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k-means Clustering

k-means clustering: Given a set of n points X⊂Rd, find a set 
of k points C⊂Rd (called centers) such that the following 
potential function is minimized.

ΦC(X) = ∑x∈X minc∈C ||x - c||2



k-means Clustering 

k-means clustering problem is NP-hard even when 
k = 2 [DFKVV04].

Problem Algorithm
Approxima

tion
Time 

(dependence 
on n)

k-means Kanungo et al.’04
(k-means using Local Search) O(1) n3

k-median Jain & Vazirani’99
(k-median using Primal Dual) O(1) n2

k-median Charikar & Guha’99
(k-median using Primal Dual) O(1) n2

k-median Indyk’99
(Sampling Technique using above as black box) (O(1), O(1)) n



k-means Clustering 
(Lloyd’s Algorithm)

The most popular batch algorithm used is the 
Lloyd’s algorithm [L57] (also known as k-means 
algorithm)

Initialize C (|C|=k) arbitrarily.
Cluster the points based on the nearest center.
Update C by picking the centroid of each 
cluster. Repeat.

Does well in practice but has no theoretical 
approximation guarantees.



k-means Clustering
(Lloyd’s Algorithm)

Lloyd’s algorithm suffers from bad initialization.



k-means Clustering
(k-means++)

k-means++: Initialization algorithm (choosing 
points with D2 weighting)

Step 1: Pick the first point randomly.
Step i (1<i≤k): Choose a center by picking a 
point with probability proportional to the 
square of the distance of the point from its 
nearest (i-1) previously chosen centers.

[AV07]: The above algorithm gives an expected 
O(log(k)) approximation guarantee.



k-means Clustering
(Bi-criteria approximation)

Bi-criteria approximation or pseudo approximation
(α,β)-pseudo approximation algorithm: We are 
allowed to pick α∗k centers with approximation 
factor β.

Advantages: 
Better approximation guarantees.
Streaming application.



k-means Clustering (k-means#)

k-means#
Step 1: Pick the first 3∗log(k) points randomly.
Step i (1<i≤k): Choose 3∗log(k) centers 
independently by picking a point with probability 
proportional to the square of the distance of the 
point from its nearest 3∗log(k)∗(i-1) previously 
chosen centers.

Theorem [AJM09]: With probability at least 1/4, k-
means# gives (O(log(k)), O(1))-pseudo approximation.
Advantages: 

The analysis becomes simple.
Streaming application.



k-means# (proof sketch)

Definition:
Given a subset of points Y⊂X and a set of 
centers C, let ΦC(Y) denote the cost of C with 
respect to subset Y. More formally,
       ΦC(Y) = ∑x∈Y minc∈C ||x - c||2

So, for any partition Y1,…,Ym of X
          ΦC(X) = ∑i∈[1..m] ΦC(Yi)



k-means# (proof sketch)
- Let the partitions denote the optimal clusters.
- Let   denote an arbitrary set of centers C.
- Let A be a set of points in an optimal cluster.
- Let   denote a point chosen using D2 weighting.

Lemma [AV07]:   Exp[ΦC∪{t}(A) | t∈A] ≤ 8∗ΦOPT(A)
Lemma (by markov): Pr[ΦC∪{t}(A) ≥ 16∗ΦOPT(A) | t∈A] ≤ 1/2

t
A



k-means# (proof sketch)
Proof is by induction on the step number i of the algorithm.
Base case is simple so we will skip that.
Consider a set of centers C.
An optimal cluster B is called “covered” if ΦC(B) ≤ const.ΦOPT(B).

A

Induction assumption: After (i-1) steps,
1. there are (i-1) covered clusters, or
2. the current set of centers gives 

constant approximation.
Let p be the probability that next 
chosen center is from one of the 
uncovered clusters.
If p is small, say p<1/2. Then ΦC(Xu)/
(ΦC(Xu) + ΦC(Xc)) < 1/2 => ΦC(Xu) < 
ΦC(Xc),
but then, ΦC(X) = ΦC(Xu) + ΦC(Xc) < 
2.ΦC(Xc)< const.ΦOPT(Xc)< const.ΦOPT(X). 
This cannot happen since we are not in 
case (2).

Let Xu denote uncovered clusters
Xc denote covered clusters

B



k-means# (proof sketch)
So, with probability > 1/2 the next center is chosen from one of the 
uncovered clusters,
conditioned on this event, we know from the [AV07] lemma that the chosen 
center covers this previously uncovered clusters with constant probability. 
Since we pick 3.log(k) centers in step i we cover a new cluster  with 
probability at least (1 - 1/k).
So we cover all clusters with constant probability.

