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Abstract. Consider a challenge-response protocol where the probabil-
ity of a correct response is at least α for a legitimate user, and at most
β < α for an attacker. One example is a CAPTCHA challenge, where
a human should have a significantly higher chance of answering a single
challenge (e.g., uncovering a distorted letter) than an attacker; another
example is an argument system without perfect completeness. A natu-
ral approach to boost the gap between legitimate users and attackers is
to issue many challenges, and accept if the response is correct for more
than a threshold fraction, for the threshold chosen between α and β. We
give the first proof that parallel repetition with thresholds improves the
security of such protocols. We do this with a very general result about an
attacker’s ability to solve a large fraction of many independent instances
of a hard problem, showing a Chernoff-like convergence of the fraction
solved incorrectly to the probability of failure for a single instance.

Keywords: challenge-response protocols, parallel repetition with thresh-
old, direct product theorem.

1 Introduction

Cryptographic protocols use gaps between the informational and computational
abilities of legitimate users and attackers to distinguish the two. Thus the greater
the gap between the ability of legitimate users to solve a type of problem and
that of attackers, the more useful the problem is. Ideally, a problem should be
reliably easy for legitimate users (in that the chance of failure for legitimate
users should be negligible), but reliably hard for attackers (in that the chance
of the attacker’s success is negligible).

Direct product theorems point out ways to make problems reliably hard for
attackers. The idea is that if an attacker has some chance of failing on a single
challenge, the chance of solving multiple independent challenges should drop
exponentially fast with the number of challenges. Examples of such theorems in
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cryptography include Yao’s theorem that weak one-way functions imply strong
one-way functions ([23]) and results of [4, 6], showing similar drops even when
an attacker cannot know for certain whether a response to a challenge is correct.
Direct product theorems are also important in average-case complexity, circuit
complexity, and derandomization.

While intuitive, such results are frequently non-trivial. One reason for this
is that there are other circumstances where the intuition is incorrect, and many
instances are not proportionally harder. Examples of circumstances where direct
products fail are parallel repetition for multiple round protocols and for non-
verifiable puzzles ([4, 6, 19]).

While standard direct product theorems are powerful, they can only be used
to amplify the gap between legitimate users and attackers if legitimate users
are successful with high probability. The legitimate user’s chance of solving k
independent challenges also drops exponentially, so unless the probability of
failure isn’t much more than 1/k to start, both legitimate users and attackers
will almost certainly fail to solve all of the problems.

For example, a CAPTCHA protocol is meant to distinguish between humans
and programs, usually using a visual challenge based on distorted text with ex-
traneous lines ([2]). While there seems to be a large gap between the abilities of
typical humans and the best current vision algorithms to solve these challenges,
algorithms can solve a non-negligible fraction of the puzzles, and many humans
(including us) fail a non-negligible fraction of the puzzles. [2] prove that sequen-
tial repetition of the protocol increases this gap, and refer to [4] for the “more
complicated” case of parallel repetition. Indeed, the results of [4] (and improved
by [6]) do apply to parallel repetition of CAPTCHA protocols. However, for the
reason above, these results only show that the probability of algorithmic success
decreases with repetitions, not that the gap improves.

An obvious, intuitive solution to this problem is to make many independent
challenges, and accept if the solver is successful on a larger fraction than expected
for an attacker, even if the solver does not succeed on all challenges. Here we
prove that, for a large variety of problems, this approach indeed amplifies the
gap between legitimate users and attackers.

The kind of problems we consider are the weakly verifiable puzzles of [6],
which include challenge-response protocols such as CAPTCHA as a special case.
The puzzles are weakly verifiable in the sense that, while the generator of the
puzzle can verify a solution, the attacker (who is just given the puzzle, not the
way it was generated) cannot necessarily verify whether a proposed solution is
acceptable. For P a weakly verifiable puzzle, we denote by P k,Θ the puzzle that
asks k independent challenges from P and accepts if at least (k − Θ) of the
responses are correct solutions to P .

Theorem 1 (Main Theorem). Let P be a weakly verifiable puzzle so that any
solver running in time t(n) has probability at least δ of failure (for sufficiently

large n). Let k, γ > 0, Θ = (1 − γ)δk, and ε > 2 · e−
γ2δ2k

64 , be given parameters
(as functions of n). Then no solver running in time t′(n) = t(n)poly(ε, 1/n, 1/k)



time can solve P k,Θ with probability greater than ε, for some polynomial poly,
for sufficiently large n.

We call this a Chernoff-type direct product theorem, since it shows that the
“tail bound” on the number of correctly solved puzzles drops exponentially in
the region beyond its expectation.

Standard Chernoff bounds show that, if the legitimate user can solve the
problem with probability of failure less than, say, (1−2γ)δ, then they will succeed
in P k,Θ with all but exponentially small probability. Thus, the above Chernoff-
type direct product theorem indeed provides a way to amplify any gap between
legitimate users and attackers.

1.1 Weakly Verifiable Puzzles

Our result holds for the notion of weakly verifiable puzzles defined by [6].
A weakly verifiable puzzle has two components: First, a distribution ensemble

D = D1, ..., Dn, ... on pairs (x, α), where x is called the puzzle and α the check
string; n is called the security parameter. Secondly, a polynomial-time com-
putable relation R((x, α), y) where y is a string of a fixed polynomially-related
length.

The puzzle is thought of as defining a type of challenge x, with y being the
solver’s response. However, the correctness of the response is not easily veri-
fied (and may not be well-defined) given just x. On the other hand, the party
generating the puzzle x also knows α, so can verify correctness.

