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Motivation: Randomness in Computation

“Does randomness helps in making computation 
efficient?”

Universal derandomization: 

Deterministic Turing machine for any 
randomized one.

Disadvantage: Conditioned on the existence 
of problems which are very hard to 
compute on average. Involves Direct 
Product Theorems.

Consider restricted models of computation/
classes of functions.



Halfspaces
(also known as Linear Threshold Functions)

A halfspace is a function h:{+1,-1}n -> {+1,-1}

h(x) = sign(w1⋅x1 + w2⋅x2 + … + wn⋅xn - Θ), 
where w1,…,wn,Θ ∈ R 
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Studied in:

Machine Learning: 
winnow, perceptron

Complexity Theory: 
NP ⊂? halfspaces of 
halfspaces

Social Choice Theory: 
Weighted voting



Halfspaces: Examples

MAJORITY(x) = sign(x1 + x2 + … + xn)

w1=w2=…=wn=1, Θ=0

AND(x) = sign(x1 + x2 +...+ xn - n + 1/2)

w1=w2=…=wn=1, Θ = (n-1/2)

MAX-OR-BIT(x) := If x1=+1 then +1; else if x2=-1 
then -1; else if x3=+1 then +1; else…

MAX-OR-BIT(x) = sign(2nx1 - 2n-1x2 + 2n-2x3 - ...)

Any representation with integer weights needs 
weights of exponential magnitude.



Bounded Independence
A distribution D over {-1,+1}n is called k-wise 
independent if its projection on any k indices 
is uniform over {-1,+1}k
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Example: This distribution over 
{-1,+1}4 is 1,2-wise independent 
(but not 3,4-wise independent).



Fooling a Function
A distribution D over {-1,+1}n is said to fool a 
function h:{-1,+1}n->{-1,+1} with error ε if
          |Ex<-D[h(x)] - Ex<-U[h(x)]| ≤ ε,
where U is the uniform distribution over {-1,+1}n.

-1,-1,-1,…,-1
+1,+1,+1,…,+1

D (n is odd) perfectly fools MAJORITY=
sign(x1+...+xn)

Example:



Bounded Independence 
Fools Halfspaces

Main Theorem(This work): Any k-wise 
independent distribution fools any halfspace 
with error ε, provided k ≥ (C/ε2)⋅log2(1/ε), 
where C>1 is some fixed constant.

Observations:

The result is interesting only when ε ≥ 1/√n.

The result is tight up to log(1/ε) factors.
There exists a halfspace and a k-wise 
independent distribution D with
k<1/ε2 such that D does not fool this 
halfspace with error ε.



Interesting Implications
Pseudorandom Generators for Halfspaces

A pseudorandom generator for halfspaces is 
an efficiently computable function 
G:{-1,+1}s->{-1,+1}n such that s<<n and for any 
halfspace h, Ex←{-1,+1}s[h(G(x))] ≈ Ex←{-1,+1}n[h(x)].

G fools h with error ε if the above 
expectations differ by at most ε.

[Alon-Babai-Itai’86; Chor-Goldreich‘85]: 
There is an explicit generator 
G:{-1,+1}k⋅log(n)→{-1,+1}n such that the output 
of G is a k-wise independent distribution.



Interesting Implications
Pseudorandom Generators for Halfspaces

Corollary of our main theorem: There is a 
pseudorandom generator G:{-1,+1}s->{-1,+1}n 
such that G fools any halfspace with error 
ε and s = O((1/ε2)⋅log2(1/ε)⋅log(n)).

Observations:

First such generator for general halfspaces.

[Nisan’92]: Implies a generator (s=log2(n)) for 
a subset of halfspaces where ∀i, |wi|=poly(n).

[Bazzi’07, Razborov’08, Braverman’09]: 
Generators for constant depth circuits.



Interesting Implications
Derandomization of Berry-Esséen Central Limit Theorem

Theorem[Berry-Esséen]: Let Y = Σwi⋅xi, where 
xi∈{-1,+1}. If Σwi2 = 1 and ∀i,|wi| ≤ ε, then
          ∀t∈R, |Prx←U[Y ≤ t] - Φ(t)| ≤ ε,
where U is the uniform distribution over {-1,+1}n and 
Φ is the cumulative distribution function of the 
standard normal N(0,1).

