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Abstract

We consider the problem of approximately locally list-
decoding direct product codes. For a parameter k, the k-
wise direct product encoding of an N -bit message msg is
an Nk-length string over the alphabet {0, 1}k indexed by k-
tuples (i1, . . . , ik) ∈ {1, . . . , N}k so that the symbol at po-
sition (i1, . . . , ik) of the codeword is msg(i1) . . .msg(ik).
Such codes arise naturally in the context of hardness ampli-
fication of Boolean functions via the Direct Product Lemma
(and the closely related Yao’s XOR Lemma), where typically
k � N (e.g., k = poly log N ).

We describe an efficient randomized algorithm for ap-
proximate local list-decoding of direct product codes.
Given access to a word which agrees with the k-wise direct
product encoding of some message msg in at least an ε frac-
tion of positions, our algorithm outputs a list of poly(1/ε)
Boolean circuits computing N -bit strings (viewed as truth
tables of log N -variable Boolean functions) such that at
least one of them agrees with msg in at least 1 − δ frac-
tion of positions, for δ = O(k−0.1), provided that ε =
Ω(poly(1/k)); the running time of the algorithm is poly-
nomial in log N and 1/ε. When ε > e−kα

for a certain
constant α > 0, we get a randomized approximate list-
decoding algorithm that runs in time quasi-polynomial in
1/ε (i.e., (1/ε)poly log 1/ε).

By concatenating the k-wise direct product codes with
Hadamard codes, we obtain locally list-decodable codes
over the binary alphabet, which can be efficiently approx-
imately list-decoded from fewer than 1/2 − ε fraction of
corruptions as long as ε = Ω(poly(1/k)). As an imme-
diate application, we get uniform hardness amplification
for PNP‖ , the class of languages reducible to NP through

one round of parallel oracle queries: If there is a language
in PNP‖ that cannot be decided by any BPP algorithm on
more that 1 − 1/nΩ(1) fraction of inputs, then there is an-
other language in PNP‖ that cannot be decided by any BPP
algorithm on more than 1/2 + 1/nω(1) fraction of inputs.

1. Introduction

There is a rich interplay between coding theory and
computational complexity. Complexity has both benefited
from and contributed to coding theory. For instance, the
PCP Theorem [3, 2] uses error-correcting codes based on
polynomials over finite fields while the final construction
gave rise to a new kind of error-correcting code, a lo-
cally testable encoding of satisfying assignments of propo-
sitional formulas. In derandomization, error-correcting
codes were (explicitly or implicitly) behind many construc-
tions of pseudorandom generators from hard Boolean func-
tions [19, 4, 16, 24, 23, 30]. The breakthrough extractor
construction of Trevisan [25] combined good list-decodable
error-correcting codes and the pseudorandom generator of
Nisan and Wigderson [19]. (For many other connections
between coding and complexity, see the excellent survey
[27].)

Another connection between coding and complexity was
observed in [26, 15], who show that direct product lemmas
yield locally, approximately list-decodable codes. Direct
product lemmas (e.g., Yao’s XOR Lemma [31]) are for-
malizations of the intuition that it is harder to compute a
function on many independent instances than on a single
instance. In such lemmas, a function f that is hard to com-
pute on some δ fraction of inputs is used to construct a func-



tion f̂ that is hard to compute on a larger fraction (usually
written as 1/2 − ε) of inputs. View f̂ as a “coded” ver-
sion of the “message” f . In an XOR lemma, it is shown
how to construct a list of circuits containing a circuit that
computes f with fewer than δ fraction of errors from a cir-
cuit with fewer than 1/2 − ε fraction of errors for f̂ . This
corresponds to approximately list-decoding the code, in that
instead of exactly recovering the message f , the decoding
algorithm finds a list of strings containing a string of small
relative Hamming distance from f ; moreover, the decoding
is local since the constructed circuit computes an individual
bit of the decoded message, not the entire message.

Approximately decodable codes are a relatively recent
and potentially powerful tool in coding theory. For ex-
ample, an approximately decodable code can be composed
with a standard error-correcting code to boost the amount
of noise that can be tolerated (see [1, 10, 11, 12] for
several applications of this idea.) Weakening the notion
of error-correction to include approximate error-correcting
codes dramatically increases the available options for cod-
ing functions. For example, the code implicit in the XOR
lemma is the k-truncated Hadamard code, consisting of the
inner products of the message string with just those strings
of Hamming weight k (where typically k � N , for N the
length of the message). This code has very small sensitivity,
in that flipping one bit of the input changes only a small por-
tion of output bits, whereas any true error-correcting code
has large distance and hence large sensitivity. From a com-
binatorial viewpoint, this means that approximately decod-
able codes escape many of the restrictions that have been
proved for standard error-correction. In complexity terms,
this allows the constructed function f̂ to be locally com-
putable from f , f̂ ∈ Pf , an important property if we want
the constructed function to have a similar complexity to the
original.

As Trevisan [26] details, the standard proofs of the XOR
lemma give an approximate list-decoding algorithm for the
k-truncated Hadamard code running in time (and producing
a list of size) exponential in poly(1/ε), when given a circuit
with ε correlation with the codeword. He observes that the
list-size and hence time for such an algorithm is exponen-
tial in the amount of advice the construction uses. Here, we
reduce the amount of advice in a proof of the XOR Lemma,
giving an approximate list-decoding algorithm with polyno-
mial time and list length for ε > 1/poly(k) for any polyno-
mial poly. However, we obtain a somewhat weaker approx-
imation ratio δ. As a consequence, we get a strong hard-
ness amplification result for PNP‖ , the class of problems re-
ducible to NP through one round of parallel oracle queries.

