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Motivation: Randomness in Computation

@ "Does randomness helps in making computation
efficient?”

@ Universal derandomization:

@ Deterministic Turing machine for any
randomized one.

@ Disadvantage: Conditioned on the existence
of problems which are very hard to
compute on average. Involves Direct
Product Theorems.

@ Consider restricted models of computation/
classes of functions.



Halfspaces

(also known as Linear Threshold Functions)

@ A halfspace is a function h:{+1,-1}" -> {+1,-1}

@ h(x) = sign(wi X1 + W2 X2 + ... + Wq-Xn - O),
where wj,...,wn,© € R

® Studied in:

@ Machine Learning:
winnow, perceptron

g @ ‘Q = @ Complexity Theory:
S

NP c? halfspaces of
halfspaces

+1 @ @ +1 @ Social Choice Theory:

Weighted voting




Halfspaces: Examples

@ MAJORITY(x) = sign(x; + X2 + ... + Xn)
@ Wi=W2=...=Wp=l, O=0

@ AND(x) = sign(xi + X2 +..+ Xn - N + 1/2)
@ Wi=W3=...=Wp=1, O = (n-1/2)

@ MAX-OR-BIT(x) := If xi1=+1 then +1; else if x2=-1
then -1; else if x3=+1 then +1; else...

@ MAX-OR-BIT(x) = sign(2"x; - 2"!x2 + 2"%x3 - ...)

@ Any representation with intfeger weights needs
weights of exponential magnitude.



Bounded Independence

@ A distribution D over {-1,+1}"is called k-wise
independent if its projection on any k indices
is uniform over §{-1,+1}X

-1, -1, -1, +1
-1, -1, +1, -1
-1, +1, -1, +1 @ Example: This distribution over
1 Pl Nl {-1,+1}* is 1,2-wise independent

+1, -1, -1, -1 (but not 3,4-wise independent).




Fooling a Function

@ A distribution D over {-1,+1}" is said to fool a
function h:{-1,+1}"->¢-1,+1} with error € if
|Ex<-D[h(x)] = Ex<-U[h(x)]| i
where U is the uniform distribution over {-1,+1}".

@ Example:

D (nis odd) perfectly fools MATORITY=
21, ZE S ] sign(Xi+...4+Xn)
+1,+41,+1,...,+1



Bounded Independence
Fools Halfspaces

@ Main Theorem(This work): Any k-wise
independent distribution fools any halfspace
with error €, provided k > (C/€2?):log?(1/¢),
where C>1 is some fixed constant.

® Observations:

@ The result is interesting only when € > 1/4/n.
@ The result is tight up to log(l/€) factors.

@ There exists a halfspace and a k-wise
independent distribution D with

k<1/€% such that D does not fool this
halfspace with error &.




Interesting Implications

Pseudorandom Generators for Halfspaces

@ A pseudorandom generator for halfspaces is
an efficiently computable function
G:{-1,+1}5->1-1,+1}" such that s<<n and for any
halF5pace h, Ex<—{-1,+1}5[h(G(X))] = Ex«—{-1,+1}"[h(X)].

@ G fools h with error € if the above
expectations differ by at most .

3 [Alon-Babai-Itai'86; Chor-Goldreich'85]:
There is an explicit generator
G:{-1,+1}k lam—{_1 +1}" such that the output
of G is a k-wise independent distribution.



Interesting Implications

Pseudorandom Generators for Halfspaces

@ Corollary of our main theorem: There is a
pseudorandom generator G:{-1,+1§5->{-1,+1}"
such that G fools any halfspace with error
€ and s = O((1/€?)-log¥(1/€)-log(n)).

® Observations:

@ First such generatfor for general halfspaces.

@ [Nisan'92]: Implies a generator (s=log®(n)) for
a subset of halfspaces where vi, Iwﬂzpoly(n).

@ [Bazzi'07, Razborov'08, Braverman 09]:
Generators for constant depth circuits.



