
NV: Nessus Vulnerability Visualization for the Web

Lane Harrison
Oak Ridge National

Laboratory
Oak Ridge TN, USA

harrisonlt@ornl.gov

Riley Spahn
Oak Ridge National

Laboratory
Oak Ridge TN, USA

spahnrb1@ornl.gov

Mike Iannacone
Oak Ridge National

Laboratory
Oak Ridge TN, USA

iannaconemd@ornl.gov
Evan Downing

Oak Ridge National
Laboratory

Oak Ridge TN, USA
epdowning@gmail.com

John R. Goodall
Oak Ridge National

Laboratory
Oak Ridge TN, USA

jgoodall@ornl.gov

ABSTRACT
Network vulnerability is a critical component of network
security. Yet vulnerability analysis has received relatively
little attention from the security visualization community.
This paper describes nv, a web-based Nessus vulnerability
visualization. Nv utilizes treemaps and linked histograms
to allow security analysts and systems administrators to
discover, analyze, and manage vulnerabilities on their net-
works. In addition to visualizing single Nessus scans, nv
supports the analysis of sequential scans by showing which
vulnerabilities have been fixed, remain open, or are newly
discovered. Nv operates completely in-browser, to avoid
sending sensitive data to outside servers. We discuss the
design of nv, as well as provide case studies demonstrating
vulnerability analysis workflows which include a multiple-
node testbed and data from the 2011 VAST Challenge.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces (GUI); D.4.6 [Security
and Protection]: Information flow controls

General Terms
Security, Human Factors

Keywords
security visualization, vulnerability visualization, security
analysis, information visualization, cyber security

∗ The manuscript has been authored by a contractor of the U.S.
Government under contract DE-AC05-00OR22725. Accordingly,
the U.S. Government retains a nonexclusive, royalty-free license
to publish or reproduce the published form of this contribution,
or allow others to do so, for U.S. Government purposes.

c© 2012 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the United States government.
As such, the United States Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
VizSec ’12, October 15 2012, Seattle, WA, USA
Copyright 2012 ACM 978-1-4503-1413-8/12/10 ...$15.00.

1. INTRODUCTION
In order to assess the security posture of the servers and

workstations on their network, security analysts and sys-
tems administrators use vulnerability assessment tools such
as Nessus1. Such tools probe machines to determine which
network ports are open, what services are running on the
ports, and, most importantly, what versions of those ser-
vices are running. Identifying the services and the versions
enables these tools to match them with known vulnerabili-
ties. Nessus and similar tools can produce an overwhelming
amount of data for large networks. Traditional reporting
tools present the data tabularly, often with color coding to
attempt to provide an overview of each vulnerability’s sever-
ity. But this data can be very large, with little support for
comparing individual or logical groupings of machines. Fur-
ther, it can be difficult to determine whether the overall
vulnerability state of a network has changed between scans
at different points in time.

Nessus Vulnerability Visualization (nv) was developed to
support the discovery, analysis, and management of vul-
nerabilities in both individual and sequential Nessus scans.
The visualizations in nv consist of treemaps and histograms,
which facilitate the exploration of vulnerabilities in large
networks (see figure 1). Several interactions are provided to
help uncover pertinent information to the administrator as
they manage large networks.

Nv also allows analysts to specify logical groupings that
reflect analyst’s situated knowledge [4]. Additionally, nv en-
ables analysts to capture and manage criticality scores for
individual and groups of machines in their network. This in-
formation is then used to affect size and other visual features
in the treemap, which helps ensure that high-value machines
receive the most attention.

Specifically, our contributions to the field of security visu-
alization are as follows:

• A visualization tool that supports security vulnerabil-
ity awareness, analysis, and tracking; and

• A framework for building web-based visualizations that
avoid sending sensitive data to servers.

In the following section, we discuss related work in vulner-
ability analysis and visualization. Afterwards, we discuss the

1http://www.tenable.com/products/nessus

Figure 1: One of the main use cases of nv is to compare two Nessus scans to analyze fixed (green), open
(orange), and new (purple) vulnerabilities. Nv runs on the client side and does not require Nessus data to
be sent to an outside server.

design of nv and then present several case studies involving
Nessus scans from two different test networks. We conclude
with a brief discussion on web-based security visualization
tools and on our future plans for nv.