Theorem[Our result]: Let Y = Σwi⋅xi, where 
xi∈{-1,+1}. If Σwi2 = 1 and ∀i,|wi| ≤ ε, then
          ∀t∈R, |Prx←D[Y ≤ t] - Φ(t)| ≤ ε,
where D is any k-wise independent distribution over 
{-1,+1}n and Φ is the cumulative distribution function 
of the standard normal N(0,1) provided 
k ≥ (C/ε2)⋅log2(1/ε).



Proof Sketch



Proof Sketch
Main Theorem: Any k-wise independent distribution fools any 
halfspace with error ε, provided k ≥ (C/ε2)log2(1/ε), where C>1 
is some fixed constant.

For halfspace h(x) := sign(w1x1+...+wnxn-Θ)

WLOG assume that Σwi2 = 1.

For simplicity of discussion we assume Θ = 0.

Proof by case analysis:

case (a): ∀i, |wi| ≤ ε. Any h with this property 
is called ε-regular.

case (b): ∃i, |wi| > ε.



Proof Sketch
Sandwiching Polynomials

Fact: Any k-wise independent distribution 
fools a function f:{-1,+1}n->{-1,+1} with error 
ε if and only if there are two multivariate 
polynomials qu and ql such that:

1. degree(qu), degree(ql) ≤ k,

2.∀x ∈ {-1,+1}n, ql(x) ≤ f(x) ≤ qu(x), 

3.Ex←U[qu(x) - f(x)] ≤ ε, and 
Ex←U[f(x) - ql(x)] ≤ ε.



Proof Sketch

Case(a): h is ε-regular (∀i, |wi| ≤ ε)

Show that the sandwiching polynomials 
exist.

Case (b): h is not ε-regular (∃i, |wi| ≥ ε)

Reduce it to case (a).



Proof Sketch: (Case (a): h is ε-regular)

w⋅x

h(x) = sign(w⋅x)
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-1

- If there is a univariate polynomial P of bounded degree 
that approximates the sign function, then we can perhaps 
plug in w⋅x into P to get our sandwiching polynomials.



Proof Sketch: (Case (a): h is ε-regular)

t
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1/2-1/2 -2a

-1+ε

1+ε

P(t)
Properties of the poly P(t): 
(obtained using Jackson
+Chebyshev+amplification)

degree(P) ∼ 1/ε2log2(1/ε)

t∈R1: P(t) ∈ [-1, 1+ε]

t∈R2: P(t)-sign(t) ≤ ε

t∈R3: P(t) does not 
grow too fast. R1 R2R2R3 R3

p(w⋅x)



Proof Sketch: (Case (a): h is ε-regular)

t
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R1 R2R2R3 R3

p(w⋅x/Z) Let us try polynomials:

qu := P(w⋅x/Z)

ql : = -P(-w⋅x/Z)

Properties for sandwiching:

1. deg(ql),deg(qu) ∼
1/ε2log2(1/ε)

2. ∀x,ql(x)≤sign(w⋅x)≤qu(x)

3. Ex[qu(x) - sign(w⋅x)] ≤ ε,
Ex[sign(w⋅x) - ql(x)] ≤ ε

We will show
Ex[qu(x) - sign(w⋅x)] ≤ ε.
Ex[sign(w⋅x) - ql(x)] ≤ ε 
follows from symmetry.

[✔]

[✔]



Proof Sketch: (Case (a): h is ε-regular)
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R1 R2R2R3 R3

p(w⋅x/Z)
Lemma:Ex[qu(x)-sign(w⋅x)]≤ ε.

Proof: case analysis based 
on the value of y = w⋅x/Z

y ∈ R2:
- qu(x)-sign(w⋅x) ≤ ε. 
So, the contribution to 
the expectation is ≤ ε.



Proof Sketch: (Case (a): h is ε-regular)
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R1 R2R2R3 R3

p(w⋅x/Z)
Lemma:Ex[qu(x)-sign(w⋅x)]≤ ε.

Proof: case analysis based 
on the value of y = w⋅x/Z

y ∈ R2:
- qu(x)-sign(w⋅x) ≤ ε. 
So, the contribution to 
the expectation is ≤ ε.

y ∈ R3:
qu(x)-sign(w⋅x) grows as 
|y| grows larger but Φ(y) 
diminishes (by Hoeffding).
Hoeffding overshadows 
P’s growth.