Interesting Implications

Derandomization of Berry-Esseen Central Limit Theorem

® Theorem[Berry-Esseen]: Let Y = 2w xi, where
xic$-1,4+1}. If Zw;2 = 1 and vi,lwil < €, then
vieR, |Pri- [Y sot] = D) < &,
where is the uniform distribution over {-1,+1}" and

® is the cumulative distribution function of the
standard normal N(O,1).

® Theorem[Our result]: Let Y = 2w;-X;, where
xic§-1,+1}. If 2w;2 = 1 and Vi, lwi < €, then
vieR, IPri [Y < 1] - ©(%)| < &,
where is any k-wise independent distribution over
§-1,+1}" and ® is the cumulative distribution function
of the standard normal N(O,1) provided

k > (C/€2)-log¥(1/¢).







Proof Sketch

@ Main Theorem: Any k-wise independent distribution fools any
halfspace with error €, provided k > (C/€?)log%(1/€), where C>1
is some fixed constant.

@ For halfspace h(x) := sign(wixi+...+Wnxn-0)

@ WLOG assume that 2w® = 1

@ For simplicity of discussion we assume O = O.
@ Proof by case analysis:

@ case (a): Vi, lwil < €. Any h with this property
IS called €-

@ case (b): 3i, |wil > €.



Proof Sketch

~=4 Sandwiching Polynomials ==

/ ,‘&Jr;‘{/" - 7. gf”/

@ Fact: Any k-wise independent distribution
fools a function f:{-1,+41}"->{-1,+1} with error
€ if and only if there are two multivariate
polynomials qu and q| such that:

1. degree(qu), degree(q) < K,
2.vx € {-1,+1}", qi(x) < f(x) < qu(x),

3.Exul[qu(x) - f(x)] < €, and
Ex—u[f(Xx) - ql(x)] SOE




Proof Sketch

@ Case(a): h is e-reqular (vi, lwil < €)

s

-4 Show that the sandwiching polynomials
exist.

@ Case (b): h is not e-reqular (3i, Iwil > €)

@ Reduce it to case (a).



Proof Sketch: (Case (a): h is e-regular)

h(x) = sign(w-x)

\ W- X
o1

- If there is a univariate polynomial P of bounded degree
that approximates the sign function, then we can perhaps

+1

\4

plug in w-x into P to get our sandwiching polynomials.



Proof Skefch: (Case (a): h is e-regular)

p(w-x)

@ Properties of the poly P(1):
(obtained using Jackson
+Chebyshev+amplification)

@ degree(P) ~ 1/€2log?(1/¢€)

@ teRl: P(t) e [-1, 1+¢€]

o teR2: P(1)-sign(t) < €

: : : @ teR3: P(t) does not
R3 BN )7 Ny R2 R3 grow too fast.
: iR1| :




Proof Skefch: (Case (a): h is e-regular)

(W-x/Z) @ Let us try polynomials:
@ qu:=P(w-x/zZ)

o q :=-P(-w-x/Z)

@ Properties for sandwiching:

[v]1. deg(q).deg(qu) ~
1/€2log?(1/€)

[V12. vx,q(x)<sign(w-x)<qu(x)

3. Exlqu(x) - sign(w-x)] < &,
Ex[sign(w-x) - qi(x)] < €

® We will show
Ex[qu(x) - sign(w-x)] < «.
Ex[sign(w-x) - qi(x)] < €
follows from symmetry.

5 Rz R




Proof S!<e’rch: (Case (a): h is e-regular)

@ Lemma:E.[qu(x)-sign(w-x)]< €.

(w-x/Z) .
@ Proof: case analysis based

on the value of y = w-x/Z

@ Yy e R2:
- qu(x)-sign(w-x) < «.

So, the contribution to
the expectation is < €.

R R3




Proof Ske’rch: (Case (a): h is e-regular)

(w-x/Z)

R3

R2

RI
\ 4

R2

R3

o Lemma:Ex[qu(x)-sign(w-x)]< €.

@ Proof: case analysis based
on the value of y = w-x/Z

@ Yy e R2:
- qu(x)-sign(w-x) < .
So, the contribution to
the expectation is < E.

