NCL ThinClient Testbed

1 Introduction

The ThinClient testbed consists of five IBM Netfinity 4500R’s: two packet monitors, one network simulator,
a thinclient server and an application server. In addition, any number of client machines may be plugged in
as needed. Figure 1 shows the current layout of the testbed.

The five testbed machines are running Debian Linux. Windows 2000 Server has been installed on the
thin server and application server as of this writing.

Each of the Netfinity machines are set up to do packet forwarding. The nodes of the network without
direct access to the Internet are routed through the network simulator via ip masquerading, which is running
iptables. We are using 192.168.x.y addresses in the testbed. All of the consoles of the Netfinity machines
are connected to a KVM switch. To select a specific console, press control then escape, which will bring up
an On-Screen Display (OSD) menu. Press up and down arrows to select the console of interest and press
return.

A testbed-wide account, testbed has been created, which should be used at all times to set up and run
the tests. It’s been set up with appropiate permissions where necessary. All the test-related data should be
collected under its home directory.

The packet capturing software we are using is Ethereal 0.9.13, http://www.ethereal.com

The software being used as the network simulator is Nistnet 2.0.12, http://snad.ncsl.nist.gov/itg/
nistnet/.

2 Platforms

Currently available thin client platforms are: X11, VNC, Citrix (ICA), Windows Terminal Services / Remote
Desktop Protocol(RDP), and Tarantella. THINC and Sun Ray will be available at a future date.
The following are details about each platform, and instructions on setting up and running them.

out out out
192.168.xy eth0 eth0 etho
client 1 1y 11 21 22 W 31 32 41 42 W 51 52 W
|
| . . application
! — switch packetl NS packet2 thin sery server
I Win Win
|
clientn ethl eth2 ethl eth2 ethl eth2 ethl eth2 ethl
cluster10 clusterll cluster9 cluster8 cluster7
packemonl netsim packemon2 thinserv appserv

Figure 1: Testbed Layout

2.1 X11

We are using XFree86 4.3.0 (http://www.xfree86.org), the most popular implementation of X11. By
default, X communicates on port 6000 + [display number]. Normally, the display number is chosen
automatically by X upon startup, based on its configuration and additional servers running in the computer.
However, for the tests we have configured the thinclient to always use display 0, which makes the port that
needs to be filtered with Ethereal, be 6000.

To make sure the display is correct, in the client run:

testbed@thinclient1:~$ echo $DISPLAY
:0.0

If something different from :0.0 is printed, the settings are incorrect and need to be fixed.
e To set up X for a benchmark session do the following;:

1. At the thinclient run:

testbed@thinclientl:”$ xhost +thinserv
thinserv being added to access control list

2. From the thinclient connect to the thinserver using ssh:
testbed@thinclientl:”$ ssh thinserv
3. At the thinserver run:
testbed@cluster08:~$ export DISPLAY=thinclient:0.0
At this point, the session is ready to begin the benchmark (see section 4). One additional detail to
take into consideration is that the benchmark program (e.g. Mozilla for the Web Benchmark) needs to

be run from the same shell/session/terminal /console that you executed this last command. To make
sure you are in the correct place, execute

testbed@cluster08:~$ echo $DISPLAY
thinclient:0.0

If the output doesn’t look right, execute the command above and check again.

e To shutdown the X session do the following:

1. In the server, close all the benchmark programs which are using the thinclient as the display
server. If you want to revert to your old settings, you may want to run:

testbed@cluster08:~$ export DISPLAY=:0.0

or something to that effect, although the easiest way would be to exit (close the terminal, logout
of the console) and enter again (open another terminal, log back in). This will revert your settings
to their default values.

2. In the client, run

testbed@thinclientl:”$ xhost -thinserv
thinserv being removed from access control list

2.2 VNC

We are using RealVNC 3.3.7 (http://www.realvnc.com). By default, VNC uses port 5900 + [display number].
Similar to X, the display number is chosen automatically by VNC upon startup, but for the tests we will
force it to use display 1. Therefore, the Ethereal filter should be set up for port 5801.

e To start a VNC session, do the following:

1. From the thinclient connect to the thinserver using ssh:
testbed@thinclient1:~$ ssh thinserv
2. At the thinserver run:

testbed@cluster08:~$ vncserver -depth 24 :1
New ’X’ desktop is cluster08:1
Starting applications specified in /home/testbed/.vnc/xstartup

Log file is /home/testbed/.vnc/cluster08:1.log

At this point the vncserver is running on display 1, listening on port 5801, and running at color
depth 24.

