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Abstract

Given a message msg ∈ {0, 1}N , its k-wise direct product encoding is the sequence of k-tuples
(msg(i1), . . . ,msg(ik)) over all possible k-tuples of indices (i1, . . . , ik) ∈ {1, . . . , N}k. We give an
efficient randomized algorithm for approximate local list-decoding of direct product codes. That is,
given oracle access to a word which agrees with a k-wise direct product encoding of some message
msg ∈ {0, 1}N in at least ε ! poly(1/k) fraction of positions, our algorithm outputs a list of
poly(1/ε) strings that contains at least one string msg′ which is equal to msg in all but at most
k−Ω(1) fraction of positions. The decoding is local in that our algorithm outputs a list of Boolean
circuits so that the jth bit of the ith output string can be computed by running the ith circuit on
input j. The running time of the algorithm is polynomial in log N and 1/ε. In general, when
ε > e−kα for a sufficiently small constant α > 0, we get a randomized approximate list-decoding
algorithm that runs in time quasipolynomial in 1/ε, i.e., (1/ε)poly log 1/ε.

As an application of our decoding algorithm, we get uniform hardness amplification for PNP‖,
the class of languages reducible to NP through one round of parallel oracle queries: If there is a
language in PNP‖ that cannot be decided by any BPP algorithm on more that 1 − 1/nΩ(1) fraction
of inputs, then there is another language in PNP‖ that cannot be decided by any BPP algorithm on
more that 1/2 + 1/nω(1) fraction of inputs.

1. Introduction

There is a rich interplay between coding theory and computational complexity. Complex-
ity has both benefited from and contributed to coding theory. For instance, the PCP Theo-
rem [AS98, ALM+98] uses error-correcting codes based on polynomials over finite fields, while
the final construction gives rise to a new kind of error-correcting code, a locally testable encod-
ing of satisfying assignments of propositional formulas. In derandomization, error-correcting codes
are (explicitly or implicitly) behind many constructions of pseudorandom generators from hard
Boolean functions [NW94, BFNW93, IW97, STV01, SU01, Uma03]. The breakthrough extractor
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construction of Trevisan [Tre01] combines good list-decodable error-correcting codes and the pseu-
dorandom generator of Nisan and Wigderson [NW94]. (For many other connections between coding
and complexity, see the excellent survey [Tre04].)

Approximately decodable codes, where the notion of decoding is weakened to allow a small
number of incorrect symbols in the decoded word, are a relatively recent and potentially powerful
tool in coding theory. For example, an approximately decodable code can be composed with a
standard error-correcting code to boost the amount of noise that can be tolerated (see [ABN+92,
GI01, GI02, GI03] for several applications of this idea.) Allowing both approximate error-correction
and list-decodability, where the result of decoding is a small list of words that contains a word of small
Hamming distance from the correct message, also dramatically increases the available options for
coding functions. For instance, Trevisan [Tre03] and Impagliazzo [Imp02] observe that complexity-
theoretic direct product lemmas yield locally, approximately list-decodable codes. We explain this
connection next.

Direct product lemmas (e.g., Yao’s XOR Lemma [Yao82]) are formalizations of the intuition
that it is harder to compute a function on many independent instances than on a single instance.
In such lemmas, a Boolean function f that is hard to compute on some δ fraction of inputs is used
to construct a Boolean function f̂ that is hard to compute on a larger fraction (usually written
as 1/2 − ε) of inputs. View f̂ as a “coded” version of the “message” f . In an XOR lemma, it is
shown how to construct a list of circuits containing a circuit that computes f with fewer than δ
fraction of errors from a circuit with fewer than 1/2 − ε fraction of errors for f̂ . This corresponds
to approximately list-decoding the code in that instead of exactly recovering the message f , the
decoding algorithm finds a list of strings containing a string of small relative Hamming distance
from f ; moreover, the decoding is local since the constructed circuit computes an individual bit of
the decoded message, not the entire message.

The code implicit in the XOR lemma is the k-truncated Hadamard code, consisting of the inner
products of the message string with just those strings of Hamming weight k (where typically k # N ,
for N the length of the message). This code has very small sensitivity: flipping one bit of the input
changes only a small portion of output bits. On the other hand, any true error-correcting code has
large distance and hence large sensitivity.

This difference means that the k-truncated Hadamard code is combinatorially not list-decodable
for k much smaller than the length N of the message. That is, in general, there exist words w with
too many codewords within a small Hamming distance from w. This is in contrast to the perfect
list-decodability (with a known efficient algorithm) of the standard Hadamard code where there is
no restriction on k [GL89].

However, the k-truncated Hadamard code is combinatorially approximately list-decodable. That
is, when the fraction of corrupted symbols in the encoding of the message is less than 1/2 − ε,
there will exist a small list of O(1/ε2) words such that the Hamming distance δ between the correct
message and the closest word on the list is at most (ln 1/ε)/k; see the Appendix for the precise
statements and proofs.

From a combinatorial viewpoint, this means that approximately decodable codes escape many
of the restrictions that have been proved for standard error-correction. In complexity terms, this
allows the constructed function f̂ to be locally computable from f , f̂ ∈ Pf , an important property
if we want the constructed function to have a similar complexity to the original.

The approximate list-decodability of k-truncated Hadamard code for the parameters mentioned
above (and proved in the Appendix) is known only combinatorially, and not algorithmically. It
is an open problem to find an efficient algorithm that approximately list-decodes the k-truncated
Hadamard code for the same parameters. As Trevisan [Tre03] details, the known proofs of the XOR
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lemma give an approximate list-decoding algorithm for the k-truncated Hadamard code running in
time (and producing a list of size) exponential in poly(1/ε), when given a circuit with ε correlation
with the codeword. He observes that the list size and hence time for such an algorithm is exponential
in the amount of advice the construction uses.

In the present paper, we reduce the amount of advice in a proof of the XOR Lemma, giving an
approximate list-decoding algorithm with polynomial time and list size for ε > 1/poly(k) for any
polynomial poly, at the price of a somewhat weaker approximation ratio δ. As a consequence, we
get a strong hardness amplification result for PNP‖ , the class of problems reducible to NP through
one round of parallel oracle queries.

While interesting in themselves, our results are also significant in that they utilize the equivalence
of XOR lemmas and approximate decoding at several points. As in many other cases, knowing an
equivalence between problems in two different domains gives researchers leverage to make progress
in both domains.

There are three main ideas used in the construction:

Self-advising direct products: In a proof of a direct product theorem, one is converting a circuit
that solves many instances of a function a small fraction of the time into one that solves
a single instance a large fraction of the time. In the non-uniform setting, the converting
algorithm is allowed access to many bits of advice, which in most proofs consists of random
solved instances of the problem. We use the circuit solving many instances of the function on
a random tuple of instances, and hope that it provides correct answers for those instances. If
so, we use many of these answers in place of advice. We use a sampling lemma to show that
these are still almost uniform, even conditioned on the success of the direct product circuit.
Unfortunately, while this provides some of the required advice, it is usually not enough.

Direct product boosting: To increase the amount of advice yielded by the method above, we
show how to boost a direct product circuit, constructing a circuit that approximately solves
a larger direct product from one that (approximately) solves a smaller direct product. We
apply this method recursively to stretch the direct product by any polynomial amount. Thus,
we get a circuit that solves almost all of a larger number of instances a small fraction of the
time, from one that solves all of a smaller number of instances. This can be viewed as the
special case of approximately list decoding the truncated Hadamard code, when the message
size and k are polynomially related.

Fault tolerant direct products: Combining the two ideas above, we can generate a large amount
of slightly flawed advice, in that the instances are close to uniform and most of the supposed
function values are correct. We show that at least one of the standard proofs of the direct
product theorem, the one from [IW97] can tolerate such faulty advice.

Below, we describe our results and techniques more precisely.

1.1 Direct Product Lemma and Direct Product Codes

Given a Boolean function f : {0, 1}n → {0, 1}, we define its k-wise direct product as fk(x1, . . . , xk) =
f(x1) . . . f(xk). The Direct Product Lemma [Yao82, Lev87, Imp95, GNW95, IW97] says that if a
Boolean function f cannot be computed by any size s Boolean circuit on more than 1 − δ frac-
tion of inputs, then its direct product function fk cannot be computed by any circuit of size
s′ = s ∗ poly(ε, δ) on more than ε = e−Ω(δk) fraction of inputs. Viewing fk as a “direct product”
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encoding of the message f , we can interpret the (contrapositive to the) Direct Product Lemma as
a statement about approximate list-decodability of this direct-product code.

The known proofs of the Direct Product Lemma [Imp95, GNW95, IW97] are constructive: there
is an algorithm that, given a circuit of size s′ that computes fk on more than ε fraction of inputs,
constructs a Boolean circuit of size s that computes f on more that 1 − δ fraction of inputs.
However, in all these proofs, the algorithm constructing a circuit for f needs some nonuniform
advice. Instead of producing a circuit for f , the algorithm actually produces a list of circuits one
of which computes f on more than 1 − δ fraction of inputs; the logarithm of the size of this list is
exactly the number of bits of nonuniform advice used by the construction. In the known proofs,
the advice size is poly(1/ε) (cf. [Tre03]) and so the size of the list of circuits is 2poly(1/ε). In terms of
approximate list-decoding, this is the list of possible approximate messages, one of which is δ-close
to the original message. For combinatorially optimal approximate list decoders, this list size does
not exceed O(1/ε2) (see the Appendix), which corresponds to O(log(1/ε)) bits of advice.

In this paper, we achieve list size poly(1/ε), albeit only for large ε = Ω(poly(1/k)). To state
our main theorem, we need the following definition. We say that a circuit C ε-computes the
(1− γ)-Direct Product fk, if, with probability at least ε over a random k tuple x1, . . . , xk of inputs,
C(x1, ..xk)i = f(xi) for at least (1 − γ)k values of i. Note that this is weaker than the traditional
definition of computing a direct product where one has γ = 0. In our case C is only required
to get most of the answers right. However, since we use this weaker notion recursively inside our
main algorithm, and since it gives a stronger result, we state our main theorem for this notion of
computing the direct product.

Theorem 1 (Main Theorem). There is a randomized algorithm A with the following property.
Let f be any n-variable Boolean function, and let C be a circuit that ε-computes (1 − k−µ)-Direct
Product fk, where µ > 0 and ε > e−kα for a sufficiently small constant α dependent on µ (e.g.,
α = min{µ/1000, 0.0001}). Given circuit C, algorithm A outputs with probability at least ε′ =
εpoly logk 1/ε a circuit C ′ such that C ′ agrees with f on at least 1 − ρ fraction of inputs, where
ρ = O(k−ν) for some constant ν > 0 dependent on µ (with ν ≈ min{µ/2, 0.2}). The running time
of the algorithm A is at most (|C|/ε)poly logk 1/ε, and the size of C ′ is at most poly(|C|/ε).

The above theorem implies an approximate list-decoding algorithm for f : by running algorithm
A for O(1/ε′) times, we get, with a constant probability, a list of circuits one of which is a 1 − ρ
approximation to f . In general, the running time of this algorithm and the size of the produced list
of circuits will be at most (1/ε)poly log 1/ε, i.e., quasi-polynomial in 1/ε. However, for the important
special case where ε > poly(1/k), the expression for ε′ above simplifies to poly(ε), and so we get an
approximate list-decoding algorithm with running time and list size at most polynomial in 1/ε.

Combining our local approximate list-decoding algorithms with the list-decoding algorithm for
Hadamard codes due to Goldreich and Levin [GL89], we get local approximate list-decoding algo-
rithms for truncated Hadamard codes, whose running time and list size are essentially those of the
approximate direct-product decoding algorithms.

1.2 Our techniques

The proof of the Direct Product Lemma in [IW97] yields an efficient algorithm LEARN with
the following property: Given as input a “small” circuit C computing the direct product function
fk for at least ε fraction of inputs, and given about (1/ε2) random samples of the form (x, f(x))
for independent uniformly distributed xs, the algorithm LEARN produces, with high probability,
a “small” circuit computing f on at least 1 − δ fraction of inputs, for δ ≈ log(1/ε)

k . In our case, we
have a circuit C, but no labeled examples (x, f(x)).
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Our construction combines three technical steps:

Boosting direct products We give an algorithm for converting a circuit that ε-computes (1−γ)
direct product fk to one that ε′-computes (1 − γ′) direct product fk′ , where ε′ ≥ poly(ε),
γ′ ∈ O(γ + k−.4) and k′ = k1.5. Repeating recursively, we can go from a circuit to compute
a direct product on k inputs to one that approximately computes a direct product on any
polynomial in k inputs. This direct product booster can be thought of as approximately list-
decoding the k-truncated Hadamard code for the special case of “large” k where k ! NΩ(1).

The main idea of the direct product booster is: given k1.5 inputs, first guess one subset S of
k inputs and hope that the given circuit (approximately) computes the direct product on S.
Given that this first step succeeds, we use the values of f on inputs from S as a reality check
on random subsets T , accepting the values for inputs in T if there are few inconsistencies with
the assumed values for S. By the birthday paradox, S and T will have a large intersection,
so if the values for S are (mostly) correct, we are unlikely to accept any T for which the
values are not mostly correct. By combining many random consistent T ’s, we eventually fill
in correct guesses for most of the inputs in the entire set.

Self-advising learning algorithm The advice we need for LEARN is in the form of many ran-
dom examples (x, f(x)). A circuit ε-computing a direct product has an ε chance of providing
k such examples. To get enough samples, we first need to boost the direct product until
k′ = poly(1/ε). However, the resulting samples may be correlated, and our circuit for k′ only
computes an approximate direct product. We quantify the first problem through a sampling
lemma, which argues that a random subset of the inputs where the direct product circuit is
(approximately) successful is almost uniform.

Fault-tolerant learning algorithm Finally, we address the last problem that some of the advice
may in fact be misleading, not actually being the value of the function on the example input.
To handle this, we give a fault-tolerant analysis of the learning algorithm from [IW97], showing
that the algorithm works even if a small fraction of the advice is incorrect.

1.3 Uniform hardness amplification

The main application of the Direct Product Lemma (or Yao’s XOR Lemma) is to hardness
amplification: If a Boolean function f is somewhat hard to compute on average, its XOR function
f⊕k(x1, . . . , xk) = ⊕k

i=1f(xi) is much harder on average. The known proofs of Yao’s XOR Lemma
use nonuniform reductions and so they give hardness amplification only in the nonuniform setting
of Boolean circuits.

Impagliazzo and Wigderson [IW01] consider the setting of uniform hardness amplification. Here
one starts with a Boolean function family that is somewhat hard on average to compute by proba-
bilistic polynomial-time algorithms, and defines a new Boolean function family that is much harder
on average. Ideally, one would start from a function that is hard 1/poly(n) of the time for some
fixed polynomial poly(n), and end with a function in the same complexity class that is hard
1/2 − 1/poly′(n) of the time, for any polynomial poly′(n). Yao’s XOR Lemma amplifies hard-
ness of a Boolean function family f also in this setting, but only if we are given oracle access
to f . This oracle access can be eliminated under certain circumstances, e.g., if the distribution
(x, f(x)) can be sampled, or if f is downward self-reducible and random self-reducible. Impagli-
azzo and Wigderson [IW01] use this to show uniform hardness amplification for #P. Trevisan and
Vadhan [TV02] show that uniform hardness amplification is also possible in PSPACE and in EXP.
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Trevisan [Tre03, Tre05] considers uniform hardness amplification for languages in NP; the nonuni-
form case was studied in [O’D04, HVV04]. Trevisan [Tre05] shows uniform amplification from
1/poly(n) to 1/2 − 1/poly log(n). Note that the final hardness falls short of the desired 1/2 −
1/poly(n). The reason for this is the use of poly(1/ε)-bit advice by the BPP algorithm that, given
a circuit computing an NP language L′ on more than 1/2 + ε fraction of inputs, produces a cir-
cuit computing L on more than 1 − 1/poly(n) fraction of inputs. If ε = log−α n, for sufficiently
small α > 0, then the required amount of advice is O(log n). Using the average-case version of
the “search-to-decision” reduction for NP [BDCGL92], this logarithmic advice can be eliminated
in time 2O(log n) = poly(n) by, essentially, trying all possible advice strings.