2. RELATED WORK
While there has been little research examining ways to

depict and explore vulnerabilities, there has been much re-
search in computer vulnerability analysis using graph-based
techniques to model the state of the system. Such research
addresses a different problem than we are attempting to
solve with nv; we are not trying to address identifying all
possible paths through a network, but providing an overview
of the security state of a network and a means to com-
pare how state changes over time. However, this prior work
has somewhat influenced our approach in understanding use
cases related to vulnerability analysis.

One such technique is known as Topological Vulnerability
Analysis (TVA) [6]. TVA uses the network state and attack
vectors between machines to create an attack graph that will
model all possible attack paths in a network. To generate
these attack graphs TVA uses information from vulnerabil-
ity assessment tools such as Nessus. These graphs generated
by TVA tend to be large, so it introduces an aggregation and
visual analysis element to make the models easier to compre-
hend by an analyst [8]. One aggregation method used by the
TVA visualization is to aggregate machines based on their
ability to access other machines. A group of machines will
be aggregated if each node in the group has access to every
other node in that group. These groupings are then aggre-
gated into a single node in the visualization. We also believe
that grouping nodes into aggregates is critical to scalability,

but our approach relies on analysts’ situated knowledge of
their networks to create groupings that mirror their own
mental models.

Similar to TVA, NAVIGATOR also uses vulnerability as-
sessment data to create and display attack graphs [3]. Like
TVA, a central challenge in displaying attack graphs to users
is how to aggregate the data. NAVIGATOR utilizes strip
treemaps to aggregate machines within each subnet, con-
nected by links displaying potential attack paths through a
network.

Researchers have also used model checking tools to ma-
nipulate graph representations of a network where each node
is a state of the network and each transition represents an
exploit [1]. This type of attack graph allows an analyst to
focus efforts on patching exploits (edges) that create the
largest disconnects in the graph. This type of analysis is
convenient because we already have graph algorithms that
can efficiently perform such analysis.

Ou, Govindavajhala and Appel take a different approach
to security analysis in their MulVAL project [7]. They at-
tempt to model the interactions between known vulnerabil-
ities and software bugs, configurations and permission poli-
cies. In their approach an analyst will specify the system
and policies in a logic language that is a subset of the Pro-
log logic programming language and vulnerabilities in the
Open Vulnerability Assessment Language. After the sys-
tems, policies, and vulnerabilities are defined the MulVAL
system uses a two-phase algorithm to simulate both attacks
and policy checking. The system generates all possible at-
tacks based on the vulnerabilities and then compares those
with the defined policies to detect violations.

These tools attempt to model and visualize all potential

attack paths through a network. While these systems are
powerful and integrate much data, they do not attempt to
solve the common, straightforward problem of understand-
ing vulnerabilities within large networks. Given enough
data, they can solve the problem of tracing potential paths
through a network based on those vulnerabilities, but the
first step of visualizing vulnerabilities within a network re-
mains an open problem. Additionally, one limitation men-
tioned by Chu et al. is the need for a tool that compares
vulnerability assessments (e.g. what has changed, what has
been fixed). We address this directly in nv by allowing users
to specify two scans, which are then processed to detect var-
ious changes.

Although there has been no visualization research related
to visualizing network vulnerabilities, there has been some
prior work in related areas. Rather than looking at vul-
nerabilities that are present within an operational network,
some prior work has tackled the problem of code vulnera-
bility analysis [5]. Code vulnerability analysis has several
similarities with network vulnerability analysis, the most
notable of which is a severity score which can be propa-
gated through functions, classes, and other programming
constructs. Similarly, attributes of Nessus scans can be ag-
gregated from vulnerability identification number to port,
IP, and any number of higher groups. As such, nv is sim-
ilar to this work in that it uses hierarchical techniques to
visualize data, as well as multiple coordinated views to nav-
igate the data space. The data and use case is very different,
however. Rather than focus on software developers, nv tar-
gets security analysts; rather than target the development
process, nv supports network operations.

Rasmussen et al. explicitly visualize the criticality of sys-
tems in a network in [9]. Nv is similar in that it allows the
administrator to define groups in the hierarchy and assign
either groups or machines a criticality score. This score is
then used in the visualization.

While these approaches provide a detailed assessment of
the accessibility of vulnerable targets, our goal was to create
a more widely applicable system. Nessus is the de facto
standard for vulnerability assessment. Rather than build an
entire system, we wanted to leverage data that is already
commonly used in the security community. This approach
increases the potential adoption and value to the security
community. In addition to leveraging data that analysts
already use to encourage adoption and use, we wanted our
system to be usable without installing any software, so our
approach is web-based, but does all processing of potentially
sensitive data on the client within the browser.

