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Abstract

We present an efficient algorithm for approx-
imately maintaining and updating a distri-
bution over permutations matching tracks to
real world objects. The algorithm hinges
on two insights from the theory of harmonic
analysis on noncommutative groups. The
first is that most of the information in the
distribution over permutations is captured by
certain “low frequency” Fourier components.
The second is that Bayesian updates of these
components can be efficiently realized by ex-
tensions of Clausen’s FFT for the symmetric
group.

1 Introduction

Multi-object trackers associate tracks r1, r2, . . . , rn

with real world objects o1, o2, . . . , on called targets.
When the targets are well separated and good qual-
ity observations are available, following which track
corresponds to which target is relatively easy. How-
ever, when two objects come very close, are occluded,
or observations are not available, the association be-
tween tracks and objects becomes uncertain. This is
what is referred to as the data association problem in
multi-object tracking.

Most tracking systems in practical use today are prob-
abilistic, in the sense that at time t, each ri(t) stands
for a probability distribution describing our belief of
where the corresponding object is likely to be in space.
It is then natural to address the data association prob-
lem in a similarly probabiblistic fashion, by main-
taining a probability distribution over the n! possible
matchings between objects and tracks. Equivalently,
we regard this as a probability distribution p(σ) over
permutations of o1, o2, . . . , on. Missing observations,
occlusion, random noise, etc. tend to smear out p(σ),
while positively observing some target at a particular

track makes the distribution more concentrated again.
The central challenge in maintaining p is the factorial
blow-up in the number of permutations.

Multi-object tracking has many applications in vision,
security, control, observational problems in the natu-
ral sciences and even in sports [1][16]. The method we
propose is particularly well suited to problems where
location information is relatively abundant, but iden-
tity information is scarce. A typical example is air
traffic control, where aircraft are more or less continu-
ously visible on radar, but in the absence of transpon-
ders, their identity is only revelaled when the pilot
reports by radio. A similar application is tracking an-
imals released into the wild. Information about the
animals might include sightings, or indirect evidence
for their presence, such as killed prey, but only a small
fraction of these observerations reveal the identity of
the specific animal. The task is to extrapolate to the
rest of the observations and reconstruct the paths of
individual animals. The data association problem is
also critical in sensor networks, such as “wired” office
buildings. Observations come from security cameras,
motion detectors, or even light switches, but identify-
ing an individual is only possible when he/she passes
by specific and potentially more intrusive sensors, such
as RFID transmitters, or an identity card reader.

Sensor networks are the motivating application for
recent papers on the information-form data associa-
tion filter [12][14], which is perhaps closest in spirit to
our current work. In particular, the combination of
identity observations and a continuous noise process
operating in the background is similar to our frame-
work. However, in a certain sense the two approaches
are complementary: our experiments indicate that the
data association filter performs better when the as-
sociation distribution is concentrated on a small set
of permutations, while our method, based on smooth-
ness arguments, performs better when the distribution
is more vague. The data association filter scales very
favorably with n, but its representational power is lim-



ited to an n2 dimensional space. We can choose from
a whole spectrum of representations at different levels
of complexity, but richer representations scale more
sharply with n and limit us to about n ≤ 30. It is
possible that in the future the two approaches can be
fused, combining their respective strengths.

A continuum of problems

In general, what approximation is most appropriate
for a given type of data association problem depends
on a number of factors. When there is good reason to
believe that the distribution over permutations is con-
centrated in the vicinity of a single permutation, it is
best to keeep track of the likely permutations individu-
ally. This type of multiple hypothesis or particle filter
type model is very simple and likely to perform better
than any true probabilistic model provided that some
process continually constrains the number of likely hy-
potheses to a very small number (e.g., [9]). In this
regime there is little use for statistics or machine learn-
ing in the classical sense. However, as soon as a general
mixing process sets in between the permutations, as in
the examples investigated in the experiments section,
because of the very strong mixing property of the sym-
metric group, the number of particles required blows
up.

Another consideration is the form in which observa-
tions are made, and in which information is to be ex-
tracted from the distribution. In many cases these are
both related to marginals of the distribution of the
type p [σ(i) = j], i.e., the probability of object i be-
ing at track j. It is then tempting to approach the
data association problem from the point of view of
maintaining an n × n matrix of these marginal prob-
abilities. Many approaches, including, in some sense,
[12] are based on this idea. In fact, in the most basic
case of maintaining just two Fourier components, our
method also performs something very similar. The dif-
ficulty here is that the marginal probabilities are not
independent, and its very difficult to maintain them in
a coherent state or read off a probability distribution
from the marginals directly.

