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Direct Product(DP) Theorem 
(the general statement)

“If a problem is a hard to solve on 
average, then solving multiple instances 
of the problem is even harder”.



Applications of such 
Statements

 Average-case Complexity
 Cryptography
 Derandomization
 Error-correcting codes



Formulating DP Theorems

“If a problem is a hard to solve on average, 
then solving multiple instances of the problem 
is even harder”.

 What is the problem?                       
(e.g., computing functions, interactive arguments)

 What is the entity solving the problem? 
(e.g., circuits, randomized algorithms)

 What does it mean by a problem being 
hard on average?



A Simple DP Theorem
(boolean functions against circuits)

Problem: Computing boolean functions

Computational model: Circuits

Hardness: A boolean function f:{0,1}n -> {0,1} is 
called δ-hard for circuits of size s if for any 
circuit C of size at most s, we have

                  Prx[C(x) ≠ f(x)] > δ



A Simple DP Theorem
(boolean functions against circuits)

Let f:{0,1}n -> {0,1} be a boolean function and  
fk defined as

     fk(x1,…,xk) =  f(x1).f(x2)...f(xk)

If f is δ-hard for circuits of size s, then fk is 
(1-ε)-hard for circuits of size s’, where

δ = Θ(log(1/ε)/k) and s’ = s⋅poly(ε,δ,1/k,1/n).



A Simple DP Theorem
(boolean functions against circuits)

Easy Hard

δ

ε = e-δk/c



A Related XOR Lemma
(boolean functions against circuits)

Let f:{0,1}n -> {0,1} be a boolean function and  
f⊕k defined as

     f⊕k(x1,…,xk) =  f(x1)⊕f(x2)⊕...⊕f(xk)

If f is δ-hard for circuits of size s, then f⊕k is 
(1/2-ε)-hard for circuits of size s’, where

δ = Θ(log(1/ε)/k) and s’ = s⋅poly(ε,δ,1/k,1/n).



DP Theorems: A History
(from the perspective of proof idea)

Levin style Argument [Yao82, Lev87]:

Pseudorandom generators

Impagliazzo’s Hard-core set theorem [Imp95]:

Hardness of boolean function, Derandomization

Trust Halving Strategy [IW97, BIN97]: 

Derandomization, Cryptography



General Proof Strategy
(proof by contradiction)

Assume: there exists C’ such that 

    Pr(x1,…,xk)[C’(x1,…,xk) = fk(x1,…,xk)] > ε 

Construct: a circuit C such that 

          Prx[C(x) = f(x)] > (1 - δ)



General Proof Strategy
(proof by contradiction)

Bottleneck: there can possibly exist f1,…,fT  
(T = 1/ε) such that for all i∈[T]

    Pr(x1,…,xk)[C’(x1,…,xk) = fik(x1,…,xk)] > ε 



General Proof Strategy
(proof by contradiction)

Assume: there exists C’ such that 

    Pr(x1,…,xk)[C’(x1,…,xk) = fk(x1,…,xk)] > ε 

Construct: a list of circuit C1,…,CT such that 
there exists i∈[T] such that 

          Prx[Ci(x) = f(x)] > (1 - δ)

How large could T be?



Nonuniformity in DP Theorems

A string of length log(T) can be used to point 
out the correct circuit in the list.

Generalize the results to general functions    
f:{0,1}*->{0,1} w.r.t. randomized algorithms with 
advice (nonuniform model)

A strong DP Theorem in the uniform model is 
not possible

Uniform DP Theorem: A DP theorem with 
“minimum amount of nonuniformity”



DP Theorem
(a coding theoretic perspective)
Direct Product code:

Let N = 2n, Σ = {0,1}k, M = Nk

Message: m ∈ {0,1}N

Code: Code:{0,1}N -> ΣM defined as

let each bit of m be indexed by x∈{0,1}n 
denoted by m[x]

each alphabet of Code(m) can be 
indexed by    (x1,…,xk)

Code(m)[(x1,…,xk)] = m[x1].m[x2]…m[xk]



DP Theorem
(a coding theoretic perspective)

m∈{0,1}N 

x2

Code(m)∈ 
{0,1}M 

(x1,x2) ∈ {0,1}nk
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TruthTable(f)

TruthTable(fk)



Connection with DP Theorem
(a coding theoretic perspective)

Any constructive proof of the DP Theorem 
gives an approximate, local, list decoding 
algorithm for DP code.

