
Remote Display

Ricardo A. Baratto
PhD Candidacy Exam
Columbia University

September 20, 2004



Outline

● Remote Display Systems
● Compression
● Delivery Optimizations
● Remote 3D Display
● Measurement Techniques
● Measurement Results
● Conclusions



What is remote display?

Computing
State

Stateless client

Display updates 

Input events

● Applications decoupled from display
● Thin-clients:



Remote Display and Thin-
client Systems

Characteristics:
➔ Division of roles and state

➔ Client mobility
➔ Type of protocol updates

➔ High-level, low-level, pixel-level
➔ Delivery of updates

➔ Server-driven, client-driven, user-driven
➔ Adaptive?
➔ Application support:

– Tailored to general or specific applications
– Transparency to applications



X [Scheifler-Gettys 86]

● Client has all state
– Inversion of client-server roles

● High-level protocol

Problems:
● No mobility [Richardson 94]
● No compression support [Danskin 94]
● Synchronization



VNC [Richardson 98]

● Stateless client
● One pixel-level primitive

– Multiple encodings
● Client-driven updates

Problems:
● Poor Interactivity
● No perfect encoding exists



Thin-client to the limit

The client is just an I/O interface to the 
underlying infrastructure

[Truman 98, Schmidt 99]

● Specialized clients
● Stateless
● No support for application execution



InfoPad [Narayanaswamy 96, Truman 
98]

● Client as access and communications 
device
– Wireless
– Multimedia

● Decentralized hardware
– “Collection of peripherals”

● Specialized interface
– Speech and handwriting input

Problems:
● Specialized solution



SLIM/SunRay [Schmidt 99]

● Hardware-only access console
● Low-level protocol

– Mimic client hardware
● Relaxed delivery of updates

– UDP and own error recovery mechanisms
– Dedicated interconnection fabric

Problems:
● Bandwidth-intensive
● Not suitable for shared networks



Rajicon [Su 02]

● Cellphones as access devices
– Ubiquitous connectivity

● What kind of user interface?
– Driven by constrained environment



Compression

● Must balance speed and bandwidth 
usage

● Tailored to characteristics of display 
contents

● Must be lossless



Approach

● Exploit characteristics of desktop 
content
– Sharp edges
– Solid/Patterned background elements

● Exploit repetitions in desktop content
– Icons, window decorations, text

● Updates: HBX [Danskin 94], FABD 
[Gillbert 98], PWC [Ausbeck 00], TCC 
[Christiansen 00, 02]

● Framebuffer: TCVQ [Gillbert 00]



TCC [Christiansen 00, 02]

● Separate the details: Marks
– Small, few colors

● Underlying components are more 
uniform
– e.g. solid background regions

● Used by GoToMyPC



Delivery Optimizations

● How to improve the transmission of 
display data?

● Asymptotic reliable delivery [Han 96]
● Localization [Aksoy 00]
● Update dependency tracking and 

squashing [Gilbert 00]



Asymptotically Reliable 
Delivery

[Han-Messerschmitt 96]
● Too much overhead from error 

correction and retransmissions
● Corrupted data can be useful

– Graphics are resilient to errors
– Improve response time by not delaying 

delivery

Problems
● At odds with compression
● Applications must be aware of 

mechanism



Localization [Aksoy-Helal 00]

● Move functionality to the client

● Used by Citrix MetaFrame



Remote 3D Display

How to balance the thin-ness of the 
client with the requirements of the 

application?

● High resource requirements
– Shared environment

● Approach: Partition the 3D pipeline



Dedicated rendering 
server [Stegmaier 02]

● Generic solution
● Could possibly off-load application 

server

Problem
● How to deliver the content?



Push functionality to the 
client [Levoy 95]

● Render high-quality and low-quality 
images

● Transfer only difference image
– Improved delivery

Problem
● Not generic
● Server still doing all the work



Stream of rendering 
components [Humphreys 01,02]

● Divide pipeline for scalability
– Does not address delivery issues

● Framework for balancing rendering 
work
– Possibly dynamically?



Measurement Techniques

● Traditional application benchmarks not 
suitable
– Only measure server performance
– Many are throughput-based

● Cannot instrument proprietary systems



Capture application traces 
[Danskin 94, Schmidt 99]

● Capture protocol messages generated 
in a user session

Benefits
● Realistic
● Repeatable
● Flexible

Problem
● Need open protocol



Slow-motion 
benchmarking 
[Nieh-Yang-Novik 03]

● Use network monitoring
– Systems are just blackboxes
– Measure of client-perceived performance

● Introduce delays
– Avoid merging of display updates
– Plus: Mimics real user behavior

Problems
● Client processing not fully accounted 

for
● Cheating



Measurement Results

● User-perceived latency is key [Wong 00, 
Schmidt 99]

● Network latency is key [Lai 02]
● Thin-clients ideal for constrained 

environments (e.g. PDAs) [Lai 04]
● User-perceived latency not driven by 

data transfer [Lai 02, 04]



Conclusions

● Many systems and many approaches
– Not one perfect system
– Is this even possible?

● Complex systems
– Plenty of room for optimizations

● System response time is key
– More important than bandwidth usage

● Open problem: Remote 3D display


