
Bipath: Just-In-Time Incremental Symbolic Execution

David Williams-King and Riley Spahn
Columbia University

1 Introduction

Symbolic execution is a valuable method for achieving
high test coverage in complex real world software. Sys-
tems such as Klee [2] consistently generate tests that
cover a larger faction of code than developers writing
tests, and are able to find bugs that are infeasible to catch
using other methods. Unfortunately, symbolic execution
is very slow to run on real world programs because it
must explore the entire state space for any value that in-
teracts with a symbolic variable. This leads to an expo-
nential number of paths to be explored, so full symbolic
exploration is often infeasible. Many or even most of
these paths will not be executed during common usage
and do not need to be validated ahead of time so it is
possible to prune or use heuristics to guide symbolic ex-
ecution systems. We propose Bipath, a new system built
on Klee to perform incremental symbolic execution.

While most symbolic execution systems ask “Is there
any way to make this program crash?”, Bipath seeks to
answer the question “Will this program crash with in-
puts like this one?” Rather than exploring all code paths
to determine if there is any input that will cause a pro-
gram to crash, Bipath determines if there are any serious
bugs on paths that will be executed by the current input
and ones similar to it. Bipath amortizes the large cost of
symbolic execution across the lifetime of the program by
exploring paths in a greedy manner without compromis-
ing symbolic execution’s correctness guarantees.

Bipath’s approach to software quality assurance is dif-
ferent than the traditional approach to QA. This differ-
ence is shown in Figure 1. Bipath is a form of “in the
field” quality assurance. Rather than fully verifying or
fully testing an application before it is deployed an ap-
plication running under Bipath will continue to verify
itself as it runs. Bipath is similar to but distinct from
other in the field testing work such as In Vivo Testing [4].
While In Vivo Testing relies on the pre-existing unit tests
that are written by developers executing in the field, Bi-
path relies on symbolic execution. In Vivo Testing’s
fault finding ability is limited to that of the application’s
unit tests while Bipath guarantees to explore states gen-
erated by the concrete input however, because the sym-
bolic states are generated by symbolic inputs Bipath can-
not guarantee to explore known edge cases ahead of time
until the program is provided a similar input.

2 Approach

One key parameter for incremental symbolic execution
is the granularity at which to split up symbolic execu-
tion. Since the execution state space is exponentially
large, we must choose the size of each execution unit
carefully. Units must be large enough that a single in-
crement provides meaningful information and yet small
enough that Klee can symbolically check a unit in a rea-
sonable amount of time.

The simplest solution would be to symbolically exe-
cute precisely the concrete input given; but this will not
yield any reusable information, and would require check-
ing for every new case. A simple generalization policy
would be to check at the fine-grained level of individual
basic blocks or functions. As execution enters a basic
block Bipath would halt execution, verify that particular
function or basic block and then allow execution to con-
tinue. Bipath would verify the function or basic block
by changing a subset of the defined state to be sym-
bolic, whether that be function arguments or globally-
accessible variables, and then passing the state to Klee
for verification. We considered this approach but decided
against it, because it would likely have been cost pro-
hibitive. The system would need to constantly context
switch between Klee and Bipath, determining if the cur-
rent function call or basic block execution matches some
known good constraints.

One possible approach to alleviate the overhead as-
sociated with fine-grained increments would be to only
verify each basic block or function with some probabil-
ity. This approach would provide weak guarantees on a
single program invocation but over the long term would
likely check most of the program. We decided against
this approach because it undermines the otherwise strong
guarantees possible when utilizing symbolic execution.

Bipath targets command-line applications such as ls
or du that run relatively quickly. So we chose to use
a coarse-grained approach that considers the entire pro-
gram, deriving symbolic program inputs from the inputs
and arguments provided by the user. Bipath uses Klee to
symbolically check the the program with the constrained
symbolic execution that will be some tight superset of the
user-provided inputs. For longer running programs, we
envision checkpoints throughout their execution at which
symbolic execution could begin, or prioritizing symbolic

1

Figure 1: Traditional vs Bipath QA Structure Traditionally software development and quality assurance are conducted separately
from deployment. Bipath combines execution and verification into one step.

inputs that are closest to what the user provides allowing
the user’s concrete execution to begin while symbolic ex-
ecution continues in the background. This provides an
easily-understandable partition of the input space, and
hopefully leads to a reasonable partition of the execution
state space.