While interesting in themselves, our results are also sig-
nificant in that they utilize the equivalence of XOR lemmas
and approximate decoding at several points. As in many
other cases, knowing an equivalence between problems in

two different domains gives researchers leverage to make
progress in both domains.

Below, we give a more precise description of our results.

1.1 Direct Product Lemma and Direct
Product Codes

Given a Boolean function f : {0, 1}n → {0, 1},
we define its k-wise direct product as fk(x1, . . . , xk) =
f(x1) . . . f(xk). The Direct Product Lemma [31, 18, 14, 9,
16] says that if a Boolean function f cannot be computed
by any size s Boolean circuit on more than 1− δ fraction of
inputs, then its direct product function fk cannot be com-
puted by any circuit of size s′ = s ∗ poly(ε, δ) on more than
ε = e−Ω(δk) fraction of inputs. Viewing fk as a “direct
product” encoding of the message f , we can interpret the
Direct Product Lemma as an approximate list-decoding of
the code.

The known proofs of the Direct Product Lemma [14, 9,
16] are constructive: there is an algorithm that, given a cir-
cuit of size s′ that computes fk on more than ε fraction of
inputs, constructs a Boolean circuit of size s that computes
f on more that 1 − δ fraction of inputs. However, in all
these proofs, the algorithm constructing a circuit for f needs
some nonuniform advice. Instead of producing a circuit for
f , the algorithm produces a list of circuits one of which
computes f on more than 1− δ fraction of inputs; the loga-
rithm of the size of this list is exactly the number of bits of
nonuniform advice used by the construction. In the known
proofs, the advice size is poly(1/ε) (cf. [26]) and so the size
of the list of circuits is 2poly(1/ε). In terms of approximate
list-decoding, this is the list of possible approximate mes-
sages, one of which is δ-close to the original message. For
information-theoretically optimal list decoders, this list size
should not exceed O(1/ε2) (see the full version of this pa-
per), which corresponds to O(log(1/ε)) bits of advice.

In this paper, we achieve list size poly(1/ε), albeit only
for large ε = Ω(poly(1/k)).

We say that a circuit C ε-computes the 1−γ-Direct Prod-
uct fk, if, with probability at least ε over a random k tuple
x1, ..xk of inputs, C(x1, ..xk)i = f(xi) for at least (1−γ)k
values of i. Note that this is weaker than traditional direct
product notions, since C is only required to get most of the
answers right. However, since we use this weaker notion
recursively inside our main algorithm, and since it gives a
stronger result, we state our main theorem for this notion of
computing the direct product.

Theorem 1 (Main Theorem). There is a randomized al-
gorithm A with the following property. Let f be any n-
variable Boolean function. Suppose a circuit C ε-computes
(1 − k−0.4)-Direct Product fk, where ε = Ω(poly(1/k)).
Then the algorithm A, given C, outputs with probability at
least ε′ = poly(ε) a circuit C ′′ such that C ′′ agrees with f



on at least 1 − ρ fraction of inputs, where ρ = O(k−0.1).
The running time of the algorithm A, and hence also the
size of C ′′, is at most poly(|C|, 1/ε).

Note that the above theorem implies a list size of
poly(1/ε), since by running the algorithm A poly(1/ε)
times, we can construct a list of circuits, one of which
almost certainly is a 1 − ρ approximation to f . When
ε > e−kα

, for a sufficiently small constant α > 0, we get a
randomized approximate list-decoding algorithm for k-wise
direct product codes that has the running time and list size
quasi-polynomial in 1/ε.

Combining our local approximate list-decoding algo-
rithms with the list-decoding algorithm for Hadamard codes
due to Goldreich and Levin [8], we get local approximate
list-decoding algorithms for truncated Hadamard codes,
whose running time and list size correspond to those of the
direct-product decoding algorithms.

1.2 Uniform hardness amplification

The main application of the Direct Product Lemma (or
Yao’s XOR Lemma) is to hardness amplification: If a
Boolean function f is somewhat hard to compute on av-
erage, its XOR function f⊕

k

(x1, . . . , xk) = ⊕k
i=1f(xi)

is much harder on average. The known proofs of Yao’s
XOR Lemma use nonuniform reductions and so they give
hardness amplification only in the nonuniform setting of
Boolean circuits.

Impagliazzo and Wigderson [17] consider the setting of
uniform hardness amplification. Here, one starts with a
Boolean function family that is somewhat hard on average
to compute by probabilistic polynomial-time algorithms,
and defines a new Boolean function family that is much
harder on average. Ideally, one would start from a func-
tion that is hard 1/poly(n) of the time for some fixed poly-
nomial poly(n), and end with a function in the same com-
plexity class that is hard 1/2 − 1/poly(n) of the time, for
any poly(n). Yao’s XOR Lemma amplifies hardness of a
Boolean function family f also in this setting, but only if
we are given oracle access to f . This oracle access can
be eliminated under certain circumstances, e.g., if the dis-
tribution (x, f(x)) can be sampled, or if f is downward
self-reducible and random self-reducible. Impagliazzo and
Wigderson [17] use this to show uniform hardness amplifi-
cation for #P. Trevisan and Vadhan [29] show that uniform
hardness amplification is also possible in PSPACE and in
EXP.

