
A Short Introduction to Hilbert Space Methods

in Machine Learning

Risi Kondor

October 15, 2003

This is an incomplete draft. Check back
soon for the final version.

1 The Learning Problem

Machine Learning deals with the problem of inference from finite samples in
high dimensional spaces. Typically, in supervised learning we are given m
observations (x1, y1), (x2, y2), . . . , (xm, ym), called the training set, and our job
is to learn a rule, such that when we are presented with further x’s we can do
reasonably well in predicting the corresponding y’s (testing set). The x’s are
called inputs and are assumed to live in some known space (or set) X , unsur-
prisingly called the input space. In the simplest case X is just the Euclidean
space Rn of n-dimensional vectors. The y’s are called outputs and they come
from the output space Y. This framework can accomodate classification by
setting Y={−1,+1} and regression by setting Y=R. The (x, y) pairs from the
training set are called training examples and those from the testing set are
called testing examples.
The “rule” we are seeking, sometimes called the hypothesis, is just a func- Empirical

errortion f : X 7→ Y. To quantify how well f does on (x1, y1), (x2, y2), . . . , (xm, ym)
we use the empirical error, sometimes called empirical risk or training
error, defined

Remp[f] =
1

m

m
∑

i=1

L(f(xi), yi), (1)

where L : Y×Y 7→ R is our loss function of choice. For classification the most
immediate choice of loss function is the zero-one loss

L(ŷ, y) =

{

1 if ŷ 6= y

0 otherwise.
(2)

For regression we might use the squared error loss

L(ŷ, y) = (y − ŷ)2. (3)

1

The choice of loss function is of critical importance not only in the evaluation,
but also in the design of learning algorithms. We shall come back to this point
in section **.

1.1 A simple-minded algorithm

A naive approach to learning might be to try and minimize the empirical error
(1) directly. Assume that (x1, y1) , (x2, y2) , . . . , (xm, ym) are {−1,+1} labeled
points in the plane R2 and we are looking for f : R2 7→ {−1,+1} minimizing the
zero-one loss (2). If we can find a linear decision function f(x) = sgn(b +
w · x) (where w ∈ Rn and b ∈ R) that correctly classifies the training data,
then we are fine. If we cannot find such a function because the training data
is not linearly separable, maybe we decide to look at second order functions

f(x) = sgn
(

b+ x · w + (x−x0)
>
S (x−x0)

)

where S is now a matrix. If that

still doesn’t do the job, we can go to even higher order polynomial discriminant
functions, or some other family of functions. Ultimately, we might be looking
at the entire class of continuous functions on R2 thresholded at zero, F =
{

f = sgn(g) | g∈C(R2)
}

.
Is this a sensible strategy? By choosing f from a large enough space of

functions, we can certainly do really well on the training data (at least in the
case that there is a deterministic target hypothesis f0 relating y to x, i.e.
f0(x)= y). If we wish, we can always make the training error exactly zero. A
simple hypothesis that does just this is

f(x) =

{

+1 if for some i∈{1, 2, . . .m} xi=x and yi=1

−1 otherwise.
(4)

But is such a hypothesis likely to do well on future, unseen examples? Probably
not. Consider a test example (x, y) where x is very close (even infinitesimally
close) to one of the training examples with +1 output, but is not identical to
any of them. Intuitively, it is clear that y is extremely likely to be +1, but (4)
will stubbornly predict −1.
The truth is, (4) is not a learning algorithm at all, it’s just a label memoriza- The structure

of Xtion procedure. Nevertheless, it does illustrate some important points. The first
point is that it is impossible to learn without making some sort of assumption
about what constitutes similarity in the input space X . In particular, we need
to have some a priori idea about how similarity in X is related to similarity of
the outputs y∈Y. We will come back to this crucial question later.
The second point is that we need to assume that the training examples are The

distribution Dinformative about the testing examples. The simplest way to formulate this is
to assume that the target hypothesis behind the training examples is the same
as the target hyothesis behind the testing examples. Additionally, the training
set must be relevant to the testing set in the sense that the training inputs
x1, x2, . . . , xm should more or less cover the region of X where the test inputs
will fall. If there is some remote region of input space where we have no training