In [6], the distribution D is restricted to being polynomially-sampleable. In
this case, without loss of generality, we can assume that α is the n bit random
tape used to generate the puzzle and check string (if not, we can redefine R as
R′ which first generate the check string from the random tape, then verifies R).
Thus, to simplify the notation in our proofs, we usually assume α is a uniformly
generated n bit string, and that x is a function of α. A version of our result
also holds when D is not polynomial time sampleable, but only for non-uniform
adversaries (since many samples from D are required as advice.)

Here are some important things one should note about weakly verifiable
puzzles:

(a) The generation and verification procedures for the puzzles are efficient. That
is, it takes at most τ(n) time to generate a puzzle and verify its solution,
where τ is some polynomial.

(b) The same puzzle could be generated using multiple random tapes. We call
such puzzles ambiguous puzzles.

(c) Since an answer to a puzzle is verified using a relation, a puzzle is allowed
to have multiple correct answers.

(d) Since the verification procedure takes as input the random tape that was
used to generate a puzzle, the set of correct answers for a puzzle depends
on the random tape that was used to generate it. For an ambiguous puzzle
x which can be generated through random tapes α1, α2, . . . , αm (these are



the pre-images of x with respect to the puzzle generating function), let Sαi
denotes the set of correct answers to puzzle x when generated using the
random tape αi. Then Sαi is not necessarily equal to Sαj for i 6= j.

Some examples of how weakly verifiable puzzles arise in different settings
include:

1. Consider a challenge-response protocol where a prover is trying to get a
verifier to accept them as legitimate (e.g., a CAPTCHA protocol, where
the prover is trying to convince the verifier to accept them as human.) We
assume that the verifier is polynomial time with no secret inputs, (although
an honest prover may have secret inputs.) Let α be the random bits used by
the verifier. In the first round, the verifier sends a challenge x = g(α), and
the prover sends a response y. The verifier then decides whether to accept by
some polynomial time algorithm, R(α, y). Our results are interesting if there
is some chance that the honest prover will be rejected, such as an honest
human user failing a CAPTCHA challenge based on visual distortion.

2. Consider a secret-agreement protocol with a passive eavesdropper. Let rA be
the random tape used by one party, and rB that by the other party. Then
the conversation C is a function of both rA, rB , as is the message m agreed
upon. The eavesdropper succeeds if she computes m given C. Then consider
α = (rA, rB), x = C, and R(C, (rA, rB), y) if y is the message agreed upon
by the two parties using rA and rB . Note that there may be some tapes
where the parties fail to agree, and thus have no success. Our result shows
that, if the parties agree more probably than the eavesdropper can guess the
secret, then by running the protocol several times they will almost certainly
have more shared secrets than the eavesdropper can guess. Note that, unlike
for challenge-response protocols, here there is no restriction on the amount
of interaction between the legitimate parties (as long as the eavesdropper is
passive).

3. Let f be a (weak) one-way function, and b a (partially-hidden) bit for f , in
the sense that it is sometimes hard to always predict b from x = f(z). Since
f may not be one-to-one, b may be hard to predict for either information-
theoretic or computational reasons. Here, we let α = z, x = f(α), and
R(x, α, b′) if b′ = b(α). Our results say that no adversary given an n tuple
of xi = f(zi) can produce a string closer in relative Hamming distance to
b(x1)...b(xn) than the hardness of prediction.

4. In the non-uniform setting, our results apply to any function. If f is a func-
tion (possibly non-Boolean, or even multi-valued, as long as it takes on at
most a polynomial number of values), we can define α to be (the set of all
elements in) f(x). Then y ∈ f(x) if and only if y ∈ α, so this is testable
in polynomial-time given α. This distribution isn’t necessarily polynomial-
time sampleable, so our results would only apply for non-uniform adversaries
(e.g., Boolean circuits.)

Note that in some examples, success may be ill-defined, in that x may not
uniquely determine α, and so it may not be information-theoretically possible
to know whether R((x, α), y) given only x.



1.2 Related Work

The notion of a Direct Product Theorem, in which solving multiple instances of a
problem simultaneously is proven harder than a single instance, was introduced
by Yao in [23]. Due to its wide applicability in cryptography and computational
complexity, a number of different versions and proofs of such theorems can be
found in the literature. [8] contains a good compilation of such results. In this
paper, we use some of the proof techniques (namely the trust halving strategy)
introduced by Impagliazzo and Wigderson in [12]. Such techniques were also
used to show a version of the Direct Product Theorem under a more general
cryptographic setting by Bellare, Impagliazzo and Naor in [4]. The idea was to
show that the soundness error decreases exponentially with parallel repetition in
any 3-round challenge-response protocol. This paper also showed that such error
amplification might not be possible for a general (> 3)-round protocol. Pietrzak
and Wikstrom in [19] extend this negative result. On the positive side, Canetti,
Halevi and Steiner in [6] used ideas from [4] to define a general class of weakly
verifiable puzzles for which they show parallel repetition amplifies hardness, also
giving a quantitative improvement over [4]. More recently, Pass and Venkita-
subramaniam [18] show similar positive results for constant round public coin
protocols. Note that all the results mentioned above consider parallel repetition
without threshold, i.e., they consider the hardness of answering all the instances
of the parallel repetition question simultaneously.