3. SYSTEM DESIGN
The goal of nv is to support security analysts and systems

administrators in understanding the security posture of their
networks by displaying vulnerabilities on their systems. Nv
inputs the results of a vulnerability assessment tool (we use
Nessus scans) and (optionally) user defined groupings and
criticality of machines in their network to create an interac-
tive visualization. This visualization is designed to support
common workflows in vulnerability discovery, analysis, and
mitigation. These are described in the Case Studies sections.
This section covers the visualization and interaction design.

3.1 Data
The results of a vulnerability assessment tool provide sig-

nificant detail about the state of all machines on the spec-
ified network. This information includes the port the vul-
nerable service is running on, what service and what version
is running, what other versions of this software share this
vulnerability, and a general description of the vulnerability.
These results also indicate whether this is an actual vulner-
ability or just a general security notice, and it also provides
a severity score and several unique identifiers related to this
vulnerability, which can be used to find additional informa-
tion. The results also often give information about how this
vulnerability can be patched or otherwise mitigated. The
following shows an example; this particular example is from
the VAST Challenge 2011 data set.

results|192.168.2|192.168.2.175|cifs

(445/tcp)|46844|Security Hole|

Synopsis :

The remote Windows host contains a

font driver that is affected by

a privilege escalation vulnerability.

Description :

The remote Windows host contains a

version of the OpenType Compact

Font Format (CFF)

Font Driver that fails to properly validate

certain

data passed from user mode to kernel mode.

By viewing content rendered in a specially crafted

CFF font, a local

attacker may be able to exploit

this vulnerability to execute

arbitrary code in

kernel mode and take complete control of the

affected system.

Solution :

Microsoft has released a set of patches

for Windows 2000, XP, 2003,

Vista, 2008, 7, and 2008 R2 :

http://www.microsoft.com/

technet/security/Bulletin/MS10-037.mspx

Risk factor :

High / CVSS Base Score : 9.3

(CVSS2#AV:N/AC:M/Au:N/C:C/I:C/A:C)

Plugin output :

- C:\\WINDOWS\\System32\\Atmfd.dll has not been patched

Remote version : 5.1.2.226

Should be : 5.1.2.228

CVE : CVE-2010-0819

BID : 40572

Other references : OSVDB:65217,MSFT:MS10-037

3.2 Use Case
The primary goal of nv is to support an understanding

of the vulnerabilities within a network to assist decision-
making in determining how to allocate and prioritize limited
resources to reduce the security vulnerability of high-value
targets within their network.

Specifically, the main tasks that nv seeks to support are:

• Identifying the individual machines that have the most
severe vulnerabilities;

• Discovering the services that have the most vulnera-
bilities within their network;

• Identifying the exposure to vulnerabilities within groups
of machines where those groupings reflect the analyst’s
mental model of their network;

• Determining the high-value machines that are vulner-
able to exploitation; and

• Comparing point-in-time snapshots of the security state
of the machines in the network, and understanding the
differences between these two points.

3.3 Visualization and Interaction
Nv consists of multiple coordinated views including a treemap,

several histograms, and a detail-information area showing
information on the selected Nessus id. Each of these are
designed to support a specific aspect of the vulnerability
analysis workflow.

Our primary visualization is a zoomable treemap[10]. We
chose to use a treemap over other hierarchical visualization
methods such as network/tree-layouts for several reasons.
First, our goal with nv is to support the analysis of vulner-
ability assessment scans on large networks. While informa-
tion on the network topology is useful for vulnerability anal-
ysis, it is important to note that in large dynamic networks,
a complete network topology is often either unavailable or
too large to be visualized directly. The space-filling aspects
of treemaps make them more scalable in this regard.

The treemap allows us to easily identify machines with the
most severe vulnerabilities. The administrator’s eye will be
naturally drawn to the largest and darkest-colored nodes in
the treemap, revealing the machines with the largest amount
of severe vulnerabilities. The treemap allows the user to
group machines together in a way that makes sense to them
personally. Oftentimes the analyst has a mental picture of
how their network is laid out and benefit from using a flex-
ible environment that lets them customize it as they see
fit. Again, using custom grouping, the user can easily group
high-value machines into a single group and can be moni-
tored closely for vulnerabilities, or organize their groupings
according to mission or common roles.