2

examples, it will be very difficult for our algorithm to learn the shape of the
discriminant function or regressor in that region.
To quantify this latter requirement we usually assume that the training and

testing inputs are drawn from to the same distribution DX over X . The corre-
sponding labels are determined according to the target hypothesis f0 : X 7→ Y,
or, more generally, target probability distributions p (y |x). This latter scenario
is referred to as learning with noise. It is again crucial that the training and
testing data share the same distributions p (y |x) for all x∈X . For simplicity,
DX and the conditionals p (y |x) are usually folded into a single big distribu-
tion D over X × Y. Our assumption is that training and testing examples are
generated in an iid (independently and indentically dsitributed) fashion from
this distribution D.
The third and final lesson from the miserable failiure of our primitive label True error

memorization procedure (4) is that it is important to bear in mind what our
ultimate goal is: what we really want to do is to minimize our expected error on
the testing set, not just the empirical error on the training set. With the notation
we have just introduced, the ultimate measure of success for a hypothesis f is
the so-called true error or true risk

R[f] = ED [L(f(x), y)] ,

where the expectation is taken over (x, y) pairs drawn from D. The art is in
constructing algorithms that can (approximately) minimize the true risk, only
knowing the finite training set (x1, y1) , (x2, y2) , . . . , (xm, ym). This is called
generalization ability. In contrast, what bad algorithms, such as (4), often
end up doing is minimizing the empirical error at the expense of the true error,
which is called overfitting. If there is a single unifying theme in learning theory,
it is the constant battle against overfitting.

1.2 The formal model

Our considerations so far give rise to the following formal model of the learning The formal
modelproblem. Let X be the input space, Y be the output space, D be some unknown

probablity distribution on X × Y and let F (called the hypothesis space) be
a class of functions f : X 7→ Y. Given a sample S = (x1, y1), . . . , (xm, ym) from
D, the goal of learning is to find a hypothesis f ∈F minimizing the true risk

R[f] = ED [L(f(x), y)] . (5)

The advantage of working within such a well-defined model is it makes it possible
to derive precise, yet general mathematical statements. In particular, we are
interested in deriving theoretical guarantees of generalization performance and
finding strategies for avoiding overfitting.
The main reason why we cannot minimize (5) directly is that we do not

know D. Even after our algorithm has come up with a hypothesis f , we still
cannot evaluate (5). This would actually be really valuable, since it could tell
us how much we can trust f .

3

For many practical algorithms, however, it is often observed that the true
error (5) is not too far from the empirical error (1). Real algorithms are not
as ill behaved as the label memorization algorithm (4), which was an extreme
example. The key observation is the dicrepancy between the RD and Remp is
related to the size of F , that is, how flexible our model is. What made the
label memorization algorithm so bad was that the class of possible hypotheses
was so huge, permitting us to fit anything we wanted. That is an invitation for
disastrous overfitting. Learning algorithms used in practice usually have access
to a much more limited set of hyoptheses (such as linear discriminators in the
case of the perceptron, SVM etc..), so they have less opportunity to overfit.
Minimizing the empirical error might not be such a bad strategy after all

provided we restrict our hypothesis class. After all, given finite training data,
we cannot really do much better. We are still optimizing for the training data,
so it is almost inevitable that we are going to do worse on the test data, but we
can build in safeguards that will prevent us from doing much worse. In fact, it
is possible to come up with bounds to quantify how much worse we can expect
to be doing.
So called uniform convergence bounds state that for all hypotheses f Uniform

Convergence
Bounds

from a particular hypothesis class H,

R[f] ≤ Remp[f] + ε (6)

where the generalization error εH is usually a complicated function of several
parameters, including the training set size m. Note that however we choose the
hypothesis class and however clever our algorithm is, an unlucky draw of training
examples can still lead us astray, so no bound like (6) in every case. The best
we can say is that with probability at least 1− δ over the choice of training
set, where δ is a (hopefully small) positve real number (6) holds. This δ then
becomes one of the parameters that ε depends on:

P
[

R[f]−Remp[f] ≤ ε
∣

∣

∣
∀f ∈F

]