Using our efficient approximate list-decoding algorithm for truncated Hadamard codes, we achieve
better uniform hardness amplification, but only for the class PNP‖ . Namely, we prove the following.

Theorem 2. Suppose there is a Boolean function family f ∈ PNP‖ and a constant c such that f
cannot be computed by any probabilistic polynomial-time algorithm on more than 1− 1/nc fraction
of inputs. Then there is a Boolean function family g ∈ PNP‖ that cannot be computed by any
probabilistic polynomial-time algorithm on more that 1/2+1/nd fraction of inputs, for any constant
d.

The reason we get amplification for PNP‖ rather than NP is our use of the XOR function as
an amplifier; if f ∈ NP, then its XOR function f⊕k(x1, . . . , xk) = ⊕k

i=1f(xi) is not necessarily in
NP, although it is certainly in PNP‖ . (Achieving the same amplification for NP seems to require a
similar result with a monotone function replacing ⊕k.)

Outline of the paper We give some preliminaries in Section 2. We describe the main tools used
in our approximate list-decoding algorithm, and give the proof of our Main Theorem in Section 3.
The auxiliary lemmas used in the proof of Main Theorem are proved in Section 4. Applications to
uniform hardness amplification are given in Section 5. We give concluding remarks in Section 6.
The Appendix contains combinatorial bounds on the list size for the truncated Hadamard codes,
XOR codes, and direct product codes.

2 Preliminaries

2.1 Notation

For an integer k > 0, we will sometimes denote a set {1, . . . , k} by [k]. We use ‖v‖1 to denote
the '1-norm of a vector v = (v1, . . . , vn) where ‖v‖1 =

∑n
i=1 |vi|.

2.2 Some definitions and theorems

Definition 3 (Statistical Distance). Given two distributions D1 and D2 over {0, 1}n, the statistical
distance between them is defined as half of the '1-norm of the vector D1 − D2, i.e.,

Dist(D1,D2) =
1
2
·

∑

x∈{0,1}n

|D1(x) − D2(x)|,

where Di(x) denotes the probability of sampling x from distribution Di, for i ∈ {1, 2}. Equivalently,

Dist(D1,D2) = max
T⊆{0,1}n

|D1(T ) − D2(T )|,
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where Di(T ) denotes the probability mass assigned by Di to the set T . For ε > 0, we say that
distributions D1 and D2 are statistically ε-close if Dist(D1,D2) " ε.

Definition 4 (Shannon Entropy). The Shannon Entropy of a distribution D over a finite set Λ is
defined as

H(D) = −
∑

x∈Λ
D(x) log D(x).

Note that the Shannon entropy of the uniform distribution over a set Λ is log2 |Λ|. Usually, we
will be interested in distributions over the set of binary strings, i.e., Λ = {0, 1}n. In this case, the
Shannon entropy of the uniform distribution over all n-bit strings is exactly n.

We will use the following result from information theory which upperbounds the statistical
distance between a distribution P and the uniform distribution by the entropy deficiency of P ; see,
e.g., [CT91, Lemma 12.6.1].

Lemma 5. Let P be any probability distribution over a finite set Λ, and let U be the uniform
distribution over Λ. Then

‖P − U‖2
1 " (2 ln 2)(H(U) − H(P )),

where H is the Shannon entropy.

For a universe S of size N and a subset T ⊆ S of size m, let R be a uniformly random subset
of S of size n. The random variable X = |R ∩ T | is distributed according to the hypergeometric
distribution with parameters N , m, and n. The expected value of X is nm/N . The Hoeffding
bound [Hoe63] says that this random variable is highly concentrated around its expectation. The
proofs of the following versions of the Hoeffding bound can be found, for example, in [JLR00,
Theorem 2.10].

Theorem 6 (Hoeffding Bounds for Hypergeometric Distribution). Let X be a random variable
which follows the hypergeometric distribution with parameters N,m,n. Let λ = nm/N be the
expectation of X. Then we have the following inequalities:

1. for c > 1 and x ! cλ,
Pr [X ! x] " e−c′x,

where c′ = log c − 1 + 1/c > 0; in particular, Pr[X ! x] " e−x for x ! 7λ,

2. for α ! 0,
Pr [X " (1 − α)λ] " e−α2λ/2,

3. for 0 < α " 3/2,
Pr[|X − λ| ! αλ] " 2e−α2λ/3,

4. for any α ! 0,
Pr[X ! λ+ α] " e−2α2/n.

For independent identically distributed random variables X1, . . . ,Xn, where each Xi is 1 with
probability p, and 0 with probability 1− p, their sum X =

∑n
i=1 Xi is distributed according to the

binomial distribution with parameters n and p. The expectation of X is λ = np. The Chernoff
bound [Che52] gives high concentration of X around its expectation λ. In fact, all bounds of
Theorem 6 hold also for the case of a binomially distributed random variable X with expectation
λ, and we will be using these bounds as the Chernoff bounds in the paper.
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For pairwise independent identically distributed random variables X1, . . . ,Xn, where each Xi is
1 with probability p, and 0 with probability 1 − p, their sum X =

∑n
i=1 Xi is also concentrated

around the expectation λ = np. The Chebyshev inequality bounds the deviation as follows: for
x > 0, we have Pr[|X − λ| ! x] " np(1 − p)/x2.

Finally, we will often use Markov-style averaging arguments. Two of the most common ones
we need are as follows. For an event E depending on independent random variables x and y, if
Prx,y[E] ! ε, then with probability at least ε/2 over x it is the case that event E holds with
probability at least ε/2 over y. Also, if Prx,y[E] ! 1−γ, then with probability at least 1−√

γ over
x it is the case that event E holds with probability at least 1 −√

γ over y.

3 Overview and the proof of Main Theorem

Here we explain the general structure of our proof of Theorem 1. As mentioned in Introduction,
we would like to use the learning algorithm LEARN of [IW97]. This algorithm can construct a
circuit C ′ approximately computing an n-variable Boolean function f when given as input a circuit
C computing the direct product fk on a “non-trivial” fraction ε of inputs to fk. This is a learning
algorithm since it requires the values of the function f on a few randomly independently chosen
inputs.

The algorithm from [IW97] works as follows. Given an input z, place z in a random position
of a random k-tuple (x1, . . . , xk), where we assume that we know the values of f at x1, . . . , xk.
Run circuit C on this k-tuple. Depending on the number of correct answers given by C for the
xis, probabilistically form a guess for the value of f at z. Repeat this for t ≈ 1/ε2 iterations, and
output the value equal to the majority of the guesses.

Note that the described algorithm requires t(k − 1) pairs (x, f(x)), for independent uniformly
random xs. Getting such values of f is easy in the nonuniform setting of [IW97]. One just uses a
simple counting argument to argue the existence of a small (polynomial in 1/ε) set of inputs such
that algorithm LEARN works almost as well when given the values of f on these fixed inputs.
Then one can use nonuniform advice to specify theses inputs and the corresponding values of f .

In the uniform setting, we cannot use as advice the values of f on poly(1/ε) inputs. Instead,
we use the circuit C itself in order to generate sufficiently many random labeled examples of the
form (x, f(x)) required by algorithm LEARN . Then we can simply run algorithm LEARN on
input C and the generated random examples, obtaining the requisite circuit C ′ that approximately
computes f . This approach is summarized in the diagram given in Figure 1 below.

In reality, there are a number of technical issues one needs to handle in order to make the
suggested approach work. The main issue is the extraction of random labeled examples (x, f(x))
from the circuit C. A natural idea is to run C on a random k-tuple (x1, . . . , xk), where each
xi ∈ {0, 1}n, collect the k-tuple of outputs (b1, . . . , bk) of C, and finally output (x1, b1), . . . , (xk, bk).
Since C is assumed to compute fk correctly on at least ε fraction of input k-tuples, we get with
probability ε the output of the form (x1, f(x1)), . . . , (xk, f(xk)).

Note that the given sampling algorithm produces a sequence of correct labeled examples only
with probability ε. However, such a low probability is not a problem for us. If it were the case that
with probability poly(ε) our sampling algorithm produces enough random labeled examples, then
we could conclude that with probability poly(ε) the circuit C ′ produced by algorithm LEARN is
good (i.e., it approximates f well). Indeed, the the correctness analysis of LEARN given in [IW97]
shows that the circuit C ′ produced by LEARN is good with probability 1 − o(1), when LEARN
is given a random sample of sufficiently many labelled examples of the from (x, f(x)). By our
assumption, we get such a random sample of labelled examples with probability poly(ε). So, we
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Figure 1. Schematic diagram of the decoding algorithm.

extraction of random
labeled examples

(x, f(x))
for  f k

Algorithm  LEARN

for  f
circuit C’

(x  , f(x )) , ..., (x  , f(x  ))1 1 t t

circuit C

get a good circuit C ′ with probability (1 − o(1))poly(ε) ! poly(ε).
There are two problems with the suggested sampling algorithm. First, the k examples it produces

(when successful) are correlated. They correspond to those ε fraction of k-tuples of inputs where
circuit C computes fk correctly. The uniform distribution over these k-tuples is certainly not
uniform over all k-tuples, unless ε = 1. On the other hand, algorithm LEARN requires the values
of f on t = Ω(1/ε2) independent random inputs x1, . . . , xt.

The second problem is that, even if the samples produced by the suggested sampling algorithm
were completely independent, there may not be enough of them. As mentioned above, for algorithm
LEARN to work, we need to generate at least 1/ε2 labeled examples (actually, a bit more than
that, but we’ll address this point later). If the given circuit C ε-computes fk for k ! 1/ε2, then the
number of examples our sampling algorithm produces is enough. However, if k < 1/ε2, we need to
do more work.

Next we explain our solution of these two problems.

3.1 Extracting almost independent random examples

Recall our problem. We are given a circuit C that correctly computes the direct product fk on
at least ε fraction of input k-tuples. We want to produce some number t of independent random
labeled examples (x1, f(x1)), . . . , (xt, f(xt)).

Let G ⊆ {0, 1}nk be the set of those k-tuples where C correctly computes fk. By our assumption,
the weight of G in the universe {0, 1}nk is at least ε. For each i = 1, . . . , k, let Gi be the projection
of G to the ith coordinate, i.e., Gi is the set of n-bit strings that can occur in the ith position of a
k-tuple from G. Clearly, it cannot be the case that all Gis are simultaneously of weight less than
ε1/k (in the universe {0, 1}n), since in that case the weight of G would be less than ε.

To develop intuition, let us assume that G is a direct product of G1, . . . , Gk and that each Gi

is of weight at least ε1/k. Now consider the following modified sampling algorithm: Pick a random
k-tuple x̄ = (x1, . . . , xk) ∈ {0, 1}nk ; run C on input x̄, obtaining the k-tuple of outputs (b1, . . . , bk);
pick a random index 1 j ∈ {1, . . . , k}; output the pair (xj , bj).

1Under our simplifying assumptions on the structure of G, it is not necessary to pick j at random. However, a

9



Obviously, with probability ε the output produced by this new sampling algorithm is a correct
example (x, f(x)). What is more, conditioned on the random k-tuple falling into the set G, the
distribution of x (i.e., the first element of the output pair (x, f(x))) is statistically close to uniform.
The distance from the uniform distribution is at most 1 − ε1/k, since we assumed that each Gi is
of weight at least ε1/k and that G is a direct product of Gis. Observe that as k gets larger, the
distribution of x gets closer to the uniform distribution.

Thus, the described sampling procedure allows us to produce (modulo some simplifying assump-
tions on the structure of G) a single random example (x, f(x)) with x being distributed almost
uniformly, conditioned on sampling a k-tuple from G.

To get more random examples, one might try running the described sampling procedure multiple
times. However, the probability that t independent runs of the sampling procedure produce t good
samples will be at most εt (since a single run succeeds with probability only about ε). This is
impractical unless t is a constant, but in our case we need a super-constant t > 1/ε2.

A better way to sample more examples is as follows. View an input k-tuple as a
√

k-tuple of√
k-tuples, i.e., x̄ = (y1, . . . , y√k) where each yi is in {0, 1}n

√
k. Run a circuit C on a random x̄,

and output a random
√

k-subtuple yj with the corresponding values of C on yj. The same analysis
as above (again under the simplifying assumption on the structure of G) implies that this sampling
procedure yields

√
k examples (x1, f(x1)), . . . , (x√

k, f(x√
k) such that the entire tuple x1, . . . , x√

k

is distributed statistically (1 − ε1/
√

k)-close to uniform, conditioned on x̄ falling in G. So, with
probability ε, we obtain

√
k almost independent random labeled examples.

Our discussion above was assuming a nice structure of the set G. In general, G is not so
nicely structured, but, nonetheless, the given intuition is correct, and the sampling algorithm just
described will still work, albeit with a slightly different bound on the statistical distance from the
uniform distribution. We have the following Sampling Lemma, whose proof we postpone till later.

Lemma 7 (Sampling Lemma: Simple Case). Let C be a circuit that ε-computes the direct product
fk, for some Boolean function f : {0, 1}n → {0, 1}. Let x̄ = (x1, . . . , xk) ∈ {0, 1}nk be a uniformly
random tuple, let x̄′ = (xi1 , . . . , xi√k

) be a uniformly random subtuple of x̄, and let bi1 . . . bi√k
be

the values of C(x̄) corresponding to the subtuple x̄′. Then there is an event E that occurs with
probability at least ε such that, conditioned on E, the distribution of x̄′ is α-close to the uniform

distribution over {0, 1}n
√

k, where α " 0.6
√

log(1/ε)/
√

k.

3.2 Increasing the number of extracted random examples

Now we explain how to deal with problem that a given circuit C ε-computes the direct product
fk for k < 1/ε2, and so C is not immediately useful to obtain enough random examples required
by algorithm LEARN . Let t > 1/ε2 be the actual number of random examples used by LEARN .
Note that if it were the case that k ! t2, then we could use the sampler from Lemma 7 to obtain
the requisite t samples.

Suppose that k < t2. In that case, what we would like to do is take the circuit C that approxi-
mately computes fk and construct a new circuit Camp that approximately computes f t2 . This can
be viewed as amplifying the direct product computation: being able to approximately compute fk

implies being able to approximately compute fk′ for k′ > k.
Unfortunately, we do not know how to achieve such direct product amplification. However, we

can get something weaker, which is still sufficient for proving our Main Theorem. The circuit Camp

random choice of j will be useful for the case of an arbitrary G.

10



we obtain will approximately compute a (1 − γamp)-Direct Product fk′, for some small parameter
γamp. That is, on a certain fraction of input k′-tuples, the constructed circuit Camp will be correct
in almost all positions 1 " i " k′ rather than all positions. It turns out that we can also weaken our
assumption on the initial circuit C and also just require that C approximately computes (1 − γ)-
Direct Product fk, for some γ ! 0. We have the following lemma, whose proof we will give later
in the paper.

Lemma 8 (Direct Product Amplification). For every k " k′ ∈ N, γ > 0, and ε > e−k0.001 , there
is a randomized algorithm A with the following property. Let f be any n-variable Boolean function
such that a circuit C ε-computes (1 − γ)-Direct Product fk. Given C, algorithm A outputs with
probability at least ε′ a circuit Camp that ε′-computes (1 − γ′)-Direct Product fk′, where

• ε′ = εpoly logk k′, and

• γ′ " (γ + k−0.4)poly logk k′.

The running time of A, and hence also the size |Camp| of Camp, is at most (|C|/ε)poly logk k′.

Observe that for the case where ε > poly(1/k), the number of random examples we need to run
algorithm LEARN is about 1/ε2 = poly(k). So we need to amplify direct product for f from k
to k′ = poly(k). For such ε and k′, the Direct Product Amplification theorem above yields that
ε′ = poly(ε), the running time of A is at most poly(|C|/ε), and γ′ " O(γ + k−0.4). Assuming that
γ < k−0.4, we get that γ′ < k−0.3.

The only remaining question is how to use this circuit Camp to extract random examples. Our
sampling algorithm from Lemma 7 requires access to a circuit for a direct product of f that is
correct on all positions for at least ε fraction of input tuples, rather than just almost all positions.
What kind of samples do we get when using such an imperfect direct-product circuit Camp? Are
these samples going to be good enough to run algorithm LEARN? It turns out that the answer
to the last question is yes, once we modify algorithm LEARN appropriately. We shall give more
details in the next subsection.

