes a standard unate covering problem. It can be be
solved using an existing algorithm, minimum-cover [34].

5.8 Handling Multiple-Output Minimization

As in Espresso-MV-Exact [35, 34], multiple-output functions are handled by making the output parts into a
single N -value MV variable, where N is the number of outputs. The transformation is straightforward and
is described in [35, 34]. Using this transformation, the symbolic hazard-free multiple-valued minimization
procedure can be used to minimize multiple-output functions.

6 Constrained Encoding for Asynchronous State Machines

We now consider the constrained encoding problem that must be solved to produce a realizable binary logic
implementation for the minimized flow table.

6.1 Encoding Constraints

In this step, encoding constraints are generated based on the symbolic cover. These constraints ensure that
the cover will be correctly instantiated.

The face embedding constraints used by KISS for synchronous machines are insufficient for our purposes
for two reasons: (1) they do not consider the transient behavior of an asynchronous state machine, and
(2) they do not consider hazard-free requirements. For the asynchronous case, the face embedding constraints
must be generalized. We consider these two problems in turn.

A new condition concerns the correctness of the implementation of output and next-state functions in the
presence of state transitions. During a transition of 2 or more state variables, transient points in the total
input state space are reached which do not correspond to any valid encoded state. The possibility arises that
the group face for some symbolic product term implementing a binary output may intersect such a transient
point, thus inadvertently turning on the product term during the state transition. If the intended value of
that output during the state transition is 0, the output function will be incorrectly implemented.
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Example. Consider a binary output symbolic implicant <I1 {S0,S1,S2}> for some output function z.
Suppose there is a state transition S3 → S4 in input column I1 during which the binary output should be
held at 0. Assume the following state assignment:

S0 0000
S1 1000
S2 1100
S3 0110
S4 0101

Using this assignment, the corresponding binary implicant is <I1 **00>. As a result, during the S3 → S4

transition, the state variables can reach the transient value 0100 which would turn on the given implicant,
incorrectly forcing the output value to 1. 2

A similar problem occurs for the next-state function. In this case, the function requires a trivial general-
ization of the condition: if the value of the symbolic function (i.e. the destination state) during the transition
differs from that which the product term implements, the machine could have an incorrect implementation.

The proposed solution is to add dichotomy constraints to avoid such problems resulting from state
transitions. Unlike the face embedding constraints, these dichotomies are n-to-2: between (i) a state group
of an symbolic product (e.g., {S0, S1, S2} in the preceding example) and (ii) a pair of states defining a state
transition (e.g., {S3, S4}). The resulting generalized embedding constraint, ({S0, S1, S2},{S3, S4}), ensures
that the output will be correctly implemented after instantiation.

The above discussion only addresses constraints derived from a symbolic cover. It does not consider
critical race-free encoding constraints. In Section 7, however, it will be shown that the above constraints
subsume all Tracey constraints, and therefore ensure a critical race-free assignment.

In summary, asynchronous designs differ from synchronous designs, since state changes may pass through
intermediary states. While face embedding constraints ensure that an implicant does not intersect an OFF-
set minterm, generalized constraints are needed for asynchronous machines to ensure that an implicant does
not intersect a set of OFF-set minterms that may be traversed during a state change.

The second difference between the original face embedding constraints and asynchronous constraints
relates to the need to avoid hazards. In KISS, face embedding constraints ensure that an implicant does
not intersect an OFF-set minterm. However, in asynchronous synthesis, a non-prime DHF-prime implicant
may not illegally intersect a privileged cube as well. Encoding constraints must be added to ensure that, if
a symbolic implicant has no illegal intersections, the encoded implicant will not either.

For the given class of burst-mode machines, though, such hazard-free constraints are degenerate. As
indicated earlier, in a burst-mode flow table, dynamic transitions only occur during input bursts: that is,
within a given state. Therefore, each privileged cube has a singleton state group. If a DHF-prime implicant
has state group {S0, S1, S2} and it must avoid intersection with a privileged cube in state S3, a simple
n-to-1 dichotomy must be generated. However, such a dichotomy is already generated as a face-embedding
constraint. Therefore, no further constraints need to be generated for this class of machines.