≥ 1− δ. (7)

We can make the bound tighter by reducing ε but then the probability δ that
it will fail goes up, or we can guard ourselves against failiure by reducing δ but
then ε will be large.
Manufacturing uniform convergence bounds is one of the longest standing Order of

quantifiersand mathematically most challenging enterprises in Machine Learning. Note
that since we don’t know D, (7) has to hold for all possible distributions D on
X × Y. Furthermore, with probability 1− δ, the inequality must hold for all
possible hypotheses simultaneously. In particular, (7) is not equivalent to

P
[

R[f]−Remp[f] ≤ ε
]

≥ 1− δ ∀f ∈F . (8)

This latter equation roughly says that given any f ∈F , except for a fraction at
most δ of “unlucky” draws of the training set, (6) will hold. Which training sets
are bad and which are good can differ for different f ’s. In contrast, (7) suggests

4

that we draw the training set first, decide wheteher it is “lucky” or “unlucky”
(which occurs at most δ fraction of the time) and if it is not unlucky, then the
inequality will hold for all hypotheses simultaneuously. The set of lucky training
sets has to be the same for every hypothesis. Equation (7) is a much stronger
statement than (8).
To emphasize this point, it is preferable to write (7) as

P
[

sup
f∈F

[R[f]−Remp[f]] ≤ ε
]

≥ 1− δ, (9)

where sup, pronounced supremum, denotes the lowest upper bound: for our
purposes, we can just regard it as the maximum.
The distinction between (9) and (8) is crucial for what we want to use our

bounds for. What we are really interested is the error of the hypothesis f ∗

that minimizes the emprical risk, and the empirical risk, of course, heavily
depends on what is in the training. The training set S and the hypothesis f ∗

are not independent random variables. In fact, given S, by defining f ∗ to be
the minimizer of the emprical risk, we are actively seeking the worst case, in the
sense that R[f∗] − Remp[f

∗] will be atypically high. Conversely, given f ∗, the
distribution of generalization error amongst those training sets that can actually
give rise to f∗, is heavily skewed towards large errors.
Bounds of the type (9) are called “uniform” bounds because they have to

hold simultaneously for all f . It is also this property that makes deriving them
difficult.
For classification problems the first breakthrough in this regard was ac- Vapnik-

Chervonenkis
bounds

complished by Vapnik and Chervonenkis in the 1970’s who proved that with
probability 1−δ over the choice of training set

sup
f∈F

[

R[f]−Remp[f]
]

≤

√

h (log (2m/h) + 1) + log (δ/4)

m

where h is the VC dimension of F . Recall that h is the maximum number such
that there is set U ⊂ X of size h with the property that for all subsets V ⊂ U ,
there is a f ∈F such that f(x)=1 for all x∈V and f(x)=−1 for all x∈U \ V .
If somebody managed to come up with a good bound of the form (7) that Structural

Risk
Minimization

was also suffciently general, the problem of learning would essentially be solved.
We could try various hypothesis classes, see how well we can fit the training data
with the best hypothesis in each class, and see what ε tells us about the likely
generalization error. Chances are , for simple hypothesis classes, such as linear
discriminants, the training error will not be so good, but ε will be relatively small
because we are not likely to be overfitting. For complex hypothesis classes, like
high order polynomials, we can fit the training data well, but ε is going to be
huge. All we would have to do is try out a sufficient variety of hypothesis classes
and choose the one with the lowest Remp[f]+ε for the best f in that class. Once
we have the class, we just stick with the best f in that class and return that as
the final result.