3.3 Algorithm LEARN with faulty examples

It is not difficult to argue (and we will formalize it later) that the same sampling algorithm of
Lemma 7 will produce a sequence of samples (x1, b1), . . . , (x√

k, b
√

k) such that, conditioned on a
certain event E that occurs with probability Ω(ε), the distribution of all xis is statistically close
to uniform, and for almost all 1 " i "

√
k it is the case that bi = f(xi). That is, almost all of

the produced pairs (xi, bi) will be correct labeled examples (xi, f(xi)). Can one use these slightly
imperfect examples as input to algorithm LEARN? We show that one indeed can, after appro-
priately modifying the algorithm LEARN to take into account potential inaccuracy in provided
random examples.

Before stating the result about our modification of algorithm LEARN from [IW97], we outline
how the original algorithm from [IW97] works. Given a circuit C that ε-computes fk, the circuit C ′

approximately computing f does the following: On input z, randomly sample t(k−1) labeled exam-
ples (x, f(x)), where t is a parameter of the algorithm. Think of these examples as t blocks of (k−1)
pairs (x, f(x)) each, so that the ith block is (xi,1, f(xi,1)), . . . , (xi,k−1, f(xi,k−1)). For every block 1 "
i " t, pick a random position 1 " ji " k, and form a k-tuple x̄i = (xi,1, ..., xi,ji−1, z, xi,ji , . . . , xi,k−1),
with z in the jith position. Run circuit C on the tuple x̄i. Depending on the number of correct
answers C gives in positions other than ji, probabilistically assign the variable vi either the answer
of C in position ji, or a random bit. Finally, output the majority value over all vi, for 1 " i " t.

11



The key parameter of this algorithm is the probability with which to believe or not to believe the
answer of C in the jith position of block i. That probability is inversely exponential in the number
of incorrect answers that C gives for the other positions in the block; note that we can verify the
correctness of C’s answers in these other positions since we know the corresponding values of f .

Suppose we use the same algorithm as above to construct C ′, but with imperfect samples such
that, for each block i, we know the values of f on almost all strings xi,1, . . . , xi,k−1 in the block. It
is possible to modify the value of the probability with which one believes the answer of C in the
jith position so that the output circuit C ′ still approximates the function f well.

Before stating the actual result, we need some definitions. For parameters k, n, t, let D be a
probability distribution over t blocks where each block consists of k−1 pairs (x, bx), with x ∈ {0, 1}n

and bx ∈ {0, 1}; that is, D is a probability distribution over ({0, 1}n × {0, 1})(k−1)t. Think of D
as a distribution over t blocks of (k − 1) samples required by algorithm LEARN . Let Dx be the
probability distribution over {0, 1}n(k−1)t obtained from D by keeping only x from every pair (x, bx);
that is, Dx is the distribution over the inputs to f in all t blocks. For parameters 0 " κ, γ " 1, we
say that the distribution D is (γ, κ)-good if

1. for every sample from D, each block (x1, b1), . . . , (xk−1, bk−1) of the sample is such that
bj = f(xj) for at least (1 − γ) fraction of j ∈ [k − 1], and

2. the distribution Dx is statistically κ-close to the uniform distribution over {0, 1}n(k−1)t.

The next lemma says that an appropriate modification of the algorithm from [IW97] works when
given samples from a distribution D that is good according to the definition above.

Lemma 9 (Analysis of Algorithm LEARN). For any µ ! ν > 0, κ ! 0, ε > e−kν/3 , ρ =
log(1/ε)

k + k−ν/2, and t = O((log 1/ρ)/ε2), there is a probabilistic algorithm LEARN satisfying the
following. Let f be an n-variable Boolean function such that a circuit C ε-computes (1−k−µ)-Direct
Product fk, and let D be a probability distribution over ({0, 1}n ×{0, 1})(k−1)t that is (k−ν , κ)-good.
Then algorithm LEARN , given as input C and a random sample from D, outputs with probability
at least 1 − O(ρ) − κ a circuit C ′ that computes f on at least 1 − O(ρ) fraction of inputs. The
running time of LEARN , and hence also the size of the circuit C ′, is at most poly(|C|, 1/ε).

Remark 10. The parameters we achieve in Lemma 9 are somewhat weaker than those of the
original algorithm of [IW97] where one assumes µ = ν = 1, κ = 0, and no restriction on how small
ε can be. In [IW97], the value ρ is log(1/ε)

k .

3.4 Proof of Main Theorem

Now we can give the proof of our Main Theorem (Theorem 1), using the lemmas above; the
proofs of these lemmas will be given in later sections of the paper.

The plan is to use Direct Product Amplification of a given circuit C to obtain a new circuit
Camp for a larger direct product of f , extract random labeled examples from Camp, and finally
run LEARN on C and extracted random examples. One technicality is that we need to extract
examples from a circuit Camp that computes only (1 − γ)-Direct Product of f , for some γ > 0,
whereas our Sampling Lemma (Lemma 7) is for the case where γ = 0. We will actually need the
following version of the Sampling Lemma, which works for the case of nonzero γ.

Lemma 11 (Sampling Lemma: General Case). Let C be a circuit that ε-computes (1 − γ)-direct
product fk, for some Boolean function f : {0, 1}n → {0, 1}. Let x̄ = (x1, . . . , xk) ∈ {0, 1}nk be
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a uniformly random tuple, let x̄′ = (xi1 , . . . , xi√k
) be a uniformly random subtuple of x̄, and let

bi1 . . . bi√k
be the values of C(x̄) corresponding to the subtuple x̄′. Then there is an event E that

occurs with probability Ω(ε) so that, conditioned on E, the following two conditions hold:

1. the distribution of x̄′ is statistically α-close to the uniform distribution over {0, 1}n
√

k, where

α " 0.6
√

log(1/ε)/
√

k + e−Ω(k0.1), and

2. for all but at most O(γ)+k−0.4 fraction of elements xijs in x̄′, it is the case that bij = f(xij ).

Now we can continue with our proof of Theorem 1. Let C be a given circuit that ε-computes the
(1−k−µ)-Direct Product fk of an n-variable Boolean function f , where µ > 0 and ε > e−kα for α =
min{µ/1000, 0.0001}. Set ν = 0.9 ∗ min{µ, 0.4}. Let ρ = log(1/ε)

k + k−ν/2 and t = O((log 1/ρ)/ε2);
i.e., t(k − 1) is the total number of labeled examples required by the modified algorithm LEARN
of Lemma 9. Set k′ = (t(k − 1))2. We do the following.

1. Apply the Direct Product Amplification algorithm of Lemma 8 to the circuit C, with the
parameters k, k′ as above and γ = k−µ. We get with probability ε′ = εpoly logk k′ a new cir-
cuit Camp that ε′-computes (1−γamp)-Direct Product fk′, for γamp " (k−µ+k−0.4)poly logk k′.
The quantity poly logk k′ can be upperbounded by kmin{µ/100,0.001}. So, γamp " k−0.99 min{µ,0.4}.

2. Apply the Sampling Lemma (Lemma 11) to the circuit Camp, obtaining
√

k′ = t(k − 1)
samples of the form (x, bx) ∈ {0, 1}n × {0, 1}. With probability Ω(ε′) an event E occurs such

that, conditioned on E, the distribution on xs is statistically 0.6
√

(log 1/ε′)/
√

k′ = o(1)-close
to uniform, and all but at most γ′ = O(γamp) + k−0.4 fraction of samples are correct labeled
examples of the form (x, f(x)).

3. Randomly partition the t(k−1) samples into t blocks. This will ensure that each block has at
most 2γ′ incorrect examples, with high probability. Indeed, for a fixed block, the probability
that it gets more than twice the expected number γ′(k − 1) of incorrect examples is, by the
Hoeffding bound of Theorem 6, at most e−Ω(γ′(k−1)). The latter is at most e−Ω(k0.6) since
γ′ ! k−0.4. By the union bound, the probability that at least one of the t blocks gets more
than twice the expected number of incorrect examples is at most te−Ω(k0.6).

For t = O((log 1/ρ)/ε2), ρ = (log 1/ε)/k + k−ν/2, and ε ! e−k0.001 , we get ρ " k−Ω(1) and
t " O(log k/ε2). Hence, the probability that any block gets more than 2γ′ " k−ν fraction of
incorrect examples is at most O(log k/ε2) ∗ e−Ω(k0.6), which is exponentially small in kΩ(1).

4. Suppose that event E occurred. Then the last two steps ensure that we have with probability
1− e−kΩ(1) a sample from a (k−ν , o(1))-good distribution over t blocks of (k− 1) pairs (x, bx).
Applying algorithm LEARN from Lemma 9 to the circuit C and this sample, we get with
probability 1 − O(ρ) − o(1) = 1 − o(1) a circuit C ′ that (1 − O(ρ))-computes f . Lifting the
conditioning on E, we conclude that such a circuit C ′ is produced with probability at least
Ω(ε′).

The running time of the algorithm described in the four steps above is at most (|C|/ε)poly logk k′ ,
which can be upperbounded by (|C|/ε)poly logk 1/ε. The probability Ω(ε′) of getting a good circuit
C ′ can be lowerbounded by εpoly logk 1/ε.

This finishes the proof of Theorem 1, modulo the proofs of Lemmas 8, 9, and 11, which will be
given in the following sections of the paper.
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4 Our tools

4.1 Proof of the Sampling Lemma

Here we give the proof of Lemma 11. For the ease of reference, we re-state this lemma below.

Lemma 11 (Sampling Lemma: General Case). Let C be a circuit that ε-computes (1 − γ)-
direct product fk, for some Boolean function f : {0, 1}n → {0, 1}. Let x̄ = (x1, . . . , xk) ∈ {0, 1}nk

be a uniformly random tuple, let x̄′ = (xi1 , . . . , xi√k
) be a uniformly random subtuple of x̄, and let

bi1 . . . bi√k
be the values of C(x̄) corresponding to the subtuple x̄′. Then there is an event E that

occurs with probability Ω(ε) so that, conditioned on E, the following two conditions hold:

1. the distribution of x̄′ is statistically α-close to the uniform distribution over {0, 1}n
√

k, where

α " 0.6
√

log(1/ε)/
√

k + e−Ω(k0.1), and

2. for all but at most O(γ)+k−0.4 fraction of elements xijs in x̄′, it is the case that bij = f(xij ).

We need the following result implicit in [Raz98].

Lemma 12. Let Λ be any finite set. Let G ⊆ Λm be any subset of m-tuples of elements of Λ such
that G has density ε in the set Λm. Let U be the uniform distribution on elements of Λ, and let D
be the distribution defined as follows: pick a tuple (x1, . . . , xm) uniformly from the set G, pick an

index i uniformly from [m], and output xi. Then Dist(U,D) " 0.6
√

log 1/ε
m .

Proof. Let X̄ = (X1, . . . ,Xm) be random variables drawn according to the uniform distribution
over the set G. Let r ∈ [m] be a uniformly distributed random variable. Consider the random
variable X = Xr. We will argue that the distribution of X is statistically close to the uniform
distribution U .

First observe that X = Xr is distributed according to the average of the distributions of
X1, . . . ,Xm, i.e., Pr[X = x] = 1

m

∑m
i=1 Pr[Xi = x]. By the concavity of the entropy function,

we obtain

H(X) ! 1
m

m∑

i=1

H(Xi).

Since the sum of entropies is lowerbounded by the joint entropy, we get

H(X) ! 1
m

H(X1, . . . ,Xm). (1)

Since X̄ = (X1, . . . ,Xm) is uniformly distributed over G, its Shannon entropy is exactly log2 |G| =
m log2 |Λ| − log2(1/ε). Combining this with Eq. (1) above, we get

H(X) ! H(U) − log2 1/ε
m

.

Finally, we use Lemma 5 to conclude that

‖X − U‖1 "
√

(2 ln 2)
log2 1/ε

m
.

Since the statistical distance between X and U is half of the '1 norm above, we get the claimed
bound.
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Now we can prove Lemma 11.

Proof of Lemma 11. Let G be the set of those ε-fraction of k-tuples x̄ where C computes fk for
all but γ fraction of positions. A random k-tuple x̄ falls into the set G with probability at least ε.
Call this event E1. Conditioned on E1, this tuple is uniformly distributed over G and hence, by
Lemma 12, we conclude that a random

√
k-subtuple of x̄ is distributed almost uniformly, with the

statistical distance from the uniform distribution less than 0.6
√

log(1/ε)/
√

k.
Observe that every tuple in G has at most γ fraction of “bad” elements where C disagrees with

the function f . If we pick a random
√

k-size subtuple, the probability that it contains more than
7γ + k−0.4 fraction of bad elements will be at most e−(7γ+k−0.4)

√
k " e−k0.1 by the Hoeffding bound

of item (1) of Theorem 6.
Let E2 denote the event that a random subtuple contains at most 7γ + k−0.4 fraction of “bad”

elements. We get that conditioned on E1, the probability of E2 is at least 1− e−k0.1. Let the event
E be the conjunction of E1 and E2. Clearly, the probability of E is at least ε(1− e−k0.1) = Ω(ε). It
is also clear that conditioned on E, the output subtuple satisfies item (2) of the lemma. Finally, it
is easy to argue that since E2 has high probability conditioned on E1, the distribution of random
elements of x̄ conditioned on E has statistical distance from the uniform distribution at most
0.6

√
log(1/ε)/

√
k + e−Ω(k0.1). Hence, item (1) of the lemma also holds.

For the analysis of our decoding algorithm, we shall also need the following variant of Lemma 12
for the case of sets rather than tuples, i.e., for the case of sampling without replacement.

Lemma 13. Let Λ be any finite set, and let S be the set of all m-size subsets of Λ. Let G ⊆ S be
any subset that has density at least ε in the set S. Let U be the uniform distribution over Λ, and
let D be the distribution defined as follows: pick a set s ∈ G uniformly at random and output a

random element of s. Then Dist(U,D) " O

(√
log(m/ε)

m

)
.

The proof idea is as follows. Assume that there is a subset T ⊆ Λ such that the probability of
T under D is bigger than that under U by some δ; the case where it is smaller by δ is similar. We
will show that in this case a random set from G is expected to contain at least µ = m|T |/|Λ|+ mδ
elements from the set T . Also, the probability that a random set from G contains at least its
expected number of elements from T is at least about 1/m. Since G has density at least ε in S,
we conclude that a random set from S has at least µ elements from T with probability at least
ε/m. But, a random set from S follows the hypergeometric distribution and is expected to contain
only m|T |/|Λ| elements from T . The probability that the number of elements from T exceeds
the expectation by mδ can be upperbounded by e−Ω(mδ2), using the Hoeffding inequality. Hence,
ε/m " e−Ω(mδ2), whence the required upper bound on δ follows.

We now give the details of the proof. First, we show the following simple property of integer-
valued random variables.

Claim 14. Let X be any integer-valued random variable taking values in the set {0, 1, . . . ,m}. Let
µ = E[X] be the expectation of X. Then Pr[X ! .µ/] ! 1/m and Pr[X " 0µ1] ! 1/(m + 1).

Proof. By definition, µ =
∑m

i=0 i ·Pr[X = i]. We can split this sum into two sums as follows:

µ =
∑

0<i<'µ(

i ·Pr[X = i] +
∑

'µ(!i!m

i · Pr[X = i].
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Using the fact that X is integer-valued, we can bound these two sums by

(µ − 1) ·
∑

0<i<'µ(

Pr[X = i] + m ·
∑

'µ(!i!m

Pr[X = i] " (µ − 1) + m ·Pr[X ! .µ/].

This implies that Pr[X ! .µ/] ! 1/m, as claimed in the first inequality of the lemma.
To prove the second inequality, we observe that Pr[X > 0µ1] = Pr[X ! 0µ1+ 1] " µ

)µ*+1 , where
we used the fact that X is integer-valued and then applied Markov’s inequality. Finally, we have
Pr[X " 0µ1] ! 1 − µ

)µ*+1 = )µ*+1−µ
)µ*+1 ! 1

m+1 .

Now we prove Lemma 13, following the proof outline given above.

