Streaming k-means Approximation

Ragesh Jaiswal Columbia University

joint work with Claire Monteleoni (CCLS, Columbia) and Nir Ailon (Google)

Outline

k-means problem:
 (pseudo) approximation algorithm
 Streaming algorithm

<u>k-means clustering</u>: Given a set of **n** points $X \subset \mathbb{R}^d$, find a set of **k** points $C \subset \mathbb{R}^d$ (called centers) such that the following potential function is minimized.

 $\Phi_{C}(X) = \sum_{x \in X} \min_{c \in C} ||x - c||^{2}$

k-means Clustering

k-means clustering problem is NP-hard even when
 k = 2 [DFKVV04].

Problem	Algorithm	Approxima tion	Time (dependence on n)
k-means	Kanungo et al.'04 (k-means using Local Search)	O(1)	n ³
k-median	Jain & Vazirani'99 (k-median using Primal Dual)	O(1)	n²
k-median	Charikar & Guha'99 (k-median using Primal Dual)	O(1)	n²
k-median	Indyk'99 (Sampling Technique using above as black box)	(O(1), O(1))	n

K-means Clustering (Lloyd's Algorithm)

The most popular batch algorithm used is the Lloyd's algorithm [L57] (also known as k-means algorithm)

- Oluster the points based on the nearest center.
- Update C by picking the centroid of each cluster. Repeat.
- Does well in practice but has no theoretical approximation guarantees.

k-means Clustering (Lloyd's Algorithm)

School Lloyd's algorithm suffers from bad initialization.

k-means Clustering (k-means++)

<u>k-means++</u>: Initialization algorithm (choosing points with D² weighting)
 <u>Step 1</u>: Pick the first point randomly.

Step i (1<i≤k): Choose a center by picking a point with probability proportional to the square of the distance of the point from its nearest (i-1) previously chosen centers.

[AV07]: The above algorithm gives an expected O(log(k)) approximation guarantee. K-means Clustering (Bi-criteria approximation)

Bi-criteria approximation or pseudo approximation
 (α,β)-pseudo approximation algorithm: We are allowed to pick α*k centers with approximation factor β.

Advantages:
Better approximation guarantees.
Streaming application.

k-means Clustering (k-means#)

ø k-means#

- Step 1: Pick the first 3*log(k) points randomly.
- Step i (1<i<k): Choose 3*log(k) centers independently by picking a point with probability proportional to the square of the distance of the point from its nearest 3*log(k)*(i-1) previously chosen centers.
- Theorem [AJM09]: With probability at least 1/4, kmeans# gives (O(log(k)), O(1))-pseudo approximation.
- Advantages:
 - The analysis becomes simple.
 - Streaming application.

k-means# (proof sketch)

 Definition:
 Given a subset of points Y⊂X and a set of centers C, let Φ_c(Y) denote the cost of C with respect to subset Y. More formally, Φ_c(Y) = Σ_{x∈Y} min_{c∈C} ||x - c||²

So, for any partition Y_1, \dots, Y_m of X $\Phi_C(X) = \sum_{i \in [1..m]} \Phi_C(Y_i)$

K-means# (proof sketch)

- Let the partitions denote the optimal clusters.

- Let denote an arbitrary set of centers C.
- Let A be a set of points in an optimal cluster.
- Let \bullet denote a point chosen using D^2 weighting.

Lemma [AV07]: $Exp[\Phi_{Cu\{t\}}(A) | t \in A] \leq 8 * \Phi_{OPT}(A)$ Lemma (by markov): $Pr[\Phi_{Cu\{t\}}(A) \geq 16 * \Phi_{OPT}(A) | t \in A] \leq 1/2$

k-means# (proof sketch)

- Proof is by induction on the step number i of the algorithm.
- Base case is simple so we will skip that.
- Consider a set of centers C.
- An optimal cluster B is called "covered" if $\Phi_C(B) ≤ \text{const.} \Phi_{OPT}(B)$.
- Let X_u denote uncovered clusters
 X_c denote covered clusters

Induction assumption: After (i-1) steps,
1. there are (i-1) covered clusters, or
2. the current set of centers gives constant approximation.
Let p be the probability that next

chosen center is from one of the uncovered clusters.