AlgorithmC’
C1

CTA circuit which computes 
the corrupted codeword

List of circuits such that at least 
one of them approximately

computes the message



DP Theorem
(a coding theoretic perspective)

(1-ε)

List Decoding

Codewordsmessages

Given word



DP Theorem
(a coding theoretic perspective)

(1-ε)

Approximate list decoding

Codewordsmessages

Given word



DP Theorem
(a coding theoretic perspective)

Let δ = Θ(log(1/ε)/k)

For any message m and its corrupted 
codeword w∈{0,1}N such that 
Ham(Code(m),w)<(1-ε).M, then there are 
T=Θ(1/ε) messages m1,…,mT such that for at 
least one mi, Ham(mi,m) < δ⋅N



Bounds for the Related 
XOR Code

Let δ = Θ(log(1/ε)/k)

Given a message m and its corrupted 
codeword w∈{0,1}N such that                                               
Ham(XOR-Code(m),w) < (1/2-ε).M,                  
then there are T=Θ(1/ε2) messages m1,…,mT 

such that for at least one mi, Ham(mi,m) < δ⋅N



DP Theorem
(a coding theoretic perspective)

All previous proofs [Lev87, Imp95, IW97...] of 
the DP theorem gave list size 2poly(1/ε).

[IJK06, IJKW08]: List decoding algorithm 
with size Θ(1/ε) which is information 
theoretically optimal.



Uniform DP Theorem
(the first attempt)

 Main Theorem [IJK06]: Let f:U->{0,1} be some 
function and C’ be a circuit such that         
Pr[C’ computes fk] > ε.                           
There is an algorithm which outputs a list of 
circuits C1,…,CT such that                       
∃i,Pr[Ci computes f] > (1-δ), where                  
ε=poly(1/k), ∀i,|Ci|=|C’|⋅poly(1/ε,1/δ,k), T=poly(1/ε).

Drawbacks:

Worked for large ε.

Complicated algorithm and analysis.



Uniform DP Theorem
(the final attempt)

Main Theorem [IJKW08]: Let f:U->R be some 
function and C’ be a circuit such that            
Pr[C’ computes fk] > ε.                                    
There is an algorithm which outputs a list of 
circuits C1,…,CT such that                         
∃i,Pr[Ci computes f] > (1-δ), where                                     
δ=Θ(log(1/ε)/k), ∀i,|Ci|=|C’|⋅poly(1/ε,1/δ,k), T=O(1/ε).



Uniform XOR Lemma

Theorem [IJKW08]: Let f:U->{0,1} be some function 
and C’ be a circuit such that                       
Pr[C’ computes f⊕k] > 1/2 + ε.                                    
There is an algorithm which outputs a list of 
circuits C1,…,CT such that                         
∃i,Pr[Ci computes f] > (1-δ), where                                     
δ=Θ(log(1/ε)/k), ∀i,|Ci|=|C’|⋅poly(1/ε,1/δ,k), T=O(1/ε2).



Uniform Hardness Amplification

Average-case Complexity: Average-case 
hardness of problems instead of worst-case.

Uniform hardness amplification within C: If 
there is a problem within C which is mildly 
hard on average for probabilistic polynomial 
time algorithms, then is there another 
problem in C which is very hard for 
probabilistic polynomial time algorithms.



Uniform Hardness Amplification
(Hardness Amplification within PNP||)

f’∈NP: (1/nc)-hard wrt BPP/log

g: (1/2 - 1/nd)-hard wrt BPP

Uniform XOR Lemma

f∈NP: (1/nb)-hard wrt BPP [BDCGL92]

g ∈ PNP||
h∈PNP||: (1/na)-hard wrt BPP

simple reduction

PNP||: polynomial time turing machine which can make 
polynomial parallel oracle queries to an NP oracle.