Constraint Generation Algorithm

In addition to the KISS face embedding constraints, we use the following algorithm:

for each implicant p in the symbolic cover {
for each state transition t {
if p intersects the input column of t {

if some output o that p implements has the value 0 during t {
generate dichotomy { stategroup(p); states(t) }

}}}}

This algorithm generates n-to-2 dichotomies, where t is a state transition from an unstable to a stable state.
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6.2 Solving Constraints and Hazard-Free Logic Minimization

Since all constraints are described as dichotomies, they can be solved using a dichotomy solver. The resulting
constraints ensure that products can be safely instantiated with respect to both stable and transient points
in the symbolic flow table.

Constraints are solved using two methods: exact solution (using dichot [36]) and heuristic solution (using
nova’s simulated annealing mode [45]). The goal of the heuristic method is to solve as many constraints as
possible given a fixed code-length.

However, a problem arises in the straightforward application of the heuristic method. Unlike synchronous
applications, a heuristic solution of our asynchronous constraints may result in an incorrect implementation.
In particular, as a bare minimum, we require that every state assignment be critical race-free. These critical
race-free constraints are described by dichotomies, which are subsumed by our optimality constraints (see
Section 7). Since a partial constraint solver may not satisfy all dichotomies, the resulting state assignment
may have critical races.

Our solution is to partition dichotomies into two classes: compulsory and non-compulsory. Critical race-
free constraints are compulsory, and must be satisfied. Remaining constraints are concerned with logic
optimality; these are non-compulsory, or optional. Different weights are assigned to the dichotomies in the
two classes, to ensure that all compulsory constraints are satisfied. In practice, such an approach has worked
well on a number of examples. 2

Finally, once a state assignment is produced, the symbolic machine is instantiated with the resulting
encoding. The resulting binary-valued function is then passed through a multi-output binary-valued hazard-
free logic minimizer to produce a final machine implementation.

7 Theoretical Results

We now sketch the basic theoretical results for our synthesis algorithm. First, we define a “pseudo-canonical”
state assignment, roughly analogous to the use of a “canonical” 1-hot assignment in KISS. We then formally
define the instantiated asynchronous machine specification (encoded flow table) and binary implementation
(cover) under this assignment. Second, we summarize results on the correctness and cardinality of the binary
cover. Finally, we present results on the optimality of the binary cover.

7.1 Machine Instantiation

Pseudo-Canonical State Assignment

In [26], DeMicheli indicates that, for synchronous machines, any symbolic minimized cover can be assigned
a 1-hot canonical encoding. The result is a 1 → 1 mapping of symbolic to binary implicants, yielding a
canonical cover whose cardinality is identical to that of the symbolic cover. For asynchronous machines,
however, a 1-hot encoding is not in general critical race-free [42], and therefore cannot be used. In fact, no
single encoding suffices for all asynchronous symbolic covers of N states; that is, there is no natural canonical
state assignment to use for cover instantiation. As an alternative, to demonstrate theoretical results, we
propose the following: solve the encoding constraints and produce any critical race-free assignment. This
assignment will be called pseudo-canonical for the given machine.

Symbolic Machine Instantiation

An encoding defines a mapping from a symbolic machine specification to an equivalent binary one. There
are two components of an asynchronous machine specification: its functional specification and a set of
specified transitions. For the functional specification, it is assumed that both ON-set and OFF-set are
explicitly defined. The transitions are mapped in the obvious way: each symbolic startpoint (endpoint)
〈input, present〉 maps to the binary startpoint (endpoint) 〈input, encoding(present)〉.

2It is possible that a solution will not satisfy all compulsory constraints. If this occurs, the weights can be modified, the run
can be repeated to randomly explore another portion of the solution space, or the code length limit can be raised.
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Viewing the functional specification as a set of ON-set and OFF-set cubes, a symbolic product p (a
4-tuple 〈input, present, next, output〉), maps onto a binary product p̃, as follows:

p: input stategroup next output
⇓ ⇓ ⇓ ⇓

p̃: input supercube(encodings(stategroup)) encoding(next) output

For example, under the state assignment S0 = 000, S1 = 011, S2 = 100, and S3 = 101, the symbolic product
<011| {S0,S2} S2 |100> is mapped to the binary product <011|-00 100|100>.

