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Abstract
Commonly-found design elements in collaboration soft-

ware such as remote display and basic screen-sharing
demonstrate a functional intersection with thin-client de-
signs. This intersection of functionality provides a motiva-
tion for incorporating a multi-user collaborative environ-
ment within a thin-client system. As a result, popular thin-
client systems like VNC and Citrix MetaFrame have begun
to incorporate collaborative features. In this context, we in-
troduce ”THINCing Together” which is an extension of the
THINC thin-client protocol that allows for asynchronous
and synchronous multi-user sessions. With THINCing To-
gether, we are able to provide a platform for collaboration
by implementing centralized cursor management and dif-
ferent modes of screen-sharing. In this paper, we show how
we incorporated our design without compromising the thin-
client functionality of THINC. We also discuss the issues
we encountered with the current architecture of the THINC
system while implementing multi-user support. Finally, we
demonstrate how our design has a low impact on typical
thin-client performance metrics with respect to bandwidth
consumption, latency, and CPU utilization compared to a
version of THINC without collaborative features as well as
VNC.

1 Introduction

The wide acceptance of the Internet in the past decade
has fueled the popularity of peer-to-peer and client/server
architectures. Collaborative software has benefited from
the growth of Internet-based communication by allowing
users to collaborate interactively across different geogra-
phies. More recently, thin-client computing and remote
display technology have received increasing attention[22]
[23]. Coupled with progressively more powerful hardware
and the rising availability of wide-area broadband network-
ing, thin-client computing has become an enticing alterna-
tive to the more prevalent desktop-based computing that ex-
ists today.

The ability to view and interactively manipulate a shared

resource from a remote location is a feature found in both
thin clients and collaborative software. Thin clients are es-
sentially dumb terminals that use a local framebuffer to dis-
play remote framebuffer updates. Likewise, many types
of collaborative software such as Altiris Vision[1], Apple
Remote Desktop[2], NetMeeting[7], Presence-AR Adapter
for Excel and Powerpoint[25] and SubEthaEdit[8] provide
this same facility to varying degrees. Moreover, some thin-
client systems already incorporate collaborative function-
ality, notably Citrix MetaConferencing Manager[30] and,
to a certain extent, Collaborative VNC [4] [29]. Clearly,
collaborative features can be integrated with thin-client ar-
chitectures.

In this paper, we presentTHINCing Together, which
is an effort to integrate basic multiple user functionality
with an existing thin-client protocol, THINC (short for
THin-client InterNet Computing) [10]. THINC is a simple
and scalable thin-client architecture capable of high perfor-
mance in both LAN and WAN settings. It achieves high
performance by using a simple low-level protocol and ap-
plying a range of optimizations that allows it to transpar-
ently and efficiently support existing user applications. A
novel feature of THINC that separates it from other thin-
client systems is that it is able to support real-time full
screen video at full framerate.

Our approach to designing THINCing Together was to
select a cross-section of some of the common features
found in other thin-client-based collaborative systems. We
also wished to address any architectural limitations with the
existing implementation of THINC in order to enable these
features. Compared to other thin-client systems that inte-
grate collaborative features such as Collaborative VNC, we
believe that THINCing Together is able to give the user
similar functionality without significant modifications to
the existing protocol. Most importantly, we prove that the
THINCing Together requires no changes to existing thin-
client features and adds marginal overhead over an imple-
mentation of THINC without our code additions. Our per-
formance results show that a THINC user is capable of
sharing a session with several users over a LAN showing



an MPEG video without dropping frames.
This paper is organized as follows. Section 2 discusses

some related work in collaborative software and compares
THINCing Together to thin-client systems with collabora-
tive functionality. Section 3 gives a brief overview of the
THINC protocol features. A description of issues encoun-
tered with asynchronous multi-user sessions is given in sec-
tion 4. Synchronous multi-user session design and imple-
mentation is given in sections 5 and 5.2. We show some
performance results in section 6 and conclude with sugges-
tions for future work in section 7.

2 Related Work

Much work has been done in the field of CSCW (computer
supported cooperative work) and the management of inter-
action between multiple users. In the designs surveyed for
this paper, we got the impression that the means of con-
trol passing between users of a shared resource in most
collaborative applications is motivated more by intuition
than hard research. We found that the dominant theme
among all of these designs was the need of some sort of
policy to manage control. In particular, numerous ”floor-
control mechanisms” similar to the one used by THINCing
Together have been proposed to handle control of a syn-
chronous task. Some approaches use a generalized manner
where control of a shared application is likened to trans-
action concurrency [20]. Boyd introduces ”fair dragging”
where a user gains control of the floor once the mouse is
dragged [16]. Others are more specific to a particular ap-
plication such as multimedia conferencing [15] [26], docu-
ment sharing and whiteboarding [28] [14], or control han-
dling among handheld devices [11] [13].