Allowing users to compare two different points in time
of their network is also crucial. They can use these snap-
shots to not only monitor how efficiently the network is being
patched, but also see how new vulnerabilities have been in-
troduced over a period of time. If there are more new nodes
than fixed nodes, then they can assume that either atten-
tion to that group of machines has been depleted or that
the group has become more susceptible to vulnerabilities
over time. All of these analyses are important to security
analysts and systems administrators and can help them to
monitor and protect their network more efficiently and ef-
fectively.

Another reason we used treemaps was for their ability to
effectively make use of both size and color for encoding data
attributes. Since Nessus data is not stored in a hierarchical
form, it could be visualized using many multi-dimensional

Figure 2: Nesting on different values gives different
results. Top: splitting by vulnerability-state before
splitting by IP. Bottom: the same data, but split by
IP before vulnerability-state.

visualization techniques, such as parallel coordinates or scat-
terplot matrices. However, because the scalability of the vi-
sualization and the ability to mirror users’ mental models
were primary concerns, we opted to nest the data from in-
dividual vulnerabilities and ports up to IPs and groups of
IPs.

We also use data-accumulation and coloring methods to
ensure that data is not obscured by the hierarchy. For in-
stance, when comparing two vulnerability scans, nodes are
colored by the maximum count of vulnerability states (fixed,
open, or new vulnerabilities) in their child nodes. A po-
tential disadvantage of this approach is that a node could
contain slightly more fixed vulnerabilities than open vul-
nerabilities, and yet will still be colored green. To allevi-
ate this problem, we add the option to split the nodes by
vulnerability-state higher in the hierarchy; figure 2 shows
splitting nodes by vulnerability-state and by IP.

The advantage of separating vulnerability-states higher is
that the analyst can explore only the fixed vulnerabilities or
only the open vulnerabilities. However, the disadvantage of
this approach is that the IPs are then separated since they
can appear in any branch of the hierarchy (fixed, open, and
new). To our knowledge, there exists no widely accepted
visual technique that can effectively represent multiple at-
tributes at every level in a treemap. However, we plan to
explore other common approaches such as glyphs and com-
bined color scales in future work.

Since analysts can specify the criticality of both individual
machines and groups of machines in nv, the treemap includes
sizing by criticality as an option. The most critical machines
therefore appear as larger nodes, while still being colored by
severity. Other sizing options include severity (the default)

Figure 3: Top level view of the large VAST Challenge 2011 dataset. The prevalence of dark blue indicates
numerous vulnerabilities with high severity scores on Workstation Groups 4 and 5.

and by vulnerability counts. Dual encoding severity with
both color and size can be useful, as the darkest colored
and largest nodes appear at the top left in each level of the
histogram.

The color scales in the treemap were created using Color-
Brewer22. While the primary color scales shown in the paper
are designed to have semantic meanings (green for fixed, red
for new, orange for open), we also follow visualization best
practices by including a colorblind-safe version.

Nv includes several histograms, including vulnerability-
type (note, hole, or open port), severity (CVSS score), top
Nessus note ids, and top Nessus hole ids. These histograms
serve dual purposes, as both overviews of the data and as
filters by which users may guide their analysis. For in-
stance, by brushing over the highest values in the severity
histogram, the appropriate nodes in the treemap are high-
lighted. This works by examining each child of each element
in the current level of the hierarchy. Another use of the his-
tograms is to easily highlight the most commonly occurring
vulnerabilities in the network. A possible drawback of this
approach is that sometimes the least common vulnerabilities
can be the most damaging. However, this issue is mitigated
by the fact that the treemap can be be sized and colored
by severity, which makes the most damaging vulnerabili-
ties easy to find. The histograms operate as conjunctions

2http://colorbrewer2.org/

(AND), meaning that the user can specify queries such as
all vulnerabilities of type hole with severity of 5 or greater.

The Nessus information area is updated when the user
drills down to the level at which Nessus vulnerability iden-
tification numbers are shown. The area then updates with
detailed information about the currently selected Nessus id,
including a synopsis, detailed description, vulnerability fam-
ily, and solution (when available). Based on this informa-
tion, the user has the option to mark the vulnerability as
either fixed or as a non-issue, which re-colors the node in
the treemap. This functionality is intended to serve as a
way for analysts to avoid revisiting vulnerabilities that have
been addressed in the scan being examined.