Trevisan [26, 28] considers uniform hardness amplifica-
tion for languages in NP; the nonuniform case was stud-
ied in [20, 13]. Trevisan [28] shows uniform amplification
from 1/poly(n) to 1/2 − 1/poly log(n). Note that the fi-
nal hardness falls short of the desired 1/2 − 1/poly(n).
The reason for this is the use of 2poly(1/ε)-bit advice by the

BPP algorithm that, given a circuit computing an NP lan-
guage L′ on more than 1/2 + ε fraction of inputs, produces
a circuit computing L on more than 1 − 1/poly(n) frac-
tion of inputs. If ε = logα n, for sufficiently small α > 0,
then the required amount of advice is O(log n). Using the
average-case version of the “search-to-decision” reduction
for NP [5], this logarithmic advice can be eliminated in time
2O(log n) = poly(n) by, essentially, trying all possible ad-
vice strings.

Using our efficient approximate list-decoding algorithm
for truncated Hadamard codes, we achieve better uni-
form hardness amplification, but only for the class PNP‖ .
Namely, we show that if PNP‖ contains a language L that
cannot be computed by BPP algorithms on more than
1 − 1/poly(n) fraction of inputs, then there is another lan-
guage L′ ∈ PNP‖ that cannot be computed by BPP algo-
rithms on more than 1/2 + 1/nω(1) fraction of inputs. The
reason we get amplification for PNP‖ rather than NP is our
use of the XOR function as an amplifier; if f ∈ NP, then its
XOR function f⊕

k

(x1, . . . , xk) = ⊕k
i=1f(xi) is not neces-

sarily in NP, although it is certainly in PNP‖ . (Achieving
the same amplification for NP seems to require a similar
result with a monotone function replacing ⊕k.)

1.3 Our techniques

The proof of the Direct Product Lemma in [16] yields
an efficient algorithm LEARN with the following prop-
erty: Given as input a “small” circuit C computing the di-
rect product function fk for at least ε fraction of inputs, and
given about (1/ε2) random samples of the form (x, f(x))
for independent uniformly distributed xs, the algorithm
LEARN produces, with high probability, a “small” cir-
cuit computing f on at least 1 − δ fraction of inputs, for
δ ≈ log(1/ε)

k . In our case, we have a circuit C, but no la-
beled examples (x, f(x)).

Our construction combines three technical steps:

Boosting direct products We give an algorithm for con-
verting a circuit that ε-computes 1 − γ direct product
fk to one that ε′-computes 1 − γ′ direct product fk′ ,
where ε′ ≥ poly(ε), γ′ ∈ O(γ + k−.4) and k′ = k1.5.
Repeating recursively, we can go from a circuit to com-
pute a direct product on k inputs to one that approxi-
mately computes a direct product on any polynomial in
k inputs. This DP booster can be thought of as approx-
imately list-decoding the k-truncated Hadamard code
for the special case where N ≤ poly(k).

The main idea of the DP booster is: given k1.5 in-
puts, first guess one subset S of k inputs and hope that
the given circuit (approximately) computes the direct
product on S. Given that this first step succeeds, we
use the values of f on inputs from S as a reality check



on random subsets T , accepting the values for inputs
in T if there are few inconsistencies with the assumed
values for S. By the birthday paradox, S and T will
have a large intersection, so if the values for S are
(mostly) correct, we are unlikely to accept any T for
which the values are not mostly correct. By combin-
ing many random consistent T ’s, we eventually fill in
correct guesses for most of the inputs in the entire set.

Self-advising learning algorithm The advice we need for
LEARN is in the form of many random examples
(x, f(x)). A circuit ε-computing a direct product has
an ε chance of providing k such examples. To get
enough samples, we first need to boost the direct prod-
uct until k′ = poly(1/ε). However, the resulting sam-
ples may be correlated, and our circuit for k′ only com-
putes an approximate direct product. We quantify the
first problem through a sampling lemma, which argues
that a random subset of the inputs where the direct
product circuit is (approximately) successful is almost
uniform.

Fault-tolerant learning algorithm Finally, we address
the last problem that some of the advice may in fact be
misleading, not actually being the value of the function
on the example input. To handle this, we give a fault-
tolerant analysis of the learning algorithm from [16],
showing that the algorithm works even if a small frac-
tion of the advice is incorrect.

Outline of the paper We describe the main tools used in
our approximate list-decoding algorithm in Section 2, and
sketch the proof of our Main Theorem (Theorem 1) in Sec-
tion 3. Applications to uniform hardness amplification are
given in Section 4. We give concluding remarks in Sec-
tion 5.

2 Our tools

2.1 Extracting labeled examples from the
direct product circuit

The following lemma will allow us to extract slightly im-
perfect labeled examples (x, f(x)) from a circuit approxi-
mately computing the direct product of f .

Lemma 2 (Sampling Lemma). Let C be a circuit that
ε-computes (1 − γ)-direct product fk, for some Boolean
function f : {0, 1}n → {0, 1} and parameters ε, γ where
γ > 1/k0.4. Let x̄ = (x1, . . . , xk) ∈ ({0, 1}n)k be a uni-
formly random tuple, let x̄′ = (xi1 , . . . , xi√k

) be a uni-
formly random subtuple of x̄, and let bi1 . . . bi√k

be the val-
ues of C(x̄) corresponding to the subtuple x̄′. Then there is

an event E that occurs with probability Ω(ε) so that, condi-
tioned on E occurring, the following hold:

1. the statistical distance between the distribution x̄′ and
the uniform distribution on ({0, 1}n)

√
k is at most

0.6
√

log(1/ε)/
√

k + e−Ω(k0.1), and

2. for all but at most O(γ) fraction of elements xij
s in x̄′,

we have bij = f(xij ).

For the proof of this lemma, we need the following result
implicit in [21]; the proof is given in the Appendix.