A



Better bound on number 
of centers

k-means##: Seeding algorithm (choosing points 
with D2 weighting)

Step 1: Pick the first point randomly.
Step i (1<i≤t): Choose a center by picking a 
point with probability proportional to the 
square of the distance of the point from its 
nearest (i-1) previously chosen centers.

t = O(k) centers is enough to show constant 
approximation [ADK09].



Super Martingales

Definition (Super Martingale): A sequence of 
random variables J0,…, Jt is called a super 
martingale if 
      for all i>0, E[Ji | J0,…,Ji-1] ≤ Ji-1

Theorem (Azuma-Hoeffding inequality): 
If J0,…,Jt is a super martingale and 
for all t>i≥0, (Ji+1 - Ji)≤ 1, then 
      Pr[Jt ≥ J0 + δ] ≤ exp(-δ2/2t)



Better bounds using 
super martingales [ADK09]

Consider the random variable Xi

Xi = 0 if a new cluster is covered in step i 
and 1 otherwise.

We have: ∀i≥1, Pr[Xi = 0] ≥ c, where c is some 
fixed constant.
Consider the random variables

J0 = 0, and ∀i>0, Ji = ∑j≤i (Xj - (1-c))
We have

Ji+1 - Ji ≤ 1
E[Ji | J0,…,Ji-1] ≤ Ji-1



Better bounds using 
super martingales [ADK09]
E[Ji | J0,…,Ji-1] = E[Ji-1+Xi-(1-p) | J0,…,Ji-1]
                  = E[Ji-1 | J0,…,Ji-1] - (1-c) + 
                      E[Xi | J0,…,Ji-1]
                  ≤ Ji-1

So, J0,...Jt is a super martingale and we can use 
the Azuma-Hoeffding bound which gives:
   Pr[Jt ≥ J0+δ] ≤ exp(-δ2/2t)
=> Pr[∑i≤t (1-Xi) ≥ ct-δ] ≥ 1 - exp(-δ2/2t)
=> Pr[∑i≤t (1-Xi) ≥ k] ≥ 1 - exp(-const)
(using t =(k+√k)/c and δ=√k)
[ADK09]: With constant probability k-means## 
gives a (O(1), O(1)) pseudo-approximation.



Streaming Algorithms
The data is very large compared to the 
memory available. So, we cannot hold the 
data in the memory while executing an 
algorithm.
Allowed a few passes (preferably one) over 
the data.
Performance measure:

Memory
Processing time per item
Compute time



Streaming Algorithm using 
Divide and Conquer [Guha+03]

√nk

(a,b) algo

(1,b’) algo

[Guha+03]: The above approach gives O(bb’) 
approximation with a√(nk) memory.



Streaming Algorithm using 
Divide and Conquer

Approximation algorithms used in Divide & Conquer:

Level 0: k-means#: (O(log(k)), O(1))

Level 1: k-means++: (1, O(log(k)))

[AJM09]: With one level divide and conquer, we get 
a one pass streaming algorithm with approximation 
ratio O(log(k)) and memory log(k)√(nk).



Experimental Results
(comparison with online/batch lloyd’s)

norm25, mixture of 25 separated gaussians
(10K points, 15 dimensions)

cloud (1024 points, 10 dimensions)

spam (4601 points, 58 dimensions)



Streaming Algorithm using 
Divide and Conquer (multi-level)

[AJM09]: For any fixed constant 1>α>0, let r=1/α. With multi-level divide 
and conquer we get a O(cr log(k)) approximation algorithm with nα memory.

[CCP03]: They give a constant approximation algorithm which uses        
O(k.poly(log(n))) space. 

Disadvantage: Per item processing time is large.

k-means#

k-means#

k-means++



Experimental Results
(memory/approximation tradeoff)

Cloud 
(k=10, n=1024)

norm25 
(k=25, n=2048)

Spam 
(k=10, n=4601)

- Use multi-level divide and conquer with k-means#
  in all levels except the last one where k-means++ 
  is used.

- Approximation factor does not degrade as memory    
goes down which is counterintuitive.

Memory/
#levels

Cost Memory/
#levels

Cost Memory/
#levels

Cost

1024/0 8.74 x 106 2048/0 5.78 x 104 4601/0 1.06 x 108

480/1 8.59 x 106 1250/1 5.36 x 104 880/1 0.99 x 108

360/2 8.61 x 106 1125/2 5.15 x 104 600/2 1.03 x 108



Future Directions

Further experimentation

Lower Bounds

Online Algorithms



Future Directions

k-means###: 
Step 1: Pick the first point randomly.
Step i (1<i≤k): Pick r centers independently by 
picking a point with probability proportional to 
the square of the distance of the point from its 
nearest (i-1) previously chosen centers and then 
choose the one which reduces the potential most.

[AV07]: Empirical evidence of performance (r=const)
Question: Show a constant approximation guarantee.



Questions?



Thank You