3.4 Implementation
One significant requirement for this project was to not un-

necessarily disclose the vulnerability assessment scan results
to any third parties; because this information would be very
valuable to any attacker, the users of this tool would have
an obvious concern to prevent its disclosure. To address this
concern, nv runs entirely in the browser client, without re-
lying on any server-side functionality, and without loading
any non-local resources. We also developed a custom parser
for the data files, and related code to compare and merge
these results. We were also able to handle these tasks in
the browser and maintain interactive performance. Addi-
tionally, the entire technology stack is open source, and the

tool itself will also be open sourced.
One difficulty caused by the requirement of not leaking

scan results was how to look up additional details about the
results. Nessus provides an interface to access significant
additional information about any specific vulnerability ID,
including useful details such as related CVE and Bugtraq
IDs, and information about how to patch or otherwise ad-
dress each vulnerability. However, using this directly could
still give an adversary significant information; if they could
observe any of this traffic, then they could still learn which
vulnerabilities are present. To address this, we build a local
cache of this information, which the client can access offline.

The main treemap and the histograms were created using
the d3 library [2], which is designed for ”apply[ing] data-
driven transformations”to the Document Object Model (DOM).
D3 is fast, flexible, and supports large datasets, which were
our main requirements. Crossfilter3, designed for accessing
”large multivariate datasets in the browser”, was used to
store and access our Nessus scan results and all related in-
formation about the machines and subnets on the network.
This handles the data entirely in memory, and handles stor-
age and access in an efficient manner.

4. CASE STUDIES
We envision nv as being useful for two types of use cases:

The first is to analyze the current vulnerability state of all
machines on a network. This use case is to allow a user to
prioritize maintenance based on the value of the machines
and the criticality of the vulnerabilities found on those ma-
chines using data from Nessus scans. The second use case
is visualizing the changes to the vulnerability states of ma-
chines on a network after a systems administrator performs
maintenance to determine if the maintenance was effective
at addressing system vulnerabilities.

4.1 Case Study: Static Vulnerability State Net-
work

To test visualizing a static network, we used Nessus scan
data from the VAST Challenge 20114. This data is from
a simulated network for the fictitious All Freight Corpora-
tion. The VAST Challenge gives us an established network
dataset to test how nv scales to a large data set that contains
many vulnerabilities spread across a variety of machines
and groups. This data set has more than one hundred-fifty
unique IP addresses associated with various workstations in
the scan. The Nessus scan shows that numerous machines
on the network have some sort of security hole, such as in-
correctly configured telnet client, a font driver that allows
privilege escalation, and a vulnerability in an outdated ver-
sion of Microsoft Excel.

We split the workstations into six groups with criticality
scores ranging from two to nine. The major security holes in
the group are concentrated in group four with a criticality
score of nine and in group five with a criticality score of two.
When the security analyst looks at the groups level on the
tree map it is immediately obvious where their attention is
needed most. As shown in figure 3, the analyst can see that
there are many high-scoring vulnerabilities that will require
attention right away. Workstation groups four and five dom-
inate the treemap in all three visualization modes and take

3http://square.github.com/crossfilter/
4http://hcil.cs.umd.edu/localphp/hcil/vast11/

Figure 4: Port level view of an All Freight Corpora-
tion workstation. Port 445 is shown to have numer-
ous severe vulnerabilities. Information for selected
vulnerablities is shown on the right.

up more than half of figure 3. The analyst can also use the
histograms at the bottom of the visualization to quickly get
an overview of the network’s current vulnerabilities. The
histograms show that there a large number of high sever-
ity vulnerabilities that need urgent attention. When the
analyst zooms into group four, they see that most of the
vulnerabilities are located on two IP addresses and when
they select IP address 192.168.2.172, they see that nearly
all of the vulnerabilities are associated with port 445 and a
Windows file sharing program. corollary 4 shows the port
level view of 192.168.2.172. Nv uses color gradients to make
the most critical and severe vulnerabilities most prominent
in the visualization. In this view the analyst sees that port
445 has numerous potential vulnerabilities that range from
light blue and insignificant to dark blue and critical. After
this analysis an analyst could conclude that he should focus
his efforts on the Microsoft file sharing programs that utilize
port 445.