Proof of Lemma 13. Suppose that the statistical distance between U and D is δ. It means that
there is a statistical test T ⊆ Λ such that the probabilities assigned to T by U and D differ by
δ. We shall assume that PrD[T ] ! PrU [T ] + δ; the case where PrU [T ] ! PrD[T ] + δ is proved
similarly.

We will view each set x = {x1, . . . , xm} of size m as an increasing sequence of m elements
x1 < · · · < xm, under some fixed ordering of the elements of Λ (say, the lexicographical order).
Uniformly sampling a set from G will be denoted by (x1, . . . , xm) ← G. Also, for an event E, we
use χ[E] as the 0-1 indicator variable of E. We have

µ
def= Ex̄=(x1,...,xm)←G

[
m∑

i=1

[χ[xi ∈ T ]

]
=

m∑

i=1

Ex̄←G[χ[xi ∈ T ]]

= m · Ei←[m],x̄←G[χ[xi ∈ T ]]
= m · PrD[T ]
! m · (PrU [T ] + δ)
= m · (|T |/|Λ| + δ).

On the other hand, by Claim 14, we get Prx̄←G [
∑m

i=1 χ[xi ∈ T ] ! µ − 1] ! 1/m. Since G has
weight at least ε in the collection S of all size-m subsets of Λ, we have

Prx̄←S

[
m∑

i=1

χ[xi ∈ T ] ! µ − 1

]

! ε/m. (2)

The expectation of
∑m

i=1 χ[xi ∈ T ] under the uniform distribution of x̄ in S is m|T |/|Λ|, with x̄
following the hypergeometric distribution with parameters |Λ|, |T |, and m. Applying the Hoeffding
bound of item (4) of Theorem 6 to the left-hand side of Eq. (2), we get

Prx̄←S

[
m∑

i=1

χ[xi ∈ T ] ! m|T |/|Λ| + mδ − 1

]
" e−2(mδ−1)2/m = e−2m(δ−1/m)2 . (3)

Note that if δ < 2/m, then the claim in the lemma follows. If δ ! 2/m, then we can upperbound
the right-hand side of Eq. (3) by e−mδ2/2. Combining this with Eq. (2), we conclude that mδ2/2 "
ln(m/ε), and so δ " O

(√
log(m/ε)

m

)
, as required.

Remark 15. Our proof of Lemma 13 can be also used for the case of sampling with replacement,
yielding another proof of Lemma 12. However, the information-theoretic proof of Lemma 12 given
above achieves better parameters for that case.
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4.2 Proof of the Direct Product Amplification

Here we will prove Lemma 8. For convenience, we re-state it below.

Lemma 8 (Direct Product Amplification). For every k " k′ ∈ N, γ > 0, and ε > e−k0.001 ,
there is a randomized algorithm A with the following property. Let f be any n-variable Boolean
function such that a circuit C ε-computes (1−γ)-Direct Product fk. Given C, algorithm A outputs
with probability at least ε′ a circuit Camp that ε′-computes (1 − γ′)-Direct Product fk′, where

• ε′ = εpoly logk k′, and

• γ′ " (γ + k−0.4)poly logk k′.

The running time of A, and hence also the size |Camp| of Camp, is at most (|C|/ε)poly logk k′.

Our proof of Lemma 8 will be recursive. We first show how to get from a circuit approximately
computing the direct product fk a new circuit that approximately computes fk1.5. Then we iterate
this one-step amplification O(log logk k′) times, obtaining a circuit for fk′ .

We state the lemma about one-step amplification next.

Lemma 16 (One-step Direct Product Amplification). There is a randomized algorithm A with
the following property. Let f be any n-variable Boolean function such that a circuit C ε-computes
(1 − γ)-Direct Product fk, where ε > e−k0.001 . Given C, algorithm A outputs with probability at
least ε′ a circuit C ′ ε′-computing (1 − γ′)-Direct Product fk′, where ε′ = Ω(ε2), γ′ " O(γ + k−0.4),
and k′ = k3/2. The running time of A, and hence also the size of C ′, is polynomial in the size of
C and 1/ε.

Applying Lemma 16 for log1.5 logk k′ times, one easily obtains Lemma 8. The rest of this section
is devoted to the proof of Lemma 16.

We need the following definition. For a k′-tuple x̄ and a subset S ⊆ {1, . . . , k′}, we denote by
x̄|S the restriction of x̄ to the positions in S; so x̄|S is a tuple of size |S|.

We now give an informal description of our algorithm in Lemma 16. Given an input k′-tuple x̄,
we randomly choose a k-size set S, run the circuit C on x̄|S , and use the obtained values as if they
were equal to fk(x̄|S). This roughly gives us the values of f on a portion of x̄. To obtain the values
of f in the positions of x̄ outside the set S, we repeatedly do the following. Pick a random k-size set
T and run C on x̄|T . If the values C(x̄|S) and C(x̄|T ) are mostly consistent on inputs x̄|S∩T , then
we trust that the values C(x̄|T ) are mostly correct, and take one such value for a random position
in T . This gives us a vote for the value of f on another input in x̄. Repeating this process enough
times, we collect many votes for many positions in x̄. For each position of x̄ where we have enough
votes, we take the majority value as our guess for the value f in that position. For those (few)
positions where we don’t have enough votes, we assign the value of f arbitrarily, say by flipping a
coin.

The formal description of the algorithm is given in Figure 1.
Now we analyze the algorithm given above. Let G ⊆ {0, 1}nk be the set of those k-tuples where

the circuit C correctly computes fk in all but at most γ fraction of positions 1 " j " k. In the
analysis, we will focus on certain k′ = k1.5-tuples x̄ that have the property that a significant fraction
of their subtuples of size k fall in the set G.

We need the following definition. For a given k′-tuple x̄, we say that a size-k set S ⊆ {1, . . . , k′}
is α-good if C(x̄|S) disagrees with fk(x̄|S) in at most α fraction of positions. The following claim
says that there are many k′-tuples that have many γ-good sets.
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Input: x̄ = (x1, . . . , xk′) ∈ {0, 1}nk′

Output: (output1, . . . , outputk′) ∈ {0, 1}k′

Oracle access: algorithm C that ε-computes (1 − γ)-Direct Product fk

Parameters: ε > e−k0.001 , ρ = 16γ + 3k−0.4, timeout = (192k′ ln k′)/ε, α = 29γ + 6k−0.4.

1. For every i ∈ [k′], set Answersi =empty string.
2. Choose S ⊆ [k′] of size |S| = k uniformly at random.
3. Let S = {j1, . . . , jk} where 1 " j1 < j2 < · · · < jk " k′.
4. Run C(x̄|S) = (bj1 . . . bjk), where x̄|S denotes the restriction of x̄ to the coordinates from S.
5. Repeat lines 6–11 for at most timeout times:
6. Choose T ⊆ [k′] of size |T | = k uniformly at random.
7. Let T = {j′1, . . . , j′k} where 1 " j′1 < j′2 < · · · < j′k " k′.
8. Compute C(x̄|T ) = (tj′1 . . . tj′k).
9. Let m = |{j ∈ S ∩ T | bj 3= tj}|/|S ∩ T |.
10. If m < ρ, % if T is consistent with S
11. then choose a random i ∈ T and extend the string Answersi with the bit ti.
12. For every i ∈ [k′], let counti = |Answersi|.
13. Let total =

∑
i∈[k′] counti.

14. If counti < total
2k′ , then set outputi = ri for a random bit ri;

15. else set outputi = MajorityAnswersi.
Algorithm 1: Direct Product amplifier

Claim 17. There are at least ε/2 fraction of k′-tuples x̄ such that

PrS⊂{1,...,k′}:|S|=k[S is γ-good] ! ε/2, (4)

where the probability is over uniformly random size-k subsets S of the set {1, . . . , k′}.

Proof. Note that for a random k′-tuple x̄ and a random size-k subset S, the tuple x̄|S is uniformly
distributed in {0, 1}nk , and so it falls into G with probability at least ε. A simple averaging
argument completes the proof.

For the rest of the proof, we fix one particular k′-tuple x̄ satisfying Eq. (4) of Claim 17. If we
could somehow tell whether a given subset T is γ-good or not, we could just sample enough γ-good
subsets T , taking the answer of the circuit C on x̄|T for a random element of T . Since there are
at least ε/2 fraction of γ-good subsets for our fixed input x̄, this sampling procedure will produce
enough samples in time polynomial in 1/ε. Also, given the density of γ-good subsets, our sampling
lemma implies that a random element of a random γ-good subset is almost uniformly distributed
among the elements of x̄, and hence, our sampling procedure will cover most of the elements of x̄
after a small number of iterations.

In reality, we cannot test if a subset T is γ-good. However, we have an “approximate test” that
accepts almost all γ-good sets, and such that almost every set it accepts is γ′-good, for some γ′

slightly larger than γ. This test is the consistency test between a given set T and some fixed set S.
We now define our notion of consistency. For two size-k subsets S = {j1, . . . , jk} and T =

{j′1, . . . , j′k} of [k′], let C(x̄|S) = (bj1 . . . bjk) and let C(x̄|T ) = (tj′1 . . . tj′k). We say that a set T is
consistent with S if |{j ∈ S ∩ T | bj 3= tj}|/|S ∩ T | < 16γ + 3k−0.4.

We will argue that for most γ-good sets S,
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1. [Completeness] almost every γ-good set T is consistent with S, and

2. [Soundness] almost every set T consistent with S is O(γ + k−0.4)-good.

Claim 18 (Completeness). For at least 1 − e−Ω(k0.1) fraction of γ-good sets S,

Prγ-good T [T is consistent with S] ! 1 − e−Ω(k0.1).

Proof. First we show that

Prγ-good S, γ-good T [T is consistent with S] ! 1 − e−Ω(k0.1). (5)

The conclusion of the claim will then follow from Eq. (5) by a straightforward averaging argument.
For S, let us denote by SB the subset of all those elements j ∈ S where C(x̄|S)j is wrong. Define

SG = S \ SB . Similarly, let TB denote the subset of T where the circuit C makes mistakes, and let
TG = T \ TB. By our assumption that S and T are γ-good, we have that both SB and TB have
weight at most γ in their respective sets. Note that the errors in S ∩T can only come from SG∩TB

and TG ∩ SB. We’ll upperbound the sizes of these sets by upperbounding the sizes of bigger sets
S ∩ TB and T ∩ SB, respectively.

Fix a γ-good set T . Note that TB has density at most γk/k′ = γ/
√

k in the universe {1, . . . , k′}.
A random (not necessarily γ-good) size-k subset S of {1, . . . , k′} is expected to intersect TB in at
most kγ/

√
k = γ

√
k places. By the Hoeffding bound of Theorem 6, we get that

PrS [|S ∩ TB| > (7γ + k−0.4)
√

k] " e−k0.1
.

Conditioned on S being a γ-good set, this probability will be at most factor 2/ε larger (since γ-
good sets have weight at least ε/2 among the k-size subsets of [k′]). Since ε > e−k0.001 , the resulting
conditional probability is still at most e−Ω(k0.1).

A symmetric argument shows that for all but an exponentially small fraction of γ-good sets T ,
the intersection T ∩ SB will be at most (7γ + k−0.4)

√
k for any fixed γ-good set S. Thus, overall,

for all but an exponentially small fraction of γ-good sets S and T , the set (S ∩ TB)∪ (T ∩ SB) will
be of size at most 2(7γ + k−0.4)

√
k.

On the other hand, applying the Hoeffding bound of Theorem 6 to the size of the set S ∩ T , we
get that that for all but an exponentially small fraction of γ-good S and T , (1−0.1)

√
k " |T ∩S| "

(1 + 0.1)
√

k. Thus, with probability at least 1− e−Ω(k0.1) over γ-good sets S and T , the fraction of
indices in S ∩ T where the circuit C gives inconsistent answers will be less than 16γ + 3k−0.4, and
so T is consistent with S.

Claim 19 (Soundness). For at least 1 − e−Ω(k0.1) fraction of γ-good sets S, at least 1 − e−Ω(k0.1)

fraction of sets T that are consistent with S are α = (29γ + 6k−0.4)-good.

Proof. As in the proof of Claim 18 above, we’ll denote by SB and SG the subsets of indices of S
where the circuit C makes mistakes and is correct, respectively. Similarly we denote by TB and TG

the corresponding subsets of T . We will show that

PrT,γ-good S [|TB | > αk | T is consistent with S] " e−Ω(k0.1). (6)

The claim will then follow by a simple averaging argument.
The conditional probability in Eq. (6) can be equivalently written as

PrT,γ-good S[|TB | > αk and T is consistent with S]
PrT,γ-good S [T is consistent with S]

. (7)
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Since by our assumption γ-good sets T have weight at least ε/2 in [k′], we can lowerbound the
probability in the denominator of (7) by

(ε/2)Prγ-good T,γ-good S[T is consistent with S].

By Eq. (5), this is at least (ε/2)(1 − e−Ω(k0.1)) ! ε/3. It remains to upperbound the probability in
the numerator of (7).

Recall that T is consistent with S if both |TB ∩ SG| and |TG ∩ SB | are small relative to |S ∩ T |.
We will consider only TB ∩SG, and show that with high probability either |TB | " αk or TB ∩SG is
large relative to |S ∩ T |. Since the latter implies that T is not consistent with S, we will be done
with upperbounding the numerator of (7).

First we bound |S ∩ T |. For every fixed γ-good set S, the Hoeffding bound of Theorem 6 yields
that PrT [|T ∩S| ! 1.1

√
k] " e−Ω(

√
k). Clearly the same is also true for a random γ-good set S, i.e.,

PrT,γ-good S[|T ∩ S| ! 1.1
√

k] " e−Ω(
√

k). (8)

Next we observe that |TB ∩SG| = |TB ∩S|− |TB ∩SB| ! |TB ∩S|− |T ∩SB|. Using the Hoeffding
bound, we will upperbound |T ∩ SB| and lowerbound |TB ∩ S|. For every fixed γ-good set S, the
Hoeffding bound of Theorem 6 yields that PrT [|T ∩SB | > (7γ+ k−0.4)

√
k] " e−k0.1

. The same also
holds for a random γ-good S, i.e.,

PrT,γ-good S [|T ∩ SB | > (7γ + k−0.4)
√

k] " e−k0.1
. (9)

For every fixed set TB such that |TB | > αk, a random size-k set S is expected to intersect TB in
more than αk

k′ k = α
√

k places. By the Hoeffding bound of Theorem 6,

PrS [|S ∩ TB | " 0.9α
√

k | |TB | > αk] " e−Ω(α
√

k) " e−Ω(k0.1),

where the latter inequality is because α ! k−0.4. Since γ-good sets have weight at least ε/2 in the
universe of all size-k sets and since ε > e−k0.001 , we get

Prγ-good S [|S ∩ TB | " 0.9α
√

k] " (2/ε)e−Ω(k0.1) " e−Ω(k0.1). (10)

It is easy to see that inequality (10) implies

PrT,γ-good S [|S ∩ TB| < 0.9α
√

k and |TB | > αk] " e−Ω(k0.1). (11)

Combining Eqs. (8), (9), and (11), we get that with probability at least 1 − e−Ω(k0.1),

1. |TB | " αk, or

2. |S ∩ T | < 1.1
√

k, |T ∩ SB | " (7γ + k−0.4)
√

k, and |TB ∩ S| ! 0.9α
√

k.

In the second case, we have (|TB ∩ S| − |T ∩ SB|)/|S ∩ T | ! (0.9α − 7γ − k−0.4)
√

k/(1.1
√

k) !
0.8α − 7γ − k−0.4, which is greater than 16γ + 3k−0.4 for our choice of α. Hence, in this case, T
is not consistent with S. It follows that the numerator of (7) is at most e−Ω(k0.1). Since we also
lowerbounded the denominator of (7) by ε/3 and since ε > e−k0.001 , we obtain inequality (6), as
required.

Using Claims 18 and 19, we immediately get the following.
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Claim 20. With probability at least (ε/2)(1 − e−Ω(k0.1)) ! ε/3, the set S chosen in line 3 of our
algorithm will have the following properties:

1. S is γ-good,

2. all but e−Ω(k0.1) fraction of γ-good sets T are consistent with S, and

3. all but e−Ω(k0.1) fraction of sets T consistent with S are α-good, for α = 29γ + 6k−0.4.

