Streaming K-means
Approximation

Ragesh Jaiswal
Columbia University

joint work with Claire Monteleoni (CCLS, Columbia) and Nir Ailon (Google)

Outline

@ k-means problem:
@ (pseudo) approximation algorithm

@ Streaming algorithm

K-means Clustering

O O
o il
O 0O
o0 9N
o) O
O
O O
O
o) 5.
-« S S O ¢
o) C o)
O o)
O O

k-means clustering: Given a set of n points XcRY, find a set
of k points CcRd (called centers) such that the following

potential function is minimized.
Pc(X) = Zxex Mincec lIx - cll?

K-means Clustering

@ k-means clustering problem is NP-hard even when
k = 2 [DFKVV04].

: Approxima| Time
Problem Algorithm PP , it
tion g
Kanungo et al.'04 3
Nl (k-means ugng Local Search) O(l) n
Jain & Vazirani'99 2
(k-median using Primal Dual) O(l) n
Charikar & Guha'99 5
(k-median using Primal Dual) O(l) N
ek (0(1), o(m))| n

(Sampling Technique using above as black box)

K-means Clustering
(Lloyds Algorithm)

@ The most popular batch algorithm used is the
Lloyds algorithm [L57] (also known as k-means
algorithm)

@ Initialize C (|Cl=k) arbitrarily.
@ Cluster the points based on the nearest center.

@ Update C by picking the centroid of each
cluster. Repeat.

@ Does well in practice but has no theoretical
approximation guarantees.

k-means Clustering
(Lloyds Algorithm)

@ Lloyds algorithm suffers from bad initialization.

K-means Clustering

(k-means++)

@ k-means++: Initialization algorithm (choosing
points with D* weighting)

@ Step 1: Pick the first point randomly.

@ Step i (l<i<k): Choose a center by picking a
point with probability proportional to the
square of the distance of the point from its
nearest (i-1) previously chosen centers.

@ [AVO7]: The above algorithm gives an expected
O(log(k)) approximation guarantee.

K-means Clustering
(Bi-criteria approximation)

@ Bi-criteria approximation or pseudo approximation

@ (x,B)-pseudo approximation algorithm: We are
allowed to pick o<k centers with approximation

factor P.

@ Advantages:
@ Better approximation guarantees.
@ Streaming application.

K-means Clustering (k-means#)

® K-means#
@ Step 1: Pick the first 3xlog(k) points randomly.

@ Step i (l<i<k): Choose 3:xlog(k) centers
independently by picking a point with probability
proportional to the square of the distance of the
point from its nearest 3xlog(k)=(i-1) previously
chosen cenfters.

@ Theorem [ATJMO9]: With probability at least 1/4, k-
means# gives (O(log(k)), O(1))-pseudo approximation.

@ Advantages:
@ The analysis becomes simple.
@ Streaming application.

K-means# (proof sketch)

® Definition:

@ Given a subset of points YcX and a set of

centers C, let ®.(Y) denote the cost of C with
respect to subset Y. More formally,
cI)C(Y) = 2xey MiNcec “X = C“2

@ So, for any partition Yj,...,.Ym of X
Oc(X) = Sicr.m Pc(Yi)

K-means# (proof sketch)

- Let the partitions denote the optimal clusters.
- Let e denote an arbitrary set of centers C.

- Let A be a set of points in an optimal cluster.
- Let o denote a point chosen using D weighting.

<> ¥

Lemma [AVO7]: Exp[®cun(A) | teA] < 8«Popr(A)
Lemma (by markov): Pr[¢cU{+}(A) 2 lé*cbopT(A) | '|'€A] £ 1/2

K-means# (proof sketch)

Proof is by induction on the step number i of the algorithm.
Base case is simple so we will skip that.

Consider a set of centers C.

An optimal cluster B is called “"covered” if ®¢(B) < const.®opr(B).

D
D
D
D

@ Let X,denote uncovered clusters
® X. denote covered clusters

@ Induction assumption: After (i-1) steps,
1. there are (i-1) covered clusters, or
2. the current set of centers gives

constant approximation.

@ Let p be the probability that next
chosen center is from one of the
uncovered clusters.

@ If pis small, say p<1/2. Then ®¢(X.)/
(Dc(Xu) + Dc(Xc)) < 1/2 => De(X) <
Dc(Xo),

@ but then, CDc(X) = Cbc(xu) + q)c(xc) <
2.Dc(Xc)< const.Popr(Xc)< const.Popt(X).
This cannot happen since we are not in
case (2).

K-means# (proof sketch)

So, with probability > 1/2 the next center is chosen from one of the
uncovered clusters,

conditioned on this event, we know from the [AVO07] lemma that the chosen
center covers this previously uncovered clusters with constant probability.
Since we pick 3.log(k) centers in step i we cover a new cluster with
probability at least (1 - 1/k).

So we cover all clusters with constant probability.

Better bound on number
of centers

@ k-means##: Seeding algorithm (choosing points
with D% weighting)

@ Step 1: Pick the first point randomly.

@ Step i (l<i<t): Choose a center by picking a
point with probability proportional fo the
square of the distance of the point from its
nearest (i-1) previously chosen centers.

@ t = O(k) centers is enough to show constant
approximation [ADKO9].

Super Martingales

@ Definition (Super Martingale): A sequence of
random variables Jo,..., J+ Is called a super
martingale if

for all i>0, E[Ji | Jo,...,Ti-1] € Tia

® Theorem (Azuma-Hoeffding inequality):
If Jo,...,Jt+ is a super martingale and
for all t>i20, (Jis1 - Ji)¢ 1, then
Pr(J: 2 Jo + O] < exp(-0%/2t)

Better bounds using
super martingales [ADko9]

® Consider the random variable X

@ Xi = 0 if a new cluster is covered in step |
and 1 otherwise.