The analyst can also explore the other visually dominant
IP address, 192.168.2.171, and see that this machine’s vul-
nerabilities come from port 139 and NetBIOS. This explo-
ration allows the analyst to easily discover vulnerabilities in
the system and prioritize repair accordingly. It also makes
it easier to view large networks because the IP addresses are
aggregated into nodes that can be expanded to view the in-
dividual IP addresses contained in that group. In the VAST
Challenge, these two machines become the source of much
of the malicious activity on the network. Accordingly, a tool
such as nv could be used to make analysts aware the state
of these machines before the malicious activity begins.

4.2 Case Study: Dynamic Vulnerability State
Network

Another use case for nv is to make it easier for users to
visualize and compare the state or a network at two points
in time such as before and after performing maintenance.
In this example, machines are grouped into three different
categories: One group is a set of workstations split between
two hundred fifty-six Fedora workstations and three hun-
dred twenty Ubuntu workstations. The second group is a set

Name:Criticality Machine Count IP Addresses Time Period Security Notes Security Holes
Workstations:2 576 192.168.5[6|7|8].x Before Maintenance 8320 1024

After Maintenance 2944 0
LAPP Servers:9 256 192.168.59.x Before Maintenance 10496 256

After Maintenance 10240 0
Wordpress Servers:5 256 192.168.60.x Before Maintenance 9984 256

After Maintenance 9984 0

Table 1: The number of security notes and security holes by grouping before and after maintenance.

Figure 5: Top level view showing the user-defined
IP address groups.

of two hundred fifty-six machines that serve the Wordpress
blogging software. The last grouping is a set of two hundred
fifty-six Linux Apache PostgreSQL PHP (LAPP) servers.
Initially all of these groupings contain serious vulnerabilities.
The LAPP servers are running a poorly configured file trans-
fer protocol (FTP) server and both the LAPP and Word-
press servers have simple root passwords that Nessus shows
as a security hole. The majority of the workstations are
properly configured except for sixty-four that contain multi-
ple security holes. These workstations are running outdated
versions of the Ubuntu operating system and have vulnera-
bilities such as an FTP server that allows a remote user to
execute arbitrary code, an incorrectly configured Windows
file sharing software, weak secure shell (SSH) keys and a
Samba server that is vulnerable to buffer overflow attacks.

While in the top level visualization mode the user’s at-
tention is drawn to the large LAPP server node. The size
is an indication of the importance of the situation based on
the number of security holes discovered, the severity of the
security holes discovered, and the assigned criticality of the
machines in the group, see figure 5. When zooming into the
LAPP Server branch of the treemap it becomes clear that
all five of the machines seem to be equally at risk. To gain
further insight, the user zooms into the node for a specific
machine where each node represents a port with an associ-
ated vulnerability in figure 6. At this specific port node the
administrator can click on a vulnerability ID and the tool
will display information about the vulnerability and poten-
tial solutions in the right-most panel of the tool. In this
situation the LAPP servers all have the same untrusted SSL
certificate security hole.

When the user zooms back out to the group view and
switches the visualization to severity mode, as in figure 6,

Figure 6: After sizing by severity, the view shows
vulnerabilities distributed across the LAPP Server’s
ports.

the workstation’s node grows bringing it into greater promi-
nence. When zooming into the workstation group, they can
see that a subset of the IP addresses have much larger and
darker nodes than any of the other workstations. If they
zoom into one of these IP addresses, they see that many
of the most severe vulnerabilities are associated with ports
445 and 80. The user can examine each port node’s child,
seeing information about the specific vulnerabilities in the
right-most panel, discovering that the machine is running a
poorly configured Apache Web Server and that a Windows
share that can be accessed through the network.

After further exploring the network, the administrator
patches the most critical vulnerabilities in the system. Ta-
ble 1 shows the number of security notes and holes before
and after maintenance. Nv provides functionality to com-
pare two vulnerability assessment scans to show changes be-
tween two states, such as before and after applying patches.
After patching high value systems the administrator can res-
can the network, then explore and see the differences be-
tween the previous state and the newly patched system.

Nv shows corrected vulnerabilities in green, the remain-
ing vulnerabilities in orange, and any new vulnerabilities in
purple, as in figure 7. The systems administrator can easily
see that the major workstations vulnerabilities have been
patched. Zooming into the workstation node the system
administrator sees that while they were patching the most
severe vulnerabilities they inadvertently opened new vulner-
abilities on the two machines and did not address some of
the vulnerabilities seen earlier.