In this paper, we use the Sampling Lemma (Lemma 1) from [11] in an essen-
tial manner. The proof of this Lemma uses ideas from Raz’s parallel repetition
paper [20].

1.3 Techniques

Our main lemma shows how to use a breaking strategy that solves the threshold
puzzle with probability ε as a subroutine in an algorithm that solves a single
puzzle with probability greater than (1 − δ). This algorithm is a version of the
trust-reducing strategies from [12, 4]. In a trust-reducing strategy, the real puzzle
is hidden among (k−1) randomly generated puzzles, and the number of mistakes
the subroutine makes on the random puzzles is used to compute a probability
that the algorithm accepts the answer for the real puzzle.

However, we need to deviate substantially from the analysis in the previous
papers. Usually (cf. [12, 4]), given an algorithm A that succeeds on a significant
fraction of k-tuples of random puzzle instances, one constructs another algo-
rithm A′ such that, for every subset of puzzle instances H of density at least δ,
algorithm A′ succeeds almost surely on a random instance in H. This is then
used to argue that the “hard” set of inputs for A′ is of density at most δ, and
hence A′ succeeds on all but at most δ fraction of inputs.

In contrast, in the threshold scheme, we basically allow the scenario where
there is a “really hard” set H ′ of density (1 − γ)δ such that every algorithm
succeeds on a random puzzle instance in H ′ only with negligible probability,
while all the remaining puzzle instance are easy. In this case, one can imagine



an algorithm that succeeds only on the “easy” inputs outside the set H ′. This
algorithm A will succeed on a non-negligible fraction of k-tuples of puzzle in-
stances, if we allow up to (1−γ)δk errors. However, it is impossible to construct
from A an algorithm A′ such that, for every subset H of density δ, algorithm A′

succeeds on almost every element of H; in our scenario, every A′ can succeed on
at most γ fraction of elements of H, for any H containing H ′.

In order to get around this obstacle, we need a more global way of analyzing
the trust-reducing strategy. Our main tool for doing this is a sampling lemma
from [11].

The high-level idea is as follows. Let G be the set of k-tuples of puzzle in-
stances where some algorithm A is correct in all but (1−γ)δk positions. Suppose
that G has density ε. The trust-reducing strategy essentially allows us to con-
struct an efficient oracle for testing membership in G. The overall strategy for
solving a puzzle instance x is then to sample random k-tuples containing x, until
getting the tuple that falls into G; for such a tuple, we output the value A gives
for the xth position in the tuple.

Since G has density ε, we are almost sure to sample a tuple from G within
poly(1/ε) iterations. We use our sampling lemma to argue that, conditioned on
sampling a random k-tuple from G, the position of the input x is distributed
almost uniformly within the tuple. Hence, in that case, we get the correct answer
for x with probability at least 1 − (1 − γ)δ = 1 − δ + γδ (since every tuple in
G has at most (1 − γ)δk bad positions). Accounting for possible errors of our
membership oracle for G, the probability of our sampling procedure missing the
set G, and the fact that the xth positions is only almost uniform within the tuple,
we conclude that our algorithm succeeds on at least 1− δ fraction of inputs x.

2 Preliminaries

For a natural number k, we will usually denote by [k] the set {1, . . . , k}.

Definition 1. For any distribution D, x← D denotes sampling an element from
the distribution D, and D(x) denotes the probability of sampling the element x.
For a finite set S, we denote by x ← S the fact that x is sampled uniformly at
random from the elements of S.

Definition 2. Given two distributions D1 and D2 over {0, 1}n, the statistical
distance Dist(D1,D2) between them is defined as

Dist(D1,D2) =
1
2

∑
x∈{0,1}n

|Pr[D1(x)]−Pr[D2(x)]|

Let U be the uniform distribution on {0, 1}n. Consider the following distri-
bution over {0, 1}n. Pick an m tuple of n-bit string (x1, . . . , xm) uniformly at
random and output xi for a randomly chosen i ∈ [m]. The distribution is equiv-
alent to U if the tuple is randomly chosen from {0, 1}nm. The next lemma shows
that the distribution is close to uniform even when the tuple is chosen randomly
from a subset G ⊆ {0, 1}nm of size ε2nm.



Lemma 1 (Sampling Lemma). Let G ⊆ {0, 1}mn be any subset of size ε2mn.
Let U be a uniform distribution on the set {0, 1}n, and let D be the distribution
defined as follows: pick a tuple (x1, . . . , xm) of n-bit strings uniformly from the
set G, pick an index i uniformly from [m], and output xi. Then the statistical

distance between the distributions U and D is less than 0.6
√

log 1/ε
m .

See [11] for the proof of this lemma. The following corollary will be used in
the proof of our main result.

Corollary 1. Let G be a distribution over {0, 1}nm (which can be viewed as m-
tuples of n-bit strings) such that for any x̄ ∈ {0, 1}nm, G(x̄) ≤ 1

ε 2nm . Let U
be a uniform distribution over {0, 1}n, and let D be the distribution defined as
follows: pick a tuple (x1, . . . , xm)← G, pick an index i uniformly from [m], and
output xi. Then the statistical distance between the distributions U and D is less

than 0.6
√

log 1/ε
m .

Proof. We can represent the distribution G as a convex combination of uniform
distributions on subsets of size at least ε2nm. We can then apply the Sampling
Lemma to each term in the combination to obtain the corollary. ut

3 Proof of the Main Theorem

The proof is by contradiction. Given a solver C̄ that solves the weakly verifiable
puzzle P k,Θ with probability at least ε, we give a solver C which solves the puzzle
P with probability at least (1−δ). The probability of success is over the internal
randomness of the solver and uniformly chosen α ∈ {0, 1}n.

