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ABSTRACT

Stream processing is a promising paradigm for programming
multi-core systems for high-performance embedded applica-
tions. We propose flexible filters as a technique that com-
bines static mapping of the stream program tasks with dy-
namic load balancing of their execution. The goal is to im-
prove the system-level processing throughput of the program
when it is executed on a distributed-memory multi-core sys-
tem as well as the local (core-level) memory utilization. Our
technique is distributed and scalable because it is based on
point-to-point handshake signals exchanged between neigh-
boring cores. Load balancing with flexible filters can be ap-
plied to stream applications that present large dynamic vari-
ations in the computational load of their tasks and the di-
mension of the stream data tokens. In order to demonstrate
the practicality of our technique, we present performance im-
provements for the case study of a JPEG encoder running
on the IBM Cell multi-core processor.

Categories and Subject Descriptors
D.1.3 [Programming Techniques] Concurrent Programming;
D.3.2 [Programming Languages] Data-flow languages.

General Terms
Design, Performance.

Keywords

Stream programming, dynamic load balancing.

1. INTRODUCTION

Stream processing [4, 15, 20, 25] is a promising model
for programming multi-core system-on-chip platforms that
is applicable to a wide range of applications including high-
performance embedded applications, signal processing, im-
age compression, and continuous database queries [5, 24].
The basic idea of stream processing is to decompose an ap-
plication into a sequence of data items (tokens) and a collec-
tion of tasks (referred to as filters or kernels) that operate
upon the stream of tokens as they pass through them. Fil-
ters communicate with each other explicitly by exchanging
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the tokens through point-to-point communication channels.
This model exposes the inherent locality and concurrency
of the application and enables the realization of efficient
implementations based on mapping the filters onto paral-
lel processor architectures. For instance, high-performance
implementations can often be obtained by mapping the fil-
ters on a pipeline of processing cores that communicate via
a message-passing protocol and queue buffers.

Previous works have shown how filters can be mapped to
the actual cores to balance the load and optimally utilize the
available resources [11, 17]. For example, if there are more
filters than cores, several filters may be mapped to a single
core, and if there are more cores than filters, stateless filters
may be replicated on several cores. In some systems, the
cores perform context-switching across several filters based
on priority queues. In general, however, it remains a chal-
lenge to achieve an optimal mapping that maximizes the
stream processing throughput while accounting for the data
dependencies among the filters and the available hardware
resources (processing cores, memories, and interconnect).
Coarse-grained distributions of the filters across the cores
can result in uneven processing loads while fine-grained dis-
tributions may lead to inefficiencies due to the overhead of
synchronization and data transfers among the filters.

In this paper we propose flezible filters as a technique to
implement stream programs on distributed-memory multi-
core platforms that combines static mapping of the stream
program filters with dynamic load balancing of their execu-
tion. The goal is to increase the overall processing through-
put of the stream program by reducing the impact of bottle-
neck filters running on particular cores. A filter can cause a
bottleneck because either (a) its algorithmic characteristics
make it disproportionately expensive to run on a given core
with respect to the other filters running on neighboring cores
or (b) at run time it may go through phases where it has to
process a larger number of tokens per unit of time. When a
filter becomes a bottleneck, its upstream or downstream fil-
ters, or both, may start suffering a loss of throughput and,
ultimately, this affects the data processing throughput of
the overall implementation. If the bottleneck is caused by a
long-latency computation that delays the production of new
tokens, the downstream filters may become idle due to the
lack of inputs. But even when it continues to produce new
tokens, a filter may also become a bottleneck when it cannot
sustain the processing rate of the upstream filters. If this is
the case, the input buffers of its processing core start filling
up. This ultimately leads to the emission of backpressure
signals that are sent back to the cores running the upstream
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Figure 1: Example of Stream Program Structure.
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Figure 2: SPMD Mapping.

filters, which are forced to become idle to avoid a loss of
data.

The basic idea of flexible filters is precisely to take advan-
tage of the available cycles on these neighboring cores and
use them to dynamically accelerate the execution of bottle-
neck filters. In other words potential bottleneck filters can
be balanced by making their mapping to the underlying ar-
chitecture “flexible” so that for certain periods they can run
simultaneously on more than one processing core to execute
different substreams of the data stream. This is achieved
with the following procedure:

1. Identification of bottleneck filters through profiling of
the application with the target multi-core platform
(these filters must be stateless; i.e. given an input
token x, a stateless filter will produce the same output
token regardless of what tokens came before z);

2. Completion of a static redundant mapping that repli-
cates the code of the bottleneck filters to deploy them
on multiple, typically-neighboring cores;

3. Addition of auxiliary code that leverages the backpres-
sure mechanism to dynamically activate the execution
of the additional copies of the bottleneck filters when
necessary, while preserving the correct ordering of the
tokens in the data stream.

