
Uniform Direct Product
Theorems:

Simplified, Optimized, and Derandomized

Russell Impagliazzo (UCSD and IAS)
Ragesh Jaiswal (UCSD->Columbia)

Valentine Kabanets (SFU)
Avi Wigderson (IAS)

Direct Product(DP) Theorem
(the general statement)

“If a problem is a hard to solve on
average, then solving multiple instances
of the problem is even harder”.

Applications of such
Statements

 Average-case Complexity
 Cryptography
 Derandomization
 Error-correcting codes

Formulating DP Theorems

“If a problem is a hard to solve on average,
then solving multiple instances of the problem
is even harder”.

 What is the problem?
(e.g., computing functions, interactive arguments)

 What is the entity solving the problem?
(e.g., circuits, randomized algorithms)

 What does it mean by a problem being
hard on average?

A Simple DP Theorem
(boolean functions against circuits)

Problem: Computing boolean functions

Computational model: Circuits

Hardness: A boolean function f:{0,1}n -> {0,1} is
called δ-hard for circuits of size s if for any
circuit C of size at most s, we have

 Prx[C(x) ≠ f(x)] > δ

A Simple DP Theorem
(boolean functions against circuits)

Let f:{0,1}n -> {0,1} be a boolean function and
fk defined as

 fk(x1,…,xk) = f(x1).f(x2)...f(xk)

If f is δ-hard for circuits of size s, then fk is
(1-ε)-hard for circuits of size s’, where

δ = Θ(log(1/ε)/k) and s’ = s⋅poly(ε,δ,1/k,1/n).

A Simple DP Theorem
(boolean functions against circuits)

Easy Hard

δ

ε = e-δk/c

A Related XOR Lemma
(boolean functions against circuits)

Let f:{0,1}n -> {0,1} be a boolean function and
f⊕k defined as

 f⊕k(x1,…,xk) = f(x1)⊕f(x2)⊕...⊕f(xk)

If f is δ-hard for circuits of size s, then f⊕k is
(1/2-ε)-hard for circuits of size s’, where

δ = Θ(log(1/ε)/k) and s’ = s⋅poly(ε,δ,1/k,1/n).

DP Theorems: A History
(from the perspective of proof idea)

Levin style Argument [Yao82, Lev87]:

Pseudorandom generators

Impagliazzo’s Hard-core set theorem [Imp95]:

Hardness of boolean function, Derandomization

Trust Halving Strategy [IW97, BIN97]:

Derandomization, Cryptography

General Proof Strategy
(proof by contradiction)

Assume: there exists C’ such that

 Pr(x1,…,xk)[C’(x1,…,xk) = fk(x1,…,xk)] > ε

Construct: a circuit C such that

 Prx[C(x) = f(x)] > (1 - δ)

General Proof Strategy
(proof by contradiction)

Bottleneck: there can possibly exist f1,…,fT
(T = 1/ε) such that for all i∈[T]

 Pr(x1,…,xk)[C’(x1,…,xk) = fik(x1,…,xk)] > ε

General Proof Strategy
(proof by contradiction)

Assume: there exists C’ such that

 Pr(x1,…,xk)[C’(x1,…,xk) = fk(x1,…,xk)] > ε

Construct: a list of circuit C1,…,CT such that
there exists i∈[T] such that

 Prx[Ci(x) = f(x)] > (1 - δ)

How large could T be?

Nonuniformity in DP Theorems

A string of length log(T) can be used to point
out the correct circuit in the list.

Generalize the results to general functions
f:{0,1}*->{0,1} w.r.t. randomized algorithms with
advice (nonuniform model)

A strong DP Theorem in the uniform model is
not possible

Uniform DP Theorem: A DP theorem with
“minimum amount of nonuniformity”

DP Theorem
(a coding theoretic perspective)
Direct Product code:

Let N = 2n, Σ = {0,1}k, M = Nk

Message: m ∈ {0,1}N

Code: Code:{0,1}N -> ΣM defined as

let each bit of m be indexed by x∈{0,1}n
denoted by m[x]

each alphabet of Code(m) can be
indexed by (x1,…,xk)

Code(m)[(x1,…,xk)] = m[x1].m[x2]…m[xk]

DP Theorem
(a coding theoretic perspective)

m∈{0,1}N

x2

Code(m)∈
{0,1}M

(x1,x2) ∈ {0,1}nk

0 0 1 0 1

10

x1

TruthTable(f)

TruthTable(fk)

Connection with DP Theorem
(a coding theoretic perspective)

Any constructive proof of the DP Theorem
gives an approximate, local, list decoding
algorithm for DP code.