Many collaboration tools are commercially available as
well. For example, Altiris Vision and Apple Remote Desk-
top are designed primarily for teachers and educators and
offer screen-sharing, screen-supervising, and remote con-
trol of student computers. WebEx [37] is a popular web-
and video-conferencing tool. SubEthaEdit is a text edi-
tor for Mac OS X that allows multiple users to edit the
same document simultaneously by supporting multiple cur-
sors and using different-colored text to represent each user.
However, it does not apply any floor control policies and is
restricted to sharing only the text editor. Similar functional-
ity to SubEthaEdit is provided by Presence-AR Adapter as
a plug-in for Microsoft Excel and Powerpoint. Microsoft
NetMeeting is a popular Windows-based application that
offers program and screen-sharing, though it does not al-
low single-user access to a remote desktop.

Still, there has been little in the way of evaluation of
these floor-control mechanisms, and results proving the ef-
fectiveness of any approach have been conflicting. Green-
berg discusses several but notes that ”surprisingly, there has
been no attempt to evalute these different methods in exist-
ing shared view systems” [32]. Some have suggested that

working in parallel (i.e. sharing control of a resource) is
not optimal and that users prefer to take turns [33] [34],
although at least one finding shows that using multiple cur-
sors without blocking input worked best [12]. As a result,
most collaboration tools differ on their approach to floor
control in very subtle ways, reflecting disparities of ap-
proach to this problem.

For thin-client protocols, collaboration amounts to
screen-sharing with floor control as the policy for manag-
ing control of the screen. One example of a collaboration-
oriented thin-client system is Collaborative VNC. Collab-
orative VNC is a patch applied to the TightVNC server
and client [35] that provides managed collaborative ses-
sions over the RFB protocol. With Collaborative VNC, one
user ”has the floor” (i.e. controls the desktop) at any given
time. Other users have the power to take control from or
give control to other users at any time. Every user’s cursor
is displayed, with each cursor assigned one of eight colors.
Although this is a nice feature, the necessary bandwidth
requirements to maintain multiple cursors does not scale
well to a large number of users. THINCing Together takes
a single-cursor approach that optimizes bandwidth usage
for multiple users.

GoToMyPC [6] and Citrix MetaFrame [9] are Windows-
based thin-client systems. GoToMyPC is a web-based thin-
client solution that uses a Java applet for display (though
hosts can only run on Windows PCs) and offers some ba-
sic whiteboard and messaging tools, but it does not of-
fer any collaborative session management beyond these
tools. Citrix MetaFrame Access Suite provides collab-
oration functionality through the Conferencing Manager,
which allows a user to initiate a conference on his desk-
top and invite other users to join the conference. Users can
send private messages to other users, view file attachments,
and launch multiple applications within the same shared
session. Although both Citrix MetaFrame is a sophisti-
cated thin-client/ collaborative solution, it relies heavily on
Windows-specific applications such as Outlook for collab-
orative features whereas THINCing Together does not rely
on any other applications to provide its collaborative fea-
tures. Instead, these features are integrated directly with
the protocol. Though THINCing Together does not have
any peer-to-peer communication functionality, future addi-
tions to the THINC protocol to support this are imminently
possible.

Several papers were written in the early 1990s on screen
sharing with the X Windows system that describe imple-
mentations of shared screen functionality, multiple cur-
sor operation, floor control, and different levels of sharing
granularity (e.g. sharing a single window versus sharing a
desktop) by modifying existing X libraries [18] [19] [17].
A number of these concepts have clearly made their way
to contemporary collaborative designs, though we have not
been able to locate a current version of the systems men-
tioned in the cited papers. One slightly more modern X-



based application is [39] which is an X client that multi-
plexes multiple X server sessions to multiple clients and
has basic floor management functionality. Unfortunately,
we were unable to get XMX to compile properly and the
code does not appear to have been updated since 1999.

With THINCing Together, we sought to make the collab-
orative features as straightforward as possible. Floor con-
trol influenced our design in that it was a commonly-found
in other collaborative systems and appeared to be the most
intuitive. We note that there are many nuances and variants
of floor control, and we emphasize that our design takes
into account the fact that THINC is a thin-client protocol
first and collaborative tool second.