Flexible filters differ from many previous load-balancing
approaches because the load balancing is based only on back-
pressure and the task reassignment to idle cores is guided
by data dependencies across the filters in the stream pro-
gram rather than random selection. No centralized control
is required, and no extra messages are sent among cores be-
yond backpressure messages, which are already present to
prevent the communication buffers from overflowing. Since
load balancing is driven by the runtime load, flexible fil-
ters can be used not only to optimize the implementation of
programs whose filters have constantly unbalanced compu-
tational loads but also to adjust temporary imbalances due
to spikes of activity, e.g. in Bloom filters applications.

2. FLEXIBLE FILTERS

Background. To implement a stream program on a
multi-core architecture each of its filters must be mapped
to at least one core. A core may host several filters and rely
on a scheduler so that it is time-multiplexed among them
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Figure 3: Baseline Pipeline Mapping.

while minimizing the context-switch overhead. We assume
that the ordering of tokens must be preserved in the final
output of the program (though the stream may be split and
joined), and no tokens can be dropped without affecting the
correct functionality of the program. The performance of a
given implementation can be measured by its mazimum sus-
tainable throughput (MST), i.e. the maximum rate at which
data tokens can be processed under the assumption that the
environment is always willing to produce new tokens and
does not ever require the system to stall through a back-
pressure signal. Assuming an ideal multi-core architecture
where the overhead of inter-core data communication and
intra-core context switching is negligible and each core has
unlimited local memory, an ideal mapping of filters would
have the following properties: no core ever stalls and the
MST scales linearly with the number of cores.

Three Alternative Mappings. Flexible filters can be
seen as a mapping approach that sits in between two other
implementation techniques: Single Program Multiple Data
(SPMD) Mapping and Baseline Pipeline Mapping.

Consider the simple example of a generic stream program
whose structure is shown in Fig. 1: it consists of three fil-
ters A, B, and C with data tokens traveling between them
on communication channels (4, B) and (B,C). An SPMD
mapping of this program on an architecture with three cores
is shown in Fig. 2: each core contains the entire program
and the data stream is distributed evenly among them. If
the filters have latencies' La = 2, Lp = 2, and L¢ = 3,
respectively, then the MST obtained with this mapping is
L{ﬁ_iﬁ = % = 0.429. This value corresponds to the
ideal MST for the given architecture and can be theoretically
reached by the SPMD mapping because no core receives data
tokens from another core in this mapping. In practice, how-
ever, the local memory of a core is not unlimited, and it
may not be able to accommodate the code of all of the fil-
ters. Even if it is possible, code for the filters’ instructions
reduces the amount of buffer space for data tokens, and may
reduce the ability to overlap data transfer with computation
(e.g. double-buffering). Furthermore, SPMD mappings re-
quire off-chip bandwidth to scale linearly with the number
of cores. Therefore, we will use the theoretical SPMD im-
plementation as a benchmark for the stream program’s ideal
throughput, but we will move on to implementations where
each core does not necessarily contain the entire program.
In particular, our goal is to achieve ideal MST (like SPMD
mappings) using the fewest copies of filters possible in the
overall system.

A baseline pipeline mapping is shown in Fig. 3: here, each
filter is mapped to a separate core. Using the same latency
values as above, this mapping delivers an MST equal to

% = 0.333 because it is bound by the latency of filter C,

' The latency of a filter is the time necessary to execute it on a given
core as a stand-alone task. In a heterogeneous multi-core architec-
ture the same filter would have different latencies when executed on
different cores. However, in this example we assume that cores are
mapped only on homogeneous architectures.



Figure 4: Flexible-Filter Mapping.
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Table 1: SPMD Mapping Timeline.

which can process a new data token only every three time
steps. Since some filters might be more computationally
intensive than others, it is a challenge to keep all of the cores
active when each filter is mapped to a different core. In this
example, once the buffers between cores and cores (where B
and C are located, respectively) fill up, cores requests cores
to stall occasionally through the emission of a backpressure
signal (and backpressure continues to propagate upstream).

However, suppose that cores can also execute filter C.
Then, instead of stalling, cores can “work ahead” on the
data tokens in its buffers. Now the rate at which data tokens
are processed by filter C' is increased, and cores has fewer
data tokens to process, and so the system can run faster.
This is the idea of the flexible-filter mapping as illustrated
in Fig. 4. Filter C is duplicated on corez so that cores can
share cores’s load. Besides increasing the code footprint in
corez with respect to the baseline pipeline mapping, this
adds also some complexity to the program because now the
data stream is split and merged around cores. The split
and merge steps are accomplished with two auziliary filters:
flex_split and flex_merge. As explained in Section 4, these
filters, which are represented as small black boxes in Fig. 4,
can be added to the stream program without changing any
of the original filters to guarantee the preservation of the
order among the data tokens in the stream.