Lemma 3. Let G ⊆ {0, 1}mn be any subset of size ε2mn.
Let U be a uniform distribution on the set {0, 1}n, and
let D be the distribution defined as follows: pick a tuple
(x1, . . . , xm) of n-bit strings uniformly from the set G, pick
an index i uniformly from [m], and output xi. Then the sta-
tistical distance between the distributions U and D is less
than 0.6

√
log 1/ε

m .

Lemma 2 follows from Lemma 3: view a k-tuple as a√
k-tuple of

√
k-tuples, and let G be the set of tuples for

which the circuit C is approximately correct. The event
E is that the tuple falls in G and that C is approximately
correct on the chosen subtuple.

2.2 Direct Product amplification

The following lemma will allow us to use a circuit com-
puting the direct product fk in order to compute the direct
product fk′ for a larger k′.

Lemma 4 (One-step DP Amplification Lemma). There is
a randomized algorithm A with the following property. Let
f be any n-variable Boolean function. Suppose a circuit C
ε-computes (1− γ)-Direct Product fk, where ε > e−k0.001

.
Then the randomized algorithm A, given C, outputs with
probability at least ε′ a circuit C ′ ε′-computing (1 − γ′)-
Direct Product fk′ , where ε′ = Ω(ε2), γ′ 6 O(γ + k−0.4),
and k′ = k3/2. The running time of A, and hence also the
size of C ′, is polynomial in the size of C and 1/ε.

Proof. We only give a sketch of the proof here; the com-
plete proof will be in the full paper. We will need the fol-
lowing definitions. Given a k′-tuple x̄ = (x1, . . . , x

′
k), and

T a subset of [k′] of size k, let x̄T be the restriction of x̄
to the elements of T . If j is the i’th smallest element of
T , let bT

j = C(xT )i. We call a set T of size k α-good if
bT
j = f(xj) for all but αk locations j ∈ T . We say that a set

T is accepted w.r.t. S if |{j ∈ S∩T | bS
j 6= bT

j }|/|S∩T | <
3γ + k−0.4.

The algorithm is given in figure 1.
We will argue that Algorithm 1 Ω(ε′)-computes (1−γ′)-

Direct Product fk′ .



INPUT: x̄ = (x1, . . . , xk′) ∈ {0, 1}nk′

OUTPUT: (output1, . . . , outputk′) ∈ {0, 1}k′

ORACLE ACCESS: algorithm C that ε-computes (1 − γ)-
Direct Product fk

PARAMETERS: ε > e−k0.001
, ρ = 3γ + k−0.4,

timeout = (96k′ log k′)/ε, α = 5(γ + k−0.4).

1. For every i ∈ [k′], set Answersi =empty string.
2. Choose S ⊆ [k′] of size |S| = k uniformly at random.
3. Compute C(x̄|S), and hence bS

j for j ∈ S.
4. Repeat lines 5–9 for at most timeout times:
5. Choose T ⊆ [k′] of size |T | = k uniformly at
random.
6. Compute C(x̄|T ) and hence bT

j for j ∈ T .
7. Let m = |{j ∈ S ∩ T | bS

j 6= bT
j }|/|S ∩ T |.

8. If m < ρ, % if T is accepted w.r.t. S
9. then choose a random i ∈ T and extend the
string Answersi with the bit bT

i .
10. For every i ∈ [k′], let counti = |Answersi|.
11. Let total =

∑
i∈[k′] counti.

12. If counti < total
2k′ , then set outputi = ri for a random

bit ri;
13. else set outputi = MajorityAnswersi.

Algorithm 1: Direct Product amplifier

For our argument, we will need the following two claims;
the proofs are given in the full version of the paper.

Claim 5. Let x̄ be a k′-tuple such that at least ε/2 random
subsets of [k′] of size k are γ-good. Conditioned on both T
and S being γ-good random subsets of [k′],

PrS,T [T is accepted w.r.t. S] > 1− e−Ω(k0.1).

Claim 6. Let x̄ be a k′-tuple such that at least ε/2 random
subsets of [k′] of size k are γ-good. For at least 1−e−Ω(k0.1)

fraction of γ-good sets S, at least 1− e−Ω(k0.1) fraction of
sets T that are accepted w.r.t. S are α = 5(γ+k−0.4)-good.

By a Markov-style argument, for at least ε/2 fraction of
k′-tuples x̄, there will be at least ε/2 fraction of γ-good sets
S ⊆ [k′] of size k. Fix such a k′-tuple x̄. We will bound the
probability that the algorithm makes many mistakes on this
tuple.

By Claims 5 and 6, we know that with probability at least
(ε/2)(1 − e−Ω(k0.1)) > ε/3, the set S chosen in line 3 of
our algorithm will have the following properties:

1. S is γ-good,

2. all but e−Ω(k0.1) fraction of γ-good sets T are accepted
w.r.t. S, and

3. all but e−Ω(k0.1) fraction of sets T accepted w.r.t. S are
α-good, for α = 5(γ + k−0.4).

Assume that a set S satisfying properties (1)–(3) was chosen
in step 2.

There are two possible causes for incorrect labels to xi:
(1) counti does not reach total/2k′ and the label is cho-
sen at random, or (2) the majority of bits in Answeri are
incorrect, and there are at least total/2k′ of them.

For the first problem, note that there are an Ω(ε) fraction
of sets T that are γ-good, and most of these are accepted
with respect to S. So we can apply an analogue of Lemma 3
for the case of sets rather than tuples to see that the distri-
bution on i given that T is accepted is within distance β

def=

O(
√

log(1/ε)
k ) 6 O(k−0.4) of the uniform distribution over

[k′]. Thus, there is only an O(k−.4) fraction of i’s whose
conditional expectation is less than 3/(4k′), and, with high
probability, all other i’s have counti > total/(2k′).