3. At the thinclient run:
testbed@thinclientl:~$ vncviewer thinserv:1

After some informational output, it should ask for a password, which is the same as testbed’s
password, and then a window should open with the contents of the server’s desktop. At this point
the session is running, and everything is ready to begin the benchmark (see section 4).

e To shutdown a VNC session do the following:

1. At the thinclient, close the vneviewer window.

2. At the thinserver, run:

testbed@cluster08:~$ vncserver -kill :1
Killing Xvnc process ID 22475

The process ID may change, but the output should look similar. If it complains that it can’t find
the process, the server may not be running, or you may have to kill it by hand.

2.3 Tarantella
2.4 Sun Ray
2.5 Citrix

We are using Citrix Metaframe XP 1.0 (http://www.citrix.com). The client is running Windows XP
Professional, and the server is running Windows 2000 Server. By default it uses port 1494.

e To start a Citrix session, do the following:

1. Start the thinclient in windows, and login as the testbed user.

2. Start the thinserver in windows. There’s no need to login, the service should be started automat-
ically.

3. In the thinclient desktop, you’ll see a shortcut which says ”Citrix Program Neighborhoood”.
Double-click on it.

4. In the window that opened, double-click on the icon that says ”thinserver”.

5. A window should appear asking you to login. Use the testbed account to login and your thinserver
desktop should appear.

At this point, the session is ready to begin the benchmark (see section 4).

e To end a Citrix session, go to ”Start->Shutdown->Log 0ff testbed” in the thinclient window. The
window should close automatically. Close all windows, log out from the thinclient and reboot the
thinserver and thinclient to Linux.

2.6 Terminal Services

We are using Microsoft Terminal Services, running a Windows 2000 Server thinserver, and a Windows
XP Professional thinclient. By default it uses port 3389. We use the terms RDP and Terminal Services
interchangeably.

e To start a RDP session, do the following:

1. Start the thinclient in windows, and login as the testbed user.

2. Start the thinserver in windows. There’s no need to login, the service should be started automat-
ically.

3. In the thinclient desktop, you’ll see a shortcut which says ” Remote Desktop Connection”. Double-
click on it.

4. A window should appear asking you to login. Use the testbed account to login and your thinserver
desktop should appear.

At this point, the session is ready to begin the benchmark (see section 4).

e To end a Terminal Services session, go to ”Start->Shutdown->Log 0ff testbed” in the client window.
The window should close automatically. Close all windows, log out from the thinclient and reboot the
thinserver and thinclient to Linux.

2.7 THINC

3 Network Simulation and Data Capturing

As mentioned before, the two programs being used for simulation and data capturing are Nistnet and
FEthereal. For nistnet we have written some scripts to automatically configure the network for certain network
characteristics. It is expected that as more tests are run, additional scripts will become available. The scripts
can be found inside “testbed/nistnet in the network simulator, and should have the following naming
scheme:

nistnet_<bandwidth>_<delay>_<drop>
For data capturing, we use filters which have the following form:

tcp port <port> and host thinserv and host thinclient

You should replace with the appropiate port as mentioned in section 2. Some of the standard ports may
have been already saved as Ethereal filters. Click on the ”Filters” button, and choose one from the list. If
there isn’t one for the platform you want, and this platform will be used again in the future, make sure to
save the corresponding filter with the appropiate name. You’ll thank yourself in the future.

To save space and facilitate the processing of the captured data, the sniffer should be set up so that it only
captures the first 68 bytes of each packet. To do this, in the Capture dialog set "Limit each packet to”
to the appropiate value. In addition, make sure the option "Update list of packets in real time” is
not set.

When capturing has finished, save the data in libpcap format in the appropiate directory with a .pkt
extension (e.g. “testbed/data/<platform>/<name_describing_test-date>.pkt). The data is ready to
be analyzed as described in section 5.

