Bounded Independence Fools Halfspaces

Ragesh Jaiswal (Columbia University)

joint work with:

- Ilias Diakonikolas (Columbia University)
- Parikshit Gopalan (Microsoft Research)
- Rocco Servedio (Columbia University)
- Emanuele Viola (Northeastern University)

Motivation: Randomness in Computation

- Does randomness helps in making computation efficient?"
- Oniversal derandomization:
 - Deterministic Turing machine for <u>any</u> randomized one.
 - Disadvantage: Conditioned on the existence of problems which are very hard to compute on average. Involves Direct Product Theorems.
- Consider restricted models of computation/ classes of functions.

Halfspaces

(also known as Linear Threshold Functions)

A halfspace is a function h: $\{+1,-1\}^n \rightarrow \{+1,-1\}$

Studied in:

- Machine Learning: winnow, perceptron
- Ø Complexity Theory: NP ⊂? halfspaces of halfspaces
- Social Choice Theory: Weighted voting

Halfspaces: Examples

MAJORITY(x) = sign(x₁ + x₂ + ... + x_n)

 \otimes w₁=w₂=...=w_n=1, Θ =0

O AND(x) = sign(x₁ + x₂ + ... + x_n - n + 1/2)

 \otimes w₁=w₂=...=w_n=1, Θ = (n-1/2)

MAX-OR-BIT(x) := If $x_1=+1$ then +1; else if $x_2=-1$ then -1; else if $x_3=+1$ then +1; else...

 $MAX-OR-BIT(x) = sign(2^{n}x_{1} - 2^{n-1}x_{2} + 2^{n-2}x_{3} - ...)$

Any representation with integer weights needs weights of exponential magnitude.

Bounded Independence

A distribution D over {-1,+1}ⁿ is called k-wise independent if its projection on <u>any</u> k indices is uniform over {-1,+1}^k

 $\begin{array}{c} -1, \ -1, \ -1, \ +1 \\ -1, \ -1, \ +1, \ -1 \\ -1, \ +1, \ -1, \ +1 \\ -1, \ +1, \ -1, \ +1 \\ +1, \ -1, \ -1, \ -1 \\ +1, \ +1, \ +1, \ +1 \\ +1, \ +1, \ +1, \ +1 \end{array}$

 <u>Example</u>: This distribution over {-1,+1}⁴ is 1,2-wise independent (but not 3,4-wise independent).

Fooling a Function

 A distribution D over {-1,+1}ⁿ is said to fool a function h:{-1,+1}ⁿ->{-1,+1} with error ε if
 |E_{x<-D}[h(x)] - E_{x<-U}[h(x)]| ≤ ε,
 where U is the uniform distribution over {-1,+1}ⁿ.

Seample:

D (n is odd) -1,-1,-1,...,-1 +1,+1,+1,...,+1

perfectly fools M

 $MAJORITY = sign(x_1 + ... + x_n)$

Bounded Independence Fools Halfspaces

Main Theorem(This work): Any k-wise independent distribution fools any halfspace with error ε, provided k ≥ (C/ε²)·log²(1/ε), where C>1 is some fixed constant.

Observations:

- The result is interesting only when $\epsilon \ge 1/\sqrt{n}$.
- The result is tight up to $log(1/\epsilon)$ factors.
 - There exists a halfspace and a k-wise independent distribution D with k<1/ε² such that D does not fool this halfspace with error ε.

Interesting Implications Pseudorandom Generators for Halfspaces

 A pseudorandom generator for halfspaces is an efficiently computable function
 G:{-1,+1}^s->{-1,+1}ⁿ such that s<<n and for any halfspace h, E_{x←{-1,+1}^s}[h(G(x))] ≈ E_{x←{-1,+1}ⁿ}[h(x)].

 \odot G fools h with error ϵ if the above expectations differ by at most ϵ .

 [Alon-Babai-Itai'86; Chor-Goldreich'85]: There is an explicit generator G:{-1,+1}^{k·log(n)}→{-1,+1}ⁿ such that the output of G is a k-wise independent distribution.

Interesting Implications Pseudorandom Generators for Halfspaces

• Corollary of our main theorem: There is a pseudorandom generator $G:\{-1,+1\}^s -> \{-1,+1\}^n$ such that G fools any halfspace with error ϵ and $s = O((1/\epsilon^2) \cdot \log^2(1/\epsilon) \cdot \log(n))$.