Proof Sketch
(Case (a): h is ε-regular)

Theorem (follows from Berry-Esséen CLT): 
Let w = (w1,…,wn) such that Σwi2 = 1 and 
∀i, |wi| ≤ ε. Then
    ∀t∈R, |Prx<-U[w⋅x ≤ t] - Φ(t)| ≤ ε,
where Φ is the cumulative distribution 
function of the standard normal N(0, 1).

ε

O(ε)



Proof Sketch: (Case (a): h is ε-regular)
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p(w⋅x/Z)
Lemma:Ex[qu(x)-sign(w⋅x)]≤ ε.

Proof: case analysis based on 
the value of y = w⋅x/Z

y ∈ R2:
- qu(x)-sign(w⋅x) ≤ ε. 
So, the contribution to the 
expectation is ≤ ε.

y ∈ R3:
qu(x)-sign(w⋅x) grows as 
|y| grows larger but Φ(y) 
diminishes (by Hoeffding).
Hoeffding overshadows P’s 
growth.

y ∈ R1:
- qu(x)-sign(w⋅x) ≤ (2+ε)
- Prx[y ∈ R1] = O(ε) 
(from Berry-Esséen CLT)
So, the contribution to the 
expectation is O(ε).

O(ε)



Proof Sketch:
...where are we in the proof?

We have shown the existence of sandwiching 
polynomials for halfspaces which are ε-regular.

This implies that any k-wise independent 
distribution fools any ε-regular halfspace, 
provided k ≥ (C/ε2)⋅log2(1/ε).

We need to show case(b), i.e., halfspaces that 
are not ε-regular.



Proof Sketch
(Case (b): h is not ε-regular)

Based on structural properties of halfspaces 
studied in [Servedio’07].

WLOG let |w1| ≥ |w2| ≥ … ≥ |wn|.

Definition (Critical Index): This is defined to 
be the smallest index I such that 
    |wI| ≤ ε⋅σI,   σI = (wI2 + … + wn2)

For ε-regular halfspaces I = 1.



Proof Sketch
(Case (b): h is not ε-regular)

Let head = {x1,…,xI-1} and tail = {xI,…,xn}.

Claim 1: For any fixing of head variables,  the 
halfspace over the tail variables
h’(xT)= (wI⋅xI +...+wn⋅xn + ΘH), ΘH=(w1⋅x1+...+wI-1⋅xI-1)
is ε-regular.

Proof: From the definition of critical index
    |wn|≤|wn-1|≤…≤|wI| ≤ ε⋅(wI2 + …+wn2).
The claim follows from scaling.



Proof Sketch
(Case (b): h is not ε-regular)

Let L = (8/ε2)⋅log2(10/ε).

Claim 2: If the critical index I ≤ L for a halfspace 
h, then (L + k)-wise independence fools h with 
error ε, where k ≥ (C/ε2)⋅log2(1/ε).

Proof: 
(1) For any (L+k)-wise independent distribution D, 
conditioned on any fixed value of the head 
variables, the projection of D on the tail 
variables is at least k-wise independent.
(2) For any fixing of the head variables the 
halfspace on tail variables is ε-regular.



Proof Sketch (Case (b): h is not ε-regular)
Claim 3: If the critical index I > L for a halfspace 
h, then (L + 2)-wise independence fools h with 
error ε.

Proof: For almost all fixings of the first L 
variables, the remaining variables hardly ever 
flips the value of the sign. (by Chernoff for 
uniform and by Chebychev for (L+2)-wise 
independence).

I

L

magnitude of weights 
decreases quickly



Proof Sketch: Summary
Case(a): If h is ε-regular then any k-wise 
independent distribution fools h with error ε, 
provided k ≥ (C/ε2)⋅log2(1/ε).

Case(b): If h is not ε-regular. 
          Let L = (8/ε2)⋅log2(10/ε)

If I ≤ L, then any (L+k)-wise independent 
distribution fools h with error ε.

If I > L, then any (L+2)-wise independent 
distribution fools h with error ε.

So, any (c/ε2)⋅log2(1/ε)-wise independent 
distribution fools any halfspace with error ε.



Future Directions

Polynomial threshold functions

Power of bounded independence [DKN’09]

Pseudorandom generators [MZ’09, LEY’09]



Questions?



Thank You