In mapping an asynchronous symbolic flow table to an encoded table, column transitions require special
care. In a symbolic table, a column transition is defined only at its symbolic startpoint and endpoint.
However, in an encoded table with a USTT critical race-free assignment, all intermediate (transient) entries
for the transition must be filled in as well. This latter property can easily be guaranteed by the following
constraint on the symbolic specification: a single product must be used to specify function values for each
column transition. This constraint ensures that, for each column transition (i.e., state change), this product
will be instantiated to define all intermediate states in the encoded transition.

Symbolic Cover Instantiation

Given a symbolic hazard-free cover and a resulting state assignment, symbolic implicants can be instantiated
by substituting binary codes using the same mapping described above, yielding a binary cover C. Note that
instantiating a symbolic implicant may produce an empty binary implicant, if its symbolic next-state is
mapped to the binary 0-vector. Such an implicant can be dropped from the binary cover.

Unfortunately, the sharing of 1-bits by different state codes may cause static transitions for next-state
to appear in the binary machine where only dynamic transitions appeared in the symbolic machine. To
avoid hazards, extra terms must be added to the binary cover: static-1 transitions must each be completely
covered by some implicant, while the symbolic dynamic transitions clearly would not have been.

Example. To understand the problem, consider an input transition in a machine with one output:

Inputs

S0 , 0 S1 , 1

00 01

S0

No implicant in the symbolic cover covers the entire transition, since both output and next-state undergo
dynamic transitions. In particular, the next-state function S0 has a 1 → 0 transition and the next-state
function S1 has a 0 → 1 transition (as does the output). However, suppose that S0 is assigned code 011
and S1 is assigned 110. In the instantiated machine, the second state bit will then make a 1 → 1 transition.
However, since no symbolic cube covered the entire transition, no instantiated binary cube will either, and
the second state bit will have a static-1 hazard. 2

In sum, a naively instantiated cover will fail to properly implement certain static transitions for next-
state. A solution is to add one product term to the instantiated cover for each such static-1 transition. For
the above transition, the implicant <0- 011 010 0> would be added, where 011 corresponds to state S0. As
a result, the canonical cover may have greater cardinality than the symbolic cover:

Property 7.1 (Opt-HFCRF Cardinality of Cover) Let |S| be the cardinality of the symbolic cover, |C|
be the cardinality of the binary instantiated cover, and k is the number of specified input transitions in the
flow table; then |C| = O(|S| + k).

Note that this result is a theoretical upper bound only. In practice, k additional products need not be
added. Instead, the instantiated cover C is passed to a binary hazard-free minimizer and re-run, to improve
results.

By analogy, KISS produces a theoretical upper bound on cardinality based a 1-hot-instantiated cover
(although in KISS the upper bound is the cardinality |S| of the symbolic cover; no added terms are required).
This 1-hot-instantiated cover in KISS is neither guaranteed to have minimum number of products nor
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minimum code length [26]. In practice, shorter codes are sought, and the instantiated cover is likewise re-run
through a binary minimizer to improve results [26, 44].

In both KISS and our method, an input encoding formulation and solution yield only approximations
to optimal state assignment. In practice, though, both methods can result in significant improvements (see
Section 9).

7.2 Correctness of Binary Cover

Due to space limitations, some of the following proofs are only sketched. In what follows, we denote the
symbolic flow table by MS , and the encoded flow table by ME . Let nsi denote the symbolic next-state
function i, and esj the encoding of present-state state j. Likewise, esj [i] is bit i of that encoded state. A
transition t is sometimes described by a product (i.e. the supercube of its endpoints); input(t) and present(t)
refer to the input and present state fields, respectively, of the transition cube.

We first prove that the binary cover is a functional implementation of the encoded flow table.

Lemma 7.1 Cube containment is preserved by instantiation. That is, if symbolic cube c1 contains c2, then
mapped cube c̃1 contains c̃2.

Theorem 7.1 The binary implicants of cover C contain the entire ON-set of encoded machine ME.

Proof Sketch. By definition, all of ME ’s ON-set points lie within the specified transitions for ME , which are
simply MS ’s transitions, mapped 1-for-1. In fact, they lie within the required cubes of ME . We proceed by
treating binary outputs and state bits separately.