3.1 Network Configurations

The following are the network configurations which have been tested:
e No additional latency (LAN test): 100Mbits, 10Mbits, 1.5Mbits, 768Kbits, 128Kbits
e Additional latency of 33ms (I2 test): 100Mbits, 10Mbits, 1.5Mbits, 768Kbits, 128Kbits

4 Benchmarks

This section contains the instructions to run all the different benchmarks.

4.1 Web Benchmark

The browser being used in the web benchmark is Mozilla 1.4 (http://www.mozilla.org). The URL to
access the Web Benchmark is http://appserv/ibench/, which can be accessed through the home button
in Mozilla.

In general, the steps to follow to run a test are the following.

1. Launch the thin client session, following the appropiate instructions found in section 2.

2. Launch mozilla from inside the thin client session, and clear its memory and disk cache. Make sure
it fills the thinclient screen completely, and that the Navigation and Personal toolbars are hidden
(uncheck in View->Show/Hide). Only the Menu and Status bar should be visible.

3. Set up packemonl to filter for the appropriate protocol.
4. Set up netsim to the appropriate network characteristics
5. If using packet loss, then set up packemon?2 to filter for appropriate protocol.

6. If benchmark you want to run needs parameters set, fill in the correct values for the number of cycles
and the appropriate delay value.

7. Place mouse directly over the appropriate link or button.
8. Start packet captures.

9. Click appropriate link or button in mozilla’s home page, according to the benchmark you want to run.
Quickly move the mouse out of the display area of the browser to the toolbar.

10. After test is finished stop packet captures and save the captured data.

11. Remove network simulation settings (nistnet_down)

12. Shutdown thin client and server software, and log out from all the machines. To log out from the client
machine, press Control-Alt-Backspace.

5 Packet Capture Analysis

The packet capture analysis script (analyze_pkt.pl) is located in /usr/local/bin in the packet capturing
machines. To process the packet captures, you will need to determine latency of the benchmark using
analyze_pkt.pl. The usage information is as follows, and will be printed any time the script is run without
proper options and parameters:

Usage: analyze_pkt.pl [options] <filename>
Options:

-0 (Print packet info to .txt file)

-b <break> (Default: 2)

-d <delay> (Default: 6)

-t <size threshold> (Default: 0)

-e <size endthreshold> (Default: 0)

-k <min packets in a page> (Default: 2)

-m <size minpage> (Default: 3)

-s <server IP addr> (Default: 192.168.4.2)
-c <client IP addr> (Default: 192.168.1.10)
-E (Only end page on server-to-client packet)

-p (Print detailed results)

-i (Print stray packet info)

-x (Print for importation into Excel)
-w (Warn for unusual results)

-g (Turn debugging messages on)

The default parameters of the following three options are usually fine for most tests.

<break> time is the maximum amount of time allowed within a page.

<delay> is the the amount of time between pages

<size threshold> is the minimum size of a packet that indicates the start of a new page.
This is an example run of the analyze_pkt.pl script:

analyze_pkt.pl -s 192.168.4.2 -c 192.168.1.10 citrix2k_lp_i2_d6_dflt_rl.txt

Average packet size: 854.294447150511

Number of pages detected: 110

Overall Results (includes results, but not blank or dropped)
Latency: 62.41

Data (s/c): 3404869

Data (c/s): 88512

Pkts (s/c): 2645

Pkts (c/s): 1383

Run 1 Results

Latency: 33.68
Data (s/c): 1723787

Data (c/s): 45888
Pkts (s/c): 1351
Pkts (c/s): 717

Run 2 Results
Latency: 28.21
Data (s/c): 1677009
Data (c/s): 42432
Pkts (s/c): 1288
Pkts (c/s): 663

The number of pages detected on the iBench test should be 55. Using the -w option will cause the script
to print warnings about abnormal results. The Latency and the Data (s/c) from the Overall Results are
those that are most likely to be of interest.

If a plain text file with packet information is needed, type:

$perl analyze_pkt.pl -o <capture_file>

This will create a file called jcapture_file;.txt (rather than .pkt) in the current directory. The format of
the tab delimited text file will be:

<pkt num> <src ip> <src port> <dest ip> <dest port> <size> <timestamp> <delta time from last pkt> <prot