Finally, there are considerations of what it means
for a probability distribution over permutations to be
smooth, and whether the association distribution is
smooth in any sense. Our spectral method, extend-
ing ideas from real harmonic analysis, implicitly makes
very specific assumptions about the true distribution.
As we show, certain natural processes, such as random
mixing of targets (diffusion) fit naturally into this pic-
ture. Other features of real world problems, such as
“hard” observations of object i being at track j with
probability close to 1, blatantly violate the smoothness
assumption. Just as in classical Fourier analysis, this

gives rise to ringing and may lead to artifacts. We em-
pirically found that in many cases this does not hurt
performance becuase the form we extract information
in is in the form of marginals, which averages over such
fluctuations.

We do not claim to have all the answers to these ques-
tions, but our empirical results do seem to point us in
a certain direction. In general, because of the factorial
blow-up in the number of permutations, maintaining
a distributions over permutations is a hard problem,
and there is no one satisfactory solution at this time.

To the best of our knowledge, our approach based on
non-commutative harmonic analysis is novel, certainly
in the data association field. Abstract harmonic anal-
ysis itself is a well-developed branch of mathematics,
but it has seldom been applied to solving real world
problems. P. Diaconis wrote a very influential book
on the subject sketching out numerous possible appli-
cation [4], but did not address tracking.

The other inspiration for our work is the recent de-
velopment of fast transforms for non-commutative
groups by Clausen, Rockmore, Maslen and others
[8][7]. Without these computational methods and our
extensions of them tailored to multi-object tracking,
spectral methods could not scale up to the number
of particles typically encountered in practical appli-
cations. A software package implementing these al-
gorithms, together with a more technical description
than these pages allow has been made available on the
first author’s web pages.

2 In search of the canonical projection

A permutation of n objects is a bijective map
σ : {1, 2, . . . , n} → {1, 2, . . . , n}. In the data associ-
ation problem σ(i) = j signifies that target i is as-
sociated with track j. Defining the product of two
permutations σ1 and σ2 as (σ2σ1)(i) = σ2(σ1(i)), per-
mutations form a noncommutative group, called the
symmetric group of degree n, and denoted Sn.

A probability distribution over permutations is repre-
sented by an n!-dimensional vector with components
pσ = p(σ), σ ∈ Sn. For n greater than about 6 or 7,
maintaining and updating such a large vector is pro-
hibitively expensive. In this paper we project p from
R

n! to an appropriately chosen subspace W . The sub-
space W has to satisfy a number of criteria:

1. It should be possible to reconstruct p from its pro-
jection pW with minimal loss of information.

2. The projection should be symmetric in the sense
that each component pσ must suffer the same loss
when projected to W .



3. It should be possible to apply observation and
noise updates directly to pW , without reconstruct-
ing the full distribution p.

The canonical choice of W is suggested by considera-
tions from representation theory and noncommutative
harmonic analysis. For background material in these
subjects see [13] and [4].

2.1 Harmonic Analysis on Finite Groups

A (complex) representation of a finite group G is a
matrix valued function ρ : G → C

dρ×dρ which obeys

ρ(g2) ρ(g1) = ρ(g2g1) ∀ g1, g2 ∈ G.

We say that dρ is the dimensionality of the represen-
tation. Two representations ρ1 and ρ2 of G are called
equivalent if there is an invertible matrix T such that

T−1ρ1(g)T = ρ2(g) ∀ g ∈ G.

A representation ρ is said to be reducible if for some
invertible matrix T it splits in the form

T−1ρ(g)T =

(
ρ1(g) 0

0 ρ2(g)

)
∀ g ∈ G

into a direct some of smaller representations ρ1 and
ρ2. If no such matrix exists, ρ is called irreducible.
Any complex-valued representation of a finite group G
splits into a direct sum of irreducible representations
in a unique way, up to equivalence of representations.
One of the central problems in representation theory
is to find a complete set of inequivalent irreducibles for
G. Such a set we denote by R.