Part 1: Binary outputs. ME ’s required cubes for binary outputs are precisely MS ’s required cubes,
mapped 1-for-1. Thus, the ON-set points for ME ’s binary outputs lie within mapped symbolic required
cubes. Now, the symbolic hazard-free cover contains implicants to cover all symbolic required cubes. Hence,
by Lemma 7.1, all binary output ON-set points are covered.

Part 2: State bits si. We show that all si’s required cubes are covered. First, note that the ON-set of si
is
⋃
j|esj[i]=1 map(ONset(nsj )). ME ’s required cubes for si include those cubes (R′) added to cover static-1

hazards introduced by 1-bit sharing: ReqCubes(si) =
⋃
j|esj[i]=1 map(ReqCubes(nsj))

⋃
R′. The symbolic

cover S contains implicants to cover all symbolic required cubes, including R′. Since instantiation replaces
the next-state field nsj of implicant p with its encoding esj , the binary implicant p̃ contributes to state bits
si for which esj [i] = 1. Thus all mapped required cubes for si are covered. Finally, we added products as
needed to cover the added required cubes R′. 2

Theorem 7.2 No binary implicant of C intersects the OFF-set of encoded machine ME.

Proof Sketch. We proceed by showing that no OFF-set minterm is contained. Note that all OFF-set points
of ME lie within specified transitions. Canonical cover C consists of: (i) instantiated symbolic products;
and (ii) products to cover required cubes R′ due to new static-1 state bit transitions in ME . Recall that
products in R′ cover precisely and only ON-set points in ME , and implement only the state bits involved
in such transitions. In what follows, let m be any OFF-set minterm of some output o or state bit si, lying
within a transition t. We show that m is not contained in any implicant p̃ of C.

Case 1: Binary outputs o. For each implicant p, either: (i) o 6∈ output(p̃) (i.e. p̃ does not implement
o); or (ii) the input fields of p̃ and t do not intersect; or (iii) p̃ implements o and input(p̃) ∩ input(t). Now,
either: o = 1 during t (a contradiction, since m ∈ t is in the OFF-set of o), or o = 0 during t. If so, we
generate an encoding constraint to prevent intersection of present(t) and present(p̃) (Section 6). Therefore,
p̃ does not contain m.

Case 2: State bits si. The OFF-set of si is
⋃
j|esj[i]=0 map(ONset(nsj )). Symbolic implicants implement

only 1 next-state. Hence, instantiated implicants implement only state bits si for which esj [i] = 1. For each
implicant p̃ ∈ C, either: (i) si 6∈ output(p̃) (i.e. p̃ does not implement si); or (ii) the input fields of p̃ and t do
not intersect; or (iii) p̃ implements si and input(p̃) ∩ input(t). Now, since p̃ implements si, next(p) = nsj,
for some j such that esj [i] = 1. The value of nsj during t is either 0 or 1. If 1, we have a contradiction:
m ∈ t is in the OFF-set of si, but nsj = 1 in t implies si = 1 there. If 0, then present(p̃) does not intersect
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present(t), since we generated an encoding constraint to avoid it (Section 6). Therefore, p̃ does not contain
m. 2

We next prove that our generated encoding constraints subsume all critical race-free constraints [41].

Theorem 7.3 Any state assignment satisfying the encoding constraints of Section 6 is critical race-free.

Proof. (See also [12].) In each flow-table input column, I1, critical race-free constraints are needed to avoid
interference between an unstable transition and either stable states (case 1), or other unstable transition
(case 2).

Case 1: I1 contains an unstable transition t1 : S0 → S1, and a distinct stable state S2. To avoid a
critical race, a 2-to-1 dichotomy constraint d1 = {S0, S1;S2} must be satisfied [41]. At the same time, in
our framework, the unstable transition t1 defines a symbolic required cube for next-state S1, which must be
covered. Therefore, some symbolic implicant, p, must cover the transition and implement the destination
next-state function, S1. Hence, stategroup(p) ⊇ {S0, S1}. Now, S2 is stable in I1, and so the next-state
function S1 is 0 there. Therefore, our encoding constraints include {stategroup(p);S2}, which subsumes
dichotomy d1.