Uniform Direct Product 
Theorem: The Proof



Main Theorem

Theorem [IJKW08]: Let f:U->R be some 
function and C’ be a circuit such that     
Pr[C’ computes fk] > ε.                       
There is an algorithm which outputs with 
probability Ω(ε) a circuit C such that      
Pr[C computes f] > (1-δ),                        
where δ=Θ(log(1/ε)/k), |C|=|C’|⋅poly(1/ε,1/δ,k).



Main Theorem

Previous Theorem => Uniform DP Theorem

Repeat the algorithm O(1/ε) times to 
produce a list of circuits.



Local Consistency Test

B

A

B’

B’ is said to pass the consistency test wrt (A,B) if
C’(B)|A = C’(B’)|A

(B⊂U, |B|=k) (B’⊂U, |B’|=k)

(A⊂B, A⊂B’, |A|=k/2)

B

B’

A



Local Consistency Test

B

B’

C’(B’)

C’(B)
C’

C’

= = = = A



An Idea Based on Local 
Consistency Test

Suppose there are sets A,B⊃A such that 

C’(B)=fk(B)

“some other nice properties”

CA,B: Given an input x∈U

If x∈B, then output C’(B)[x] 

Randomly select B’, such that A⊂B’ and x∈B’

If B’ passes consistency test wrt (A,B), then 
output C’(B’)[x] else repeat



Under what conditions does CA,B work?

Under what conditions “local consistency 
implies correctness”?

What are the “nice properties” A,B need to 
satisfy?

When does CA,B work?



When does CA,B work?
Under what conditions does CA,B work?

(1) C’(B) = fk(B)

(2) There are non-negligible number of B’⊃A 
s.t. C’(B’)=fk(B) and which pass the 
consistency test wrt. (A,B)

(3) “Bad” B’⊃A fail the consistency test 
w.h.p.
C’(B’) ≠f(.)

Let us call such (A,B) “excellent”.



Choosing Excellent (A,B)

Choose A,B⊃A randomly

Lemma: PrA,B⊃A[(A,B) is excellent] = Ω(ε)



Recall (1) C’(B) = fk(B)

Since PrB[C’(B) = fk(B)] > ε, randomly chosen 
A,B⊃A satisfies (1) with probability at least ε.

We will try to show that (2) and (3) almost 
always follows from (1).

Choosing Excellent (A,B)
(Proof: PrA,B⊃A[(A,B) is excellent] = Ω(ε))



Recall: (2) There are non-negligible number of 
B’⊃A s.t. C’(B’)=fk(B) and which pass the 
consistency test wrt. A,B

(2) almost always follows from (1): 

Let P(A) be the event that               
PrB⊃A[C’(B) = fk(B)] ≤ ε/2

PrA,B⊃A[C’(B) = fk(B) | P(A)] ≤ ε/2                                   
=> PrA,B⊃A[C’(B) = fk(B) & P(A)] ≤ ε/2

Choosing Excellent (A,B)
(Proof: PrA,B⊃A[(A,B) is excellent] = Ω(ε))



Recall: (3) “Bad” B’⊃A fail the consistency test w.h.p.

(3) almost always follows from (1):

We want to show:                           
PrA,B⊃A,B’⊃A[C’(B)=fk(B) & B’ is “bad” & B’ passes consistency test wrt (A,B)]        
is very small (say < ε3)

Choosing Excellent (A,B)
(Proof: PrA,B⊃A[(A,B) is excellent] = Ω(ε))



B’

A

B

w.h.p A contains a “bad” element of B’

Choosing Excellent (A,B)
(Proof: PrA,B⊃A[(A,B) is excellent] = Ω(ε))



Where we are in the proof

What we have shown:

Lemma: PrA,B⊃A[(A,B) is excellent] = Ω(ε)

What we need to show:

Lemma: For any excellent (A,B), CA,B computes f 
with probability at least (1-δ)



B

A

B’(contains x)

x C’(B’)[x]

CA,B

randomly select A,B⊃AAlgorithm

Analyzing CA,B given excellent (A,B)



Pr[CA,B fails] ≤ Pr[CA,B does not output an answer] + 
Pr[CA,B outputs an incorrect answer | CA,B outputs an 
answer]

Analyzing CA,B given excellent (A,B)



U\A all B’⊃A

x∈B’

G (density of G is Ω(ε))

x

Analyzing CA,B given excellent (A,B)



Pr[CA,B fails] ≤ Pr[CA,B does not output an answer] + 
Pr[CA,B outputs an incorrect answer | CA,B outputs an 
answer]

Analyzing CA,B given excellent (A,B)



U\A

G

Sampler: For any X⊂U\A of density at least β almost all 
vertices in the right have at least β/2 fraction of edges 
into X.