5

Unfortunately, we are very far from being able to do SRM explicitly, mostly
because uniform convergence bounds are so loose. Exactly because they must
hold uniformly for all D and all f ∈ H, the mathematics tends to get very
involved, all sorts of loose inequalities have to be invoked along the way and the
final result ends up even looser. More often than not, for real world problems
uniform convergence bounds return an answer like “using this hypothesis, with
.99 probability, the error rate on future examples will be less than 30, 000.” In
real applications, telling this a doctor who needs to know how much he can
trust our algorithm, for example, such a result might not be so useful. For SRM
where we are interested in fine variations in generalization capability, current
bounds are even more useless. So is the whole business of laboriously proving
uniform convergence bounds just a waste of time?
The answer is: not quite. While the numerical bottom line of most bounds

known to date is generally very loose, and they might stay that way, too, the
form of the bounds is often informative. For example, the whole idea of con-
structing classifiers with large margins came out of the studying bounds, when
it was discovered that the presence of a large margin can reduce ε. More gener-
ally, it is important to bear in mind the form of Equation (6). Here we have two
competing terms and we are trying to minimize their sum: the error suffered on
the training set and a complexity penalty. In the next section we are going to
construct algorithms explicitly minimizing an expression of this form.

6

2 Hilbert Space Methods

2.1 A space of hypotheses

In the previous section we saw that finding the hypothesis f minimizing the
empirical error

Remp[f] =
1

m

m
∑

i=1

L(f(xi), yi) (10)

is a natural thing for a learning algorithm to be trying to do. We also saw that
just minimizing the empirical error is suicidal, because it almost certainly leads
to overfitting. Minimizing Remp only makes sense if we simultaneously somehow
restrict ourselves to hypotheses that are of just the right level of complexity.
One way to do this is by explicitly restricting the hypothesis space F to

“simple” hypotheses, as in Structural Risk Minimization. Another way, inspired
by the form of (6), is to introduce a penalty functional Ω[f] that somehow
measures the complexity of each hypothesis f , and instead of (10) to minimize
the sum

Rreg[f] = Remp[f] + Ω[f]. (11)

The penalty Ω[f] is called the regularizer and Rreg is called the regularized
risk.
Another thing we adopt from the previous sections is the function-based

approach, concentrating on the abstract optimization problem rather than al-
gorithms and efficiency. For now, we just worry about the loss function L, the
regularizer Ω, and the hypothesis class F . The development will be general in
the sense of encompassing both classification and regression, but we find that
concrete examples are now simplest to construct for regression with the squared
error loss (3).
We now set about constructing the hypothesis class F . A natural require- Constructing

Fment for F is that it be a linear function space in the sense that for any f ∈F
and any real number λ, λf is in F ; and also that for any f1, f2 ∈ F the sum
f1 + f2 is in F .
The next thing we want from F is that its structure be somehow related to

the regularizer Ω. In particular, we define a norm ‖ · ‖ on F and set Ω[f] =
‖ f ‖2. We have a fair amount of freedom in defining the norm, but we do require
that it match the linear structure of F in the sense that ‖λf ‖ = λ‖ f ‖ for any
f ∈F and λ∈R. In fact, we make the connection a little bit more stringent by
requiring that the norm be derived from an inner product, ‖ f ‖ = 〈f, f〉

1/2
.

For the definition of a general inner product, see the Appendix.
Linear inner product spaces (with a few additional mathematical niceitites) Hilbert space

are calledHilbert spaces, and are very popular in applied mathematics, partly
because due to their highly regular strucutre, they are very easy to work in
(again, see the Appendix for the exact definition). A Hilbert space might be
infinite dimensional, but just like in Rn, we can talk about independent sets,
orthogonality and bases. We can also project, decompose, linearly transform and

7

everything else we love to do in Euclidean space. Most practical computations
in Hilbert spaces boil down to ordinary linear algebra.
Another feature of Hilbert spaces we care about is that they are self-dual. Evaluation

functionalsRecall that the dual of a vector space H is the vector space of linear maps
g : H 7→ R. When H is a Hilbert space, any such g has a corresponding fg ∈H
such that g(f) = 〈fg, g〉. In particular, when H is a space of functions over X ,
the evaluation functional gx(f) = f(x) for any x∈X is a linear map, hence
for any x∈X we have a special function kx in H, called the representer of x,
satisfying

f(x) = 〈kx, f〉 ∀f ∈F . (12)

Right now we don’t know what the kx are, but we do know they exist. The
brilliant thing about this construction is that it makes a connection between the
abstract structure of F and what the elements of F actually are (dicriminant
functions or regressors). In particular, we can rewrite the entire regularized risk
minimization problem as

f̂ = argmin
f∈F

[

1

m

m
∑

i=1

L(〈kxi
, f〉 , yi) + 〈f, f〉

]

. (13)

The hypothesis f only features in this equation in the form of inner products
with other functions in F . Once we know the form of the inner product and
what the kx are, we can do everything we want with simple mathematics.
To this end we apply (12) to kx′ for some x′∈X and find Reproducing

Kernel Hilbert
Spacekx′(x) = 〈kx, kx′〉 = kx(x

′).