Representation theory allows us to extend the concept
of Fourier transformation to any finite group. The
Fourier transform (FT) of a function f : G→ C is de-
fined as the set of matrices

f̂(ρ) =
∑

g∈G

f(g) ρ(g) ρ ∈ R. (1)

Similarly to the ordinary Fourier transform, F : f 7→ f̂
is an invertible linear mapping, and it is unitary with
respect to the norms

‖ f ‖
2

=
1

|G |

∑

g∈G

| f(g) |
2

and ww f̂
ww2

=
1

|G |

∑

ρ∈R

dρ

ww f̂(ρ)
ww2

Frob
. (2)

The inverse transform is given by

f(g) =
1

|G |

∑

ρ∈R

dρ tr
[
f̂(ρ) ρ(g)

]
g ∈ G,

where in the square brackets we have matrix multipli-
cation. By unitarity, the map Φρ : f 7→ f̂(ρ) can be
regarded as a projection of f onto a d2

ρ-dimensional
subspace Vρ. Our assertion is that just as in classi-
cal Fourier analysis, the so-called isotypal components
Φρ(f) capture variation in f at different levels of “com-
plexity” (c.f. [4][10]). To see this more clearly, we look
more specifically at the case of the symmetric group.

2.2 The Spectrum of the Cayley Graph

Apart from the identity, the most elementary members
of Sn are the so-called transpositions {[i, j]}, which
are permutations that exchange i and j and leave the
rest of {1, 2, . . . , n} fixed. To represent Sn as a graph,
it is natural to regard two permutations σ and σ′ as
neighbors if they differ by only a transposition. This
is called the Cayley graph, and its Laplacian is

∆σ1,σ2
=






− 1
if σ1 = [i, j] · σ2

for some 1 ≤ i < j ≤ n,

n(n−1)/2 if σ1 = σ2,

0 otherwise.

(3)
According to general spectral theory, the orthonormal
eigenvectors v1, v2, . . . , vn of ∆ ordered by their eigen-
values α1 ≤ α2 ≤ . . . ≤ αn correspond to increasingly
“complex” functions on the Cayley graph [3][2][15].
Distributions corresponding to low complexity func-
tions are smooth in the sense that on average a single
transposition does not change p(σ) much. Since noise
enters p in the form of pairs or small groups of targets
getting mixed up at a time, it is a reasonable assump-
tion that p is smooth in this sense. The connection to
the Fourier transform is given by the following propo-
sition.

Proposition 1 Each isotypal subspace Vρ is spanned

by eigenvectors of ∆ with the same eigenvalue αρ.

Proposition 1 tells us that the appropriate subspace
to project p to is Wαthresh

=
⊕

αρ≤αthresh
Vρ for some

threshold αthresh. In other words, the principled way
of easing the computational burden of the data asso-
ciation problem is to work in Fourier space and main-
tain only the first few “low frequency” matrices of the
Fourier transform of p. A low pass filter of this type
does not affect the normalization of p, but might break
0 ≤ p(σ) ≤ 1. In practice this usually does not cause
problems in data association. However, it is important
to bear in mind that what we denote by p below is only
an approximation to a true distribution.

To find out which are the low frequency components,
we need some more specific facts from the representa-
tion theory of Sn[5][11]. First of all, the irreducibles



are usually indexed by Young diagrams, such as

.

The total number of boxes must be n, and each row
can contain at most as many boxes as the row above
it. Young diagrams may be specified by the vector
λ = (λ1, λ2, . . . , λk) giving the number of boxes in
each row. The irreducible of shape (n) is the trivial
representation ρ(n)(σ) ≡ 1. The irreducible of shape
(1, 1, . . . , 1) is the so-called alternating representation
ρ(1,1,...,1)(σ) = sgn(σ), where sgn(σ) = 1 if σ is an even
permutation, and sgn(σ) = −1 if it is odd. The rest of
the irreducibles are multi-dimensional representations
and are considerably more complicated.

While in general representation theory takes on its
simplest form when working over C, the symmetric
group is special in that it does have a complete system
of inequivalent irreducible (over C) representations,
which consist entirely of real matrices. This allows us
to frame our approach to the data association problem
in terms of real matrices and vector spaces.

The eigenvalues corresponding to each Young diagram
are computed using the following proposition.

Proposition 2 The eigenvalue of ∆ corresponding to

the isotypal indexed by λ is

αλ =

(
n

2

)(
1 −

tr [ρλ([1, 2])]

dλ

)
. (4)

As for any Laplacian, the lowest eigenvalue of ∆ is
0, and corresponds to the constant function on Sn,
i.e., α(n) = 0. The next lowest one corresponds to
the (n− 1, 1) irreducible, which is n− 1 dimensional.
Following that we have α(n−2,2) and α(n−2,1,1), which
correspond to n(n−3)/2 and (n−1)(n−2)/2 dimen-
sional representations, respectively. After these come
α(n−3,3), α(n−3,2,1) and α(n−3,1,1,1) with dimensional-

ities n(n− 1)(n− 5)/6, n(n − 2)(n − 4)/3 and
(
n−1

3

)
.