We will continue the analysis of our algorithm, assuming that such a set S satisfying properties
(1)–(3) of Claim 20 was chosen. First we argue that the algorithm will reach line 11 quite often.

Claim 21. With probability at least 1 − o(1), the final value of the variable total of our algorithm
is at least timeout ∗ ε/6 = 32k′ ln k′.

Proof. By item (2) of Claim 20 and by the fact that there are at least ε/2 fraction of γ-good sets T ,
we know that the probability of reaching line 11 in a single iteration is at least ε/2(1− e−Ω(k0.1)) !
ε/3. Thus, the expected value of total, which is the total number of times that line 11 was executed,
is at least timeout ∗ (ε/3). By Chernoff, the probability that total < timeout ∗ ε/6 is at most
e−timeout∗ε/24 = e−8k′ lnk′ . So, with high probability, the value total is at least timeout ∗ ε/6.

Now we bound the number of errors made by the algorithm in line 15.

Claim 22. With probability at least 1/2, the number of wrong outputs outputi made in line 15 of
the algorithm is at most 9αk′.

Proof. By item (3) of Claim 20, we know that conditioned on extending one of the strings Answersi

in line 11, the probability of extending that string with a wrong bit is at most α+ e−Ω(k0.1) " 1.1α.
Thus, the expected fraction of wrong bits in the entire collection of the strings Answersi will
be at most 1.1α. Let I denote the set of those i ∈ [k′] where |Answersi| > total/(2k′) and
MajorityAnswersi is wrong. Then the total fraction of wrong answers in all strings Answersi is
at least |I|/(4k′). By the above, this is expected to be at most 1.1α. So, the expected number
of those i ∈ [k′] where our algorithm makes a mistake in line 15 is at most 4.4αk′. Applying the
Markov inequality, we get the required claim.

Next we argue that the number of i ∈ [k′] such that outputi is set randomly in line 14 of the
algorithm will be small. The idea is that when we extend the string Answersi in line 11 of the
algorithm, we do it for an index i ∈ [k′] that is distributed almost uniformly over [k′]. Since line 11
is reached many times, we can conclude that the fraction of indices i ∈ [k′] that were selected too
few times will be small.

To argue that an index i chosen in line 11 of the algorithm is distributed almost uniformly, we
use Lemma 13.

Claim 23. With probability at least 1 − o(1), the fraction of i ∈ [k′] such that outputi will be
randomly set in line 14 is at most O(k−0.4).

Proof. Given a sequence of total guesses made by the algorithm, we will argue that most i ∈ [k′]
have |Answersi| ! total/(2k′).

Recall that the collection of random sets T ’s consistent with S has weight at least ε/3 according
to the uniform distribution over all size-k random sets in [k′]. By Lemma 13, we get that the
distribution D over [k′] induced by taking a random set T consistent with S and then outputting a
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random element of T has statistical distance at most β def= O(
√

log(k/ε)
k ) " O(k−0.4) to the uniform

distribution over [k′] (since ε > e−k0.001).
By a Markov-style argument, the fraction of those i ∈ [k′] that have probability less that 3/(4k′)

under D is at most 4β. Let J denote the set of the remaining i’s. For each i ∈ J , we expect the
length of the string Answersi to be at least 3

4k′ total. By the Chernoff bound, the probability that
|Answersi| < total/(2k′) is at most e−total/(16k′). By the union bound, the probability that there
is at least one i ∈ J with |Answersi| < total/(2k′) is at most k′e−total/(16k′).

By Claim 21, the value total ! 32k′ ln k′ with probability 1 − o(1). Conditioned on total being
that large, the probability of having at least one i ∈ J set to a random bit in line 14 of the algorithm
is at most 1/k′. Thus, with probability 1 − o(1), only a set of size at most 4β of indices will be
randomly set in line 14. The claim follows.

Now we can finish the analysis.

Proof of Lemma 16. With probability at least ε/2, a random input k′-tuple x̄ satisfies Eq. (4) of
Claim 17. By Claim 20, with probability at least ε/3 the set S chosen in line 3 of the algorithm
will satisfy the conclusions of Claim 20.

Conditioned on such x̄ and S being chosen, Claims 22 and 23 say that with probability at least
1/2− o(1) > 1/4, the output of our algorithm is correct on all but at most O(γ+ k−0.4) fraction of
i ∈ [k′]. Lifting the conditioning on x̄ and S, we conclude that our randomized algorithm computes
(1 − O(γ + k−0.4))-Direct product fk′ with probability at least ε2/24, where the probability is
over both the input k′-tuple x̄ and the internal randomness of the algorithm. By averaging, if
we randomly fix the internal randomness used by our algorithm, we get with probability at least
ε′ = ε2/48 a deterministic circuit that ε′-computes (1 − O(γ + k−0.4))-Direct product fk′. The
running time bound is obvious.

4.3 Analysis of algorithm LEARN

Here we will prove Lemma 9, which we re-state below. First we recall the definition of a (γ, κ)-
good distribution. For parameters k, n, t, let D be a probability distribution over t blocks where each
block consists of k − 1 pairs (x, bx), with x ∈ {0, 1}n and bx ∈ {0, 1}. Let Dx be the probability
distribution over {0, 1}n(k−1)t obtained from D by keeping only x from every pair (x, bx). For
parameters 0 " κ, γ " 1, we say that the distribution D is (γ, κ)-good if

1. for every sample from D, each block (x1, b1), . . . , (xk−1, bk−1) of the sample is such that
bj = f(xj) for at least (1 − γ) fraction of j ∈ [k − 1], and

2. the distribution Dx is statistically κ-close to the uniform distribution over {0, 1}n(k−1)t.

Lemma 9 [Analysis of Algorithm LEARN ]. For any µ ! ν > 0, κ > 0, ε > e−kν/3 , ρ =
log(1/ε)

k + k−ν/2, and t = O((log 1/ρ)/ε2), there is a probabilistic algorithm LEARN satisfying the
following. Let f be an n-variable Boolean function such that a circuit C ε-computes (1−k−µ)-Direct
Product fk, and let D be a probability distribution over ({0, 1}n ×{0, 1})(k−1)t that is (k−ν , κ)-good.
Then algorithm LEARN , given as input C and a random sample from D, outputs with probability
at least 1 − O(ρ) − κ a circuit C ′ that computes f on at least 1 − O(ρ) fraction of inputs. The
running time of LEARN , and hence also the size of the circuit C ′, is at most poly(|C|, 1/ε).

We recall the proof of the Direct Product Lemma from [IW97]. Given a circuit C that computes
the direct product function fk with probability at least ε, consider the following distribution F on
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randomized circuits F . On input x, pick i ∈ [k] uniformly at random, and set xi = x. For each
j ∈ [k] \ {i}, get a sample (xj , f(xj)) where xj is uniformly distributed. Evaluate the circuit C on
the input (x1, . . . , xk). Let z be the number of indices j ∈ [k] \ {i} where the jth output of the
circuit C disagrees with the value f(xj). With probability 2−z, output the ith output of the circuit
C, and with the remaining probability 1 − 2−z output a random coin flip.

Impagliazzo and Wigderson [IW97] argue that, for every subset H of at least δ fraction of inputs,
a random circuit sampled according to F will compute f on a random input from H with probability
at least 1/2 + Ω(ε) (where δ > Ω((log 1/ε)/k)). Then they conclude that the circuit obtained by
applying the majority function to a small number of sampled circuits from F will compute f on all
but at most δ fraction of inputs.

We generalize the argument of [IW97] in two ways. First, we assume that the given circuit C
ε-computes (1−γ)-Direct Product fk. Secondly, in the definition of the probability distribution F ,
instead of sampling (k − 1)-tuples (xj , f(xj)) for uniformly distributed n-bit strings xj’s, we will
use the samples that come from a (k−ν , κ)-good distribution D.

Our modification of the analysis from [IW97] will be as follows. After computing the number z
of mistakes the circuit makes on inputs coming from the samples (x, bx), we will subtract from z
γk errors that a circuit computing the (1 − γ)-Direct Product fk can make (even for the “good”
k-tuples) as well as k−ν(k − 1) errors that can be present in our imperfect sample coming from the
distribution D. Let w = z − γk − k−ν(k − 1). We will decide with probability λw to believe the
output of the circuit on our input of interest, and with the remaining probability we use a fair coin
flip as our prediction for the value of f . The choice of the parameter λ will now depend on the
amount of extra errors we have to deal with. It turns out sufficient to set λ = (1/2)1/(k−ν (k−1)).

More formally, we have the following lemma for the case (k−ν , 0)-good distribution D.

Lemma 24. For 1 > µ ! ν > 0 and ε > e−kν/3 , let f be an n-variable Boolean function such
that a circuit C ε-computes (1− k−µ)-Direct Product fk. Let D be a distribution on (k − 1)-tuples
(x1, b1), . . . , (xk−1, bk−1) such that

1. the xjs are independent uniformly distributed random variables over {0, 1}n, and

2. for every sample from D, we have bj = f(xj) for at least (1 − k−ν) fraction of j ∈ [k − 1].

Then there is a probability distribution F over randomized Boolean circuits F such that, for every
set H ⊆ {0, 1}n of density at least δ = k−ν/2 + 8 ln(100/ε)

k and sufficiently large k (k ! kν + 1),

PrF←F ,x←H[F (x) = f(x)] > 1/2 + Ω(ε).

Moreover, a sample from F can be produced in time poly(1/ε, |C|), given input C and one sample
from D.

Proof. It will be convenient for us to view the distribution D as a pair of distributions (U,B|U ),
where U is uniform over {0, 1}n(k−1) (think of them as k − 1 strings y1, . . . , yk−1) and B|U is
the distribution on {0, 1}k−1 conditioned on U . So sampling (y1, b1), . . . , (yk−1, bk−1) from D is
equivalent to sampling y1, . . . , yk−1 uniformly at random, and then sampling b1, . . . , bk−1 from
B conditioned on y1, . . . , yk−1. By our assumption, every sample from B has the property that
bi = f(yi) for all but at most k−ν fraction of positions i ∈ [k − 1].

Let γ = k−µ and γ′ = k−ν . Consider the following distribution F on randomized circuits F :
“On input x,

1. sample i ∈ [k] uniformly at random, and set xi = x;
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2. sample y1, . . . , yk−1 from U , and assign the values y1, . . . , yk−1 to xj for j ∈ [k] \ {i};

3. evaluate the circuit C on the input (x1, . . . , xk);

4. sample b1, . . . , bk−1 from the distribution B conditioned on the xjs for j ∈ [k] \ {i};

5. let z be the number of indices j ∈ [k] \ {i} where the jth output of the circuit C disagrees
with the corresponding value bj ; let slack = γ′(k − 1) + γk. If z " slack, then output the ith
output of the circuit C. Otherwise, for w = z−slack and λ = 2−1/γ′(k−1), with probability λw

output the ith output of the circuit C, and with the remaining probability output a random
coin flip.”

Let H be any set of density δ. Suppose we pick x ∈ H uniformly at random, and then sample a
random circuit F according to the distribution F defined above. The random choice of x ∈ H and
random choices of the first two steps of the algorithm for F induce a probability distribution E on
(i;x1, . . . , xk). Let E ′ be the marginal probability distribution on (x1, . . . , xk) induced by E . Note
that in step 3 of the algorithm described above, we run the circuit C exactly on those k-tuples that
come from the distribution E ′.

We have the following.

Claim 25. The probability distribution E is equivalent to the following distribution: sample a k-
tuple (x1, . . . , xk) according to E ′, sample i ∈ [k] uniformly at random among the positions that
contain strings from H, and output (i;x1, . . . , xk).

Proof. Let N = 2n. A string (i;x1, . . . , xk), with xi ∈ H, has probability exactly 1
k

1
|H|

1
Nk−1

according to E . On the other hand, E ′ assigns to the string x1, . . . , xk the probability h 1
k

1
|H|

1
Nk−1 ,

where h is the number of positions j ∈ [k] such that xj ∈ H. It follows that for given a sample
from E ′, the value of i is distributed uniformly over the h positions containing strings from H.

Thanks to Claim 25, we can equivalently view the distribution F of circuits F on random inputs
from H as follows:

1. sample (x1, . . . , xk) from E ′;

2. evaluate the circuit C on the input (x1, . . . , xk);

3. sample i ∈ [k] uniformly at random among those j where xj ∈ H;

4. sample b1, . . . , bk−1 from the distribution B conditioned on the xjs for j ∈ [k] \ {i};

5. let z be the number of indices j ∈ [k] \ {i} where the jth output of the circuit C disagrees
with the corresponding value bj; let t = γ′(k−1)+γk. If z " t, then output the ith output of
the circuit C. Otherwise, for w = z − t and λ = 2−1/γ′(k−1), with probability λw output the
ith output of the circuit C, and with the remaining probability output a random coin flip.

In the rest of the proof, we will use the given equivalent description of F on a random input
from H to estimate the probability that the answer obtained in step 5 is correct.

The next two claims show that E ′ behaves very similarly to the uniform distribution.

Claim 26. Prx̄=(x1,...,xk)←E ′ [x̄ contains fewer than δk/2 elements from H] " ε/200.
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Proof. For a random k-tuple of n-bit strings, the expected number of strings falling in the set H is
δk. By Chernoff, the fraction of those k-tuples that contain fewer than δk/2 strings from H is at
most e−δk/8. By our choice of δ in Lemma 24, this is at most ε/100.

Observe that a k-tuple that contains exactly s strings from H is assigned in E ′ the probability
s
k

1
|H|

1
2n(k−1) , which is exactly s

δk times the probability of this k-tuple under the uniform distribution.
Hence the collection of k-tuples that contain fewer than s = δk/2 strings from H is assigned by E ′

the weight at most 1/2 of their weight under the uniform distribution. The claim follows.

Claim 27. Distribution E ′ assigns weight at least 0.49ε to the collection of k-tuples (x1, . . . , xk)
such that they contain at least δk/2 elements from H and C(x1, . . . , xk) and fk(x1, . . . , xk) agree
in at least (1 − γ) fraction of places.

Proof. We know that C does well on at least ε fraction of k-tuples under the uniform distribution.
By Chernoff, all but ε/100 fraction of these tuples will have fewer than δk/2 strings from H. So,
under the uniform distribution, for at least 0.99ε fraction of k-tuples we have that C is correct on
at least (1−γ) fraction of places, and that the tuple contains at least δk/2 strings in H. The latter
implies that the collection of such tuples gets in E ′ at least 1/2 of their probability mass under the
uniform distribution, which is at least (1/2)0.99ε ! 0.49ε.

We now estimate the probability of getting a correct answer in step 5 of our algorithm for a
random k-tuple from E ′. We will only consider those k-tuples that contain at least δk/2 elements
from H. By Claim 26, this may introduce an additive error of at most ε/200.

We divide the k-tuples containing at least δk/2 of strings from H into two sets: Gfew containing
k-tuples where C is wrong in at most γk positions, and Gmany containing the remaining k-tuples.
We estimate the success probability of our algorithm separately on Gfew and Gmany . In fact, it
will be more convenient for us to estimate the advantage of our algorithm, i.e., the probability of
getting a correct answer in step 5 minus the probability of getting a wrong answer.

Claim 28. For every k-tuple from Gfew, the advantage of our algorithm is at least 0.9.

Proof. Suppose that x̄ is a k-tuple from Gfew which contains h ! δk/2 strings in H. Suppose that
r " γk is the total number of mistakes the circuit C makes on this tuple, and l " r is the number
of mistakes C makes on elements from H in the tuple.

Let i ∈ [k] be uniformly chosen among the h positions that contain a string in H. By the
assumption on the probability distribution B, we know that the number z of disagreements between
the jth outputs of C, for j 3= i, and the corresponding bits bj supplied by B is at most γ′(k−1)+γk.
Hence, in step 5 we will output the ith output of C with probability 1. The probability (over
the choice of i) that this output is wrong is l/h, and so the advantage is 1 − 2l/h. Note that
l/h " 2γ/δ " 2k−µ/k−ν/2 " 2/kµ/2 " o(1). Hence, the advantage is at least 1 − o(1) ! 0.9, as
claimed.

Claim 29. For every k-tuple from Gmany, the advantage of our algorithm is at least −2−Ω(kν/2).