Let G be the subset of ᾱ = (α1, . . . , αk) ∈ ({0, 1}n)k where

|{i : ¬R((xi, αi), C̄(x1, . . . , xk)i)}| ≤ (1− γ)δk

(for a string αi, we implicitly denote the puzzle generated through αi by xi). So
G denotes the “good” subset of ᾱ’s for the solver C̄ where we have minimum
guarantee of ε.

Given that there are no ambiguous puzzles, the mapping between the random
tapes and the puzzles is simply some permutation π. In that case we can argue
directly in terms of the puzzles rather than the random tapes used to generate
the puzzles. This essentially means that we can compute the success probability
over puzzles, because in this special case it will be the same as the probability
computed over the random tapes. Let

G′ = {(x1, . . . , xk)|(α1, . . . , αk) ∈ G and ∀i, xi = π(αi)}

denoting the “good” subset of x̄’s corresponding to the “good” subset of ᾱ’s.
In order to illustrate the ideas of the proof, we first prove the Main Theorem
assuming that there are no ambiguous puzzles and furthermore assuming access
to an oracle OG′ which decides the membership of a given tuple (x1, . . . , xk) in
the “good” set G′. We then give the main proof by dropping these simplifying
assumptions.



3.1 A Proof under Simplifying Assumptions

In this subsection, in order to illustrate the ideas of the proof in a simplified
setting, we temporarily assume that

1. there are no ambiguous puzzles, and
2. there is an oracle OG′ for the subset G′ which was defined for the case of

non-ambiguous puzzles.

This subsection is to develop the reader’s intuition, and is not strictly required for
the proof of the general case. For this reason, we will slur over some calculations.
Later in the section, we show how to drop these simplifying assumptions. The
rest of the section is self-contained, so this subsection, while helpful, may be
skipped by the reader.

Consider the randomized Solver C defined in Figure 1 which is allowed a
special output ⊥ which is considered as an incorrect answer in the analysis.

Input: x // corresponding to α
Output: y
Oracle access: Solver C̄ and OG

′

Parameters: ε ≥ 2 · e−
γ2δ2k

64 , timeout = 4n
ε

.

1. Repeat lines 2-6 for at most timeout times:
2. Choose i ∈ [k] uniformly at random.
3. Choose α1, . . . , αk−1 ∈ {0, 1}n uniformly at random.
4. Let x1, . . . , xk−1 be the puzzles generated from check string α1, . . . , αk−1.
5. Set x̄ = (x1, . . . , xi−1, x, xi, . . . , xk−1).

6. If OG
′
(x̄) = 1

7. then output y = C̄(x̄)i
8. output ⊥

Solver 1: Randomized Solver C given C̄ and OG′ as oracle

We want to analyze the success probability of solver C on a given input x.
To this end, we need to argue that (1) the probability of the timeout (i.e., of
outputting ⊥ in line 8) is small, and (2) conditioned on the output being different
from ⊥, it is a correct output with high probability (greater than 1− δ).

We will focus on analyzing the conditional success probability in (2), i.e.,
Pri,x1,...,xk−1 [C(x) is correct | output 6= ⊥], for a given input x to C. Observing
that C outputs something other than ⊥ exactly when the tuple x̄ built in line 5
is in the set G′, we can rewrite this conditional probability as

Pri∈[k],x̄=(x1,...,xk)∈G′ [C(xi) is correct | xi = x],

where i is chosen uniformly from [k], and x̄ uniformly from G′.
Let D(x) = Pri∈[k],x̄∈G′ [xi = x], and let U be the uniform distribution on

x’s. Using our Sampling Lemma, we will argue that the distributions D and



U are statistically close to each other. Using this closeness, we can finish the
analysis of the success probability of solver C as follows. The conditional success
probability of C for a random input x is∑

x

Pri,x̄∈G′ [C(xi) is correct | xi = x] · U(x),

which is approximately equal to∑
x

Pri,x̄∈G′ [C(xi) is correct | xi = x] · D(x).

The latter expression is exactly

Pri,x̄∈G′ [C(xi) is correct],

which is at least 1− (1− γ)δ = 1− δ+ γδ, by the definition of G′. We will show
that the statistical distance between D and U and the probability of the timeout
of C are less than γδ, which would imply that C succeeds on more than 1 − δ
fraction of inputs.

Note that given that there are no ambiguous puzzles, the probability of suc-
cess of C computed over randomly chosen puzzles is the same as that over ran-
domly chosen random tapes. To be consistent with the main proof, we evaluate
the success of C over random α in the remainder of this subsection.

To demonstrate the structure of the analysis in the general case, we recast
the arguments above as follows. We introduce a certain random experiment E
(see Figure 1), which corresponds to the inner loop of the algorithm C. We then
relate the success probability of C to that of E .

Fig. 1. Experiment E

Experiment E
(α1, . . . , αk)← G // Let (x1, ..., xk) ∈ G′ be the corresponding puzzles
i← [k]
output (αi, C̄(x1, . . . , xk)i)

We say that experiment E succeeds if it outputs a pair (α, y) such that
R((x, α), y). Since for each k-tuple (α1, . . . , αk) ∈ G (and hence (x1, . . . , xk) ∈
G′), C̄ outputs a correct answer for at least 1− (1−γ)δ fraction of the elements,
the probability of success of this experiment is clearly ≥ 1− (1− γ)δ.