Beyond these are matrices with O(n8) elements, which
are typically too large for practical applications. In the
following sections D will denote the dimensionality of
the largest p̂(ρ) matrix that we maintain.

3 Tracking targets

A probabilistic data association algorithm must have
at least the following three components:

1. A noise model describing how the distribution p
degrades in the absence of observations.

2. A rule for updating p when one or more targets
are observed at specific tracks.

3. An inference procedure for recovering the most
likely assignment of targets to tracks.

We now describe the implementation of each of these
components in our spectral framework.

3.1 Noise model

We model the uncertainty seeping into p by assuming
that at each time t with some small probability β the
targets corresponding to tracks i and j get exchanged,
and this probability β is independent of i and j. If
previously the correct assignment was σ, then the new
assignment will be [i, j]σ. Considering all possible ex-
changes, the corresponding transition matrix is I−β∆,
where ∆ is again the Laplacian (3). Since this noise
process is assumed to operate in the background in a
continuous manner, we take the limiting case of infin-
tesimally small time intervals, leading to the update
equation pt′ = exp (−β (t′− t)∆) pt, where

e−β(t′−t)∆ := lim
k→∞

(
I −

β (t′− t)

k
∆

)k

(5)

is the matrix exponential. This, however, is just a dif-
fusion process on the Cayley graph [6]. In particular,
by Proposition 1 the Fourier space updates of p take
on the particularly simple form

p̂t′(ρλ) = e−βαλ(t′−t) p̂t(ρλ).

In our bandwidth-limited Fourier space scheme this
update equation is not only very efficient to imple-
ment, but it is also exact: diffusion does not take us
outside the subspace of distributions restricted to W .

3.2 Observations

The simplest type of observations consist of receiving
information that with probability π, target oi is at
track rj :

p ( Oi→j |σ ) =

{
π if σ(i) = j,

(1 − π)/(n−1) if σ(i) 6= j.
(6)

Fixing j, p ( Oi→j |σ ) is to be regarded as a proba-
bility distribution over which target i is observed at
track j. The posterior over permutations is given by
Bayes’ rule:

p ( σ |Oi→j ) =
p ( Oi→j |σ ) p(σ)∑

σ′∈Sn
p ( Oi→j |σ′ ) p(σ′)

, (7)

giving rise to the update rule

p′(σ) =

{
1
Z

π · p(σ) for σ(i) = j,
1
Z

1−π
n−1 p(σ) for σ(i) 6= j,

(8)



where Z is the normalizer Z = π · p([σ(i) = j]) +
1−π
n−1 · (1 − p([σ(i) 6= j])). In summary, observation up-
dates hinge on (a) marginalizing p over sets of the form
Ci→j = { σ ∈ Sn | σ(i) = j } and (b) rescaling the pro-
jections of p onto subspaces corresponding to Ci→j and
Ci→j′ , j′ 6= j.

A naive implementation of this update requiring ex-
plicit enumeration of group elements would run in time
O(n!). The next section will present a much faster al-
gorithm. The observation updates couple the different
Fourier components. This means when restricted to
W the update step can only be approximate: an ex-
act update would push some energy into some of the
“higher frequency” Fourier components which we do
not maintain in our bandwidth-limited representation
of p. This is the only source of approximation error in
our framework.

3.3 Inference

The third component to our data association system
is a procedure for reading off the predicted associa-
tion betweeen targets and tracks. In the simplest case
this consists of returning the marginal probabilities
p([σ(i) = j]) for a fixed object i as the track variable j
ranges over 1, 2, . . . , n, or for a fixed track j as i ranges
over 1, 2, . . . , n.

A more chellenging task is to find the optimal asso-
ciation σ̃ = arg maxσ∈Sn

p(σ). Again, the techniques
presented in the next section lead to a search algo-
rithm which can beat the apparent O(n!) complexity
of this operation.

4 Efficient computation

The spectral theory of the previous sections would be
of little practical use if any of the required computa-
tions scaled with n!. One of the original contributions
of this paper is to propose efficient computational pro-
cedures to perform the update and inference steps.