Observations:

- First such generator for general halfspaces.
- [Nisan'92]: Implies a generator (s=log²(n)) for a subset of halfspaces where ∀i, |w_i|=poly(n).
- [Bazzi'07, Razborov'08, Braverman'09]: Generators for constant depth circuits.

Interesting Implications Derandomization of Berry-Esséen Central Limit Theorem Theorem [Berry-Esséen]: Let $Y = \sum w_i \cdot x_i$, where $x_i \in \{-1,+1\}$. If $\sum w_i^2 = 1$ and $\forall i, |w_i| \leq \epsilon$, then $\forall t \in \mathbb{R}, |\Pr_{x \leftarrow u}[Y \leq t] - \Phi(t)| \leq \varepsilon,$ where U is the <u>uniform distribution</u> over $\{-1,+1\}^n$ and Φ is the cumulative distribution function of the standard normal N(0,1). Theorem[Our result]: Let Y = $\sum w_i \cdot x_i$, where $x_i \in \{-1,+1\}$. If $\sum w_i^2 = 1$ and $\forall i, |w_i| \leq \epsilon$, then $\forall t \in \mathbb{R}, |\Pr_{x \leftarrow D}[Y \leq t] - \Phi(t)| \leq \varepsilon,$ where D is any <u>k-wise independent distribution</u> over $\{-1,+1\}^n$ and Φ is the cumulative distribution function of the standard normal N(0,1) provided $k \geq (C/\epsilon^2) \cdot \log^2(1/\epsilon).$

Main Theorem: Any k-wise independent distribution fools any halfspace with error ε , provided k $\geq (C/\varepsilon^2)\log^2(1/\varepsilon)$, where C>1 is some fixed constant.

For halfspace h(x) := sign(w₁x₁+...+w_nx_n-Θ)
WLOG assume that Σw_i² = 1.
For simplicity of discussion we assume Θ = 0.
Proof by case analysis:

case (a): ∀i, |w_i| ≤ ε. Any h with this property is called ε-regular.

 \odot case (b): $\exists i, |w_i| > \epsilon$.

Sandwiching Polynomials

- Fact: Any k-wise independent distribution fools a function f:{-1,+1}ⁿ->{-1,+1} with error
 ε if and only if there are two multivariate polynomials q_u and q_l such that:
 - 1. degree(q_u), degree(q_l) $\leq k$, 2. $\forall x \in \{-1,+1\}^n$, q_l(x) $\leq f(x) \leq q_u(x)$, 3. $E_{x \leftarrow u}[q_u(x) - f(x)] \leq \varepsilon$, and $E_{x \leftarrow u}[f(x) - q_l(x)] \leq \varepsilon$.

Case(a): h is ε-regular (∀i, |w_i| ≤ ε)
 Show that the sandwiching polynomials exist.
 Case (b): h is not ε-regular (∃i, |w_i| ≥ ε)

Reduce it to case (a).

- If there is a <u>univariate</u> polynomial P of bounded degree that approximates the sign function, then we can perhaps plug in $\mathbf{W} \cdot \mathbf{x}$ into P to get our sandwiching polynomials.

p(**w** · x)

- Properties of the poly P(†):
 (obtained using Jackson
 +Chebyshev+amplification)
 - degree(P) ~ $1/\epsilon^2 \log^2(1/\epsilon)$
 - 𝔅 <u>t∈R1</u>: P(t) ∈ [−1, 1+ε]
 - <u>t∈R2</u>: P(t)-sign(t) ≤ ε
 - <u>t∈R3</u>: P(t) does not
 grow too fast.

Δemma: $E_x[q_u(x) - sign(w \cdot x)] ≤ ε.$

- Proof: case analysis based on the value of $y = w \cdot x/Z$
 - y ∈ R2:
 q_u(x)-sign(w · x) ≤ ε.
 So, the contribution to the expectation is ≤ ε.

- Proof: case analysis based on the value of $y = w \cdot x/Z$
 - y ∈ R2:
 q_u(x)-sign(w · x) ≤ ε.
 So, the contribution to the expectation is ≤ ε.

 y ∈ R3: q_u(x)-sign(w·x) grows as lyl grows larger but Φ(y) diminishes (by Hoeffding). Hoeffding overshadows P's growth.

