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What is remote display?

» Applications decoupled from display
* Thin-clients:

Display updates /.

(B s INPUtevents Computing
- State
Stateless client




Remote Display and Thin-
client Systems

Characteristics:
> Division of roles and state
> Client mobility
> Type of protocol updates
> High-level, low-level, pixel-level
> Delivery of updates
> Server-driven, client-driven, user-driven
> Adaptive?
> Application support:

- Tallored to general or specific applications
- Transparency to applications



I X [Scheifler-Gettys 86]

* Client has all state
I - Inversion of client-server roles
* High-level protocol
Problems:
 No mobility [Richardson 94]
 No compression support [Danskin 94]
* Synchronization



I VNC [Richardson 98]

* One pixel-level primitive
- Multiple encodings
» Client-driven updates

I « Stateless client

Problems:
» Poor Interactivity
* No perfect encoding exists



Thin-client to the Iimit

The client is just an /O interface to the

underlying infrastructure
[Truman 98, Schmidt 99]

» Specialized clients
« Stateless
* No support for application execution



InfoPad [Narayanaswamy 96, Truman

98]
 Client as access and communications
device
- Wireless
- Multimedia

 Decentralized hardware
- “Collection of peripherals”

» Specialized interface
- Speech and handwriting input

Problems:
« Specialized solution



I SLIM/SunRay [schmidt 99]

» Low-level protocol
- Mimic client hardware

 Relaxed delivery of updates
- UDP and own error recovery mechanisms
- Dedicated interconnection fabric

I  Hardware-only access console

Problems:
« Bandwidth-intensive
« Not suitable for shared networks



I Rajicon [su02]

» Cellphones as access devices
I - Ubiquitous connectivity

 What kind of user interface?
- Driven by constrained environment



I Compression

* Must balance speed and bandwidth
I usage

» Tailored to characteristics of display
contents

e Must be lossless



Approach

Exploit characteristics of desktop
content

- Sharp edges

- Solid/Patterned background elements

Exploit repetitions in desktop content
- lcons, window decorations, text

UJpdates: HBX [Danskin 94], FABD

Gillbert 98], PWC [Ausbeck 00], TCC
Christiansen 00, 02]

Framebuffer: TCVQ [Gillbert 00]




I TCC [christiansen 00, 02]

« Separate the details: Marks
I - Small, few colors

- Underlying components are more

uniform
- e.g. solid background regions

» Used by GoToMyPC



I Delivery Optimizations

 How to improve the transmission of
I display data?
» Asymptotic reliable delivery [Han 96]
* Localization [Aksoy 00]
« Update dependency tracking and
squashing [Gilbert 00]



I Asymptotically Reliable
I Delivery

[Han-Messerschmitt 96]

e Too much overhead from error
I correction and retransmissions

e Corrupted data can be useful
- Graphics are resilient to errors
- Improve response time by not delaying
delivery

Problems

» At odds with compression

» Applications must be aware of
mechanism



I Localization [Aksoy-Helal 00]

I * Move functionality to the client

e Used by Citrix MetaFrame



Remote 3D Display

How to balance the thin-ness of the
client with the requirements of the
application?

* High resource requirements
- Shared environment

» Approach: Partition the 3D pipeline



I Dedicated rendering
I sServer [Stegmaier 02]

* Generic solution
I e Could possibly off-load application
server

Problem
« How to deliver the content?



I Push functionality to the
I client [Levoy 95]

* Render high-quality and low-quality
I Images
* Transfer only difference image
- Improved delivery

Problem
* Not generic
« Server still doing all the work



I Stream of rendering
I components [Humphreys 01,02]

* Divide pipeline for scalability
I - Does not address delivery issues

 Framework for balancing rendering

work
- Possibly dynamically?



I Measurement Techniques

suitable
- Only measure server performance
- Many are throughput-based

I  Traditional application benchmarks not

e Cannot instrument proprietary systems



I Capture application traces
I [Danskin 94, Schmidt 99]

« Capture protocol messages generated
I IN @ user session

Benefits

« Realistic

* Repeatable

* Flexible

Problem
* Need open protocol



I Slow-motion

benchmarking
[Nieh-Yang-Novik 03]
I » Use network monitoring

- Systems are just blackboxes
- Measure of client-perceived performance

* Introduce delays
- Avoid merging of display updates
- Plus: Mimics real user behavior

Problems

 Client processing not fully accounted
for

» Cheating



I Measurement Results

Schmidt 99]

* Network latency is key [Lai 02]

* Thin-clients ideal for constrained
environments (e.g. PDAS) [Lai 04]

« User-perceived latency not driven by
data transfer [Lai 02, 04]

I » User-perceived latency is key [Wong 00,



I Conclusions

- Not one perfect system
- Is this even possible?
« Complex systems
- Plenty of room for optimizations
» System response time is key
- More important than bandwidth usage

* Open problem: Remote 3D display

I  Many systems and many approaches