Secondly, with high probability, all of the chosen T
which are accepted with respect to S are α-good. For each
such T , there is at most an α probability of a mistake being
placed in some Answeri. So with high probability, there
are at most O(αtotal) mistakes in all Answeri’s. Each i
for which the majority of Answeri is invalid and for which
counti > total/(2k′) is responsible for total/(4k′) such
mistakes, meaning there can be at most 4αk′ such i’s in all.

This gives a total of O(α + k−.4) mistakes, with high
probability.

For every constant c, a repeated application of Lemma 4
for a constant number of times yields with probability ε′ =
poly(ε) a circuit C ′ ε′-computing (1 − γ′)-Direct Product
fk′ , where ε′ = poly(ε), γ′ 6 O(γ + k−0.4), and k′ = kc.
The running time of this amplification algorithm, and hence
also the size of C ′, is polynomial in the size of C and 1/ε.

2.3 Direct products with faulty advice

We recall the proof of the Direct Product Lemma
from [16]. Given a circuit C that computes the direct prod-
uct function fk with probability at least ε, consider the fol-
lowing distribution F on randomized circuits F . On input
x, pick i ∈ [k] uniformly at random, and set xi = x. For
each j ∈ [k] \ {i}, get a sample (xj , f(xj)) where xj is
uniformly distributed. Evaluate the circuit C on the input
(x1, . . . , xk). Let z be the number of indices j ∈ [k] \ {i}
where the jth output of the circuit C disagrees with the
value f(xj). With probability 2−z , output the ith output
of the circuit C, and with the remaining probability 1−2−z

output a random coin flip.
Impagliazzo and Wigderson [16] argue that, for every

subset H of at least δ fraction of inputs, a random circuit
sampled according to F will compute f on a random input
from H with probability at least 1/2 + Ω(ε). Then they
conclude that the circuit obtained by applying the majority



function to a small number of sampled circuits from F will
compute f on all but at most δ fraction of inputs.

We will generalize the argument of [16] in two ways.
First, in the definition of the probability distribution F , in-
stead of sampling (k − 1)-tuples (xj , f(xj)) for uniformly
distributed n-bit strings xj’s, we will use the xj’s that come
from a probability distribution D over {0, 1}n(k−1) that is
only statistically close to uniform. Secondly, we assume
that rather than getting the correct value f(xj) for all k − 1
strings xj in the sampled (k − 1)-tuple from D, we get the
correct value f(xj) for most xj’s in the tuple. We will show
that even with these imperfect samples, we can construct a
circuit computing the function f on at least 1 − ρ fraction
of inputs, for some ρ ≈ δ.

The following lemma can be proved by appropriately
modifying the arguments in [16]; a complete proof is given
in the full paper.

Lemma 7. Let f be an n-variable Boolean function.
Suppose a circuit C ε-computes fk, for some ε >
e−k0.001

. Let D be a distribution on (k − 1)-tuples
(x1, b1), . . . , (xk−1, bk−1) such that (i) the xjs are indepen-
dent uniformly distributed random variables over {0, 1}n,
and (ii) bj = f(xj) for at least (1−γ) fraction of j ∈ [k−1],
where γ 6 k−0.3. Then there is a probability distribution
F over randomized Boolean circuits F such that, for every
set H ⊆ {0, 1}n of density δ >

√
γ + 8 ln 100/ε

k ,

PrF←F,x←H [F (x) = f(x)] > 1/2 + Ω(ε).

Moreover, F is sampleable in time poly(1/ε, |C|) given in-
put C and one sample from D.

Using the lemma above, we can use the arguments
of [16] to obtain a learning algorithm LEARN that, given
access to random samples from distribution D, will produce
with high probability a circuit that computes f on all but δ
fraction of inputs.

Theorem 8. Let f , C, D, and δ be as in the statement of
Lemma 7. There is a randomized algorithm LEARN that,
given a circuit C and oracle access to the distribution D,
outputs with high probability a circuit C ′ that computes f
on at least 1 − δ fraction of inputs. The running time of
the algorithm LEARN , and hence also the size of C ′, is at
most poly(|C|, 1/ε).

Proof. By Lemma 7, we get, for sufficiently small constant
α > 0, that the set Bad = {x ∈ {0, 1}n | PrF←F [F (x) =
f(x)] 6 1/2 + αε} must have density less than δ. Thus, by
Chernoff, the majority of O(n/ε2) circuits sampled from F
will be correct on every input x 6∈ Bad with probability
greater than 1− 2−2n. By a Markov-style argument, we get
that for more than 1− 2−n fraction of the majority circuits,
each such circuit is correct on more than 1 − 2−n fraction

of inputs x 6∈ Bad. It follows that if we pick one such
majority circuit at random, then with high probability it will
be correct on all inputs x 6∈ Bad, and so it will compute the
function f on at least 1− δ fraction of inputs.

The following lemma shows that this algorithm
LEARN continues to work even when given oracle access
to a slightly corrupted oracle D where the distribution on
xjs is not uniform but rather only statistically close to uni-
form.