 Theorem (follows from Berry-Esséen CLT): Let w = (w₁,...,w_n) such that Σw_i² = 1 and ∀i, |w_i| ≤ ε. Then
 ∀t∈R, |Pr_{x<-U}[w·x ≤ t] - Φ(t)| ≤ ε, where Φ is the cumulative distribution function of the standard normal N(0, 1).

Proof: case analysis based on the value of y = w·x/Z

y ∈ R2:
 q_u(x)-sign(w·x) ≤ ε.
 So, the contribution to the expectation is ≤ ε.

 y ∈ R3: q_u(x)-sign(w·x) grows as lyl grows larger but Φ(y) diminishes (by Hoeffding). Hoeffding overshadows P's growth.

 $\mathbf{o} \mathbf{y} \in \mathsf{R1}:$

 $-q_u(x)-sign(\mathbf{w} \cdot x) \leq (2+\varepsilon)$

- $\Pr_x[y \in R1] = O(\epsilon)$

(from Berry-Esséen CLT) So, the contribution to the expectation is $O(\epsilon)$.

Proof Sketch: ...where are we in the proof?

- We have shown the existence of sandwiching polynomials for halfspaces which are ε-regular.
- This implies that any k-wise independent distribution fools any ϵ -regular halfspace, provided k $\geq (C/\epsilon^2) \cdot \log^2(1/\epsilon)$.

We need to show case(b), i.e., halfspaces that
 are not ε-regular.

Proof Sketch (Case (b): h is not ε-regular)

Based on structural properties of halfspaces studied in [Servedio'07].

 \oslash WLOG let $|w_1| \ge |w_2| \ge ... \ge |w_n|$.

Definition (Critical Index): This is defined to be the smallest index I such that $|w_{I}| \leq \varepsilon \cdot \sigma_{I}, \quad \sigma_{I} = (w_{I}^{2} + ... + w_{n}^{2})$

Φ For ε-regular halfspaces I = 1.

Proof Sketch (Case (b): h is not ε-regular)

Det head = $\{x_1, \dots, x_{I-1}\}$ and tail = $\{x_1, \dots, x_n\}$.

Claim 1: For any fixing of head variables, the halfspace over the tail variables
 h'(x_T)= (w_I·x_I +...+w_n·x_n + Θ_H), Θ_H=(w₁·x₁+...+w_{I-1}·x_{I-1})

 is ε-regular.

 Proof: From the definition of critical index
 |w_n|≤|w_{n-1}|≤...≤|w_I| ≤ ε · (w_I² + ...+w_n²).
 The claim follows from scaling.

Proof Sketch (Case (b): h is not ϵ -regular) • Let L = $(8/\epsilon^2) \cdot \log^2(10/\epsilon)$.

Other Claim 2: If the critical index I ≤ L for a halfspace h, then (L + k)-wise independence fools h with error ε, where k ≥ $(C/ε^2) \cdot \log^2(1/ε)$.

Proof:

(1) For any (L+k)-wise independent distribution D, conditioned on any fixed value of the head variables, the projection of D on the tail variables is at least k-wise independent.
 (2) For any fixing of the head variables the halfspace on tail variables is ε-regular.

Claim 3: If the critical index I > L for a halfspace
 h, then (L + 2)-wise independence fools h with
 error ε.

Proof: For almost all fixings of the first L variables, the remaining variables hardly ever flips the value of the sign. (by Chernoff for uniform and by Chebychev for (L+2)-wise independence).

> magnitude of weights decreases quickly

Proof Sketch: Summary

Orregular then any k-wise independent distribution fools h with error ε, provided k ≥ $(C/ε^2) \cdot \log^2(1/ε)$.

Solution Case(b): If h is not ϵ -regular.
Let L = $(8/\epsilon^2) \cdot \log^2(10/\epsilon)$

 If I ≤ L, then any (L+k)-wise independent distribution fools h with error ε.

If I > L, then any (L+2)-wise independent distribution fools h with error ε.

So, any $(c/\epsilon^2) \cdot \log^2(1/\epsilon)$ -wise independent distribution fools any halfspace with error ϵ .

Future Directions

Polynomial threshold functions
 Power of bounded independence [DKN'09]
 Pseudorandom generators [MZ'09, LEY'09]

Questions?

Thank You