Proof. Suppose a given k-tuple x̄ from Gmany contains h ! δk/2 elements from H. Suppose that
C is incorrect in r > γk positions, and l " r is the number of mistakes C makes in positions
containing strings from H.

Let i ∈ [k] be uniformly chosen among the h positions that contain a string in H. Let z denote
the number of disagreements between the jth outputs of C, for j 3= i, and the corresponding bits
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bj supplied by B. By our assumption on the distribution B, we have

r − 1 − γ′(k − 1) " z " r + γ′(k − 1)

for every choice of i. So for w = z − t, we have

r − 1 − 2γ′(k − 1) − γk " w " r − γk.

With probability 1− l/h, the index i is such that C is correct on xi. In this case, the advantage
of our algorithm is

λw ! λr−γk

(since λ " 1). With probability l/h, the index i is such that C is wrong on xi. In this case, the
advantage is

−λw ! −λr−1−2γ′(k−1)−γk.

So overall, the advantage is at least

(1 − l/h)λr−γk − (l/h)λr−1−2γ′(k−1)−γk. (12)

To lowerbound the quantity in Eq. (12), we consider two cases.

• Case 1: r − γk " 2γ′(k − 1) + 1. Then the quantity in Eq. (12) is at least

(1 − l/h)λ2γ′(k−1)+1 − (l/h) ! (1 − l/h)λ3γ′(k−1) − (l/h),

which is at least 1/8 − 9/8(l/h), since λγ′(k−1) = 1/2. Note that l " r " 2γ′(k − 1) + 1 + γk
(due to the assumption of Case 1). Also recall that h ! δk/2 >

√
γ′k/2. Hence, l/h "

(2γ′ + γ + 1/k)/(
√
γ′/2) " (3γ′ + 1/k)/(

√
γ′/2) " 8

√
γ′ " o(1). It follows that the quantity

in Eq. (12) is at least 1/8 − o(1) > 0 in this case.

• Case 2: r − γk > 2γ′(k − 1) + 1. Then the quantity in Eq. (12) is at least

λr−γk((1 − l/h) − (l/h)λ−3γ′(k−1)), (13)

where we upperbounded 2γ′(k − 1) + 1 by 3γ′(k − 1) (which is correct for sufficiently large
k). Since λγ′(k−1) = 1/2, the expression in Eq. (13) is at least λr−γk(1 − 9(l/h)).

If l < h/9, this expression is positive. If l ! h/9, this expression is at least

−8λr−γk ! −8λl−γk ! −8λh/9−γk ! −8λδk/18−γk ! −8λ
√

γ′k/18−γ′k.

This can be lowerbounded by −8(1/2)(1/(18
√

γ′))−1, again using the fact that λγ′(k−1) = 1/2.
Recalling that γ′ = k−ν , we conclude that the advantage in this case is at least −2−Ω(kν/2).

So in both cases, the quantity in Eq. (12) is at least −2−Ω(kν/2), as claimed.

Finally, we have by Claims 27 and 28 that the advantage due to tuples in Gfew is at least
(0.49)ε(0.9) > 0.44ε. By Claim 29, the advantage due to tuples in Gmany is at least −2−Ω(kν/2).
By Claim 26, the advantage due to tuples outside of Gfew ∪ Gmany is at least −ε/200. Thus the
overall advantage is at least 0.44ε− 2−Ω(kν/2) − ε/200, which is at least 0.43ε when ε > e−kν/3 . This
means that the success probability of a random circuit F from F on a random x ∈ H is at least
1/2 + 0.2ε, as claimed.
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Proof of Lemma 9. First we argue the case of κ = 0. By Lemma 24, we get for a sufficiently small
constant α > 0 that the set Bad = {x ∈ {0, 1}n | PrF←F [F (x) = f(x)] " 1/2 + αε} must have
density less than O(ρ).

Consider any fixed string x 3∈ Bad. Let Mt denote the Majority circuit applied to t random
circuits sampled from F on input x. By Chernoff, a random circuit Mt is correct on x with
probability at least 1− ρ2. By averaging, we get that for at least 1− ρ fraction of circuits Mt, it is
the case that Mt is correct on at least 1 − ρ fraction of inputs x 3∈ Bad. It follows that if we pick
one such circuit Mt at random, then with probability at least 1 − ρ it will be correct on all but ρ
fraction of inputs x 3∈ Bad. So it will compute the function f on at least 1 − O(ρ) fraction of all
inputs.

For κ 3= 0, we will argue that the probability that the algorithm described in the previous
paragraph succeeds in finding a good circuit for f can decrease by at most κ. Let us suppose, for
contradiction, that this success probability decreases by more than κ. The distribution D can be
viewed as a pair (D′,D′′), where D′′ is a distribution on t blocks of (k − 1)-tuples (b1, . . . , bk−1),
for bj ∈ {0, 1}, conditioned on a given sample from D′. Then the following is a statistical test
distinguishing between D′ and the uniform distribution: Given a sample a of t blocks of (k − 1)-
tuples x1, . . . , xk−1, sample from D′′ conditioned on the given sample a. (If the sample a has zero
probability under D′, then we know that it came from the uniform distribution. So we may assume,
without loss of generality, that a has nonzero probability in D′.) Then run the algorithm described
above that constructs a circuit for the function f . If the constructed circuit agrees with f on at
least 1 − O(ρ) fraction of inputs, then accept; otherwise reject.

It follows that the described test accepts uniform a with probability at least 1−ρ, while it accepts
a from D′ with probability less than 1−ρ−κ. Hence the two distributions have statistical distance
more than κ. A contradiction.

5 Applications

5.1 Local approximate list-decoding of truncated Hadamard codes

Recall the definition of truncated Hadamard codes. For given n, k ∈ N, a k-truncated Hadamard
encoding of a message msg ∈ {0, 1}n is defined as a string codemsg ∈ {0, 1}(

n
k), where the codeword

is indexed by k-sets s ⊆ [n], |s| = k, and codemsg(s) = ⊕i∈smsg(i). Using our local approximate
list-decoding algorithm for direct product codes in Theorem 1 and the list-decoding algorithm
for Hadamard codes of Goldreich and Levin [GL89], we get an efficient approximate list-decoding
algorithm for k-truncated Hadamard codes.

Theorem 30. There is a randomized algorithm A with the following property. Let msg be any
N = 2n-bit string. Suppose that the truth table of the Boolean function computed by a circuit
C agrees with the k-truncated Hadamard encoding codemsg of msg in at least 1/2 + ε fraction of
positions, where ε = Ω(poly(1/k)). Then the algorithm A, given C, outputs with probability at
least poly(ε) a Boolean circuit C ′ such that the truth table of the Boolean function computed by C ′

agrees with msg in at least 1 − ρ fraction of positions, where ρ = O(k−0.1). The running time of
the algorithm A, and hence also the size of C ′, is at most poly(|C|, 1/ε).

First we prove a more uniform version of Yao’s XOR Lemma. Recall that a Boolean function f
is δ-hard with respect to circuit size s if, for every Boolean circuit C of size at most s, C correctly
computes f on at most 1− δ fraction of inputs. Yao’s XOR Lemma [Yao82] says that if a Boolean
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function f is δ-hard with respect to circuit size s, then the function f⊕k(x1, . . . , xk) = ⊕k
i=1f(xi)

is 1/2 − ε-hard with respect to circuit size s′, where ε ≈ (1 − δ)k/2 and s′ = s ∗ poly(ε, δ).
It is easy to prove Yao’s XOR Lemma given the Direct Product Lemma, using the result of

Goldreich and Levin [GL89] on list-decoding Hadamard codes. Applying this to our version of the
Direct Product Lemma (Theorem 1), we prove the following version of the XOR Lemma.

Lemma 31 (Advice-efficient XOR Lemma). There is a randomized algorithm A with the following
property. Let f be any n-variable Boolean function. Suppose a circuit C computes the function
f⊕k(x1, . . . , xk) on at least 1/2+ε fraction of inputs, where each xi ∈ {0, 1}n, and ε = Ω(poly(1/k)).
Then the algorithm A, given C, outputs with probability at least ε′ = poly(ε) a circuit C ′ such that
C ′ agrees with f on at least 1 − ρ fraction of inputs, where ρ = O(k−0.1). The running time of the
algorithm A, and hence also the size of C ′, is at most poly(|C|, 1/ε).

For the proof, we will need the following result due to Goldreich and Levin.

Lemma 32 ([GL89]). There is a probabilistic algorithm A with the following property. Let x ∈
{0, 1}n be any string, and let B : {0, 1}n → {0, 1} be any predicate such that Prr∈{0,1}n [B(r) =
〈x, r〉] ! 1/2 + γ, for some γ > 0. Then, given oracle access to B, the algorithm A runs in time
poly(n, 1/γ), and outputs the string x with probability at least Ω(γ2).

Proof of Lemma 31. Consider the function F : {0, 1}2nk ×{0, 1}2k → {0, 1} defined as follows: For
x1, . . . , x2k ∈ {0, 1}n and r ∈ {0, 1}2k ,

F (x1, . . . , x2k, r) = 〈f(x1) . . . f(x2k), r〉.

Note that conditioned on r ∈ {0, 1}2k having exactly k 1s, the function F (x1, . . . , x2k, r) is dis-
tributed exactly like the function f⊕k(x1, . . . , xk), for uniformly and independently chosen xis.

Consider the following algorithm for computing F . Given an input x1, . . . , x2k, r, count the
number of 1s in the string r. If it is not equal to k, then output a random coin flip and halt.
Otherwise, simulate the circuit C on the sub-tuple of x1, . . . , x2k of size k which is obtained by
restricting x1, . . . , x2k to the positions in r that are 1, and output the answer of C.

Let p be the probability that a random 2k-bit string contains exactly k 1s. It is easy to see that
the described algorithm for computing F is correct with probability at least (1−p)/2+p(1/2+ε) =
1/2 + pε. Since p ! Ω(1/

√
k), we get that our algorithm for F is correct with probability at least

1/2 + ε′, for ε′ = Ω(ε/
√

k).
By a Markov-style argument, we have that for each of at least ε′′ = ε′/2 of the 2k-tuples

x1, . . . , x2k, our algorithm computes F (x1, . . . , x2k, r) for at least 1/2 + ε′′ fraction of rs. Us-
ing the Goldreich-Levin algorithm of Lemma 32, we get a randomized algorithm that computes
f2k(x1, . . . , x2k) with probability at least ε′′′ = Ω(ε′′3), where the probability is both over the input
2k-tuples x1, . . . , x2k and the internal randomness of our randomized algorithm. By averaging,
randomly fixing the internal randomness of the algorithm yields, with probability at least ε′′′/2, a
deterministic circuit (ε′′′/2)-computing the Direct Product function f2k(x1, . . . , x2k). Finally, ap-
plying the algorithm of Theorem 1 to this Direct Product circuit yields, with probability poly(ε),
a circuit computing f on at least 1 − ρ fraction of inputs of f , as required.

Observe that Lemma 31 gives us an algorithm for decoding a version of truncated Hadamard
codes where, instead of sets of size k, the codeword is indexed by tuples of size k. Moreover, the
decoding is local in that, once we compute the list of circuits for the original Boolean function
(whose truth table is viewed as the message), we can run each of these circuits on a given input
x to produce the xth bit of the original message. Using Lemma 31, we also get an approximate
list-decoding algorithm for the original version of truncated Hadamard codes.
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Proof of Theorem 30. The proof is by a reduction to Lemma 31. Let f : {0, 1}n → {0, 1} be the
Boolean function with the truth table msg. Given the circuit C from the statement of the theorem,
we construct the following new circuit C ′′ for computing the XOR function f⊕k : Given a k-tuple
(x1, . . . , xk) of n-bit strings, check if they are all distinct. If so, then run the circuit C on the set
{x1, . . . , xk}, outputting the answer of C. Otherwise, output a random coin flip.

Let p be the probability that a random k-tuple of n-bit strings contains more than one occurrence
of some string. Then the described circuit C ′′ is correct on at least p/2 + (1 − p)(1/2 + ε) =
1/2 + (1− p)ε fraction of inputs. For k = poly(n) (or even larger k), it is easy to upperbound p by
2−Ω(n). So the algorithm C ′′ is correct on at least 1/2 + ε/2 fraction of inputs.

Running the algorithm of Lemma 31 on the constructed circuit C ′′ gives us, with probability at
least poly(ε), a circuit C ′ that (1 − ρ)-computes the function f .

5.2 Uniform hardness amplification in PNP‖

Here we will prove Theorem 2. First we recall some definitions. We say that a Boolean function
family f is δ-hard with respect to probabilistic polynomial-time algorithms if any such algorithm
computes f correctly on at most 1−δ fraction of n-bit inputs, where δ is some function of the input
size n. Similarly we can define hardness with respect to probabilistic polynomial-time algorithms
using advice. We use the model of probabilistic algorithms taking advice as defined in [TV02]: the
advice may depend on the internal randomness of the algorithm but is independent of the given
input.

Our Theorem 30 (or rather its version for the XOR Lemma, Lemma 31) immediately gives us
hardness amplification for probabilistic algorithms with small amount of advice.

Lemma 33. Suppose f : {0, 1}n → {0, 1} is a Boolean function family such that, for some constant
c, f is 1/nc-hard with respect to any probabilistic polynomial-time algorithm with O(log n)-size
(randomness dependent) advice. Then the function f⊕k, for k = n11c, cannot be (1/2 + 1/nd)-
computed by any probabilistic polynomial-time algorithm for any d.

First, we observe that our Lemma 31 immediately gives us hardness amplification in the nonuni-
form setting with very small amount of advice.

Lemma 34. Let f : {0, 1}n → {0, 1} be a Boolean function family. If there is a probabilistic
polynomial-time algorithm that agrees with the function f⊕k on at least 1/2+ε fraction of inputs, for
some k = poly(n) and ε = poly(1/k), then there is a probabilistic polynomial-time algorithm that,
given advice of size O(log 1/ε), agrees with f on at least 1− δ fraction of inputs, for δ " O(k−0.1).

Proof. On an input x, we do the following. Given a probabilistic algorithm (1/2 + ε)-computing
the XOR function f⊕k , we apply to it the algorithm of Lemma 31 for some poly(1/ε) number
times. This gives us a list of poly(1/ε) Boolean circuits such that, with probability exponentially
close to 1, at least one of the circuits on the list (1 − δ)-computes f . The advice string of size
log poly(1/ε) = O(log 1/ε) can then be used to identify the correct circuit on the list. We output
the result of running this circuit on the input x.

Now Lemma 33 is an immediate corollary of Lemma 34 above.
Logarithmic advice can sometimes be eliminated. For functions in NP, we can use the average-

case search-to-decision reduction due to Ben-David, Chor, Goldreich, and Luby [BDCGL92] to
obtain the following lemma.
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Lemma 35. Suppose there is a language L ∈ NP and a constant c such that L is 1/nc-hard
with respect to probabilistic polynomial-time algorithms. Then there is a language L′ ∈ NP and a
constant d such that L′ is 1/nd-hard with respect to probabilistic polynomial-time algorithm taking
O(log n) bits of advice.

We will need the average-case “search-to-decision” reduction for NP from [BDCGL92]; we state
this result in the form it was stated in [Tre05].

Lemma 36 ([BDCGL92]). Let L ∈ NP be any language, and let R(·, ·) be the polynomial-time
relation defining L, where |y| " w(|x|) for some polynomial function w(·). Then there exist a
language L′ ∈ NP, a polynomial l(·), and a probabilistic polynomial-time algorithm A such that the
following holds. Given a circuit C ′ that (1− δ′)-computes L′ on inputs of length l(n), the algorithm
A outputs, with probability at least 1 − 2−poly(n), a circuit C that solves the search version of L
(with respect to R) on at least 1 − δ fraction of inputs of size n, for δ = O(δ′w2(n)).

Proof of Lemma 35. Let L be a given δ = 1/nc-hard language in NP, let R be its defining relation,
and let w(n) = na be the upper-bound on the witness size for n-bit inputs in L. We claim that the
language L′ ∈ NP given in Lemma 36 is δ′ = Ω(δ/w2(n))-hard, on l(n)-bit inputs, with respect to
probabilistic polynomial-time algorithms with O(log n) bits of advice.