Analyzing CA,B given excellent (A,B)
all B’⊃A

X



Pr[CA,B fails] ≤ Pr[CA,B does not output an answer] + 
Pr[CA,B outputs an incorrect answer | CA,B outputs an 
answer]

Analyzing CA,B given excellent (A,B)



Analyzing CA,B given excellent (A,B)

G

Following holds for Samplers:   Ex[Rx] ≈ Ey[Ry]

C’(B’)[x] ≠ f(x)

x

Rz = #red incident edges
degree

Want to bound 
Ex[Rx]

We know that 
Ey[Ry] is small



Derandomized DP Theorem



Derandomized DP Theorem

DP Theorem: Given a hard f:U->R, fk is 
harder to compute on independently chosen 
subsets B⊂U, |B|=k

Issue: The size of the inputs grows linearly 
with k



Derandomized DP Theorem: Can we show 
that fk is harder to compute on subsets B⊂U,   
|B|=k, even when these subsets have some 
limited independence

[Imp95,IW97]: Derandomized DP Theorem in 
the nonuniform setting

U = Fq , and consider fk over low dimensional 
affine subspaces of U

Derandomized DP Theorem

m



Local Consistency Test

B

A

B’

B’ is said to pass the consistency test wrt (A,B) if
C’(B)|A = C’(B’)|A

(B⊂U, |B|=k=qd) (B’⊂U, |B’|=k=qd)

(A⊂B, A⊂B’, |A|=qd/2)

d dimensional affine 
subspace of U=Fq

d/2 dimensional affine 
subspace of U=Fq

m

m



B’

A

B

w.h.p A contains a “bad” element of B’

Derandomized DP Theorem
(Proof: PrA,B⊃A[(A,B) is excellent] = Ω(ε))

Chebyshev instead of 
Chernoff-Hoeffding

ε = poly(1/k)



U\A

G

Sampler: For any X⊂U\A of density at least β almost all 
vertices in the right have at least β/2 fraction of edges 
into X.

Derandomized DP Theorem
all B’⊃A

Chebyshev instead of 
Chernoff-Hoeffding

ε = poly(1/k)



Theorem [IJKW08]: Let f:U->R be some 
function and C’ be a circuit such that                     
Praffine subspace B⊂U[C’ computes fk(B)] > ε.                       
There is an algorithm which outputs with 
probability Ω(ε) a circuit C such that      
Pr[C computes f] > (1-δ),                        
where ε=poly(1/k), |C|=|C’|⋅poly(1/ε,1/δ,k).

Note: description length of the input for fk is 
d⋅log(|U|)

Derandomized DP Theorem



Derandomized DP Theorem

U=Fq
m

low dimensional
affine subspaces

independent subsets



Derandomized DP Theorem

Approximate version of Derandomized 
DP Theorem



Theorem [IJKW08]: Let f:U->R be some 
function and C’ be a circuit such that                     
Prindependent B⊂T, low dim affine subspace T⊂U[C’ computes fn(B)] > ε.                       
There is an algorithm which outputs with 
probability poly(ε) a circuit C such that       
Pr[C computes f] > (1-δ),                        
where ε=e-Ω(√n), |C|=|C’|⋅poly(1/ε,1/δ,n).

Note: description length of input for fk is O(n) 
(given log(|U|=n))

Open Problem: Bring down ε to e-Ω(n)

Derandomized DP Theorem



Open Problems
Uniform “Chernoff-type” Direct Product 
Theorem in the spirit of [IJK07]

Direct Product Testing

Given a circuit C as an oracle, using at 
most q queries to the oracle distinguish 
between the following two cases 

C computes fk for some f

C computes fk on only some small ε 
fraction of inputs



Thank You