Specifying the inner product between the various kx vectors prescribes what
those vectors are as functions! Moreover, anything outside the span of the
{kx}x∈X is uninteresting because it does not affect what f ∈ F evaluated at
any point of the input space is, so we might as well just leave it out of the
hyopthesis space altogether. We see that the whole construction, and hence the
corresponding algorithm, is driven by the inner products

k(x, x′) = 〈kx, kx′〉 (14)

called the kernel. The only requirement on the kernel is that it give rise to a
valid inner product, that is, it must be a symmetric function k : X×X 7→ R such
that for any finite collection x1, x2, . . . , xn∈X and real coefficients c1, c2, . . . , cn,

n
∑

i=1

n
∑

j=1

ci cj k(xi, xj) ≥ 0 (15)

to guarantee that
〈
∑n

i=1 cikxi
,
∑n

i=1 cikxi
〉 ≥ 0.

This latter requirement is expressed by saying that k is a positive definite
function. Note that it is not equivalent to pointwise positivity, k(x, x′) ≥ 0.

8

In fact, we can reverse the whole procedure and construct F starting from
the kernel. Given a positive definite function k on the input space X , we define
F to be the minimal complete space of functions that includes all {kx}x∈X and
that has an inner product defined by (14). This defines F uniquely. Formally,
F is called the Reproducing Kernel Hilbert Space (RKHS)) associated
with k.
We have reduced the learning problem to that of defining the loss function Representer

theoremL and the kernel k. In the next section we look at how to choose k. Before that,
we note one more imortant feature of the current framework which is already
apparent. Just by looking at (13) it is clear that f̂ is going to be in the span of the
representers of the training data, kx1

, kx2
, . . . , kxm

. We can tell this because the
loss term only depends on the inner products of f with kx1

, kx2
, . . . , kxm

, while
the regularization term penalizes f “in all directions”. If f has any component
orthogonal to the subspace spanned by kx1

, kx2
, . . . , kxm

, the loss term is not
going to be sensitive to that component, but the regularization term will still
penalize it. Hence, the optimal f will be entirely contained in the subspace
spanned by the representers. This is called the representer theorem and it
means that the optimal hypothesis f̂ can be expressed as

f̂ = b+

m
∑

i=1

αi kxi
(16)

for some real coefficients α1, α2, . . . , αm and bias b. Equivalently,

f̂(x) = b+

m
∑

i=1

αi k(xi, x). (17)

Plugging (17) back into (13) reduces our problem to elementary computations:
all that our learning algorithm will have to do is figure out the values of the
coefficients α1, α2, . . . , αi and b.
On a more

2.2 The kernel

The way we introduced the kernel as part of the regularization scheme makes
it clear that the choice of k really ought to be motivated by the Ω it gives rise
to. In particular, Ω should penalize overly complex functions that are likely
to have bad generalization performance (i.e. to overfit). Looking at a simple
regression problem in, say, Rn, this translates into penalizing functions that
are too “wiggly” (not smooth enough). If we ask any physicist or practising
engineer how to quantify smoothness, the answer will most likely be: Fourier
analysis.
Recall that the Fourier transform of a square integrable function f : Rn 7→ C Frequency

space
regularization

is

f̃(ω) =

∫

Rn

f(x)e−iω·xdx. (18)

9

The higher the frequency ‖ω ‖, the more rapidly the corresponding component
oscillates. Functions with a great deal of energy (‖ f̃(ω) ‖2) in their high fre-
quency components tend bo be “rough” or have sudden jumps, while smooth
functions have most of their energy concentrated in low frequency components.
A scheme familiar from many branches of Physics is to regularize with the ex-
ponent of the squared norm of the frequency:

Ω[f] =

∫

f̃(ω) eσ
2‖ω ‖2/2 dω (19)

for some constant σ. This will heavily penalize “wiggly” functions with large
amounts of energy at high frequencies. In Fourier space, this regularization
scheme can just be characterized by the simple function

Ω̃(ω) = eσ
2‖ω ‖2/2.