Data Blocks and Buffering Queues. Besides the filter-
to-core mapping, the implementation of a stream program
onto a target architecture also requires the mapping of the
point-to-point communication channels between the filters.
Channels are typically realized as input and output buffer-
ing queues within the private local memory of each core.
Standard handshake protocols can be used between input
and output queues to prevent buffer overflow by means of
backpressure signals. Each filter has an inherent input data
token size which represents the minimum amount of data
that the filter requires to “fire”, i.e. to consume a token
on each of its inputs channels and produce an output token
on each of its output channels. Communicating filters may
have input tokens of different data types and each incoming
communication channel to a filter may be associated with
a different type of token. For example, a filter that adds a
constant to a stream of integers only requires a minimum of
one integer to operate, while a filter that computes a ma-
trix multiplication requires a pair of entire matrices. In this
case the first filter’s incoming token type is integer, while
the second filter’s token type is a matrix.

While sometimes a core may only have enough space in
its local memory for a single input data token, it is often the
case that its memory holds many input tokens at a given
time. The core processes the input tokens using the stream
filters that are mapped to it and places the resulting to-
kens back into the local memory to wait until they can be
transmitted downstream. At any point in time the local
memory holds some unprocessed incoming tokens and some
processed outgoing tokens. Flexible filters step in when the
local memory is entirely filled with outgoing tokens and the
core cannot make progress until some of them are sent out
so that it can make room for more incoming tokens. At
this point a flexible filter switches to work on the outgoing
tokens.

We abstract the current content of the core’s local mem-
ory with the notion of a data block, which is a substream
of data tokens. Each data block may consist of many data
tokens, and the blocks, like tokens, form a stream and follow
an ordering that depends on their place in the bigger stream.
One difference between data tokens and data blocks with re-
spect to scheduling the flow of data is that it is possible to
break a data block up into several pieces that can be exe-
cuted in parallel. A data block is the input unit for flex_split
and the output unit for flex_merge. The divisibility of data
blocks is one factor that enables load balancing with flexible
filters. But data blocks can only contain a finite number
of data tokens and cannot be divided into arbitrarily sized
fractions. Coarser granularity can limit the benefits of flex-
ibility in the data stream because it puts more constraints
on the possible data flow. For the remainder of this section,
we show the details of how data blocks are processed given
several different mappings of our example stream program
on a three-core system where each core has enough buffer
space for two blocks of data and can work on either of them.

Table 1 shows the timeline for an SPMD mapping where
the entire stream program is duplicated separately to each
core, with no intercommunication. The table shows both
the current step being executed on each core, and the con-
tents of the core’s local buffering memory. Filter A, whose
latency is assumed equal to two, is computed over two time
steps, which for block i are denoted A;o and A; 1, respec-
tively. With an SPMD mapping, cores work on one block
until completion and then start the next block. Though not
shown in this table, depending on the method of data for-
warding, each core may also be holding the next block (3,
4, and 5 for corer, cores, and cores, respectively). As men-
tioned above, the MST for this mapping is % = 0.429 since
the implementation can process three new input data sets
every seven time steps.

Table 2 illustrates the trace when the filters are mapped
with a baseline pipeline mapping, i.e. where each filter is
assigned to only one distinct core. Even though the filters’
latencies are not equal, the buffer capacity allows the faster
filters to work ahead. However, at time step tis, corea must
stall. At this step, corez’s memory contains Blocks 6 and
7, and even though core; is ready to pass Block 8, cores
holds Blocks 4 and 5 and will not be ready to take the next
block from cores until it is done processing Block 4. There-
fore, cores must wait until cores is ready to accept the next
block before it can make space in its memory for Block 8.
The state of the system is the same at time steps t22 and
tos in terms of the state of each core with respect to the
blocks in that core’s memory. In fact, the system begins to
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Figure 5: Flexible Filter Timelines.

cycle through a pattern of states, in this case the pattern
from t22 to t24. By analyzing the behavior during one itera-
tion of the cycle, we can have confirmation that the baseline
pipeline implementation has an MST equal to % Note that
if the filter latencies are unbalanced, stalling will occur no
matter how much buffering space is available on the cores:
additional memory simply extends the time that it takes to
initially fill up the buffers.

Fig. 5 summarizes timelines for several mappings in a more
abbreviated format that does not include the current mem-
ory state. For each case other than SPMD, the timelines
start at t16 using the same state of t16 in Table 2 and con-
tinue until a cyclic pattern emerges. Fig. 5(a) and (b) de-
pict the same timelines as in Tables 2 and 1, respectively.
Fig. 5(c) shows the timeline for a flexible-filter mapping
where filter C' is made flexible and is mapped to cores and
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core, A12  A13
core, [ B8 [c7] B9 | Bii B2 B3 [ci2 |BH c': IBB

corey Ci1 C12 C13
time >
16 17 18 19 29 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

(b) C flexible, 1-block buffer

core,
core,

corey

time

>
>
4

01 2 3 4 5 6 7 8 9 101112131

Figure 6: Time-line when filter C has a granularity
of 2 tokens per block.

cores (same as Fig. 4). The cyclic pattern for this mapping
begins at time step t26 and continues until t35. Fig. 5(d)
shows an alternative flexible-filter mapping where both fil-
ters B and C have been made flexible. In particular, filter C
is again mapped to corez and cores, while filter B is mapped
to core; and corez. Here, the pattern goes from time step
t26 to t39.