Lemma 9. Let LEARN be the algorithm guaranteed to
exist by Theorem 8. Let f be an n-variable Boolean
function. Suppose a circuit C ε-computes fk, for some
ε > e−k0.001

. Let D be a probability distribution over
({0, 1}(n+1)(k−1))O(n/ε2), viewed as O(n/ε2) blocks of
(k − 1)-tuples of pairs (xj , bj) where xj ∈ {0, 1}n and
bj ∈ {0, 1}, such that: (1) for every sample from D, each
block (x1, b1), . . . , (xk−1, bk−1) of the sample is such that
bj = f(xj) for at least (1 − γ) fraction of j ∈ [k − 1], for
some γ 6 k−0.3, and (2) for the distribution D′ obtained
from D by deleting the bits bi and outputting the strings xi,
the statistical distance between D′ and the uniform distri-
bution over ({0, 1}n(k−1))O(n/ε2) is at most κ. Then, on in-
put C, the algorithm LEARN , replacing each oracle call
to the distribution by a block from a single sample from D,
will, with probability at least 1− 2−n − κ, output a circuit
C ′ that computes f on at least a 1−ρ fraction of inputs, for
ρ = O( log(1/ε)

k +
√

γ).

Proof. View the distribution D as the pair of random vari-
ables (D′, D′′), where D′′ is the distribution on bits bi, con-
ditioned on a given sample from D′. Assume that the con-
clusion of the lemma failed. Then the following is a statis-
tical test distinguishing between D′ and the uniform distri-
bution: Given a sample a of O(n/ε2) blocks of (k − 1)-
tuples x1, . . . , xk−1, sample from D′′ conditioned on the
given sample a. (If the sample a has zero probability under
D′, then we know that it came from the uniform distribu-
tion. So we may assume, without loss of generality, that
a has nonzero probability in D′.) Then run the algorithm
described above that constructs a circuit for the function f .
If the constructed circuit agrees with f on at least 1 − ρ
fraction of inputs, then accept; otherwise reject.

By the preceding arguments, we know that when the
sample a comes from the uniform distribution, with prob-
ability at least 1 − 2−n the constructed circuit computes
f on at least 1 − ρ fraction of inputs, and hence our sta-
tistical test accepts with probability at least 1 − 2−n. On
the other hand, if a comes from D′, then, by the assump-
tion, the constructed circuit is good with probability less
than 1 − 2−n − κ, and so the statistical test accepts with
probability less than 1− 2−n − κ. This implies that the de-
scribed statistical test κ-distinguishes D′ from the uniform
distribution.



INPUT: n, t, k ∈ N.
OUTPUT: t blocks of (k − 1)-tuples of the form
(x1, b1) . . . (xk−1, bk−1), where xi ∈ {0, 1}n, bi ∈ {0, 1}.
ORACLE ACCESS: algorithm C that ε-computes Direct
Product fk.
PARAMETERS: ε = Ω(poly(1/k)), k = poly(n),
t = O(n/ε2).

1. Set k′ = (t(k − 1))2.
2. Run the Direct Product Amplification algorithm (Algo-
rithm 1) from Lemma 4 on the circuit C with this value of
k′ (for a constant number of times), obtaining as an output
a circuit C ′.
3. Run the circuit C ′ on a random k′-tuple of n-bit strings.
4. Select t(k − 1) strings x1, . . . , xt(k−1) in this k′-tuple
uniformly at random, and randomly partition these strings
into t blocks of (k − 1)-tuples.
5. Output the t blocks of (k − 1)-tuples of the form
(x1, b1) . . . (xk−1, bk−1) where bj is the output of C ′ cor-
responding to the input string xj .

Algorithm 2: Sampler

3 Approximate List-Decoding of the Direct
Product Code: Proof of Main Theorem

In this section we sketch the proof of our Main Theorem
(Theorem 1); a complete proof is given in the full version
of the paper.

Recall that in order to apply Lemma 9, we need
to have access to a probability distribution D on
t = O(n/ε2) blocks of (k − 1)-tuples of the form
(x1, b1) . . . (xk−1, bk−1), where the tuple of xis is statis-
tically close to the uniform distribution and, in each block,
bj = f(xj) for at least 1− γ fraction of positions, for some
γ 6 k−0.3. Given a circuit C that ε computes fk, we sam-
ple advice using Algorithm Sampler given in Figure 2.

We claim that, conditioning on an event that occurs with
probability at least poly(ε), the output produced by the
sampling algorithm Sampler is distributed according to a
distribution D with the requisite properties. Indeed, first
note that by our assumption about ε and k, we have that
k′ = O(poly(k)). By repeated application of Lemma 4,
with probability at least ε′ = poly(ε), the circuit C ′ in
Step 2 of the sampling algorithm ε′-computes (1−γ)-Direct
Product fk′ for γ 6 O(k−0.4) 6 k−0.3. Let E′ denote the
event that such a good circuit C ′ is produced in Step 2 of
the sampling algorithm. Then, conditioned on E′, we have
by the Sampling Lemma (2) an event E that occurs with
probability Ω(ε′) so that conditioned on E:

• For a random subset T ⊆ [k′] of size t(k − 1), the
distribution on t(k−1)-tuples x̄|T , obtained from x̄ by
restricting it to the indices in T , has statistical distance

at most κ = 0.1 from the uniform distribution on all
t(k − 1)-tuples from {0, 1}nt(k−1).

• The fraction of xi, i ∈ T , with bi 6= f(xi) is at most
O(γ).

By Chernoff, with high probability, the last condition also
occurs for each block obtained by a random partition in
Step 4 of the sampling algorithm; let E′′ be the event that
Step 4 produced such a good partition. Let D be the distri-
bution produced by Sampler, conditioned on events E′, E,
and E′′.

Finally, given an output from the algorithm Sampler,
we apply the algorithm of Lemma 9 and obtain a circuit C ′′

satisfying the following. Conditioned on Sampler produc-
ing a sample from D, with probability at least 1 − 2−n −
2κ > 1/2 over the internal random coin tosses of the algo-
rithm in Lemma 9, the constructed circuit C ′′ computes f
on at least 1− ρ fraction of inputs. Lifting the conditioning
on Sampler, we get that the probability of producing a cir-
cuit C ′′ that computes f on at least 1− ρ fraction of inputs
is at least poly(ε), as required.