The decision to use fine-grained or coarse-grained ver-
ification units is a design tradeoff. The overhead of con-
structing and checking constraints—and even the over-
head of switching to Klee to perform the checking—can
be very high, as we show later in the paper in Section 4.
If the fraction of execution space that is checked is large
it will minimize the cost to context switch, but it be-
comes more likely that the symbolic execution will not
complete in a reasonable amount of time (if ever). The
granularity we have chosen seems to be appropriate for
the small command-line programs that we are targeting.

3 Architecture and Implementation

In order to build a system that incrementally symboli-
cally checks programs, we need several components. As
shown in Figure 2, we have separated the design into the
following:

1. a generalization component, which abstracts par-
ticular concrete arguments into some symbolic test
case to execute;

2. a caching or cache ordering component, which se-
lects previous test cases to see if they are applicable;
and

3. a query transformation component, which converts
test cases output by Klee into the format necessary
for rechecking them.

A Bipath program invocation will be executed as fol-
lows. First, Bipath will search the constraint cache and
determine if the arguments passed to the program satisfy
any of that program’s known constraints. Bipath carries
this out by using the query transformer to transform the
known program constraints into concrete queries with the
program arguments as input. For each of these queries
Bipath invokes Klee’s constraint solver, Kleaver, to de-
termine if the input satisfies that constraint. If Bipath
finds that the inputs match a known set of constraints (a
cache hit), it will go on to natively execute the program.
If Bipath does not find a matching constraint (a cache
miss), then Bipath will generalize the arguments and in-
voke Klee to verify the program before native execution.

Argument Generalization

Currently, the Bipath generalization component simply
takes concrete arguments and replaces them with sym-
bolic arguments of the same length.

Constraint Cache

The constraint cache subsystem is charged with manag-
ing all known constraints for a program and determin-
ing if concrete program input satisfies one of the known
constraints. This cache search algorithm is the key to
Bipath’s performance. We show in Section 4 that query
evaluation throughput is a major bottle neck to Bipath
performance so evaluating as few queries as possible is
essential. The simplest cache search algorithm is to sim-
ply scan through all known constraints in a linear fash-
ion. This is an inefficient algorithm and does not take
advantage of Bipath’s knowledge of constraint general-
ization. Another possible implementation is to use Bi-
path’s knowledge of argument generalization and priori-
tize constraints known to be similar to the invocation ar-

2

Figure 2: Bipath Architecture Boxes with solid outlines are
components of Bipath.

guments. However, we did not want to restrict ourselves
to a single generalization component and have not imple-
mented the constraint search in this fashion. We chose to
use a temporal cache that first searches the most recently
matched constraints, following the intuition that users
will often invoke a command with similar arguments.

Query Transformation

Bipath must transform constraints that Klee outputs into
concrete queries about a specific input. Klee outputs all
constraints found to hold as queries, each with a unique
set of preconditions encoding that constraint. If a pre-
condition does not in fact hold the constraint solver’s be-
havior is undefined. An example of a Klee constraint
without symbolic arguments follows in Figure 3.

(que ry [(Eq 1
(ReadLSB w32 0 m o d e l v e r s i o n))
(Eq 45 (Read w8 0 a rg0))
. . .
(E x t r a c t w8 0 (SExt w32 N0)))]

f a l s e)

Figure 3: An example case. (Eq 45 ...) is testing if
the first character of the argument is ’-’.