Indeed, suppose there is an advice-taking probabilistic polynomial-time algorithm that (1 − δ′)-
computes L′. Enumerate all polynomially many advice strings used by this algorithm, getting a list
of polynomially many circuits such that, with probability exponentially close to 1, at least one of
the circuits on the list will (1− δ′)-compute L′. Apply the probabilistic polynomial-time algorithm
A of Lemma 36 to each of the circuits on the list. This yields a list of circuits such that, with
high probability, at least one of them solves the search version of L (with respect to R) for at least
1 − δ fraction of inputs. Simulate each of these circuits on a given input x, and accept iff at least
one of them produces a witness y such that R(x, y) holds. It follows that we have a probabilistic
polynomial-time algorithm (1 − δ)-computing L, contradicting the assumed hardness of L.

Combining Lemma 33 and Lemma 35, we obtain the following.

Theorem 37. Suppose there is a Boolean function family f ∈ NP and a constant c such that f is
1/nc-hard with respect to probabilistic polynomial-time algorithms. Then there is a Boolean function
family g ∈ PNP‖ that cannot be computed by any probabilistic polynomial-time algorithm on more
that 1/2 + 1/nd fraction of inputs, for any constant d.

Finally, we observe that the existence of a hard function in PNP‖ implies the existence of a hard
function in NP, and so Theorem 37 can be used to achieve uniform hardness amplification in PNP‖

claimed in Theorem 2.

Proof of Theorem 2. Let f be computed by a SAT-oracle Turing machine M in time ne, for some
constant e. Define a new Boolean function h as follows: For x ∈ {0, 1}n and i ∈ [ne], h(x, i) = 1
iff M on input x makes at least i SAT-oracle queries and the ith SAT-oracle query is a satisfiable
formula.

Clearly, the function h is in NP: Given x and i, we simulate the oracle machine M on x, recording
all SAT-oracle queries asked by M — this can be done since M asks all its queries in parallel. If
the number of queries is less than i, we reject. Otherwise, we nondeterministically check that the
ith SAT-oracle query is a satisfiable formula.

Next we argue that the function h is at least 1/(ncne)-hard with respect to probabilistic polynomial-
time algorithms. Indeed, suppose this is not the case. Then there is a probabilistic polynomial-time
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algorithm A such that for each of at least 1− 1/nc fraction of xs the algorithm A errs on less than
1/ne fraction of inputs (x, i). Since, for each such x, the number of different inputs (x, i) is at most
ne, we conclude that A is correct on all SAT-oracle queries made by the machine M on input x.
Hence, using this algorithm A to answer SAT-oracle queries, we get a probabilistic polynomial-time
algorithm (1 − 1/nc)-computing f , which contradicts the assumed hardness of f .

Applying Theorem 37 to the NP-function h, we get the required hard function g ∈ PNP‖ .

Trevisan [Tre05] gives uniform hardness amplification for NP: If NP contains a language that
is 1/poly(n)-hard with respect to probabilistic polynomial-time algorithms, then NP contains a
language that is (1/2− 1/ logα n)-hard, for some constant α. Our Theorem 2 achieves much better
hardness amplification: from 1/poly(n)-hardness to (1/2 − 1/nd)-hardness for any d. However, it
only applies to the class PNP‖ rather than NP.

Remark 38. It is also possible to prove a “scaled-up” version of Theorem 2 where the hardness
is against 2no(1)-time probabilistic algorithms, and the amplification goes from hardness 1/nc to
1/2 − 2−no(1) .

6 Concluding remarks

The direct product is a generic construction widely used in complexity theory and coding theory.
For instance, Alon et el. [ABN+92] used (a derandomized version of) the direct product construction
to obtain error-correcting codes with large distance from codes with small distance; rather than
picking all possible k-tuples of bit positions of a given n-bit message, they use the neighbors of
vertices in a k-regular expander graph on n vertices as their k-tuples. The simplicity of this purely
combinatorial, expander-based construction allowed for the subsequent development of linear-time
encodable and list-decodable codes [GI03]; this linear-time efficiency appears to be impossible to
achieve using algebra-based codes.

A derandomized direct product construction similar in spirit to the construction of [ABN+92]
was used in a recent breakthrough result of Dinur [Din06] as a way to amplify the “unsatisfiability”
of unsatisfiable cnf formulas, which led to a significantly simpler new proof of the famous PCP
Theorem. The direct product part in Dinur’s construction is to ask that every vertex v of a graph
(an instance of the graph colorability problem) must give not only its own color, but also the colors
of all of its neighbors within some constant distance from v (in the graph obtained by adding
edges of an expander to those of the original graph); this is similar to asking for the value of a
hard function not just on one input but on several inputs simultaneously, thereby amplifying the
hardness of the function. Intuitively, asking for such an extended coloring makes it easier to spot
an improperly colored edge, thereby amplifying the “non-colorability” of the original graph. Again,
the transparent combinatorial nature of the direct product construction played a major role in
getting this simple proof of the PCP Theorem.

In this paper, motivated by the complexity-theoretic applications to hardness amplification,
we have studied the direct product construction as a tool for obtaining locally approximately
list-decodable error-correcting codes. We improved the previously known decoding algorithms,
achieving optimal running time and list size for decoding from a corrupted received word when the
amount of corruption is less than 1 − ε for a “large” ε. As an immediate application, this gives a
strong average-case hardness amplification for PNP‖ with respect to BPP algorithms.

The obvious open question is to strengthen the parameters of the decoding algorithm. Ideally,
we would like to prove the following dream version of our Main Theorem:
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Dream Version of Direct Product Decoding. There is a randomized algorithm A that, given
a circuit C ε-computing the direct product fk of an n-variable Boolean function f , outputs with
probability at least poly(ε) a circuit C ′ that computes f on all but at most δ fraction of inputs for
δ " O((ln 1/ε)/k). The running time of A is poly(|C|/ε).

In the present paper, the bottleneck is in our Direct Product amplification procedure. Every
step of amplification costs a quadratic decrease in the fraction of tuples where the new circuit
(approximately) computes a larger direct product. Is there a more efficient way to do Direct
Product amplification?

We hope that our efficient list-decoding algorithm for the direct product codes will also be useful
for getting strong hardness amplification within NP. To this end, it would suffice to construct an
efficiently approximately list-decodable monotone binary code where every bit of the codeword is a
monotone Boolean function of the message, and to concatenate our direct product code with such
a monotone code. This direction has been pursued in [BOKS06], where Trevisan’s amplification
results for NP [Tre03, Tre05] are re-proved by combining decoding algorithms for certain monotone
codes and the decoding algorithm for the direct-product code from the present paper. Improving
Trevisan’s results seems to require efficient list-decoding algorithms for monotone codes.
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A Combinatorial list-size bounds

Here we will show that, for the codes based on Yao’s XOR Lemma, truncated Hadamard codes,
and direct-product codes, the combinatorial bound on the list size for radius (1/2− ε) is essentially
Θ(1/ε2), which is also the upper bound for standard Hadamard codes (see, e.g., [GL89]).

Recall that Yao’s XOR Lemma defines the following error-correcting codes. For parameters
n, k ∈ N, a message msg ∈ {0, 1}n is encoded by a codeword codemsg ∈ {0, 1}nk , where the positions
of codemsg are indexed by k-tuples s = (i1, . . . , ik) ∈ [n]k and codemsg(s) = codemsg(i1, . . . , ik) =
⊕k

j=1msg(ij). Let us call these codes (n, k)-XOR-codes.
Also recall that the k-truncated Hadamard code encodes a message msg ∈ {0, 1}n by a codeword

of length
(n
k

)
, which can be indexed by k-size subsets s ⊆ [n] so that the value of the codeword at

position s = {i1, . . . , ik} is ⊕k
j=1msg(ij).

Observe that the only difference between the XOR-code and truncated Hadamard code is that
we use k-tuples of positions of a given n-bit message in the case of XOR-code, and k-size subsets of
positions in the case of truncated Hadamard code. For k # n, a random k-tuple of elements from
[n] is very unlikely to contain any repetitions, and so the difference between the two kinds of codes
becomes negligible.

We will show that the XOR-code is approximately list-decodable for the choice of parameters
assumed in Yao’s XOR Lemma. The cases of truncated Hadamard codes and direct product codes
are shown similarly.

First, we formally define the notion of approximate list-decodability that we will use. Let
Ham(x, y) denote the Hamming distance between binary strings x and y of the same length,
i.e., Ham(x, y) is the number of positions where x and y differ.

Definition 39 (Combinatorial approximate list-decodabality). We say that a code code : {0, 1}n →
{0, 1}m is combinatorially δ-approximately (ε, t)-list-decodable if for every word w ∈ {0, 1}m there
exists a set of at most t strings msg1, . . . ,msgt ∈ {0, 1}n satisfying the following: for every msg ∈
{0, 1}n, if code(msg) agrees with w in at least 1/2 + ε fraction of positions, then there is an i ∈ [t]
such that Ham(msg,msgi) " δn.

Note that for δ = 0, the definition above is equivalent to the more standard notion of (ε, t)-list-
decodability, saying that any Hamming ball of radius at most (1/2−ε) in {0, 1}m contains at most t
codewords. In the case of approximate list-decodability, we basically say that the Hamming ball of
radius (1/2− ε) around any w ∈ {0, 1}m contains at most t codewords code(msg1), . . . , code(msgt)
such that any other codeword code(msg) in the same Hamming ball has its message msg within
the Hamming distance δn of one of the msgi’s, for 1 " i " t.

Remark 40. We may also assume, without loss of generality, that the set of t messages msg1, . . . ,msgt

in Definition 39 above is such that Ham(msgi,msgj) > δn, for every i 3= j ∈ [t]; otherwise we can
make the requisite set smaller by removing any msgi that is close to some msgj, for j 3= i.
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A.1 Combinatorial approximate list-decodability

A.1.1 XOR-codes

We now show that XOR-codes are approximately list-decodable for an appropriate choice of pa-
rameters.

Theorem 41. For any ε > 0 and δ > (ln 1/ε)/k, the (n, k)-XOR-code is δ-approximately (ε, t)-list-
decodable for t = 1/(4ε2 − e−2δk) " O(1/ε2).

The proof of Theorem 41 will follow from the next lemma. Below we think of the (n, k)-XOR-
code as encoding a message m into a function codem : [nk] → {0, 1} so that, for any s ∈ [nk], the
value of codem(s) is the sth bit of the XOR-encoding of the message m.

Lemma 42. Let m1, . . . ,mt be any n-bit strings satisfying the following two conditions:

1. for every two distinct i, j ∈ [t], mi and mj differ in at least δn positions, and

2. there is some function B : [nk] → {0, 1} such that, for each i ∈ [t], Prs∈[n]k [codemi(s) =
B(s)] ! 1/2 + ε, where code is the (n, k)-XOR-code.

Then
t " 1

4ε2 − e−2δk
.

Proof. For every s ∈ [n]k, let

εs = Pri∈[t][codemi(s) = B(s)] − Pri∈[t][codemi(s) 3= B(s)] =
1
t

∑

i∈[t]

(−1)codemi (s)⊕B(s).

Observe that Exps∈[n]k[εs] ! 2ε. So, we get that 4ε2 " (Exps[εs])2. By Jensen’s inequality, the
latter is at most Exps[(εs)2].

We have

Exps[(εs)
2] = Exps



 1
t2

∑

i,j

(−1)codemi (s)⊕codemj (s)





= Exps



 1
t2

∑

i,j

(−1)codemi⊕mj (s)





=
1
t2

· Exps




∑

i

(−1)0 +
∑

i/=j

(−1)codemi⊕mj (s)





=
1
t

+
1
t2

·
∑

i/=j

Exps

[
(−1)codemi⊕mj (s)

]
.

Next we bound the quantity Exps

[
(−1)codemi⊕mj (s)

]
in the expression above.

Claim 43. For any i 3= j, we have Exps

[
(−1)codemi⊕mj (s)

]
" (1 − 2δ)k.
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Proof. First, observe that by the assumption on pairwise distance between messages, we have that
the string m′ = mi ⊕mj has relative Hamming weight w ! δ. We need to compute the probability
that a random k-tuple s ∈ [n]k hits an even number of 1s in the string m′ minus the probability
that it hits an odd number of 1s. This is exactly

∑

even i∈[k]

(
k

i

)
wi(1 − w)k−i −

∑

odd i∈[k]

(
k

i

)
wi(1 − w)k−i =

∑

i∈[k]

(
k

i

)
(−w)i(1 − w)k−i

= (1 − 2w)k.

The latter is at most (1 − 2δ)k.

Using the bound from Claim 43, we have

Exps(εs)
2 " 1

t
+

t(t − 1)
t2

(1 − 2δ)k " 1
t

+ e−2δk.

Recalling that Exps(εs)2 ! 4ε2, we obtain

t " 1
4ε2 − e−2δk

,

as required.

Proof of Theorem 41. For m = nk, let w ∈ {0, 1}m be any word. Let t′ be the smallest number
of messages msg1, . . . ,msgt′ satisfying the conditions of Definition 39. As observed in Remark 40
above, we may assume that any pair of distinct msgi and msgj have Hamming distance greater
than δn; otherwise, t′ could be made smaller. Then Lemma 42 gives the required upper bound on
t′.

A.1.2 Truncated Hadamard codes

Now we prove essentially the same upper bound on the list size for k-truncated Hadamard codes.

Theorem 44. For any ε > 0 and δ > Ω((ln 1/ε)/k), the k-truncated Hadamard code is δ-
approximately (ε, t)-list-decodable for t = 1/(4ε2 − e−0.9δk) " O(1/ε2).

The proof of Theorem 44 follows from the next lemma.

Lemma 45. Let m1, . . . ,mt be t n-bit strings satisfying the following two conditions:

1. for every two distinct i, j ∈ [t], mi and mj differ in at least δn positions, and

2. for each i ∈ [t], Prk-set s⊆[n][codemi(s) = B(s)] ! 1/2 + ε, where code is the k-truncated
Hadamard code.

Then
t " 1

4ε2 − e−0.9δk
.

Proof. The proof proceeds exactly like the proof of Lemma 42 above. We first define εs for k-size
sets s ⊆ [n], and show that the expectation of (εs)2 is lower-bounded by 4ε2. Next we upper-bound
Exps(εs)2. The argument is essentially the same as that in the proof of Lemma 42. The main
ingredient is the following claim.
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Claim 46. For any i 3= j, we have Exps[(−1)codemi⊕mj (s)] " e−0.9δk.

Proof. To upper-bound the given expectation, we consider the following random experiment. Pick
uniformly at random a subset s′ ⊆ [n] of size 2k, and for each i ∈ s′ flip a fair coin to decide
whether to keep this element i or to discard it. Call the resulting set s′′. Note that the expected
size of s′′ is k. Also note that, conditioned on flipping exactly k heads in the second stage of our
random experiment, the resulting set s′′ of size k is uniformly distributed among all size k subsets
of [n].

If a set s′ chosen in the first stage of the random experiment has a nonempty intersection
with the set I of positions in m′ = mi ⊕ mj that contain 1s, then the conditional expectation
Exps′′ [(−1)codem′ (s′′)] = 0. If, on the other hand, the intersection is empty, then the conditional
expectation Exps′′ [(−1)codem′ (s′′)] = 1. Lifting the conditioning on s′, we get

Exps′′ [(−1)codem′ (s′′)] = Prs′ [s′ ∩ I = ∅ ].

By the second property of mis, we know that m′ contains w ! δ fraction of positions with 1s. Thus
the expected size of the intersection between s′ and I is 2kw, and, by Hoeffding, the probability of
having the empty intersection is at most e−kw " e−δk.

Finally, Exps[(−1)codem′ (s)] is equal to the expectation over s′′, conditioned on having exactly k
heads in 2k Bernoulli trials. The latter probability is at least Ω(1/

√
k). So we conclude that

Exps[(−1)codem′ (s)] " Exps′′ [(−1)codem′ (s′′)]O(
√

k) " O(
√

k)e−δk " e−0.9δk.

Then we conclude the proof in the same way as in Lemma 42.

A.1.3 Direct product codes

The k-wise direct product encoding of a message msg ∈ {0, 1}n is a string of length nk over the
alphabet {0, 1}k , such that the value of the encoding at position (i1, . . . , ik) ∈ [n]k is the k-tuple
(msgi1 , . . . ,msgik).