We simulated this use case using virtual machines (VM)

Figure 7: After fixing previous vulnerabilities, sub-
sequent Nessus scans are processed to identify open
(orange), new (purple), and fixed (green) vulnera-
bilities.

communicating through a host-only network. Using a host-
only network allowed us to use Nessus from the host to scan
the VMs. We used one grouping of two different types of
work station and two groupings of similar servers. Both
groups of servers were using Ubuntu 10.10 LTS. Ten of the
Ubuntu workstations were using Ubuntu 11.10 while the
two workstations with the massive number of vulnerabilities
were using Ubuntu 8.04 with purposely unpatched and mis-
configured software. The Fedora workstations were running
Fedora 15. We used the Metasploitable virtual machine im-
age to simulate the two vulnerable workstations before they
were upgraded to 11.10.

To reflect real-world scenarios, we did not patch all vulner-
abilities in this use case. Instead, the systems administrator
would only handle the most important vulnerabilities and
system updates. In this simulated use case we improved the
weak root passwords and corrected the poorly configured
FTP server seen on the servers. We focused on updating
and correcting the two most vulnerable workstations by up-
dating them to be at the same vulnerability level as the other
ten Ubuntu workstations.

5. CONCLUSION AND FUTURE WORK
We have introduced nv, a Nessus vulnerability visualiza-

tion system. Nv is designed to support security analysts
and systems administrators in the tasks of vulnerability dis-
covery, analysis, and management through an interactive
visualization. This tool abstracts and aggregates the large
amounts of data produced by vulnerability assessment tools
like Nessus so as not to overwhelm the user. Nv is also
designed to protect the privacy of users through client side
computation, since sending sensitive data, like vulnerability
scans, over a network introduces an unnecessary vulnerabil-
ity and potential attack vector. We have also provided case
studies, which suggest that nv is appropriate for a range
of common vulnerability analysis tasks. Finally, nv will be
made available online and released as open-source.

6. ACKNOWLEDGEMENTS

This work was supported by the Laboratory Directed Re-
search and Development Program of Oak Ridge National
Laboratory, managed by UT-Battelle, LLC, for the U.S. De-
partment of Energy under contract no. DE-AC05-00OR22725.

7. REFERENCES
[1] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable,

graph-based network vulnerability analysis. In Proc.
ACM Conference on Computer and Communications
Security, pages 217–224, 2002.

[2] M. Bostock, V. Ogievetsky, and J. Heer. D3:
Data-driven documents. In IEEE Trans. Visualization
and Computer Graphics, volume 17, pages 2301–2309,
2011.

[3] M. Chu, K. Ingols, R. Lippmann, S. Webster, and
S. Boyer. Visualizing attack graphs, reachability, and
trust relationships with NAVIGATOR. In Proc.
Symposium on Visualization for Cyber Security
(VizSec), pages 22–33, 2010.

[4] J. R. Goodall, W. G. Lutters, and A. Komlodi. I
Know My Network: Collaboration and Expertise in
Intrusion Detection. In Proc. ACM Conference on
Computer-Supported Cooperative Work (CSCW),
pages 342–345, 2004.

[5] J. R. Goodall, H. Radwan, and L. Halseth. Visual
analysis of code security. In Proc. Symposium on
Visualization for Cyber Security (VizSec), pages
46–51, 2010.

[6] S. Noel, M. Elder, S. Jajodia, P. Kalapa, S. O’Hare,
and K. Prole. Advances in topological vulnerability
analysis. In Proc. Cybersecurity Applications and
Technology Conference For Homeland Security
(CATCH), pages 124–129. IEEE, 2009.

[7] X. Ou, S. Govindavajhala, and A. W. Appel. Mulval:
a logic-based network security analyzer. In Proc.
Conference on USENIX Security Symposium.
USENIX Association, 2005.

[8] K. Prole, J. R. Goodall, A. D. D’Amico, and J. K.
Kopylec. Wireless cyber assets discovery visualization.
In Proc. Workshop on Visualization for Computer
Security (VizSec), pages 136–143. Springer-Verlag,
2008.

[9] J. Rasmussen, K. Ehrlich, S. Ross, S. Kirk, D. Gruen,
and J. Patterson. Nimble cybersecurity incident
management through visualization and defensible
recommendations. In Proc. Workshop on Visualization
for Computer Security (VizSec), pages 102–113, 2010.

[10] B. Shneiderman. Tree visualization with tree-maps:
2-d space-filling approach. ACM Trans. on Graphics,
11(1):92–99, 1992.