In our example, when no filters are flexible, the MST is
degraded by 22%. When only filter C is flexible, the MST is
increased to 15 = 0.400 (only 7% degradation). When both
filter B and C are flexible, the MST reaches its ideal limit of
0.429, thus matching the MST of the SPMD mapping. Note
that we are not simply duplicating a filter to achieve data
parallelism (e.g. as in [10]); instead, data parallelism is used
to balance load dynamically as an alternative to stalling one
of the processing cores in response to backpressure. In an
implementation with optimal MST, such as the examples of
Fig. 5(a) and (d), all of the cores are always busy, but by
using flexible filters only one copy of filter A, and two copies
of filters B and C' are necessary instead of the three copies
of each filter that are used in the SPMD implementation.

Granularity of Firing Constraints and Buffer Size.
In the previous examples, we assume that it is always pos-
sible to break one of C’s data blocks up into thirds and B’s
data blocks up into halves. Suppose, however, that the local
data memory of each core only holds a block of two tokens
for C. Since data tokens are the minimum amount of data
that a filter can fire on, it is now only possible to break one
of C’s data blocks up into two pieces. Fig. 6 repeats the
mapping from Fig. 5(c) to show the timeline when C has
this constraint. There are two cases shown. In Fig. 6(a), we
assume buffers of size two just like in the previous examples,
while in Fig. 6(b) we assume that the buffer has capacity for
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one data block only. At t7 in Fig. 6(b), cores must wait
for Block 1 until corez is ready to send it. Similarly, core;
must also wait to send Block 2 to cores. When buffers have
enough capacity for two blocks, the MST is 16—5 = 0.4, which
is the same as the MST when we did not have the additional
granularity constraint. However, when the buffers only hold
one block, the MST is degraded to 5—25 = 0.364. This exam-
ple shows that the local buffering memory plays a critical
role in insulating performance from granularity constraints.

Flexible Filter Design Flow. These examples illus-
trate how to determine the throughput of a system given
the stream program, the flexibility of its filters, and their
mapping onto an underlying architecture. In the next sec-
tions we examine how to decide what flexibility to use and
how to modify the original stream program to incorporate
this flexibility. Briefly, the Flexible Filter design flow con-
sists of three steps:

1. Design: Programmer “designs” a stream program.

2. Compilation: ILP-based analysis (Section 3) identi-
fies good places to add flexibility to the program and
alters the stream program to include this flexibility by
adding Flexible Filter Split and Merge functions (Sec-
tion 4). We perform this step manually in this work
to demonstrate our idea without building a compiler.

3. Run-time: By default, the dataflow pattern designed
by the programmer is followed. In times of greater
load, however, excess traffic is redirected to the flexible
filter’s secondary copy.

3. CALCULATING THE MST

In this section we describe a method to calculate the MST
of a mapping of a stream program on a given multi-core
architecture. We assume constant filter latencies. This as-
sumption simplifies the analysis, and allows us to compare
MST across different filter configurations. However, notice
that dynamic load balancing with flexible filters does not
require that the filters have a constant latency. If the laten-
cies vary at runtime, the system automatically settles into
the best possible schedule given the new latencies and the
static mapping, assuming that the system is running a single
stream. If the system resources are shared between multiple
simultaneous streams, additional care may need to be taken
to coordinate parallel flexibility.

One Flexible Filter. When only one filter is flexible
across two cores, the MST of the two cores together can be
calculated as follows: given filters B and C' with latencies
Lp and L¢, where B is fixed and C' is flexible, if Lc > Lp
then MST = ﬁ The timeline in Fig. 7 shows how
filters B and C overlap when Lo > Lp. In the opposite
case, when Lp > Lc¢, the same performance improvement
is possible if B is flexible and is pushed downstream.

A Pipeline of Flexible Filters. Consider the case
where two consecutive filters are flexible next to each other.
For instance, consider the example of Fig. 5(d) with filters
A, B, C, where B and C are flexible. We would like to
know how close the performance of a system with this flex-
ible configuration can come to the ideal MST for an archi-
tecture with a given number of cores. Based on which fil-
ters are flexible, we can define the following linear program-
ming problem to determine the system’s MST: For each core
core;, we construct a variable X; based on the percentage
of time that core; spends on each filter. In the above exam-
ple, core;’s variable X1 = X14 + X1 + Xiw, where Xi4
and X1p correspond to the time that core; executes filters
A and B, respectively, and Xiw corresponds to the time
that core; waits. The execution time of a filter partitioned
across multiple cores is defined to be equal to the sum of the
execution times of the parts of the filter executed on each
core. For example, cores and cores may work on a filter C
and the sum of times spent on filter C' by both cores must
equal Lc. The X; variables correspond to the cyclical firing
pattern illustrated in Fig. 5. The complete linear program-
ming problem for our example is the following:

