Remote Display

Ricardo A. Baratto
PhD Candidacy Exam
Columbia University

September 20, 2004

Outline

Remote Display Systems
Compression

Delivery Optimizations
Remote 3D Display
Measurement Techniques
Measurement Results
Conclusions

What is remote display?

» Applications decoupled from display
* Thin-clients:

Display updates /.

(B s INPUtevents Computing
- State
Stateless client

Remote Display and Thin-
client Systems

Characteristics:
> Division of roles and state
> Client mobility
> Type of protocol updates
> High-level, low-level, pixel-level
> Delivery of updates
> Server-driven, client-driven, user-driven
> Adaptive?
> Application support:

- Tallored to general or specific applications
- Transparency to applications

I X [Scheifler-Gettys 86]

* Client has all state
I - Inversion of client-server roles
* High-level protocol
Problems:
 No mobility [Richardson 94]
 No compression support [Danskin 94]
* Synchronization

I VNC [Richardson 98]

* One pixel-level primitive
- Multiple encodings
» Client-driven updates

I « Stateless client

Problems:
» Poor Interactivity
* No perfect encoding exists

Thin-client to the Iimit

The client is just an /O interface to the

underlying infrastructure
[Truman 98, Schmidt 99]

» Specialized clients
« Stateless
* No support for application execution

InfoPad [Narayanaswamy 96, Truman

98]
 Client as access and communications
device
- Wireless
- Multimedia

 Decentralized hardware
- “Collection of peripherals”

» Specialized interface
- Speech and handwriting input

Problems:
« Specialized solution

I SLIM/SunRay [schmidt 99]

» Low-level protocol
- Mimic client hardware

 Relaxed delivery of updates
- UDP and own error recovery mechanisms
- Dedicated interconnection fabric

I Hardware-only access console

Problems:
« Bandwidth-intensive
« Not suitable for shared networks

I Rajicon [su02]

» Cellphones as access devices
I - Ubiquitous connectivity

 What kind of user interface?
- Driven by constrained environment

I Compression

* Must balance speed and bandwidth
I usage

» Tailored to characteristics of display
contents

e Must be lossless

Approach

Exploit characteristics of desktop
content

- Sharp edges

- Solid/Patterned background elements

Exploit repetitions in desktop content
- lcons, window decorations, text

UJpdates: HBX [Danskin 94], FABD

Gillbert 98], PWC [Ausbeck 00], TCC
Christiansen 00, 02]

Framebuffer: TCVQ [Gillbert 00]

I TCC [christiansen 00, 02]

« Separate the details: Marks
I - Small, few colors

- Underlying components are more

uniform
- e.g. solid background regions

» Used by GoToMyPC

I Delivery Optimizations

 How to improve the transmission of
I display data?
» Asymptotic reliable delivery [Han 96]
* Localization [Aksoy 00]
« Update dependency tracking and
squashing [Gilbert 00]

I Asymptotically Reliable
I Delivery

[Han-Messerschmitt 96]

e Too much overhead from error
I correction and retransmissions

e Corrupted data can be useful
- Graphics are resilient to errors
- Improve response time by not delaying
delivery

Problems

» At odds with compression

» Applications must be aware of
mechanism

I Localization [Aksoy-Helal 00]

I * Move functionality to the client

e Used by Citrix MetaFrame

Remote 3D Display

How to balance the thin-ness of the
client with the requirements of the
application?

* High resource requirements
- Shared environment

» Approach: Partition the 3D pipeline

I Dedicated rendering
I sServer [Stegmaier 02]

* Generic solution
I e Could possibly off-load application
server

Problem
« How to deliver the content?

I Push functionality to the
I client [Levoy 95]

* Render high-quality and low-quality
I Images
* Transfer only difference image
- Improved delivery

Problem
* Not generic
« Server still doing all the work

I Stream of rendering
I components [Humphreys 01,02]

* Divide pipeline for scalability
I - Does not address delivery issues

 Framework for balancing rendering

work
- Possibly dynamically?

I Measurement Techniques

suitable
- Only measure server performance
- Many are throughput-based

I Traditional application benchmarks not

e Cannot instrument proprietary systems

I Capture application traces
I [Danskin 94, Schmidt 99]

« Capture protocol messages generated
I IN @ user session

Benefits

« Realistic

* Repeatable

* Flexible

Problem
* Need open protocol

I Slow-motion

benchmarking
[Nieh-Yang-Novik 03]
I » Use network monitoring

- Systems are just blackboxes
- Measure of client-perceived performance

* Introduce delays
- Avoid merging of display updates
- Plus: Mimics real user behavior

Problems

 Client processing not fully accounted
for

» Cheating

I Measurement Results

Schmidt 99]

* Network latency is key [Lai 02]

* Thin-clients ideal for constrained
environments (e.g. PDAS) [Lai 04]

« User-perceived latency not driven by
data transfer [Lai 02, 04]

I » User-perceived latency is key [Wong 00,

I Conclusions

- Not one perfect system
- Is this even possible?
« Complex systems
- Plenty of room for optimizations
» System response time is key
- More important than bandwidth usage

* Open problem: Remote 3D display

I Many systems and many approaches