From an operational point of view, we are not interested in finding pretty reg-
ularizers, though, but in finding a simple the kernel.
We call a kernel k stationary if k(x, x′) = k(x + a, x′ + a) for all a ∈ X . The Gaussian

kernelSlightly overloading the notation, stationary kernels can be described just by
the function k(x−x′) = k(x, x′). For reasons that we here do not have space to
go into, for regularizers expressible in terms of a Fourier transform as a function
of ‖ω ‖ only, the corresponding kernel will be stationary, and Ω̃ will be related
to the Fourier transform of the k(x) by the very simple relation

k̃(ω) =
1

Ω̃(ω)
.

In our case this means that

k̃(ω) = e−σ
2‖ω ‖2/2

which we recognize as the Fourier transform (up to a constant factor) of the
Gaussian

k(x) = e−x
2/(2σ2)

giving rise to the kernel

k(x, x′) = e−‖ x−x′ ‖2/(2σ2). (20)

This is called the Gaussian Radial Basis Function (RBF) kernel, or just
Gaussian kernel for short, and was historically the first kernel to be used in
learning algorithms. It is probably the most commonly used kernel to this day.
Using the Gaussian kernel really makes sense because the regularizater it

gives rise to heavily penalizes functions that are not smooth. Historically it was
not such a sophisticated regularization theory based argument that motivated
its introduction, though.

10

Appendix

Definition 1. An inner product on a (real) vector space H is a mapping
〈·, ·〉 : H×H 7→ R satisfying for all vectors x, y, z∈H and all scalars µ, ν∈R

1. 〈µx+ νy, z〉 = µ 〈x, z〉+ ν 〈y, z〉

2. 〈x, µy + νz〉 = µ 〈x, z〉+ ν 〈y, z〉

3. 〈x, y〉 = 〈y, x〉

4. 〈x, x〉 ≥ 0 with equality only if x=0.

Definition 2. A sequence x1, x2, . . . in a normed space H is said to be con-

vergent if there is a x ∈ H with the property that for any ε > 0 there is a
corresponding k such that ‖xi−x ‖ < ε for all i≥ k. We say that x is the limit

point of the sequence x1, x2, . . . and notate it limi→∞ xi.

Definition 3. A Cauchy sequence in a normed space is a sequence x1, x2, . . .
with the property for any ε> 0 there is a corresponding k such that ‖xi−xj ‖ < ε
for all i, j ≥ k.

Definition 4. A space H endowed with a norm is said to be complete if every
Caucy sequence in H is convergent in H, i.e. if for every Cauchy sequence
x1, x2, . . . in H, the limit point limi→∞ xi is also in H.

Definition 5. A vector space H endowed with an inner product 〈·, ·〉 and cor-

responding norm ‖x ‖ = 〈x, x〉
1/2

such that H is complete with respect to this
norm is called a Hilbert space.

11

Index

deterministic, 2

empirical error, 1
empirical risk, 1
evaluation functionals, 7

Fourier transform, 8

Gaussian kernel, 9
generalization, 3
generalization error, 4

Hilbert spaces, 6
hypothesis, 1
hypothesis space, 3

inner product, 6
input space, 1
inputs, 1

kernel, 7

learning with noise, 3
linear decision function, 2
linearly separable, 2
loss function, 1

margins, 5

norm, 6

output space, 1
outputs, 1
overfitting, 3

positive definite, 8

regularized risk, 6
regularizer, 6
representer, 7
representer theorem, 8
Reproducing Kernel Hilbert Space,

8

squared error loss, 1

stationary, 9
supervised learning, 1

target hypothesis, 2
testing examples, 1
testing set, 1
training error, 1
training examples, 1
training set, 1
true error, 3
true risk, 3

uniform convergence bounds, 4

zero-one loss, 1

12