Minimize X1w + Xow + Xsw (wait time), subject to:

Xia = La
Xip+Xep = Lp
Xoc+X3c = Lc

which ensure that the total time spent working on a block
for a filter by the cores matches the latency of that filter,
and:

X1 — Xo=Xia+ Xup+ Xiw — Xop — Xoc — Xow

Xo— X3 =Xop+ Xoc+ Xow — Xsc — Xsw = 0
which ensure that the wait times are selected so that all
cores work (and wait) over the same period of time. One
solution for the example program is Xi14 = 2, Xip = %,

Xop =32, Xoc = 2, X3¢0 = %, and X1w, Xow, Xaw = 0.
We can now give the constraints for general applications.

For each filter f,
D Xi=Ly

for all 7 such that f is mapped to core;. And for each core;
(except the core with the highest index),

fefilters on core; fefilters on core;qq

Additional constraints can be added for granularity restric-
tions and the problem can be solved as an integer linear
program. Then, using the solution to the problem we can
compute the MST as function of the ideal MST as follows:

% of time doing useful stuff x ideal MST
X1+ Xo+ X3 — (Xaw + Xow + Xaw) 3

X1+ X2+ X3 La+ L+ Lc

4. SPLIT AND MERGE

As mentioned in Section 2, once the filters that will be
made flexible have been selected the original stream program
is transformed into a flexible stream program by duplicating
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these filters and by adding pairs of flex_split and flex_merge
auxiliary filters around the duplicated ones. Fig. 8 shows
the connection among the filters. Flex_split and flex_merge
can be provided by an application-independent library and
added to a program without the need for modifications to
the original filters. They are added to the stream program
in the same way regardless of whether the filter’s upstream
or downstream neighbor is made flexible. The direction of
flexibility is determined based on where the duplicate filter
is mapped.

Flex_split (pseudocode shown in Algorithm 1) dynamically
reuses the backpressure information on the current capacity
of the downlink input buffers to manage load balancing by
dividing the data stream between out0 and outl. Specifi-
cally, it checks how much space is available on the buffer-
ing queue for filter f’s primary copy and divides the data
stream by sending as much data to f’s primary copy as it
can (stream out0) and then sending any leftover data to the
flexible copy (stream outl). It also produces a select bit-
stream that contains information on how to reconstruct the
correct ordering of the stream. Flexz_merge (pseudocode in
Algorithm 2) takes the input streams ¢n0 and inl from both
of f’s copies along with the select bitstream, which comes
directly from flex_split. The select bitstream indicates which
filter copy has the next data token, thus allowing flex_merge
to reassemble the stream into its original order.

Backpressure plays a key role in the implementation of
flexible filters. Before a core can send data downstream,
it needs to check that there is buffering space for the data
in the receiving core. A typical handshake protocol ensures
that buffers do not overflow and proceeds through a sequence
of phases: it starts with the sending core placing a request to
send data; then, the receiving core sends back an acknowl-
edgement with information on how much data it can receive
(backpressure); and finally the sending core sends the data.
In practice, the various phases can be overlapped to further
improve performance by adding sufficient memory space.

Streaming programming languages typically abstract away
the backpressure mechanism that is implemented at the lower
level of the inter-core communication stack [1, 25]. Hence,
programmers need not worry about the current state of the
buffers between stream functions and can focus on the com-
putational aspects of the algorithm and data manipulation
through higher-level functions such as push and pop. At the
same time, the underlying message-passing API functions
that support the handshake communication protocol and
backpressure mechanism between communicating cores, and
that are often specific to the target architecture, may also be
made available to allow performance optimizations. Our im-
plementation of flex_split and flex_merge rely on such func-
tions. In particular, the Flex_split implementation given in
Algorithm 1 uses the avail() function provided by Gedae [1]
that returns how much buffering space is available in the
next core’s buffer. If the programmer does not use avail()
to check the buffering availability of its output channels then

Algorithm 1 flex split
Input: stream in; Output: streams out0, outl, select

pop data block b from in
n0 «— avail (out0)
nl «—|b|—n0
for i=0ton0—1do
push 0 to select
end for
for i =n0 to |b| — 1 do
push 1 to select
end for
push n0 tokens from b to outO
push nl tokens from b to outl

Algorithm 2 flex_merge
Input: streams in0, inl, select; Output: stream out

pop i from select
if 7is 0 then

pop token t from in0
else

pop token ¢ from inl
end if
push t to out;

at runtime the filter will automatically stall whenever there
is not sufficient space for the data to be sent on any of its
output channels. Instead, using avail() to check the avail-
able space on a channel allows the programmer to dynami-
cally send only the right amount of data to that channel and
then proceed to the next instruction without stalling the fil-
ter. For instance, to avoid stalling when there is not enough
space to send the entire block b to f’s primary copy, flex_split
sends exactly the amount of data equal to avail(out0) to
out0. Then, the rest of the data is sent to f’s secondary
copy without calling avail() on this channel but relying in-
stead on the underlying backpressure mechanism to regulate
the stream outl. In our experience, relying on the implicit
backpressure of the channel instead of explicitly checking
avail() on outl tends to produce better results, possibly be-
cause the leftover portion of the output stream can move
forward faster to the filter’s secondary copy in the presence
of a temporary input buffering shortage.