@ Yy e R3:
qu(x)-sign(w-x) grows as
lyl grows larger but ®(y)
diminishes (by Hoeffding).
Hoeffding overshadows
Ps growth.




Proof Sketch

(Case (a): h is g-regular)

@ Theorem (follows from Berry-Esseen CLT):

Let w = (wy,...,wn) such that 2w;? = 1 and
vi, lwil < €. Then

vteR, |Prycu[w:-x < 1] - d(#)| < &,
where O is the cumulative distribution
function of the standard normal N(O, 1).

O(¢€)




Proof Ske’rch: (Case (a): h is e-regular)

& Lemma:Ex[qu(x)-sign(w-x)]< €.

O(e) (w-x/Z)

@ Proof: case analysis based on
the value of y = w-x/Z

@ Yy e R2:
- qu(x)-sign(w-x) < €.

So, the contribution to the
expectation is < €.

@ Yy e R3:
qu(x)-sign(w-x) grows as
lyl grows larger but ®(y)
diminishes (by Hoeffding).
Hoeffding overshadows P's
growth.

@ Yy e Rl
- gu(x)-sign(w-x) < (2+¢)
- Pryly € R1] = O(g)
(from Berry-Esseen CLT)

So, the contribution to the
R3 L RE Rl]" R2 R3 expectation is O(g).




Proof Sketch:

..Where are we in the proof?

@ We have shown the existence of sandwiching
polynomials for halfspaces which are e-regular.

@ This implies that any k-wise independent

distribution fools any &-regular halfspace,
provided k > (C/€2)-log?(1/¢).

@ We need to show case(b), i.e., halfspaces that
are not &-regular.



Proof Sketch

(Case (b): h is not g-regular)

@ Based on structural properties of halfspaces
studied in [Servedio 07].

& WLOG let |wil 2 Iwal 2 ... > |wil.

@ Definition (Critical Index): This is defined to
be the smallest index I such that
lwil < €01, O1= (WI2 + ... + an)

@ For €-regular halfspaces I = 1.



Proof Sketch

(Case (b): h is not g-regular)

@ Let head = {X1,...,X1_1} and tail = {XI,...,Xn}.

@ Claim 1: For any fixing of head variables, the
halfspace over the tail variables
h'(x1)= (W1 X1 +...4Wn Xn + On), Ou=(W1- X14...4Wi_1* X11)
IS €-reqular.

@ Proof: From the definition of critical index
Iwnlglwnoilg...glwil € € (wi? + ...+wn2).
The claim follows from scaling.




Proof Sketch

(Case (b): h is not g-regular)
@ Let L = (8/€2)-log?(10/¢).
@ Claim 2: If the critical index I < L for a halfspace

h, then (L + k)-wise independence fools h with
error &, where k > (C/€2)-log%(1/€).

@ Proof:
(1) For any (L+k)-wise independent distribution D,
conditioned on any fixed value of the head
variables, the projection of D on the fail
variables is at least k-wise independent.
(2) For any fixing of the head variables the
halfspace on tail variables is €-regular:




PI"OOF SI(e'I'Ch (Case (b): h is not g-regular)

@ Claim 3: If the critical index I > L for a halfspace

h, then (L + 2)-wise independence fools h with
error E.

@ Proof: For almost all fixings of the first L
variables, the remaining variables hardly ever
flips the value of the sign. (by Chernoff for

uniform and by Chebychev for (L+2)-wise
independence).

magnitude of weights
decreases quickly
I I
r .(. T




Proof Sketch: Summary

@ Case(a): If h is e-regular then any k-wise
independent distribution fools h with error g,
provided k > (C/€2)-log?(1/¢).

@ Case(b): If h is not e-reqular.
Let L = (8/€%) log*(10/€)

@ If I < L, then any (L+k)-wise independent
distribution fools h with error &.

@ If I > L, then any (L+2)-wise independent
distribution fools h with error €.

@ So, any (c/€?)-log?(1/€)-wise independent
distribution fools any halfspace with error .



Future Directions

@ Polynomial threshold functions
@ Power of bounded independence [DKN'09]

@ Pseudorandom generators [MZ'09, LEY'09]