When ε > e−k0.001
, we get a version of Theorem 1 where

the list size and the running time of A are quasi-polynomial
in 1/ε; we omit the details.

4 Applications

4.1 Local approximate list-decoding of
truncated Hadamard codes

For n, k ∈ N, a k-truncated Hadamard encoding of a
message msg ∈ {0, 1}n is defined as a string codemsg ∈
{0, 1}(

n
k), where the codeword is indexed by k-sets s ⊆ [n],

|s| = k, and codemsg(s) = ⊕i∈smsg(i). Using our lo-
cal approximate list-decoding algorithm for direct product
codes in Theorem 1 and the list-decoding algorithm for
Hadamard codes of Goldreich and Levin [8], we get an ef-
ficient approximate list-decoding algorithm for k-truncated
Hadamard codes. Equivalently, one can think of this as an
advice-efficient proof of the Yao XOR Lemma.

Lemma 10 (Advice-efficient XOR Lemma). There is a
randomized algorithm A with the following property. Let f
be any n-variable Boolean function. Suppose a circuit C

computes the function f⊕
k

(x1, . . . , xk) on at least 1/2 +
ε fraction of inputs, where ε = Ω(poly(1/k)). Then the
algorithm A, given C, outputs with probability at least ε′ =
poly(ε) a circuit C ′ such that C ′ agrees with f on at least
1− ρ fraction of inputs, where ρ = O(k−0.1). The running
time of the algorithm A, and hence also the size of C ′, is at
most poly(|C|, 1/ε).



Proof. We first use the result of [8] to convert the circuit
C to a circuit C that poly(ε) computes f2k, and then apply
Theorem 1 to C. The algorithm in [8] can be viewed as an
algorithm for list-decoding the Hadamard code.

Lemma 11 ([8]). There is a probabilistic algorithm A with
the following property. Let s ∈ {0, 1}n be any string,
and let B : {0, 1}n → {0, 1} be any predicate such that
Prr∈{0,1}n [B(r) = 〈s, r〉] > 1/2 + γ, for some γ > 0.
Then, given oracle access to B, the algorithm A runs in
time poly(n, 1/γ), and outputs the string s with probability
at least Ω(γ2).

Consider a random tuple S = 〈x1, . . . , x2k〉 of inputs.
Let s be the vector of bits f(xi). With probability at least
ε/2, the conditional probability that C computes f⊕

k

for a
random subtuple T of size k in S is at least ε/2. Then, given
a random bit vector r of length 2k, if the Hamming weight
of r is k, let B simulate C on the sub-tuple Tr of those xi’s
where ri = 1; otherwise, B outputs a random bit. Then B
has correlation O(ε/

√
k) of predicting 〈r, s〉. So applying

the Goldreich-Levin algorithm A with oracle B gives, with
probability Ω(ε2/k), the string s. Thus, the combination
C = AB is a circuit that Ω(ε3/k) computes f2k.

We then apply Theorem 1 to C.

This immediately gives us a polynomial-time approxi-
mate list-decoding of the k-truncated Hadamard code.

Theorem 12. For any polynomial p, there is a randomized
algorithm A with the following properties. Let msg be any
N -bit string, and let codemsg be its k truncated Hadamard
code. Let B be any predicate of nk bit inputs, so that
B[v] = (codemsg)v for at least 1/2+ε fraction of positions
v, where ε ≥ p(1/k). Then the algorithm A, given oracle
B, outputs with high probability a list of at most poly(1/ε)
strings m′ such that there is at least one m′ on the list that
agrees with msg in at least 1−ρ fraction of positions, where
ρ = O(k−0.1). The running time of the algorithm A is at
most poly(N, 1/ε).

4.2 Uniform hardness amplification in
PNP‖

We say that a Boolean function family f is δ-hard with
respect to probabilistic polynomial-time algorithms if any
such algorithm computes f correctly on at most 1− δ frac-
tion of n-bit inputs, where δ is some function of the input
size n. Similarly we can define hardness with respect to
probabilistic polynomial-time algorithms using advice. We
use the model of probabilistic algorithms taking advice as
defined in [29]: the advice may depend on the internal ran-
domness of the algorithm but is independent of the given
input.

Lemma 10 immediately gives us hardness amplification
for probabilistic algorithms with small amount of advice.

Lemma 13. Suppose f : {0, 1}n → {0, 1} is Boolean
function family such that, for some constant c, f is 1/nc-
hard with respect to any probabilistic polynomial-time al-
gorithm with O(log n)-size advice. Then the function f⊕

k

,
for k = n11c, cannot be (1/2 + 1/nd)-computed by any
probabilistic polynomial-time algorithm for any d.

Proof. Given a probabilistic algorithm (1/2+ε)-computing
the XOR function f⊕

k

, we apply the algorithm of
Lemma 10 to it poly(1/ε) times. This gives us a list
of poly(1/ε) Boolean circuits such that, with probability
exponentially close to 1, at least one of the circuits on
the list (1 − δ)-computes f . The advice string of size
log poly(1/ε) = O(log 1/ε) can then be used to identify
the correct circuit on the list.

Logarithmic advice can sometimes be eliminated. For
functions in NP, we can use the average-case search-to-
decision reduction due to Ben-David, Chor, Goldreich, and
Luby [5] to obtain the following lemma, also used by [28].