If a flexible filter is inherently slower than the rest of the
filters, then the imbalance will cause the input buffering
queue of its primary copy to be full often, and the data
flow will be redirected to the secondary copy at regular in-
tervals. Instead, if the flexible filter experiences only oc-
casional spikes of activity that cause it to slow down—or
if its upstream neighbor occasionally creates extra data to-
kens on its output— then the data flow will mostly follow
the baseline pipeline behavior and flexz_split will intervene
sporadically to adapt the data flow.

Finally, notice that the select bitstream may be compressed
to counts of how many of the next tokens go to out0 and
then how many go to outl, instead of having a distinct bit
for every token. In practice, if the data tokens are vectors
or other large data structures, then using a distinct select
bit for each token does not take up an unreasonable portion
of memory.

Filter Mapping. The last step in our approach is map-
ping the entire set of filters to cores including duplicate flexi-
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Figure 9: JPEG block diagram.
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inal filter is mapped to. If several consecutive filters are
co-located on a single core, it may be useful to treat them
as a single filter for flexibility purposes to cut back on the
overhead of data queueing between filters. As filters are
mapped to cores, one design decision is where to map the
split and merge filters. All of the data stream must pass
through both filters. In the case of a single flexible filter,
which is likely a performance bottleneck, it is natural to
map the split and merge filters to the same cores as the
flexible filter’s upstream and downstream neighbors, respec-
tively. When there are several consecutive flexible filters,
however, the best choice is less clear. One possibility is to
map the split/merge pair between two flexible filters onto a
separate core. We explore a few possibilities in our experi-
ments in the next section.

S. EXPERIMENTS

In this section we describe a case study on the appli-
cation of flexible filters to the implementation of a JPEG
encoder program. We performed all of our experiments
on a QS21 CellBlade which hosts two IBM Cell proces-
sors [21]. The Cell architecture is a heterogeneous multicore
system-on-chip originally designed for high-performance em-
bedded applications [13, 22]. It features one PowerPC pro-
cessing core called the PPU, eight synergistic SIMD process-
ing units called SPUs, and the Element Interconnect Bus
(EIB), an on-chip communication network capable of sus-
taining 205GB/s of data transfers >. Each SPU core has a
256KB local memory that is shared between code and data.
The Cell processor is a good architecture for testing the
performance of flexible filters since it exposes the tradeoff
between program code and data buffering when we make
filters flexible.

To program the IBM Cell we took advantage of Gedae, a
data flow language that also provides an abstraction of the
communication layer for our implementation by handling

2Notice that in our experiments we mapped the filters only to the
SPU processors.

Figure 10: Profile of JPEG filters for three DCT
implementations.

low-level details like direct-memory access (DMA) alignment
and double buffering [1]. Gedae’s API contains functions to
implement the communication channels, including an avail()
function that gives information on how much space is avail-
able in the input and output buffers.

Fig. 9 shows a block-level diagram of a baseline gray-scale
JPEG encoder. Table 3 describes the functionality of its fil-
ters, most of which operate on 8x8 pixel blocks. The follow-
ing filters are stateless between blocks: add_const, forward
DCT, quantize, and zigzag. Filter coding does retain a small
amount of state (one integer: the previous pixel block’s DC
coefficient). Since there is state, it is slightly more difficult
to make this filter flexible, but in this particular case, the
DC coefficient of the previous pixel block can also be cap-
tured in zigzag or quantize and then tagged on to the current
pixel block (effectively moving the state information out of
the coding filter). Filter stuff_bits packs the bits produced
by Huffman coding into bytes so they can be written to out-
put. In addition, stuff bits checks for 0xff words in the data
stream and adds padding bits when it finds them (0xff is
reserved as a tag marker in the bitstream). It would be
difficult to make this filter flexible because codes produced
by coding have variable length and may span across byte
boundaries in the output of stuff bits.