AlgorithmC’
C1

CTA circuit which computes
the corrupted codeword

List of circuits such that at least
one of them approximately

computes the message

DP Theorem
(a coding theoretic perspective)

(1-ε)

List Decoding

Codewordsmessages

Given word

DP Theorem
(a coding theoretic perspective)

(1-ε)

Approximate list decoding

Codewordsmessages

Given word

DP Theorem
(a coding theoretic perspective)

Let δ = Θ(log(1/ε)/k)

For any message m and its corrupted
codeword w∈{0,1}N such that
Ham(Code(m),w)<(1-ε).M, then there are
T=Θ(1/ε) messages m1,…,mT such that for at
least one mi, Ham(mi,m) < δ⋅N

Bounds for the Related
XOR Code

Let δ = Θ(log(1/ε)/k)

Given a message m and its corrupted
codeword w∈{0,1}N such that
Ham(XOR-Code(m),w) < (1/2-ε).M,
then there are T=Θ(1/ε2) messages m1,…,mT

such that for at least one mi, Ham(mi,m) < δ⋅N

DP Theorem
(a coding theoretic perspective)

All previous proofs [Lev87, Imp95, IW97...] of
the DP theorem gave list size 2poly(1/ε).

[IJK06, IJKW08]: List decoding algorithm
with size Θ(1/ε) which is information
theoretically optimal.

Uniform DP Theorem
(the first attempt)

 Main Theorem [IJK06]: Let f:U->{0,1} be some
function and C’ be a circuit such that
Pr[C’ computes fk] > ε.
There is an algorithm which outputs a list of
circuits C1,…,CT such that
∃i,Pr[Ci computes f] > (1-δ), where
ε=poly(1/k), ∀i,|Ci|=|C’|⋅poly(1/ε,1/δ,k), T=poly(1/ε).

Drawbacks:

Worked for large ε.

Complicated algorithm and analysis.

Uniform DP Theorem
(the final attempt)

Main Theorem [IJKW08]: Let f:U->R be some
function and C’ be a circuit such that
Pr[C’ computes fk] > ε.
There is an algorithm which outputs a list of
circuits C1,…,CT such that
∃i,Pr[Ci computes f] > (1-δ), where
δ=Θ(log(1/ε)/k), ∀i,|Ci|=|C’|⋅poly(1/ε,1/δ,k), T=O(1/ε).

Uniform XOR Lemma

Theorem [IJKW08]: Let f:U->{0,1} be some function
and C’ be a circuit such that
Pr[C’ computes f⊕k] > 1/2 + ε.
There is an algorithm which outputs a list of
circuits C1,…,CT such that
∃i,Pr[Ci computes f] > (1-δ), where
δ=Θ(log(1/ε)/k), ∀i,|Ci|=|C’|⋅poly(1/ε,1/δ,k), T=O(1/ε2).

Uniform Hardness Amplification

Average-case Complexity: Average-case
hardness of problems instead of worst-case.

Uniform hardness amplification within C: If
there is a problem within C which is mildly
hard on average for probabilistic polynomial
time algorithms, then is there another
problem in C which is very hard for
probabilistic polynomial time algorithms.

Uniform Hardness Amplification
(Hardness Amplification within PNP||)

f’∈NP: (1/nc)-hard wrt BPP/log

g: (1/2 - 1/nd)-hard wrt BPP

Uniform XOR Lemma

f∈NP: (1/nb)-hard wrt BPP [BDCGL92]

g ∈ PNP||
h∈PNP||: (1/na)-hard wrt BPP

simple reduction

PNP||: polynomial time turing machine which can make
polynomial parallel oracle queries to an NP oracle.