Both of these are based on Clausen’s celebrated fast
Fourier transform (FFT) for Sn, which reduces the
complexity of computing a complete Fourier trans-
form from n!2 to n! (n + 1)n(n − 1)/3 [8]. Unfor-
tunately, space restrictions prevent us from giving
more than just a sketch of Clausen’s FFT and our
extensions to it. Instead, the reader is referred
to http://www.cs.columbia.edu/~risi/SnOB for a
C++ implementation together with complete docu-
mentation describing the technical details.

Similarly to classical FFTs, Clausen’s algorithm is
based on decomposing the Fourier transform into a
collection of Fourier transforms on subgroups. For
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Figure 1: The Bratelli diagram for S5. The diagram
shows that on restriction to Sn−1, each irreducible rep-
resentation ρλ of Sn decomposes into a sum of repre-
sentations ρλ− of Sn−1, where each λ− is derived from
λ by removing a single square from its Young diagram.

Sn these subgroups are Sn−1, Sn−2, . . . , S1, where Sk

is understood to the be the subgroup of permutations
permuting 1, 2, . . . , k but leaving k+1, . . . , n fixed. To
describe the decomposition, we introduce what we call
contiguous cycles, denoted Jp, qK, which are permuta-
tions of the form

Jp, qK (i) =






i + 1 if p ≤ i ≤ q − 1

p if i = q

i otherwise

for 1 ≤ p ≤ q ≤ n. It is easy to see that the cosets
{Jj, nK Sn−1}1≤i≤n partition Sn, in other words, any
σ ∈ Sn can be written uniquely as σ = Jj, nK σ′ for
some σ′ ∈ Sn−1 and some 1 ≤ j ≤ n. This allows us
to factor (1) in the form

f̂(ρλ) =

n∑

j=1

ρλ(Jj, nK)
∑

σ′∈Sn−1

ρλ(σ′) fj(σ
′) , (9)

where fj(σ
′) = (f(Jj, nK σ′) are functions on Sn−1.

Clausen’s FFT hinges on the observation that for cer-
tain specific choices of R (such as Young’s orthogonal
representation) the ρλ(Jj, nK) can be written as a prod-
uct of up to n very sparse matrices, and at the same
time ρλ(σ′) decomposes into a direct sum of ρλ−(σ′)
matrices, where ρλ− are now representations of Sn−1.
Plugging the latter into (9) gives the desired decom-

position of f̂ into the smaller f̂i Fourier transforms:

f̂(ρλ) =

n∑

j=1

ρ(Jj, nK)
⊕

λ−

f̂j(ρλ−). (10)

Exactly which partitions of n−1 the index λ− runs over
is revealed by the so called Bratelli diagram (Figure
1). Recursively applying (10) down to S1 gives the



find_largest_in_subgroup(σSk){
if k = 1 {

if ‖ p(σ) ‖2 > ‖ p(σ̃) ‖2 { σ̃ ← σ; }
}
else {

order {η1, η2, . . . , ηk} so that ‖ p(ση1Sk−1) ‖
2 ≥

‖ p(ση2Sk−1) ‖
2 ≥ . . . ≥ ‖ p(σηkSk−1) ‖

2
;

i← 1;
while ‖ p(σηiSk−1) ‖

2
> ‖ p(σ̃) ‖2 {

find_largest_in_subgroup(σηiSk−1);
i← i + 1;

}
}}

Figure 2: Fast algorithm for finding the maximum
probability permutation. The recursive procedure is
called with the argument eSn, and σ̃ is initialized to
any permutation. For σ ∈ Sn, ‖ p(σSk) ‖

2
stands

for 1
k!

∑
τ∈Sk

‖ p(στ) ‖
2
, which can be efficiently com-

puted by partial Fourier transform methods, particu-
larly when p̂ is sparse. Finally, ηi ≡ Ji, kK.

full FFT. The inverse transform is based on similar
expressions for the f̂j in terms of components of f̂ .

We generalize Clausen’s FFT by modifying (10) to

f̂(λ) =

n∑

j=1

ρ(Jj, nK)
[⊕

λ−

f̂i→j(ρλ−)
]

ρ(Ji, nK
−1

),

where 1 ≤ i ≤ n, and fi→j(σ
′) = f(Jj, nK σ′ Ji, nK

−1
),

leading to what we call “twisted” FFTs. The con-
nection to the data association problem is that the
two-sided coset Jj, nK Sn−1 Ji, nK

−1
to which fi→j cor-

responds is exactly the set Ci→j introduced in 3.2. In
particular, since ρ(n−1) is the trivial representation of
Sn−1, the Fourier component p̂i→j(ρn−1) is equal to
the marginal p([σ(i) = j]).