Fig. 10 shows some profiling data that we collected empir-
ically with a baseline pipeline implementation of the JPEG
encoder. Since our first implementation of the DCT filter
was rather slow in comparison to the other filters, we made
two additional implementations. We used all three versions
to evaluate how the benefits of flexibility vary depending on
the relative latency of the flexible filter. Filters add_const
and zig-zag are omitted because their measured latencies
are negligible. Indeed, they are lower than the latency of
the function used to measure the latency on the Cell proces-
sor (200-300 ns, called twice).
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Below is a brief description of the DCT implementations:

e Slow. Implements the 2-D DCT based on its standard
definition, f(z,y)

e Medium. Computes the 2-D DCT by computing 1-D
DCT on each column of the 8x8 pixel block and then on
each row of the block. The 1-D DCTs are implemented
with for loops.

e Fast. Similarly to the medium algorithm the 2-D DCT
is computed as 1-D DCTs over the columns and rows
of the pixel block. The 1-D DCT is implemented in a
pipeline fashion, based on the algorithm described by
Kovac and Ranganathan [16].

Notice that our implementation is not highly optimized
for the Cell architecture, e.g. we did not make use of the
intrinsic vector operations that could certainly be used to
write a more efficient encoder. With regard to flexible filters,
the implementation of an application can change the relative
costs of different filters with respect to each other and to
the overhead of data transfer, but it would not change the
algorithms or strategies of flexible-filter load balancing. We
stop at a basic implementation because our goal is not to
make the most efficient JPEG encoder for the Cell, but to
test the proposed idea.

Implementation with One Flexible Filter. Fig. 11
shows the speedup from using a flexible filter for forward
DCT with the mapping shown in Fig. 12. All other filters
are not flexible. We observe that adding flexibility to the
stream program can significantly improve performance and
also that the benefits of flexibility are greater when there is a
greater imbalance between the latency of forward DCT and
the latencies of other filters. Performance improved nearly
85% for the slow DCT implementation and up to 20% for

=y é n- 1T(u v)h(z,y,u,v) [9].

Encoding Time per Image (seconds)
Implementation | 64x64 128x128 256x256 512x512
Slow DCT 0.099 0.388 1.542 6.253
Slow DCT, flex | 0.059 0.231 0.871 3.395
Med DCT 0.022 0.086 0.347 1.334
Med DCT, flex | 0.014 0.059 0.240 0.903
Fast DCT 0.013 0.057 0.236 0.954
Fast DCT, flex 0.012 0.056 0.215 0.781

Table 4: Performance of JPEG Encoder.

the fast DCT implementation. One unexpected result is
that the performance shows improvement for the fast imple-
mentation where forward DCT is not the system bottleneck.
Table 4 shows the actual time to process the images. In some
cases, the medium DCT implementation with flexibility out-
performs the fast DCT implementation with no flexibility.

Implementation with Two Flexible Filters. In the
fast DCT implementation, filter quantize is the system bot-
tleneck. Fig. 13 shows three possible mappings for the fil-
ters when we make both forward DCT and quantize flexi-
ble. The first mapping follows the convention of mapping
flex_split to the upstream neighbor of the flexible filter and
flex_merge to the downstream neighbor. Since two filters in
a row are flexible, the first flex_merge must come before the
second flex_split. The second mapping attempts to reduce
the amount of data being transferred in exchange for re-
duced flexibility. The third mapping offloads flex_merge and
flex_split between forward DCT and quantize to a separate
core. As reported in Fig. 14 the performance of all cases is
roughly the same. Speedup is as high as 25% for the 512x512
image, though there is no speedup for the 128x128 image.
To illustrate how the profile data translates to dynamic load
we collected the following measures: for the 512x512 im-
age, when only forward DCT is flexible, flex_split redirects
around 35% of the data tokens to the secondary filter. When
both forward DCT and quantize are flexible using the first
mapping from Fig. 13, 47% of the data is redirected to the
secondary forward DCT and 34% is redirected to the sec-
ondary quantize.

Overhead of Flexibility. In the absence of overhead
from data transfer and inefficiencies from data granular-
ity, we would expect that making both forward DCT and
quantize flexible should improve performance. As shown in
Fig. 14, however, the extra communication overhead out-
weighs the benefits of flexibility in this instance. Besides
the overhead of moving the data, flexible filters incur some
additional overhead. First, flex_split and flex_merge require
a couple extra steps of data copying; then, streams that can
push and pop arbitrary numbers of data tokens according to
user-level input are more complex than streams that always
push and pop the same number of tokens; finally, flexible
filters require some code duplication compared to a baseline
pipeline (though less code overhead than an SPMD map-

ping).

6. RELATED WORK

Flexible filters balance load using a version of work steal-
ing for stream programs. Work stealing is a technique used
in a variety of parallel systems to balance load by allowing
idle cores to “steal” tasks from busy cores [3, 8, 14]. Most
work stealing techniques go through stages of load evalua-
tion, reassignment, and task migration; and their “victim”
processors (from whom tasks will be stolen) are selected ran-
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domly. In contrast, flexible filters do not steal randomly, but
use the knowledge that neighbors of a bottleneck filter will
be idle because they dependent on this filter to continue
processing data tokens. Items are never migrated between
buffering queues of different processors, instead when queues
become full new items are redirected elsewhere. With flexi-
ble filters, tasks are not “stolen” per-se but rather the data
flow is re-routed when a bottleneck arises. Flexible filters
are identified when filters are mapped to the system and de-
termine the available routes for data during runtime. In ad-
dition, we focus on the case of a distributed memory system
where the code for tasks is also distributed. Flexible filters
are specialized to stream programs because dependencies in
the stream allow us to narrow down good candidates for
redundant-code placement.