Let D be the probability distribution on the first elements of outputs of E ,
i.e., D(α) is the probability that E outputs a pair (α, y). Let Rα represent the
probability that it outputs such a pair with R((x, α), y), and Wα the probability
that it outputs such a pair with ¬R((x, α), y). So, D(α) = Rα +Wα. Clearly we
have that

1− (1− γ)δ ≤ Pr[E succeeds] =
∑

α∈{0,1}n
Rα.



Since D is sampled by picking a random element of a set G of tuples of size at
least ε2nk, we get by the sampling lemma that the statistical distance between
D and the uniform distribution is at most 0.6

√
log(1/ε)/k ≤ γδ/8. In particular,

for
H = {α|D(α) ≤ (1/2)2−n},

we get that |H| ≤ (γδ/4)2n.
Let pα be the probability that a random ᾱ containing α is in G. Then the

expectation of pα for random α is at least ε, and

D(α) = pα/
∑
α′

pα′ = 2−n(pα/Exp[pα′ ]).

So all elements not in H have pα ≥ ε/2. For each such element, the probability
that we get a timeout in C is at most (1− pα)timeout ≤ e−n.

Given that C on x does not time out, the probability of it succeeding is
Rα/D(α). Thus, the overall probability of success is at least

(
∑
α

U(α)Rα/D(α))−Pr[C times out].

We get ∑
α

U(α)Rα/D(α) =
∑
α

(U(α)−D(α))Rα/D(α) +
∑
α

Rα

≥
∑
α

(−1)|U(α)−D(α)|+ (1− (1− γ)δ)

≥ 1− (1− γ)δ −Dist(D,U)
≥ 1− (1− 3/4γ)δ.

The probability of time-out can be bounded by the probability that α ∈ H
plus the probability of time-out given that α 6∈ H. As previously mentioned,
this is at most δγ/4 + e−n, giving the total success probability at least 1− (1−
γ/2)δ − e−n > 1− δ, as desired.

3.2 A Proof without Simplifying Assumptions

We will use the same set of ideas as in the previous subsection while removing
the dependency on the simplifying assumptions. The intuition is as follows.

Once we drop the assumption that there are no ambiguous puzzles, we will
have to compute the probabilities over the random tape α. We can first construct
a proof assuming an oracle OG (instead of OG′), and then later try to simulate
OG. The problem is that the solver we want to construct only gets the puzzle
x, while the random string α that is used to generate x remains a secret. So
it is impossible to simulate the oracle OG perfectly. However, a weaker kind of
simulation is possible, and it suffices for our purposes.



The idea is that our solver gets to choose k − 1 random puzzles and then
places the given puzzle x at a randomly chosen position in the tuple. Since our
solver itself has generated these k − 1 puzzles, it can verify the answers of C̄
on these puzzles and so have a rough estimate of how “good” the tuple is, i.e.,
how likely it is to be in the set G. This allows our solver to make a “soft”
(probabilistic) decision about the membership of the constructed tuple in the
set G, which turns out to be sufficient for the proof of our Main Theorem.

Note that the argument outlined above is just to develop the reader’s intu-
ition. In the remaining part of this subsection, we translate these ideas into a
formal proof.

Consider a new randomized solver given in Figure 2.

Input: x //corresponding to α
Output: y
Oracle access: Solver C̄

Parameters: ε ≥ 2 · e−
γ2δ2k

64 , timeout = 4n
ε

, t0 = (1− γ)δk, ρ = 1− γδ
16

.

1. Repeat lines 2-10 for at most timeout times:

2.
3.
4.
5.
6.
7.
8.
9.
10.

// Subroutine TRS (Trust Reducing Strategy)
Choose i ∈ [k] uniformly at random.
Choose α1, . . . , αk−1 ∈ {0, 1}n uniformly at random.
Set x̄ = (x1, . . . , xi−1, x, xi, . . . , xk−1).
Let l = {j : ¬R((xj , αj), C̄(x1, . . . , xk−1)j), j 6= i}
If |l| > t0

output C̄(x1, . . . , xk−1)i with probability ρ|l|−t0

else
output C̄(x1, . . . , xk−1)i with probability 1

11. output ⊥
Solver 2: Randomized Solver C given C̄ as oracle

To be able to analyze the above solver we abstract out a single execution of
the loop 2 − 10 (the subroutine TRS) and design an experiment E3 which has
similar behavior. To further simplify the analysis we design a simpler experiment
E2 such that (1) analyzing E2 is easy and (2) E2 is not too much different from
E3 so that we can easily draw comparisons between them. The description of
Experiments E2 and E3 is given in Figure 2.

Definition 3. Experiments E2 and E3 are said to succeed if they output a correct
pair (i.e. a pair (α, y) such that R((x, α), y)). The success probability is defined
as the probability that a correct pair is produced conditioned on the experiment
producing a pair.

Here is the outline of our proof. We observe that the success probability of
C on a given input x corresponding to a hidden string α is exactly the success
probability of experiment E3 conditioned on the event that E3 produces a pair



Fig. 2. Experiments E2 and E3.