But we are trying to check if any of the known con-
straints hold for a specific concrete input. We transform
the preconditions into a single query where all precon-
ditions from the Klee constraint are combined with And
operators. The transformer changes the previously sym-
bolic argument arrays (not shown below) into concrete
values. The new query has no preconditions as we are
trying to determine if a concrete input satisfies the con-
straint. An example Bipath query is shown here in Fig-
ure 4.

(que ry []
(And (And (And . . .

(Eq 1 (ReadLSB w32 0 m o d e l v e r s i o n))
(Eq 45 (Read w8 0 a rg0))
. . .
(E x t r a c t w8 0 (SExt w32 N0)))

Figure 4: The transformed Bipath query concatenating
all preconditions into a single term.

Another possibility would be to leave the constraints
as preconditions and the argument arrays symbolic, and
introduce many new constraints that essentially define
each character of the arrays; this may be less efficient as
the solver may not be able to apply some optimizations
reserved for concrete variables. Another possibility is to
combine several such input cases into one much larger
query, merging them together with Or operators. This
would reduce the number of invocations of the constraint
solver, at the cost of making each query more complex,
and would reduce the effectiveness of cache search algo-
rithms.

Usage Example

Bipath is implemented in two parts. The first is the Perl
run harness that encompasses the constraint cache im-
plementation and argument generalization. The query
transformation is implemented partially as a C++ tool
that uses Klee libraries for constraint manipulation, and
partially within the Perl run harness. Bipath is executed
as follows:

b i p a t h−run . p l . / l s −l h

The first time the command is executed under Bipath,
Bipath will invoke Klee with generalized arguments and
write out the generated constraints for future use. For
each successive invocation the run harness will invoke
the C++ query transformation tool to search for con-
straints applicable to the current input. With the most
recently used cache Bipath will test the last successful
case immediately.

3

Figure 5: Constraint Cache Hit Rate The constraint hit rate
is consistently near 0.9.

4 Evaluation

We evaluate Bipath in four ways. First, we evaluate a
user’s shell interactions to determine if users use utili-
ties in such a way that Bipath will be beneficial. Second,
we explore the number of constraints generated by a few
common utilities to get an idea for amount of data we ex-
pect Bipath to need to process. Third, we look at query
throughput for query transformation and query evalua-
tion because we expect this to be the bottle neck for per-
formance. Last, we examine Bipath’s performance under
different constraint search algorithms.

Shell Case Study

Our approach to Bipath assumes that users will execute
applications and utilities many times with similar flags
and inputs. If users do not use similar flags and inputs
then Bipath will not have cached the required constraints
and will often be required to execute Klee and symboli-
cally verify inputs. To validate this assumption we per-
formed a small case study on a single user’s shell history.
The observed shell history consisted of approximately
one thousand commands that executed 32 unique utili-
ties found in either the GNU Core Utilities [3] or Busy
Box [1].

We evaluated the constraint cache hit rate by exam-
ining each command and determining if the constraints
required to check the command would have been cached
by Bipath. The results of this study can be found in Fig-
ure 5. The x axis in the figure represents the number of
commands executed and the y axis represents the frac-
tion of commands that would have been cached.

The results of the experiment show that a large pro-
portion of commands, greater than 0.9, will be cached by
Bipath under this usage model after approximately 700
commands. We could potentially warm the cache by ex-

Figure 6: Constraint Growth The number of constraints gen-
erated grows exponentially with the number of symbolic argu-
ments.

ecuting a small test suite for common utilities before pro-
duction use.

Constraint Growth

Bipath performance is heavily influenced by the num-
ber of constraints that need to be evaluated before native
execution (in essence, the number of wrong guesses by
the cache ordering component). To evaluate the potential
number of required constraints we observed the number
of constraints Klee generates for four utilities: uname,
pwd, du, and ls, with symbolic arguments of lengths one
through four. Figure 6 shows the results of this study.
The x axis represents the symbolic argument length and
the y axis represents the number of constraints generated
symbolic arguments of that length in log base ten scale.

The number of generated constraints grows exponen-
tially with the length of the symbolic arguments. With
symbolic arguments of length four, uname and ls both
generate more than 50 thousand constraints that may
need to be checked.