Uniform Direct Product
Theorem: The Proof

Main Theorem

Theorem [IJKW08]: Let f:U->R be some
function and C’ be a circuit such that
Pr[C’ computes fk] > ε.
There is an algorithm which outputs with
probability Ω(ε) a circuit C such that
Pr[C computes f] > (1-δ),
where δ=Θ(log(1/ε)/k), |C|=|C’|⋅poly(1/ε,1/δ,k).

Main Theorem

Previous Theorem => Uniform DP Theorem

Repeat the algorithm O(1/ε) times to
produce a list of circuits.

Local Consistency Test

B

A

B’

B’ is said to pass the consistency test wrt (A,B) if
C’(B)|A = C’(B’)|A

(B⊂U, |B|=k) (B’⊂U, |B’|=k)

(A⊂B, A⊂B’, |A|=k/2)

B

B’

A

Local Consistency Test

B

B’

C’(B’)

C’(B)
C’

C’

= = = = A

An Idea Based on Local
Consistency Test

Suppose there are sets A,B⊃A such that

C’(B)=fk(B)

“some other nice properties”

CA,B: Given an input x∈U

If x∈B, then output C’(B)[x]

Randomly select B’, such that A⊂B’ and x∈B’

If B’ passes consistency test wrt (A,B), then
output C’(B’)[x] else repeat

Under what conditions does CA,B work?

Under what conditions “local consistency
implies correctness”?

What are the “nice properties” A,B need to
satisfy?

When does CA,B work?

When does CA,B work?
Under what conditions does CA,B work?

(1) C’(B) = fk(B)

(2) There are non-negligible number of B’⊃A
s.t. C’(B’)=fk(B) and which pass the
consistency test wrt. (A,B)

(3) “Bad” B’⊃A fail the consistency test
w.h.p.
C’(B’) ≠f(.)

Let us call such (A,B) “excellent”.

Choosing Excellent (A,B)

Choose A,B⊃A randomly

Lemma: PrA,B⊃A[(A,B) is excellent] = Ω(ε)

Recall (1) C’(B) = fk(B)

Since PrB[C’(B) = fk(B)] > ε, randomly chosen
A,B⊃A satisfies (1) with probability at least ε.

We will try to show that (2) and (3) almost
always follows from (1).

Choosing Excellent (A,B)
(Proof: PrA,B⊃A[(A,B) is excellent] = Ω(ε))

Recall: (2) There are non-negligible number of
B’⊃A s.t. C’(B’)=fk(B) and which pass the
consistency test wrt. A,B

(2) almost always follows from (1):

Let P(A) be the event that
PrB⊃A[C’(B) = fk(B)] ≤ ε/2

PrA,B⊃A[C’(B) = fk(B) | P(A)] ≤ ε/2
=> PrA,B⊃A[C’(B) = fk(B) & P(A)] ≤ ε/2

Choosing Excellent (A,B)
(Proof: PrA,B⊃A[(A,B) is excellent] = Ω(ε))

Recall: (3) “Bad” B’⊃A fail the consistency test w.h.p.

(3) almost always follows from (1):

We want to show:
PrA,B⊃A,B’⊃A[C’(B)=fk(B) & B’ is “bad” & B’ passes consistency test wrt (A,B)]
is very small (say < ε3)

Choosing Excellent (A,B)
(Proof: PrA,B⊃A[(A,B) is excellent] = Ω(ε))

B’

A

B

w.h.p A contains a “bad” element of B’

Choosing Excellent (A,B)
(Proof: PrA,B⊃A[(A,B) is excellent] = Ω(ε))

Where we are in the proof

What we have shown:

Lemma: PrA,B⊃A[(A,B) is excellent] = Ω(ε)

What we need to show:

Lemma: For any excellent (A,B), CA,B computes f
with probability at least (1-δ)

B

A

B’(contains x)

x C’(B’)[x]

CA,B

randomly select A,B⊃AAlgorithm

Analyzing CA,B given excellent (A,B)

Pr[CA,B fails] ≤ Pr[CA,B does not output an answer] +
Pr[CA,B outputs an incorrect answer | CA,B outputs an
answer]

Analyzing CA,B given excellent (A,B)

U\A all B’⊃A

x∈B’

G (density of G is Ω(ε))

x

Analyzing CA,B given excellent (A,B)

Pr[CA,B fails] ≤ Pr[CA,B does not output an answer] +
Pr[CA,B outputs an incorrect answer | CA,B outputs an
answer]

Analyzing CA,B given excellent (A,B)

U\A

G

Sampler: For any X⊂U\A of density at least β almost all
vertices in the right have at least β/2 fraction of edges
into X.