- If p is small, say p<1/2. Then $\Phi_c(X_u)/(\Phi_c(X_u) + \Phi_c(X_c)) < 1/2 \Rightarrow \Phi_c(X_u) < \Phi_c(X_c),$
- but then, $\Phi_c(X) = \Phi_c(X_u) + \Phi_c(X_c) < 2.\Phi_c(X_c) < const.\Phi_{OPT}(X_c) < const.\Phi_{OPT}(X).$ This cannot happen since we are not in case (2).

k-means# (proof sketch)

- So, with probability > 1/2 the next center is chosen from one of the uncovered clusters,
- conditioned on this event, we know from the [AV07] lemma that the chosen center covers this previously uncovered clusters with constant probability.
- Since we pick 3.log(k) centers in step i we cover a new cluster with probability at least (1 1/k).
- So we cover all clusters with constant probability.

Better bound on number of centers

- <u>k-means##</u>: Seeding algorithm (choosing points with D² weighting)
 - Step 1: Pick the first point randomly.
 - Step i (1<i<t): Choose a center by picking a point with probability proportional to the square of the distance of the point from its nearest (i-1) previously chosen centers.

I = O(k) centers is enough to show constant approximation [ADK09].

Super Martingales

 Definition (Super Martingale): A sequence of random variables J₀,..., J_↑ is called a super martingale if for all i>0, E[J_i | J₀,...,J_{i-1}] ≤ J_{i-1}

 Theorem (Azuma-Hoeffding inequality): If J₀,...,J_t is a super martingale and for all t>i≥0, (J_{i+1} - J_i)≤ 1, then Pr[J_t ≥ J₀ + δ] ≤ exp(-δ²/2t)

Better bounds using super martingales [ADK09] Consider the random variable X_i $\oslash X_i = 0$ if a new cluster is covered in step i and 1 otherwise. fixed constant. Consider the random variables We have \bigcirc $J_{i+1} - J_i \leq 1$

Better bounds using super martingales [ADK09] $[I] J_0,...,J_{i-1}] = E[J_{i-1}+X_i-(1-p) | J_0,...,J_{i-1}]$ $= E[J_{i-1} | J_0,...,J_{i-1}] - (1-c) + E[X_i | J_0,...,J_{i-1}]$

So, J₀,...J_t is a super martingale and we can use the Azuma-Hoeffding bound which gives: Pr[J_t ≥ J₀+δ] ≤ exp(-δ²/2t)
Pr[Σ_{i≤t} (1-X_i) ≥ ct-δ] ≥ 1 - exp(-δ²/2t)
Pr[Σ_{i≤t} (1-X_i) ≥ k] ≥ 1 - exp(-const)
(using t =(k+√k)/c and δ=√k)
[ADK09]: With constant probability k-means##

gives a (O(1), O(1)) pseudo-approximation.

Streaming Algorithms

- The data is very large compared to the memory available. So, we cannot hold the data in the memory while executing an algorithm.
- Allowed a few passes (preferably one) over the data.
- Ø Performance measure:
 - Memory
 - Processing time per item
 - Compute time

Streaming Algorithm using Divide and Conquer [Guha+03]

[Guha+03]: The above approach gives O(bb') approximation with $a\sqrt{(nk)}$ memory.

Streaming Algorithm using Divide and Conquer

Approximation algorithms used in Divide & Conquer:
 Level 0: k-means#: (O(log(k)), O(1))
 Level 1: k-means++: (1, O(log(k)))

[AJM09]: With one level divide and conquer, we get a one pass streaming algorithm with approximation ratio O(log(k)) and memory log(k)√(nk).