Our Bayesian update step can then be performed by
transforming to the p̂i→j(ρλ−) matrices from the orig-
inal p̂(ρλ), reading off p̂i→j(ρ(n−1)), rescaling the p̂i→j

according to (8), and then transforming back to p̂. For
band-limited functions all these computations can be
restricted to the subtree of the Bratelli diagram leading
to those Fourier components p̂(ρλ) which we actually
maintain, and the total complexity of the update step
becomes O(D2n). This algorithmic viewpoint of infor-
mation passing back and forth between the p̂(ρλ) ma-
trices and the p̂i→j(ρλ−) matrices also sheds light on
the nature of the coupling between the Fourier compo-
nents: this arises because in the Bratelli diagram each
partition of n− 1 is linked to multiple partitions of n.

As regards the inference step, our proposed solution is
a greedy search over the cosets that the FFT succes-
sively decomposes Sn into (Figure 2). The algorithm

is based on the fact that the total energy ‖ p(σSk) ‖
2

in any Sk-coset is the sum of the total energies of the
constituent Sk−1-cosets, and that by unitarity and (2)
this energy is fast to compute. We cannot give a theo-
retical complexity guarantee for this algorithm, but in
practical applications it is expected to be much faster
than O(n!).

4.1 Performance

In summary, our computational strategy is based on
carefully avoiding complete Fourier transforms or any
other O(n!) computations. This makes our framework
viable up to about n = 30. To indicate performance,
on a 2.6 GHz PC, a single observation update takes
59ms for n = 15 when W is spanned by the first 4
Fourier components, and 3s when maintaining the first
7 components. For n = 30 and 4 components an up-
date takes approximately 3s. Recall from the end of
Section 2 that the third and fourth Fourier compo-
nents have O(n4) scalar components. When storing
and updating this many variables is no longer feasible,
we are reduced to the just the first two components
with 1 and (n−1)2 scalar entries, respectively. At this
point we lose the advantage in terms of detail of repre-
sentation over other, simpler algorithms. Our spectral
method is most likely to be of use in the 8 ≤ n ≤ 30
range.

5 Higher order observations

One of the advantages of our algebraic approach is that
it provides a consistent framework for incorporating
more complicated observation and noise models. We
consider the following.

1. O(i1,i2,...,ik)→(j1,j2,...,jk) observations. These cor-
respond to simultaneously observing oi1 at rj1 ,
oi2 at rj2 , etc.. A special case is when the entire
permutation is observed.

2. O{i1,i2,...,ik}→{j1,j2,...,jk} observations are like the
above, except that there is no information about
how the oia

’s and the rjb
’s match up amongst

themselves. As an example, we might localize a
group of people in a room, but not be able to
differentiate between them.

3. Diffusion localized to a subset of tracks.
This becomes necessary when several tracks
rj1 , rj2 , . . . , rjk

approach each other, and hence it
becomes more likely that corresponding targets
get exchanged.

Let τi1,i2,...,ik
denote any permutation such that

τi1,i2,...,ik
(ia) = n+1−a for a = 1, 2, . . . , k. The coset

C(i1,i2,...,ik)→(j1,j2,...,jk) = τ−1
j1,j2,...,jk

Sn−k τi1,i2,...,ik
is
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Figure 3: Tracking error on the air traffic control dataset for n = {6, 10, 15} as a function of the number of
Fourier components maintained (pobs = 0.05, 0.1 and 0.3)

then exactly the set of permutations corresponding the
type of observation in case 1 above. The observation
is implemented by transforming to the corresponding
p̂(i1,i2,...,ik)→(j1,j2,...,jk) partial Fourier transform, up-
dating as in Section 4, and then transforming back.

Similarly, the second type of observation corresponds
to transforming to the τ−1

j1,j2,...,jk
(Sn−k × Sk)τi1,i2,...,ik

coset. For small k this is accomplished by transforming
to all k! possible C(i′

1
,i′

2
,...,i′

k
)→(j1,j2,...,jk) cosets, where

i′1, i
′
2, . . . , i

′
k is a permutation of i1, i2, . . . , ik.