Load balancing approaches specific to stream programs
can be categorized depending whether the stream models
rely on data parallelism or pipeline parallelism (in practice
both approaches can be used simultaneously [10]) In data
parallel stream systems, there can be many producers that
feed many consumers, and there may be many instances of
producer and consumer functions [2, 23]. Load balancing is
achieved by routing data to different instances of consumers
based on their current load and productivity. On the other
hand, in pipeline-parallel stream systems, the data may need
to flow through a series of pipelined filters where each filter
can be viewed as a producer and consumer of input and
output data. The order of filters constrains the order in
which tasks may be executed.

Flexible filters are a solution for load balancing in pipeline-
parallel stream programs. Many related works for balancing
the load of pipeline parallel stream programs involve a cen-
tral control and/or phases where the compute nodes collect
statistics which are used by the control to direct reorgani-
zation [7, 24, 26]). The number of filters is designed to out-
number the number of cores, and load balancing is typically
achieved by moving filters from nodes with heavy loads to
nodes with lighter loads. Flexible filters simulate filter mi-
gration by duplicating some filters on the cores and invoking
duplicates when the load becomes unbalanced.

Chen et al. perform load balancing for stream programs
by compiling several alternative filter mappings [6]. Dur-
ing run-time, the system can “context-switch” between the
alternatives based on the properties of the data. Flexible
filters, on the other hand, dynamically adapt to the current
flow behavior of the system. In the DIAMOND system devel-
oped by Huston et al., data tokens are forwarded based on
threshold values in the input and output queues [12]. Load
balancing with flexible filters similarly is an outcome of the
state of the queues, but the difference is that flexible filters
balance load based on backpressure. Moreover, DIAMOND is
optimized for distributed search which relaxes several con-
straints of stream programs - namely that the filters need
not be executed in a particular order because they are used
to eliminate unwanted data (rather than transform the data)
and that data can be processed in any order.

Many stream programming languages, such as Streamlt
include split and join nodes in their supporting library that
are used to transform the stream programs [7, 10, 25]. Split
and join nodes in Streamlt can be used in two ways. First,
the programmer may use them while writing a new stream
program. Second, the StreamlIt compiler may introduce split
and join nodes to optimize the program by increasing data
parallelism. This accomplishes static load balancing because
the data flow is split at run-time regardless of the loads on
the various cores. In contrast, the Flexible-Filter flex_split
and flex_merge filters described in Section 4 are not intended
for use when building a stream program, but are application-
independent library filters that are introduced at a later
stage when flexibility is added. Dynamic load balancing in
our approach is based only on the insertion of flex_split and
flex_merge. These are statically added during compilation
but achieve dynamic load balancing via the backpressure
mechanism applied to the dataflow.

Synchronous Data Flow (SDF) is a well-studied model of
computation which like the stream programming model de-
fines a computation as a network of processing nodes through
which data flows [18, 19]. We support a less restrictive set of
applications than SDF because flexible filters tolerate vari-
able token production and consumption rates and adapt to
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Figure 14: Speedup gained when both DCT and
Quantize are flexible using the Fast DCT Implemen-
tation and mappings shown in Fig. 13.

improve performance in spite of them. Our MST analysis
and ILP formulation do currently impose a temporary as-
sumption of constant data rates, and thus may overlap with
algorithms used to perform parallel SDF scheduling. How-
ever, once flexibility is added to the system, it does not re-
quire or depend on constant data rates. If a system needs to
switch between several different patterns of data flow, each
pattern can be analyzed separately and multiple “schedules”
tuned to each separate pattern can be concurrently included
in the final flexible-filter mapping.

7. CONCLUDING REMARKS

Flexible filters can significantly improve the performance
of stream programs. They are especially effective in cases
where one filter has a relatively high execution latency com-
pared to other filters in the program. Since our approach
automatically adapts the data flow to the filter latencies, it
can reduce the need to break large filters up by hand. Fur-
ther, load balancing is determined solely by backpressure
signals and can be applied both to systems with static filter
latencies and systems with dynamically-varying latencies.

We demonstrated the capabilities of flexible filters by pre-
senting the JPEG-encoder case study. While this program
is characterized by a linear pipeline structure, flexible filters
can be applied to any pipelined segment of stream programs
that may have more complex graph structures in an attempt
to improve their throughput. Adding flexibility to stateful
filters and across a filter that splits a stream or joins multiple
streams is a topic for future investigation. In future work
we plan also to automate the steps for evaluating where to
add flexibility to optimize the system’s throughput while
minimizing the code overhead and communication costs.
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