It is easy to generalize the notion of approximate list-decodability to the case of these direct
product codes. Let Σ = {0, 1}k , and let m = nk. Let code : {0, 1}n → Σm be the k-wise direct
product code. We say that this direct product code is δ-approximately (ε, t)-list decodable if, for
every B ∈ Σm, there exists a collection of at most t messages msg1, . . . ,msgt ∈ {0, 1}n such that,
for every code(msg) that agrees with B in at least ε fraction of positions, there is some i ∈ [t] such
that Ham(msgi,msg) " δn.

We have the following list-decodability result for direct product codes.

Theorem 47. For any ε > 0 and δ > Ω((ln 1/ε)/k), the k-wise direct product code is δ-approximately
(ε, t)-list decodable for t " 1/(ε2 − e−δk) " O(1/ε2).

Proof sketch. The proof is very similar to that of Theorem 41. Given t messages (of pairwise
Hamming distance at least δn) whose encodings agree with some word B in at least ε fraction of
positions, we define for every s ∈ [n]k the quantity εs to be the fraction of messages that agree with
B in position s. We have that Exps[εs] ! ε, and by Jensen, ε2 " Exps[(εs)2].

To upper bound the latter expectation, we need to upperbound the probability that for two
distinct messages m and m′ of Hamming distance at least δn, it is the case that code(m)s =
code(m′)s for a random s ∈ [n]k. The latter happens only if each of the k indices of s falls outside
of the part where m and m′ differ. Clearly, the probability of this event is at most (1− δ)k " e−δk.
The rest of the argument is the same as in the proof of Theorem 41.
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A.2 Tightness of the O(1/ε2) list-size bound

In Theorem 41, we showed that for sufficiently large δ (i.e., δ > (ln 1/ε)/k), the XOR-code is
δ-approximately (ε,O(1/ε2))-list-decodable. Here we will argue that this upper bound of O(1/ε2)
is tight in general. We will show that, even for constant δ (say, δ = 1/5), the list size can grow
quadratically with 1/ε.

The lower bound Ω(1/ε2) on the list size of general list-decodable is known [Bli86, GV05]. In
particular, Guruswami and Vadhan [GV05] show the following result for codes over any alphabet;
we shall state it just for binary codes.

Theorem 48 ([GV05]). There exist positive constants c and d such that, for all small enough
ε > 0, the following holds. If Code is (ε, c/ε2)-list decodable code, then Code has at most (1/ε)d·ε−2

codewords.

Note that if Code is (ε, t)-list decodable code that encodes n-bit messages, and if ε is large enough
so that (1/ε)d·ε−2

< 2n, then it must be the case that t > c/ε2.
It is possible to get from Theorem 48 the same lower bound for approximately list-decodable

codes as well. Let code′ : {0, 1}n′ → {0, 1}n be any binary code of constant rate and constant
relative distance δ, for some δ > 0; that is, n " cn′ for some constant c > 0, and any two
codewords of code′ are at least Hamming distance δn apart (such codes can be shown to exist by
the probabilistic method, as well as constructively [Jus72]). Let code : {0, 1}n → {0, 1}m be the
k-truncated Hadamard code, for m =

(n
k

)
. Define Code : {0, 1}n′ → {0, 1}m to be the composition

of code′ and code, i.e., we first encode an n′-bit message with code′ and then encode the resulting
codeword with code. It is easy to see that if code is δ-approximately (ε, t)-list decodable, then
Code is (ε, t)-list decodable. Theorem 48 then implies that t ! Ω(1/ε2) for δ-approximate (ε, t)-list
decodable code.

This way we can get Ω(1/ε2) list-size lower bound for all of our approximately decodable codes:
XOR, truncated Hadamard, and direct product codes.

The proofs in [Bli86, GV05] work for general codes, but are somewhat involved. Below we give
a short proof for the case of k-truncated Hadamard code, and then give an easy reduction to the
case of k-XOR code. Also, our lower bound works even for very small ε.

Theorem 49. Let m =
(n
k

)
, let ε > max{m−1/256, 2−n/256}, and let δ < 1/4. Let code : {0, 1}n →

{0, 1}m be the k-truncated Hadamard code. Then there exists a string B ∈ {0, 1}m and ' = Ω(1/ε2)
strings msg1, . . . ,msg( ∈ {0, 1}n such that

1. for all distinct i, j ∈ ['], we have Ham(msgi,msgj) ! δn, and

2. for all i ∈ ['], we have Ham(code(msgi), B) " (1/2 − ε)m.

Proof. Let t = 2T+1 be an odd positive integer to be specified later. Pick strings a1, . . . , at ∈ {0, 1}n

uniformly at random. The probability that any two of them are within Hamming distance less than
n/4 is at most O(t2e−(1/4)2n/2). This probability is less than o(1/

√
t) for t < en/90.

For a given t-tuple a = (a1, . . . , at), define the function Ba : {0, 1}n → {0, 1} as follows: for every
r ∈ {0, 1}n,

Ba(r) = Maj1≤i≤t〈ai, r〉.

We will show that there exists a such that the function Ba evaluated at all strings r of Hamming
weight exactly k agrees in at least 1/2 +Ω(1/

√
t) fraction of places with code(ai), for at least Ω(t)

of ai’s. This will imply the lemma for ε = Ω(1/
√

t).
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The intuition is as follows. Fix a string r of Hamming weight k. Fix an index i ∈ [t]. Randomly
choose all the other aj for j 3= i. For each j 3= i, the random variable 〈aj , r〉 is a fair coin flip (for
a random aj). For different j’s, the corresponding random variables are independent. If we flip 2T
independent fair coins, we get exactly T heads with probability at least Ω(1/

√
T ). Conditioned on

getting exactly T heads, we have that B(r) = 〈ai, r〉, i.e., B(r) = code(ai)r. By averaging, we can
argue that if we randomly fix aj ’s for j 3= i, then (with probability at least Ω(1/

√
T )) we will have at

least Ω(1/
√

T ) fraction of strings r (of Hamming weight k) for which we have B(r) = code(ai)r. For
every remaining r, the value B(r) is fixed (because of the fixed aj’s for j 3= i), but is independent
of ai. The random variables 〈ai, r〉 over these remaining r’s are uniformly distributed and pairwise
independent. Hence, a random choice of ai is likely to result in about 1/2 of these random variables
being equal to the fixed value B(r) (and by the Chebyshev inequality, we can bound the probability
that this value deviates from the expectation). Thus, for random a1, . . . , at, we are likely to get
B and code(ai) agree in about 1/2 + Ω(1/

√
T ) fraction of positions. With some extra work, we

will show that this happens simultaneously for Ω(t) different indices i ∈ [t], which yields many
codewords with good agreement with the string B. We give a formal argument next.

Given a t-tuple a, we say that a string r is balanced for a if the number of indices i with 〈ai, r〉 = 0
is either T or T + 1.

Claim 50. There is a constant c such that for at least c/
√

t fraction of random t-tuples a, there
are at least c/

√
t fraction of strings r ∈ {0, 1}n of Hamming weight k such that each r is balanced

for a.

Proof. Each fixed nonzero r (of Hamming weight k) is balanced for a with probability at least c′/
√

t
over the choice of a random t-tuple a, for some constant c′. Hence, we have

Pra,r[r is balanced for a] ! c′/
√

t,

where r is a random n-bit string of Hamming weight k. By averaging, the claim follows for
c = c′/2.

For any i ∈ [t], and any (t − 1)-tuple a−i = (a1, . . . , ai−1, ai+1, . . . , at) of n-bit strings, we say
that a string r ∈ {0, 1}n is i-balanced for a−i if the number of j ∈ [t] \ {i} with 〈mj , r〉 = 0 is T .

Claim 51. Let d be any constant. Suppose i ∈ [t] and a−i = (a1, . . . , ai−1, ai+1, . . . , at) are such
that d/

√
t fraction of strings r ∈ {0, 1}n of Hamming weight k are i-balanced for a−i. Then for a

random ai ∈ {0, 1}n and the t-tuple a = (a1, . . . , ai−1, ai, ai+1, . . . , at), we have

Prai

[
Ba(r) = 〈ai, r〉 for at least

1
2

+
d/4√

t
of r’s

]
> 1 − O

(
t

m

)
,

where m =
(n
k

)
.

Proof. For r’s that are i-balanced for a−i, we have B(r) = 〈ai, r〉 whatever ai is. Let R be the set
of the remaining r’s of weight k that are not i-balanced. For each r ∈ R, B(r) is determined, and
so is independent of the choice of ai.

Define random variables Xr where Xr = 1 if < ai, r >= B(r), and Xr = 0 otherwise. We get
that, for r ∈ R, these random variables Xr are uniformly distributed and pairwise independent, for
a random choice of ai. We expect Xr = 1 for half of the r’s. By Chebyshev, for any constant d′,
the probability that there are fewer than 1/2 − d′/

√
t fraction of r ∈ R with Xr = 1 is less than

O(t/m).
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Finally, observe that if the latter event does not happen for some ai, then we have that the
agreement between 〈ai, r〉 and B(r) is at least

d√
t

+
(

1 − d√
t

)(
1
2
− d′√

t

)
! 1

2
+

(d/2) − d′√
t

.

The latter can be made at least 1/2 + (d/4)/
√

t by choosing d′ = d/4.

By Claim 50, there are at least c/
√

t fraction of a’s with c/
√

t fraction of strings r balanced for a.
Fix any such a. Observe that each r that is balanced for a is also i-balanced for T + 1 > t/2 values
of i. Since we have c/

√
t fraction of r’s balanced for a, we get by a simple averaging argument that

there are at least t/4 values of i such that each has at least (c/4)/
√

t fraction of i-balanced r’s.
Note that this happens with probability at least c/

√
t over a’s.

On the other hand, Claim 51 implies that the probability (over t-tuples a) that there is at least
one i with (c/4)/

√
t fraction of i-balanced r’s, such that for this i, the agreement between 〈ai, r〉

and Ba(r) is less than 1/2+ (c/16)/
√

t is at most O(t2/m). For t = o(m1/3), this probability is less
than o(1/

√
t).

Thus there is at least c/
√

t− o(1/
√

t) ! (c/2)/
√

t fraction of a’s such that, for each of these a’s,
we have that

1. there are at least t/4 values of i, each having at least (c/4)/
√

t fraction of i-balanced r’s, and

2. for every such i, the agreement between 〈ai, r〉 and Ba(r) is at least 1/2 + (c/16)/
√

t.

Recall that for all but o(1/
√

t) fraction of a = (a1, . . . , at) we have that the pairwise Hamming
distance between ai and aj is at least δn, for all i 3= j in [t]. Therefore, there must exist a choice
of a = (a1, . . . , at) and a subset I of t/4 of the i’s such that, for each i ∈ I, the agreement between
code(ai) and Ba is at least 1/2 + (c/16)/

√
t, and the pairwise Hamming distance between any ai

and aj, for i 3= j, is at least δn. Setting t = ((c/16)/ε)2 concludes the proof.

Now we reduce the case of XOR codes to the case of truncated Hadamard codes, obtaining the
following.

Theorem 52. Let m =
(n
k

)
, ε > max{m−1/256, 2−n/256}, k2/n " o(ε), and δ < 1/4. Let code :

{0, 1}n → {0, 1}nk be the (n, k)-XOR-code. Then there exists a string B ∈ {0, 1}nk and s = Ω(1/ε2)
messages msg1, . . . ,msgs of pairwise Hamming distance at least δn such that the agreement between
B and code(msgi) is at least 1/2 + Ω(ε) for each i ∈ [s].

Proof. Recall that the (n, k)-XOR encoding of an n-bit message msg is the sequence of msg(i1)⊕
· · ·⊕msg(ik) over all k-tuples of indices i1, . . . , ik from [n]. The fraction of those k-tuples (i1, . . . , ik)
that contain some index j ∈ [n] more than once is at most k2/n, which is o(ε) by our assumption.

Ignoring the k-tuples with repeats, we can partition the remaining k-tuples into ' blocks where
each block contains

(n
k

)
tuples corresponding to distinct k-size subsets of [n]. For each such block,

the XOR encoding of a given message msg (restricted to the k-tuples in the block) coincides with
the k-truncated Hadamard encoding of msg. So, the XOR encoding of msg restricted to the k-
tuples without repeats is just a concatenation of ' copies of the truncated Hadamard encoding of
msg.

By Theorem 49, there is a collection of Ω(1/ε2) n-bit messages (pairwise Hamming distance δn
apart) and a string B′ such that the k-truncated Hadamard encoding of each message agrees with
B′ in at least 1/2 +Ω(ε) fraction of positions. Let B′′ be the string obtained as a concatenation of

41



' copies of the string B′. It follows that for the same collection of messages, their k-XOR encodings
will agree with the string B′′ in at least 1/2 + Ω(ε) fraction of positions, when the positions are
restricted to the k-tuples without repeats. Let us now pad B′′ with enough 0’s to get the string of
length nk. Let us call the new string B. We have that the XOR encodings of our messages will
agree with B in at least 1/2 + Ω(ε) − k2/n ! 1/2 + Ω(ε) fraction of positions.

A.3 List size for small δ

We showed that for the XOR-code the list size is small when δ > (ln 1/ε)/k. Next, we show that
the list size could be exponentially large when we allow the list to contain messages which are not
far apart from one another.

Theorem 53. Let δ " min {(ln 1/ε)/(4k), 1/17}. There exists a set of at least 2δn−1 of n-bit
messages of pairwise Hamming distance at least δn and such that the (n, k)-XOR encoding of each
message has agreement at least 1/2 + ε with the string 0nk .

The proof of this theorem will follow from the two lemmas below.

Lemma 54. Let δ " min {(ln 1/ε)/(4k), 1/3} and let m1, . . . ,ml be n-bit strings of Hamming weight
δn. Let code be the (n, k)-XOR-code. Then, for every i ∈ [l], we have

Prs∈[n]k [codemi (s) = 0] = 1/2 + 1/2(1 − 2δ)k ! 1/2 + ε.

Proof. For a given message mi, codemi(s) = 0 when s has an even intersection with the subset
of positions in mi which are 1. The probability of this event is exactly

∑
even i∈[k]

(k
i

)
δi(1 − δ)k−i

which is 1/2 + (1 − 2δ)k/2 ! 1/2 + ε when δ " min {(ln 1/ε)/(4k), 1/3}.

Lemma 55. Let M = {m1, . . . ,ml} be a set of n-bit strings of Hamming weight δn, where δ " 1/17.
Then there is a subset N ⊆ M of size at least 2δn−1 such that any two messages in N have Hamming
distance at least δn.

Proof. Consider a graph with the messages in M denoting the vertices and there is an edge between
two messages if they differ in less than δn positions. Set N to be an independent set of this graph,
chosen as follows: pick a vertex v and place it in N , delete v and its neighboring vertices; repeat
until no vertices are left.

The size of N is lowerbounded by |M |/(∆ + 1), where ∆ is the maximum degree of the graph.
We have

∆ =
δn/2∑

i=1

(
δn

i

)(
(1 − δ)n

i

)

"
(

(1 − δ)n
δn/2

) δn/2∑

i=1

(
δn

i

)
(since δ " 1/2)

"
(

(1 − δ)n
δn/2

)
· 2δn

" 2δn ·
(

n

δn/2

)
.
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This yields

|N | !
( n
δn

)

∆ + 1

!
( n
δn

)

2 · 2δn ·
( n
δn/2

)

=
1

2δn+1
· n(n − 1) . . . (n − δn + 1)
n(n − 1) . . . (n − δn/2 + 1)

· (δn/2)!
(δn)!

=
1

2δn+1
· (n − δn/2)(n − δn/2 − 1) . . . (n − δn + 1)

(δn)(δn − 1) . . . (δn/2 + 1)

! (1/δ − 1)δn/2

2δn+1

! 2δn−1 (for δ " 1/17).

Proof of Theorem 53. The proof is immediate from Lemma 54 and Lemma 55.

One also gets a similar lower bound on the list size for k-truncated Hadamard codes and direct
product codes. The proof for k-truncated codes is the same as that of Theorem 53 above, except
for considering k-size subsets of [n] rather k-tuples in Lemma 54. A version of Lemma 54 continues
to hold in the case k-size subsets as well, and can be proved using the ideas from the proof of
Claim 46.
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