Finally, localized diffusion in the general case hinges
on the convolution theorem (see Appendix). For the
special case of diffusing over pairs of tracks (j1, j2), as
used in our experiments, this reduces to p̂(ρλ) being
updated to
(

1 + e−β(t′−t)

2
I +

1 − e−β(t′−t)

2
ρλ([j1, j2])

)
· p̂(ρλ).

6 Experiments

We performed experiments on a dataset of (x, y)
radar positions of aircraft within an approximately
30 mile diameter area around New York’s John
F. Kennedy International Airport on a given day
in May, 2006, updated at few second intervals.
The data is available in streaming format from
http://www4.passur.com/jfk.html. The presence
of three major airports in the area (JFK, La Guardia
and Newark), together with specific local procedures,
such as the routing of aircraft over the Hudson river
for noise abatement, and simultaneous approaches at
closely spaced parallel runways at JFK, result in air-
craft frequently crossing paths in the (x, y) plane, mak-
ing the data particulary interesting for our purposes.

The number of simultaneously tracked aircraft was
n = 6, 10 and 15, and whenever an aircraft’s track-
ing was terminated either because it has landed or be-
cause it has left the area, its track was reassigned to a
new aircraft. Our method could be extended to track-
ing varying numbers of objects, but that is beyond

the scope of the present paper. The number 15 is sig-
nificant becuase it is large enough to make storing a
full distribution over permutations impossible (15! ≈
1.3 ·1012), yet with up to 4 Fourier components our al-
gorithm can still run on an entire day’s worth of data in
a matter of hours. The original data comes pe-labeled
with track/target assignment information. We intro-
duce uncertainty by at each timestep t for each pair
(j1, j2) of tracks swapping their assignment with prob-

ability pmix exp
(
−‖xj1(t) − xj2(t) ‖

2
/
(
2s2
))

, where
xj(t) is the position of track j at time t (s = 0.1 and
pmix = 0.1). This models noisy data, where the assign-
ment breaks down when targets approach each other.

The algorithm has access to track locations from which
it can model this shifting distribution over assignments
using the pairwise diffusion updates discussed in Sec-
tion 5. In addition, with probability pobs for each t and
each j, the algorithm is provided with a first order ob-
servation of the form Oi→j , with π = 1. The task of the
algorithm is to predict the target currently assigned to
track j by computing arg maxi p([σ(i) = j]). The eval-
uation measure is the fraction of incorrect predictions.

Experimental results are promising (Figure 3) and
clearly show that performance generally improves with
the number of irreducibles. It is difficult to compare
our alogrithm directly with other association methods,
since most of them do not accept probabilistic obser-
vation and diffusion updates in the form supplied by
the data. However, the best performance we could
achieve with the information-form filter [12] for n = 6
was 0.194 error and for n = 10 was 0.2885, which
is significantly worse than our own results of 0.127
and 0.215, respectively. Time limitations prevented
us from more extensive comparisons, but our prelim-
inary results indicate that on the flight tracking task
the two approaches often perform similarly, but the in-
formation form filter is better suited to domains where
the distribution is highly peaked, whereas our method
performs better when there is more uncertainty and
the distribution is smooth. We expect that our spec-
tral method will give the largest performance gain for



problems where complicated distributions need to be
approximated accurately.

7 Conclusions

In this paper we argued that just as it is natural to
approximate smooth periodic functions on R

n by their
first few Fourier components, it is similarly natural to
approximate smooth association distributions over the
intractably large Sn by their first few Fourier matri-
ces. As these matrices grow very rapidly, there is a se-
vere tradeoff between accuracy and speed in how many
components we maintain. We presented efficient com-
putational methods based on Clausen’s FFT for up-
dating these matrices. The critical Oi→j observation
step runs in O(D2n), where D is the dimensionality
of the largest maintained Fourier matrix (which has
D2 elements). In a realistic aircraft tracking scenario
with n = 15 targets the algorithm can easily run in
real time. The source of approximation error in our
framework is the Fourier cutoff (band limit) and the
the Bayesian identity observation updates, which cut
across isotypics.

While we developed this machinery in the context of
the Bayesian data association problem in multi-object
tracking, clearly it has broader applicability to a wide
range of problems involving distributions over the sym-
metric group. The experiments are in the exploratory
stage, but show that in certain domains the new algo-
rithm beats Schmutisch et. al.’s information form data
association filter, which is considered state of the art.
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