@ We have: Vi2l, Pr[X; = 0] > ¢, where c is some
fixed constant.

@ Consider the random variables

@ Jo =0, and Vi>0, Ji = 2 (Xj - (1-¢))
@ We have

@ Jia - Ji g1

@ E[Ji | Jo,...,Ti1) € Tia

Better bounds using

super martingales [~ADpko9]

@ E[Ti | Jo,...,Ti1] = E[Ji_1+Xi-(l—p) | " Joent sl
=BT VT0...., Ti1] =efl=6) 4
E[XT] Jo,4 T4
< Jia
@ So, Jo,..J+ Is a super martingale and we can use
the Azuma-Hoeffding bound which gives:
Pr(J: 2 Jo+0] < exp(-02/2t)
=> Pr[2it (1-X)) 2 ct-0] 2 1 - exp(-62/2+)
=> Pr[3it (1-X) 2 K] 2 1 - exp(-const)
(using t =(k+~/k)/c and 0=A/k)

@ [ADKO9]: With constant probability k-means##
gives a (O(1), O(1)) pseudo-approximation.

Streaming Algorithms

@ The data is very large compared to the
memory available. So, we cannot hold the
data in the memory while executing an
algorithm.

@ Allowed a few passes (preferably one) over
the data.

@ Performance measure:
@ Memory
@ Processing time per item

@ Compute time

Streaming Algorithm using

Divide and Conquer [Guha+03]

8- : : | :
B e VL IR e R SR A

UL -]

e — B

| (EEED

[Guha+03]: The above approach gives O(bb’)
approximation with a~/(nk) memory.

Streaming Algorithm using
Divide and Conquer

@ Approximation algorithms used in Divide & Conquer:
@ Level 0: k-means#: (O(log(k)), O(1))
@ Level 1: k-means++: (1, O(log(k)))

@ [ATJMO9]: With one level divide and conquer, we get
a one pass streaming algorithm with approximation
ratio O(log(k)) and memory log(k)~/(nk).

Experimental Results

(comparison with online/batch lloyds)

k [BL [OL | DCI [DC2]
5.1154 - 10° | 6.5967 - 10° | 7.9398 - 10” | 7.8474 - 10° |
3.3080 - 10” | 6.0146 - 10” | 4.5954 - 10” | 4.6829 - 10" |

2.0123 - 10° | 4.3743-10° | 2.5468-10° | 2.5898 - 10° |
1.4225-10° | 3.7794-10° | 1.0718-10° | 1.1403- 10" |
0.8602 - 10° | 2.8859 - 10° | 2.7842-10° | 2.7298 - 10° |

norm25, mixture of 25 separated gaussians

(10K points, 15 dimensions)

k | BL | OL | DCL | DC2 |
"5 | 17707107 | 1.2401-10° | 2.2024 10" | 2.2617- 107
107 0.7683 107 | 8.5684- 107 | 8.3363 -10° | 8.7788- 10°
1571 05012107 | 8.4633- 107 | 4.9667-10° | 4.8806- 10°
20| 04388107 | 6.5110- 107 | 3.7479-10° | 3.7536- 10°
2571 03839107 | 6.3758- 107 | 2.8895 -10° | 2.9014-10°

cloud (1024 points, 10 dimensions)

k| BL | OL | DCl | DC2 |
"5 | 49139 -10° | 1.7001-10° | 3.4021-10° | 3.3063- 10° |
10| 1.6952-10° | 1.6930-10° | 1.0206-10° | 1.0463- 10° |
15| 15670-10° | 1.4762-10° | 5.5095 10" | 5.3557- 10" |
720 | 15196 -10° | 14766 -10° | 3.3400- 107 | 3.2094- 10" |
95 | 15168 -10° | 14754 -10° | 23151107 | 2.3391- 10" |

spam (4601 points, 58 dimensions)

Streaming Algorithm using
Divide and quuer (multi-level)

K-means#

K-means#

kK-means++

@ [AJMO9]: For any fixed constant 1>50, let r=1/x. With multi-level divide
and conquer we get a O(c" log(k)) approximation algorithm with n* memory.

@ [CCPO3]: They give a constant approximation algorithm which uses
O(k.poly(log(n))) space.

@ Disadvantage: Per item processing time is large.

Experimental Resultfs

(memory/approximation tradeoff)

- Use multi-level divide and conquer with k-means#
in all levels except the last one where k-means++
IS used.

Memory/ 2 Memory/ ot Memory/ Cost
Hlevels Hlevels Hlevels

1024/0 8.74 x 10° 2048/0 5.78 x 10* 4601/0 1.06 x 108

8.59 x 10° 1250/1 5.36 x 104 880/1 0.99 x 108
360/2 8.61 x 10° 1125/2 5.15 x 104 600/2 1.03 x 108

Cloud norm25 Spam

(k=10, n=1024) (k=25, n=20438) (k=10, n=4601)

- Approximation factor does not degrade as memory
goes down which is counterintuitive.

Future Directions

@ Further experimentation
@ Lower Bounds

@ Online Algorithms

Future Directions

@ K-means#H##:
@ Step 1: Pick the first point randomly.

@ Step i (l<i<k): Pick r centers independently by
picking a point with probability proportional to
the square of the distance of the point from its
nearest (i-1) previously chosen centers and then
choose the one which reduces the potential most.

@ [AVOT7]: Empirical evidence of performance (r=const)
@ Question: Show a constant approximation guarantee.