Analyzing CA,B given excellent (A,B)
all B’⊃A

X

Pr[CA,B fails] ≤ Pr[CA,B does not output an answer] +
Pr[CA,B outputs an incorrect answer | CA,B outputs an
answer]

Analyzing CA,B given excellent (A,B)

Analyzing CA,B given excellent (A,B)

G

Following holds for Samplers: Ex[Rx] ≈ Ey[Ry]

C’(B’)[x] ≠ f(x)

x

Rz = #red incident edges
degree

Want to bound
Ex[Rx]

We know that
Ey[Ry] is small

Derandomized DP Theorem

Derandomized DP Theorem

DP Theorem: Given a hard f:U->R, fk is
harder to compute on independently chosen
subsets B⊂U, |B|=k

Issue: The size of the inputs grows linearly
with k

Derandomized DP Theorem: Can we show
that fk is harder to compute on subsets B⊂U,
|B|=k, even when these subsets have some
limited independence

[Imp95,IW97]: Derandomized DP Theorem in
the nonuniform setting

U = Fq , and consider fk over low dimensional
affine subspaces of U

Derandomized DP Theorem

m

Local Consistency Test

B

A

B’

B’ is said to pass the consistency test wrt (A,B) if
C’(B)|A = C’(B’)|A

(B⊂U, |B|=k=qd) (B’⊂U, |B’|=k=qd)

(A⊂B, A⊂B’, |A|=qd/2)

d dimensional affine
subspace of U=Fq

d/2 dimensional affine
subspace of U=Fq

m

m

B’

A

B

w.h.p A contains a “bad” element of B’

Derandomized DP Theorem
(Proof: PrA,B⊃A[(A,B) is excellent] = Ω(ε))

Chebyshev instead of
Chernoff-Hoeffding

ε = poly(1/k)

U\A

G

Sampler: For any X⊂U\A of density at least β almost all
vertices in the right have at least β/2 fraction of edges
into X.

Derandomized DP Theorem
all B’⊃A

Chebyshev instead of
Chernoff-Hoeffding

ε = poly(1/k)

Theorem [IJKW08]: Let f:U->R be some
function and C’ be a circuit such that
Praffine subspace B⊂U[C’ computes fk(B)] > ε.
There is an algorithm which outputs with
probability Ω(ε) a circuit C such that
Pr[C computes f] > (1-δ),
where ε=poly(1/k), |C|=|C’|⋅poly(1/ε,1/δ,k).

Note: description length of the input for fk is
d⋅log(|U|)

Derandomized DP Theorem

Derandomized DP Theorem

U=Fq
m

low dimensional
affine subspaces

independent subsets

Derandomized DP Theorem

Approximate version of Derandomized
DP Theorem

Theorem [IJKW08]: Let f:U->R be some
function and C’ be a circuit such that
Prindependent B⊂T, low dim affine subspace T⊂U[C’ computes fn(B)] > ε.
There is an algorithm which outputs with
probability poly(ε) a circuit C such that
Pr[C computes f] > (1-δ),
where ε=e-Ω(√n), |C|=|C’|⋅poly(1/ε,1/δ,n).

Note: description length of input for fk is O(n)
(given log(|U|=n))

Open Problem: Bring down ε to e-Ω(n)

Derandomized DP Theorem

Open Problems
Uniform “Chernoff-type” Direct Product
Theorem in the spirit of [IJK07]

Direct Product Testing

Given a circuit C as an oracle, using at
most q queries to the oracle distinguish
between the following two cases

C computes fk for some f

C computes fk on only some small ε
fraction of inputs

Thank You