Experimental Results (comparison with online/batch lloyd's)

k	BL	OL	DC-1	DC-2
5	$5.1154\cdot10^9$	$6.5967 \cdot 10^{9}$	$7.9398\cdot10^9$	$7.8474\cdot10^9$
10	$3.3080\cdot 10^9$	$6.0146\cdot10^9$	$4.5954\cdot10^9$	$4.6829\cdot10^9$
15	$2.0123\cdot10^9$	$4.3743\cdot 10^9$	$2.5468\cdot10^9$	$2.5898\cdot10^9$
20	$1.4225\cdot10^9$	$3.7794\cdot 10^9$	$1.0718\cdot 10^9$	$1.1403\cdot10^9$
25	$0.8602 \cdot 10^9$	$2.8859 \cdot 10^9$	$2.7842 \cdot 10^5$	$2.7298\cdot 10^5$

norm25, mixture of 25 separated gaussians

(10K points, 15 dimensions)

k	BL	OL	DC-1	DC-2
5	$1.7707 \cdot 10^{7}$	$1.2401\cdot 10^8$	$2.2924 \cdot 10^7$	$2.2617\cdot 10^7$
10	$0.7683 \cdot 10^{7}$	$8.5684 \cdot 10^7$	$8.3363 \cdot 10^6$	$8.7788\cdot 10^6$
15	$0.5012 \cdot 10^7$	$8.4633 \cdot 10^7$	$4.9667\cdot 10^6$	$4.8806\cdot10^6$
20	$0.4388\cdot 10^7$	$6.5110\cdot 10^7$	$3.7479\cdot 10^6$	$3.7536\cdot 10^6$
25	$0.3839 \cdot 10^7$	$6.3758\cdot 10^7$	$2.8895\cdot 10^6$	$2.9014\cdot 10^6$

cloud (1024 points, 10 dimensions)

k	BL	OL	DC-1	DC-2
5	$4.9139\cdot 10^8$	$1.7001 \cdot 10^{9}$	$3.4021 \cdot 10^{8}$	$3.3963\cdot 10^8$
10	$1.6952\cdot 10^8$	$1.6930 \cdot 10^9$	$1.0206\cdot 10^8$	$1.0463 \cdot 10^8$
15	$1.5670 \cdot 10^8$	$1.4762\cdot 10^9$	$5.5095 \cdot 10^7$	$5.3557\cdot 10^7$
20	$1.5196\cdot 10^8$	$1.4766\cdot 10^9$	$3.3400\cdot10^7$	$3.2994\cdot 10^7$
25	$1.5168\cdot 10^8$	$1.4754\cdot 10^9$	$2.3151\cdot 10^7$	$2.3391\cdot 10^7$

spam (4601 points, 58 dimensions)

Streaming Algorithm using Divide and Conquer (multi-level)

- [AJM09]: For any fixed constant $1>\alpha>0$, let $r=1/\alpha$. With multi-level divide and conquer we get a $O(c^r \log(k))$ approximation algorithm with n^{α} memory.
- [CCP03]: They give a constant approximation algorithm which uses
 O(k.poly(log(n))) space.
 - Disadvantage: Per item processing time is large.

Experimental Results (memory/approximation tradeoff)

- Use multi-level divide and conquer with k-means# in all levels except the last one where k-means++ is used.

Memory/ #levels	Cost	Memory/ #levels	Cost	Memory/ #levels	Cost
1024/0	8.74 × 10 ⁶	2048/0	5.78 × 10 ⁴	4601/0	1.06 × 10 ⁸
480/1	8.59 x 10 ⁶	1250/1	5.36 x 10 ⁴	880/1	0.99 × 10 ⁸
360/2	8.61 × 10 ⁶	1125/2	5.15 × 10 ⁴	600/2	1.03 × 10 ⁸
Cloud		norm25		Spam	

(k=10, n=1024)

(k=25, n=2048)

Spam (k=10, n=4601)

- Approximation factor does not degrade as memory goes down which is counterintuitive.

Future Directions

Further experimentation
Lower Bounds
Online Algorithms

Future Directions

<u>k-means###:</u>

- Step 1: Pick the first point randomly.
- Step i (1<i≤k): Pick r centers independently by picking a point with probability proportional to the square of the distance of the point from its nearest (i-1) previously chosen centers and then choose the one which reduces the potential most.
 [AV07]: Empirical evidence of performance (r=const)
 Question: Show a constant approximation guarantee.

Questions?

Thank You