Query Throughput

Bipath’s performance is limited by how fast it can find
a known constraint that matches the current input, as
this time will dwarf the time required for executing the
actual command. We evaluated the throughput of Bi-
path’s query transformer and Kleaver, the Klee tool we
use for query evaluation. The results of this evaluation
are shown in Table 1. We observed that the Bipath query
transformer achieves 782 queries per second and Kleaver
evaluates 145 queries per second.

To provide context for these throughputs we exam-
ine the command ls -lah. Figure 6 shows that the
ls command with three symbolic arguments generates

4

Subsystem Queries / Second
Query Transformer 782
Query Evaluation (Kleaver) 145

Table 1: Bipath Throughput The throughput of Bipath sub-
systems in queries per second.

Figure 7: Linear and MRU Search Performance The figure
shows linear search performance on the left and MRU search
performance on the right for each of the utilities.

approximately four thousand constraints. When execut-
ing ls -lah under Bipath native execution does not
proceed until a matching constraint has been found. If
Bipath searches randomly we expect that it will need to
test two thousand queries before finding a matching con-
straint. Assuming Bipath needs to transform and evaluate
two thousand queries at 782 and 145 queries per second
respectively, we expect that it will be approximately 16.4
seconds before ls -lah begins native execution. If Bi-
path caches the transformed queries we can still expect
it to need to spend 13.8 seconds evaluating queries be-
fore proceeding to native execution. Fortunately we can
lower this significantly in real world use by tuning the
constraint search algorithm. For example, if the most-
recently-used ordering heuristic is applied, the very first
constraint may succeed, resulting in only eight millisec-
onds of overhead.

Bipath Performance

We evaluated Bipath’s performance with both the linear
search strategy and the most recently used (MRU) algo-
rithm. The linear search strategy is implemented by sim-
ply scanning through and testing the constraints in the
order that they were produced by Klee. The MRU search
maintains a list of the most recently matched constraints
for a given command or utility. When a constraint is
matched it is moved to the head of the list and removed
from the tail of the list if it is present. Our current imple-
mentation does not cache transformed queries so we do
not expect to see any speed up from reduction in query
transformations.

To evaluate both of the search algorithms we generated
workloads used to perform the case study in Section 4.
We observed performance increases in three of the four
utilities as shown in Figure 7. Figure 7 shows the amount
of time four different utilities spend in each phase of Bi-
path execution under linear search, the left bar, and MRU
search, the right bar. Overall performance gains ranged
from 61% improvement in du to 7% overall improve-
ment in pwd with an average improvement of 26% over
linear search. du saw the greatest improvement reducing
it’s time spent executing query evaluations by 80% from
0.35 seconds to 0.068 seconds. Under real world usage
patterns the most recently used search provides Bipath
a significant improvement over the linear search imple-
mentation.

5 Future Work

In this paper we have focused exclusively on the tech-
nique of symbolic execution. However, the idea of parti-
tioning the work necessary for a static analysis and de-
ciding at runtime which parts of the space to explore
could have broader application. Techniques such as ar-
ray bounds checking could be disabled once a function
is known to not buffer overrun on some inputs. These
ideas have be applied for performance optimizations for
many years, by just-in-time compilers that decide where
to focus their work based on runtime characteristics. We
believe that the same is possible for many static analysis
and security properties, and in the future look forward to
exploring these directions.

References

[1] Busy Box. http://www.busybox.net/.

[2] Cristian Cadar, Daniel Dunbar, and Dawson R En-
gler. Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs.
In OSDI, 2008.

[3] GNU Coreutils. https://www.gnu.org/
software/coreutils/.

[4] Christian Murphy, Gail Kaiser, Ian Vo, and Matt
Chu. Quality assurance of software applications us-
ing the in vivo testing approach. In Software Testing
Verification and Validation, 2009. ICST’09. Interna-
tional Conference on, 2009.

5