Lemma 14. Suppose there is a language L ∈ NP and a
constant c such that L is 1/nc-hard with respect to prob-
abilistic polynomial-time algorithms. Then there is a lan-
guage L′ ∈ NP and a constant d such that L′ is 1/nd-hard
with respect to probabilistic polynomial-time algorithm tak-
ing O(log n) bits of advice.

Combining Lemma 13 and Lemma 14, we obtain the fol-
lowing.

Theorem 15. Suppose there is a Boolean function family
f ∈ NP and a constant c such that f is 1/nc-hard with
respect to probabilistic polynomial-time algorithms. Then
there is a Boolean function family g ∈ PNP‖ that cannot be
computed by any probabilistic polynomial-time algorithm
on more that 1/2+1/nd fraction of inputs, for any constant
d.

Finally, we observe that the existence of a hard function
in PNP‖ implies the existence of a hard function in NP, and
so Theorem 15 can be used to achieve uniform hardness
amplification in PNP‖ .

Theorem 16. Suppose there is a Boolean function family
f ∈ PNP‖ and a constant c such that f is 1/nc-hard with
respect to probabilistic polynomial-time algorithms. Then
there is a Boolean function family g ∈ PNP‖ that cannot be
computed by any probabilistic polynomial-time algorithm
on more that 1/2+1/nd fraction of inputs, for any constant
d.

The proof of the above Theorem is given in the full ver-
sion of the paper.



Trevisan [28] gives uniform hardness amplification for
NP: If NP contains a language that is 1/poly(n)-hard
with respect to probabilistic polynomial-time algorithms,
then NP contains a language that is (1/2 − 1/ logα n)-
hard, for some constant α. Our Theorem 16 achieves much
better hardness amplification: from 1/poly(n)-hardness to
(1/2 − 1/nd)-hardness for any d. However, it only applies
to the class PNP‖ rather than NP.

We observe that it is also possible to prove a “scaled-
up” version of Theorem 16 where the hardness is against
2no(1)

-time probabilistic algorithms, and the amplification
goes from hardness 1/nc to 1/2− 2−no(1)

.

5 Concluding remarks

The direct product is a generic construction widely used
in complexity theory and coding theory. For instance, Alon
et el. [1] used (a derandomized version of) the direct prod-
uct construction to obtain error-correcting codes with large
distance from codes with small distance. The simplicity
of this purely combinatorial construction allowed for the
subsequent development of linear-time encodable and list-
decodable codes [12]; this kind of efficiency appears to be
impossible to achieve using algebra-based codes. The direct
product construction on graphs was used by Reingold, Vad-
han, and Wigderson [22] to obtain large expander graphs
from smaller ones; this simple graph operation was then
combined with an ingenious method to reduce the degree
of the new graph while preserving its expansion proper-
ties, leading to a beautiful combinatorial construction of
arbitrarily large expanders. A derandomized direct prod-
uct construction similar to that of [1] was used in a recent
breakthrough result of Dinur [7] as a way to amplify the
“unsatisfiability” of unsatisfiable cnf formulas, which led to
a significantly simpler new proof of the famous PCP The-
orem. Again, the transparent combinatorial nature of the
direct product construction played a major role in getting
this simple proof.

In this paper, motivated by the complexity-theoretic ap-
plications to hardness amplification, we have studied the di-
rect product construction as a tool for obtaining locally ap-
proximately list-decodable error-correcting codes. We im-
proved the previously known decoding algorithms, achiev-
ing optimal running time and list size for decoding from a
corrupted received word when the amount of corruption is
less than 1− ε for a “large” ε. As an immediate application,
this gives a strong average-case hardness amplification for
PNP‖ with respect to BPP algorithms.

We hope that our efficient list-decoding algorithm for the
direct product codes will also be useful for getting strong
hardness amplification within NP. To this end, it would suf-
fice to construct an efficiently approximately list-decodable
monotone binary code where every bit of the codeword is a

monotone Boolean function of the message, and to concate-
nate our direct product code with such a monotone code.
This direction will be pursued in the future work.
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A Proof of Lemma 3

For the proof, we will use the following result from in-
formation theory which relates statistical distance from the
uniform distribution and the entropy deficiency; see, e.g.,
[6, Lemma 12.6.1].

Lemma 17. Let P be any probability distribution over
{0, 1}n and let U be the uniform distribution over {0, 1}n.
Then ‖P − U‖2

1 6 (2 ln 2)(n − H(P )), where H is the
Shannon entropy.

Proof of Lemma 3. Let X̄ = (X1, . . . , Xm) be random
variables drawn according to the uniform distribution over
the set G. Let r ∈ [m] be a uniformly distributed random
variable. Consider the random variable X = Xr. We will
argue that the distribution of X is statistically close to the
uniform distribution U .

First, observe that X = Xr is distributed according
to the average of the distributions of X1, . . . , Xm, i.e.,
1
m

∑m
i=1 Xi. Thus, H(X) = H( 1

m

∑m
i=1 Xi). By the con-

cavity of the entropy function, we obtain

H(X) >
1
m

m∑
i=1

H(Xi).

By the independence bound on entropy, the sum of en-
tropies is lowerbounded by the joint entropy, and so we get

H(X) >
1
m

H(X1, . . . , Xm).

Since X̄ = (X1, . . . , Xm) is uniformly distributed over G,
its Shannon entropy is exactly log2

1
|G| = mn− log2(1/ε).

Combining this with the last lower bound on H(X), we get

H(X) > n− log2 ε−1

m
.

Finally, we use Lemma 17 above to conclude that

‖X − U‖1 6

√
(2 ln 2)

log2 ε−1

m
.

Since the statistical distance between X and U is half of the
`1 norm above, we get the claimed bound.