Experiment E2 Experiment E3
(α1, . . . , αk)← ({0, 1}n)k (α1, . . . , αk)← ({0, 1}n)k

i← [k] i← [k]
J ← {j|¬R((xj , αj), C̄(x1, . . . , xk))j} J ← {j|¬R((xj , αj), C̄(x1, . . . , xk))j}
if |J | > (1− γ)δk if |J | > (1− γ)δk
t = |J | − (1− γ)δk t = |J | − (1− γ)δk

else else
t = 0 output (αi, C̄(x1, . . . , xk)i)

output (αi, C̄(x1, . . . , xk)i) with probability 1
with probability ρt and ⊥ if i ∈ J
with probability (1− ρt) output (αi, C̄(x1, . . . , xk)i)

with probability ρt−1 and ⊥
with probability (1− ρt−1)

else
output (αi, C̄(x1, . . . , xk)i)

with probability ρt and ⊥
with probability (1− ρt)

(α, ·). For a random input x corresponding to a uniformly random string α, the
success probability of C is then

∑
α

Pr[E3 succeeds | E3 outputs (α, ·)] · U(α),

where U denotes the uniform distribution. On the other hand, the success prob-
ability of E3 can be written as

∑
α

Pr[E3 succeeds | E3 outputs (α, ·)] · D3(α),

where D3(α) is the probability that experiment E3 produces a pair (α, ·) condi-
tioned on E3 producing some pair (i.e., conditioned on the output of E3 being
different from ⊥). We then argue that the distributions U and D3 are statistically
close, and hence the success probability of C can be lowerbounded with that of
E3. Finally, we lowerbound the success probability of E3, getting the result for C.

In reality, the success probability of experiment E2 is easier to analyze than
E3. So we actually show that the conditional success probability of E3 can be
lowerbounded by that of E2, and then argue that U is statistically close to D2,
where D2 is defined for E2 in the same way as D3 was defined for E3 above.

Next we give the details of the proof. We start by analyzing E2.



Analysis of E2 Let us partition the k-tuples ({0, 1}n)k into the following sub-
sets:

G0 = G = {(α1, ..., αk) ∈ {0, 1}nk : |{j : ¬R((xj , αj), C̄(x1, ..., xk)j)}| ≤ (1− γ)δk}
G1 = {(α1, ..., αk) ∈ {0, 1}nk : |{j : ¬R((xj , αj), C̄(x1, ..., xk)j)}| = (1− γ)δk + 1}
...
Gk(1−(1−γ)δ) = {(α1, ..., αk) ∈ {0, 1}nk : |{j : ¬R((xj , αj), C̄(x1, ..., xk)j)}| = k}

Definition 4. We let S6⊥ denote the general event that the experiment produces
a pair (i.e. does not produce ⊥) and Sc denote the event that the experiment
produces a correct output.

Claim 2 Pr[E2 succeeds] ≥ (1− (t0 + γδk/2)/k)
(
1− ργδk/2/ε

)
, where t0 = (1−

γ)δk.

Proof. Let t0 = (1− γ)δk and ∆ = γδk. Let Ā denote the random tuple chosen
in the first step of experiment E2. Recalling that the success probability of E2 is
defined as the probability of producing a correct pair conditioned on producing
a pair as output, we get

Pr[E2 succeeds] = Pr[Sc|S6⊥]
= Pr[Sc, S6⊥]/Pr[S6⊥]

=
∑

ᾱ∈{0,1}nk
Pr[Sc, S6⊥, Ā = ᾱ]/Pr[S6⊥]

=
∑

ᾱ∈{0,1}nk
Pr[Sc|S6⊥, Ā = ᾱ] ·Pr[S6⊥, Ā = ᾱ]/Pr[S6⊥].

We will split the set of ᾱ’s into the following three sets:

G = G0, I = G1 ∪ . . . ∪G∆/2, B = {0, 1}nk −G− I,

which stand for “good”, “intermediate” and “bad”, respectively. We note that
E2 performs well on tuples in the good subset, reasonably well on tuples in the
intermediate subset and poorly on the tuples in the bad subset. The intuitive idea
is that we counter the poor effect of the bad subset of tuples by exponentially
weighing down their contribution in the overall probability of success of E2.



We have

Pr[E2 succeeds] ≥
∑

ᾱ∈G∪I
Pr[Sc|S6⊥, Ā = ᾱ] ·Pr[S6⊥, Ā = ᾱ]/Pr[S6⊥]

≥
∑

ᾱ∈G∪I

(
1− t0 +∆/2

k

)
·Pr[S6⊥, Ā = ᾱ]/Pr[S6⊥]

≥
(

1− t0 +∆/2
k

)(∑
ᾱ∈G∪I Pr[S6⊥, Ā = ᾱ]

Pr[S6⊥]

)
=
(

1− t0 +∆/2
k

)
· Pr[S6⊥]−Pr[S6⊥, Ā ∈ B]

Pr[S6⊥]

=
(

1− t0 +∆/2
k

)
·
(

1− Pr[S6⊥, Ā ∈ B]
Pr[S6⊥]

)
.

Observe that

Pr[S6⊥, Ā ∈ B] ≤ Pr[S6⊥|Ā ∈ B] ·Pr[Ā ∈ B]

≤ ρ∆/2 · 1
= ρ∆/2,

and
Pr[S6⊥] ≥ Pr[S6⊥, Ā ∈ G] ≥ ε.

Thus, we get that

1−Pr[S6⊥, Ā ∈ B]/Pr[S6⊥] ≥ 1− ρ∆/2/ε,

and the claim follows. ut

Let A be the random variable denoting the first element of the pair produced
by E2 conditioned on E2 producing a pair. We now write down the success prob-
ability of E2 in terms of the conditional probability that E2 produces a correct
pair given that it produces a pair (α, .) for a fixed α ∈ {0, 1}n.