Case 2: I1 contains unstable transitions t1 : S0 → S1 and t2 : S2 → S3, where S1 6= S3. In this case,
a 2-to-2 dichotomy constraint d2 = {S0, S1;S2, S3} must be satisfied [41]. Again, each unstable transition
defines a symbolic required cube. Therefore, some implicant p covers transition t1 and implements next-state
S1, so stategroup(p) ⊇ {S0, S1}. Meanwhile, next-state function S1 is 0 throughout transition t2. Hence,
our encoding constraints include {stategroup(p);S2, S3}, which subsumes dichotomy d2. 2

Theorem 7.4 The cover C is hazard-free for every specified input and state transition.

Proof Sketch. A hazard-free implementation requires that: (i) each required cube is contained in some
implicant of B; and (ii) no implicant of B illegally intersects any privileged cube [30]. Condition (i) was
shown to hold in Theorem 7.1. For condition (ii), there is a one-to-one mapping between symbolic and binary
privileged cubes. Further, symbolic hazard-free minimization ensures that no illegal intersections occur in
the symbolic cover. This property is maintained in the binary cover, due to the encoding constraints of
Section 6. 2

7.3 Optimality of Binary Cover

A final key result is that our algorithm produces state assignments and hazard-free realizations which are
exactly optimal with respect to output logic (if outputs and next-state are minimized separately).

Property 7.2 (Opt-HFCRF Optimality of Output Cover) The binary instantiated output cover OC
(where outputs are minimized separately from next-state) is exactly minimal.

Proof Sketch (by contradiction). Assume some hazard-free binary cover ÕC exists which has smaller cardi-

nality than OC. Each implicant in ÕC is dhf-prime, and corresponds to a symbolic dhf-prime in the symbolic
cover (since primality is preserved by instantiation). The number and types of output transitions are also
preserved by instantiation, and there is thus a one-to-one mapping between required cubes for MS and
ME . Therefore, there must exist a corresponding symbolic hazard-free cover of size |ÕC|. However, this is

impossible, since OC corresponded to an exactly minimal symbolic cover of cardinality > |ÕC|. 2

This result is especially important for asynchronous state machines. Since asynchronous machines have
no clock or latches, the input-to-output latency is determined by output logic delay. Our algorithm finds a
USTT state assignment which results in a hazard-free output cover with smallest cardinality over all possible
assignments.

8 Program Implementation

We have implemented our algorithms for symbolic hazard-free logic minimization, constraint generation, and
constraint solution.
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Unlike a previous hazard-free minimizer [30], which handled only single-output binary-valued functions,
our new minimizer provides exact minimization of multi-valued functions. It therefore performs exact mini-
mization of multi-output binary-valued functions as a special case.

The new minimizer makes use of mincov [34] for efficient solution of the minimum covering problem (the
former minimizer did not). An added benefit is that mincov offers a heuristic mode, which allows us to
handle large hazard-free minimization problems. Our constraint solution mechanism supports both exact
(via dichot) and heuristic (via nova’s simulated annealing mode) solutions. Unlike standardnova, however,
our modified simulated annealing algorithm accepts fully general dichotomies and handles both compulsory
and non-compulsory constraints.

The program is implemented in portable C++, running on NeXT, Sun Sparc, and IBM RS/6000. It
is currently integrated into the unclocked asynchronous sequential synthesis system UCLOCK [28], and can
easily be integrated into other synthesis systems, e.g. 3D [46], MEAT [7], or LCLOCK [29]3. Where available,
we make use of existing highly optimized tools for certain steps, e.g. prime implicant generation (espresso-
mv [34]), exact and heuristic unate covering (mincov [34]), dichotomy solution (dichot [36]) and partial
encoding constraint satisfaction via simulated annealing (nova [45]).

9 Experimental Results

A preliminary set of experiments was run on industrial examples ([7, 21, 32, 47]) using our optimal encoding
and logic minimization algorithms. Results appear in Figure 9. The column labelled optimal lists runs in
which all constraints were solved. A parallel set of runs using a “random” (but minimal length) critical
race-free encoding was done as well, labelled base-crf, for comparison with the optimal. Finally, a third set
of runs, opt-fixed, was performed (for cases where optimal and base-crf differed in code length), using a fixed
code length and partial constraint satisfaction. For this set, runs at or near the code length of the base-crf
case were performed; the best of several iterations is reported. For all sets of runs, the hazard-free multi-
output logic minimization algorithm was used for the binary implementation step. Improvements ranging
up to 17% are observed.
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