Pr[E2 succeeds] = Pr[Sc|S6⊥]

=
∑

α∈{0,1}n
Pr[E2 succeeds on A|A = α, S 6⊥] ·Pr[A = α|S6⊥]

=
∑

α∈{0,1}n
Pr[E2 succeeds on A|A = α, S 6⊥] · D2(α) (1)

where D2 is a distribution defined as D2(α) = Pr[A = α|S6⊥].
Note the similarity between the distribution D2 and distribution D of the

previous section. D was sampled by producing a randomly chosen element from
a randomly chosen tuple in G. Here we allow tuples to be chosen from any Gi
but we weigh down the contribution of the tuple by a factor of ρi. In other words,
D2 can be sampled in the following manner: Pick a random tuple ᾱ ∈ {0, 1}nk,
let ᾱ ∈ Gi, output a randomly chosen element of the tuple with probability ρi.



Comparing D2 and U We will show thatD2 is statistically close to the uniform
distribution U .

Claim 3 Dist(D2,U) < 0.6
√

(log 1/ε)/k.

Proof. To sample from D2, pick (α1, . . . , αk) ← G, pick a random i ∈ [k] and
output αi, where G is a distribution on k-tuples such that G(ᾱ) is the conditional
probability that E2 outputs the randomly chosen element from ᾱ given that E2
produces a pair. More specifically, given ᾱ ∈ Gi,

G(ᾱ) =
ρi

|G0|+ ρ |G1|+ . . .+ ρk(1−(1−γ)δ) |Gk(1−(1−γ)δ)|
≤ 1
|G0|

≤ 1
ε · 2nk

.

Applying Corollary 1 completes the proof. ut

Comparing E3 and E2 To continue, we need the following definitions.

Definition 5. Given α ∈ {0, 1}n and a k-tuple (α1, . . . , αk) ∈ ({0, 1}n)k, let
h(α, (α1, . . . , αk)) = {i : αi = α}. Given a k-tuple (α1, . . . , αk) ∈ ({0, 1}n)k and
solver C̄, let l(α1, . . . , αk) = {i : ¬R((xi, αi), C̄(x1, . . . , xk)i)}

In other words, for a given element and tuple, h denotes the subset of indices
where the element is present, and, for a given tuple, l denotes the subset of
indices where C̄ is incorrect.

Consider the following two quantities:

Xα =
∑
ᾱ∈G
|h(α, ᾱ) ∩ l(ᾱ)|︸ ︷︷ ︸

Mα

+
∑

ᾱ∈{0,1}nk−G

|h(α, ᾱ) ∩ l(ᾱ)| · ρ|l(ᾱ)|−t0

︸ ︷︷ ︸
Nα

Yα =
∑
ᾱ∈G
|h(α, ᾱ)− h(α, ᾱ) ∩ l(ᾱ)|+

∑
ᾱ∈{0,1}nk−G

|h(α, ᾱ)− h(α, ᾱ) ∩ l(ᾱ)| · ρ|l(ᾱ)|−t0

It is easy to see that

Pr[E2 succeeds on A | A = α, S 6⊥] =
Yα

Xα + Yα
=

Yα
Mα +Nα + Yα

. (2)

Experiment E3 is mostly the same as E2, except when, for a randomly chosen
tuple ᾱ ∈ {0, 1}nk − G (line 1), the randomly chosen index i (line 2) lands in
the subset l(ᾱ) of indices on which C̄ is incorrect. Here E2 only outputs the pair
with probability ρ|l(ᾱ)|−t0 (instead of ρ|l(ᾱ)|−t0−1 as in E3). Thus we have

Pr[E3 succeeds on A | A = α, S 6⊥] =
Yα

Mα +Nα/ρ+ Yα
. (3)

Finally, using (2) and (3), we get:

Pr[E2 succeeds on A | A = α, S 6⊥]
Pr[E3 succeeds on A | A = α, S 6⊥]

=
Mα +Nα/ρ+ Yα
Mα +Nα + Yα

≤ Mα +Nα + Yα
ρ · (Mα +Nα + Yα)

= 1/ρ. (4)



Analysis of C We first note that the subset H of α’s for which the above solver
does not produce an answer (or produces ⊥) is small. We have the following two
claims.

Claim 4 Let H ⊆ {0, 1}n be such that, for every α ∈ H, TRS produces an
answer with probability < ε/4. Then |H| < γδ

4 · 2
n.

Proof. For the sake of contradiction, assume that |H| ≥ γδ
4 · 2

n. For a randomly
chosen tuple ᾱ = (α1, . . . , αk), the expected number of αi’s from H is γδk/4. By
Chernoff bounds, all but e−

γδk
64 fraction of tuples ᾱ will contain at least γδk/8

elements from H.
For a random α ∈ H, consider the distribution on tuples ᾱ induced by lines

3–5 of Solver 2. That is, ᾱ is sampled by picking independently uniformly at
random α ∈ H, location i ∈ [k], and α1 . . . αk−1 ∈ {0, 1}n, and producing
ᾱ = (α1, . . . , αi−1, α, αi, . . . , αk−1). Observe that every tuple ᾱ′ containing ex-
actly s elements from H will be assigned by this distribution probability exactly
4s/(γδk) times the probability of ᾱ′ under the uniform distribution. So the prob-
ability of sampling tuples in G which have more than γδk/8 elements from H is
at least

ε− e−
γδk
64

2
≥ ε

4
,

since ε = 2 · e−
γ2δ2k

64 . This means that for a random α ∈ H, a single iteration of
the subroutine TRS of Solver 2 will produce a definite answer with probability at
least ε/4 (note that TRS always produces an answer when ᾱ′ ∈ G). By averaging,
there exists a particular α0 ∈ H for which TRS succeeds in producing an answer
with probability at least ε/4. ut

Claim 5 For every α ∈ {0, 1}n −H, Pr[C(x) 6= ⊥] > 1− e−n.

Proof. From the previous claim we know that for any α ∈ {0, 1}n − H, the
subroutine TRS produces an answer with probability at least ε/4. So, the prob-
ability that Solver 2 fails to produce a definite answer on this input α within
timeout iterations is at most (1− ε/4)

4n
ε ≤ e−n. ut

The similarity between solver C and Experiment E3 yields the following useful
fact:

Pr[R((x, α), C(x))|C(x) 6= ⊥] = Pr[E3 succeeds on A | A = α, S 6⊥]. (5)



We now analyze the success probability of the solver C. The probability is
over uniformly random α ∈ {0, 1}n and its internal randomness.

Pr[C succeeds] =
1
2n

∑
α∈{0,1}n

Pr[R((x, α), C(x)) ∧ C(x) 6= ⊥]

=
∑

α∈{0,1}n
Pr[R((x, α), C(x)) | C(x) 6= ⊥] ·Pr[C(x) 6= ⊥] · U(α)

=
∑

α∈{0,1}n
Pr[E3 succeeds on A | A = α, S 6⊥] ·Pr[C(x) 6= ⊥] · U(α)

(from (5)) (6)

Let H ⊆ {0, 1}n be the set from Claim 4. Let H̄ be the complement of H in
the set {0, 1}n. By Claim 5 and Eq. (4), we get that for every α ∈ H̄,

Pr[E3 succeeds on A | A = α, S 6⊥] ·Pr[C(x) 6= ⊥] · U(α) ≥
(1− e−n) ρ Pr[E2 succeeds on A | A = α, S 6⊥] · U(α). (7)

Comparing C and E2 We can now compare the success probabilities of Ex-
periment E2 and the solver C.

Claim 6 Pr[C succeeds] ≥ Pr[E2 succeeds]−
(
Dist(U ,D2) + (1− ρ) + ρ · e−n + γδ

4

)
Proof. Using the lower bound from (7), we can lower-bound Pr[C succeeds] as
follows:

Pr[C succeeds] ≥ ρ(1− e−n)
∑
α∈H̄

Pr[E2 succeeds on A | A = α, S 6⊥] · U(α).

Next, observe that ∑
α∈H̄

Pr[E2 succeeds on A | A = α, S 6⊥] · U(α) ≥

∑
α∈{0,1}n

Pr[E2 succeeds on A | A = α, S 6⊥] · U(α)− γδ/4,

since
∑
α∈H U(α) < γδ/4. Expressing U(α) as (U(α)−D2(α)) +D2(α), we can

rewrite ∑
α∈{0,1}n

Pr[E2 succeeds on A | A = α, S 6⊥] · U(α)

as ∑
α∈{0,1}n

Pr[E2 succeeds on A | A = α, S 6⊥] · D2(α) +

∑
α∈{0,1}n

Pr[E2 succeeds on A | A = α, S 6⊥] · (U(α)−D2(α)).



The first summand is exactly Pr[E2 succeeds]. The second summand can be
lower-bounded by restricting the summation to those α ∈ {0, 1}n where U(α) <
D2(α), and observing that the resulting expression is at least −Dist(U ,D2).

Putting it all together, we get that

Pr[C succeeds] ≥ ρ(1− e−n)(Pr[E2 succeeds]−Dist(U ,D2)− γδ/4).

Rearranging the terms on the right-hand side yields the claim. ut

The previous claim and Claim 2 yield the following final result.

Claim 7 Pr[C succeeds] ≥ (1− δ) + γδ
32 .

Proof. Indeed, we have

Pr[C succeeds] ≥
(

1− t0 +∆/2
k

)(
1− ρ∆/2

ε

)
−(

Dist(U ,D2) + (1− ρ) + ρ · e−n +
γδ

4

)
. (8)

For ρ = 1− γδ
16 , ε = 2e−

γ2δ2k
64 , ∆ = γδk and t0 = (1− γ)δk, we get

1− (t0 +∆/2)/k = 1− δ + γδ/2

and
1− ρ∆/2/ε ≥ 1− e−γ

2δ2k/64/2.

By Claim 3, we have that Dist(U ,D2) ≤ γδ/8. So we can lowerbound the right-
hand side of Eq. (8) by

1−δ−(1−δ)e−γ
2δ2k/64/2+(1−e−γ

2δ2k/64/2)γδ/2−(γδ/8+γδ/16+ε−n+γδ/4),

which is at least 1− δ + γδ/32, for sufficiently large n. ut

4 Open Problems

While the results here are fairly general, there are some obvious possible exten-
sions. First, can similar results be proved for other domains, such as public-coin
protocols ([18])? Also, our bounds on the adversary’s success probability, al-
though asymptotically exponentially small, are quite weak when applied to con-
crete problems such as actual CAPTCHA protocols with reasonable numbers of
repetitions. Can the bounds be improved quantitatively, analogously to how [6]
improved the bounds from [4]? Finally, we would like to find more applications
of our results, to such problems as making strong secret agreement protocols
from weak ones ([9]).
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