3 Overview of THINC Protocol and Archi-
tecture

The design for THINCing Together has three primary
goals. The first is to build support for multiple users to
run their own remote THINC sessions on the same ma-
chine. The second is to allow multiple users to share the
same remote THINC session in a cooperative manner. We
use the termasynchronous THINC sessionto characterize
the first goal, andsynchronous THINC session, or screen-
sharing sessionto describe the second1. The third goal is to
maintain feature parity; that is, we did not want to change
or modify existing features in order to support our design,
nor did we wish to unduly impact performance. The multi-
user features we sought to implement had implications for
both the THINC protocol and architecture. Specifically, the
ability to have synchronous sessions depended on the flex-
ibility of the protocol, and enabling asynchronous sessions
required a non-trivial architectural investigation. Thus, be-
fore going into the multi-user THINC design, some discus-
sion of the THINC system is necessary.

The THINC server is implemented as a loadable module
for XFree86 [5] on the Linux operating system to commu-
nicate with the X server at the device driver level. An Xlib
THINC client interacts with the server using a predefined
protocol, which is essentially a messaging specification for
handling framebuffer and I/O device updates. During typi-
cal operation, the THINC server captures any updates made
to the framebuffer on the remote machine. The server en-
capsulates these updates as a serial combination of mes-
sages and data which are sent to a THINC client. The client
decodes these messages and displays updates on the user’s
local machine. The client also sends messages to the server
typically in the form of keyboard and mouse events.

Although the protocol itself consists primarily of mes-
sages that communicate graphical updates, it is extensibly

1A clarification on terminology: Other research papers use the term
”asynchronous collaboration” to mean that users are not interactively col-
laborating but are still communicating via email and other such methods
at different periods of time. Our use of the word ”asynchronous” refers to
asynchronousmulti-user supportand notcollaboration.

designed such that a large number of enhancements and
optimizations are possible with additional messages2. For
instance, in order to reduce bandwidth consumption, the
protocol allows for ahardware cursormode on the client
side. In this mode, the server sends cursor image updates
instead of constantly sending raw image data to redraw the
mouse pointer each time the cursor is moved. The client
continues to send cursor position information to the server.
Though this optimization results in an overall reduction in
bandwidth usage, it also resulted in some design complex-
ity in accounting for cursor handling when multiple clients
were connected. We discuss this in more depth in sections
5.1.3 and 5.2.3.

Overall, we found the THINC protocol to be flexible
enough to enable synchronous multi-user support. We were
quickly able to determine the basic desired features that
would be possible for collaborative THINC. Adding these
features to the existing THINC protocol was a simple exer-
cise in defining client and server messages, and determin-
ing efficient byte sizes for these messages to keep band-
width costs low. Our challenge for synchronous multi-user
sessions was to come up with a usable design that would
minimally impact the performance and normal operation
of the current implementation. However, for asynchronous
sessions we encountered different design challenges affect-
ing the foundation of the THINC architecture.

4 Design and Implementation of Asyn-
chronous Multi-User THINC

In order to provide tangible benefits over the traditional
desktop computing model, a thin-client server must sup-
port multiple concurrent client sessions. Like most thin-
client systems, THINC leverages the codebase and devel-
oper knowlege of a traditional windowing system such as
the X Window System [38] to transparently support exist-
ing applications. The historical assumption in the design
of windowing systems was the scenario of a single local
desktop user, only interested in interacting with one screen
and set of input devices at a time. XFree86, the dominant
implementation of X, does not support concurrent interac-
tion with multiple X servers on the same machine. In order
for a THINC server to support multiple clients, it was nec-
essary to identify the specific code within the X server that
enforced this design decision and architect a solution to by-
pass it. Curiously, this proved to be a much more complex
problem than it would seem on the surface.

4.1 Problem Description

By interacting with X at the driver layer, THINC is able to
utilize interfaces standardized for compatibility while al-

2Currently, a maximum of 255 messages on either the client and server
side are supported, although more messages can be added with minimal
effort



lowing it to take advantage of potential performance in-
creases by any newly-developed X extensions. The diffi-
culty with this approach for asynchronous THINC is that
higher layers of the X server are left managing the interac-
tion between the devices and the rest of the system. The
policy of these higher layers is such that only the X server
associated with the controlling terminal is permitted to in-
teract with the video card and input devices. This prevents
multiple processes from simultaneously writing to VRAM,
generating a garbled display image, and saves the X server
from having to deal with the complexities of multiplexing
input. These assumptions do not apply in the case of the
THINC driver, however. Instead, X data is translated into
THINC protocol messages and transmitted over the net-
work to remote clients andnot written to local VRAM.

VNC [27] has faced similar problems interfacing with X.
The current stable release (3.3.7) includes a heavily modi-
fied version of the XFree86 server known as Xvnc, which
acts as a broker, translating between the X and VNC pro-
tocols. This version of Xvnc is based on the outdated
XFree86 3.3.2, and porting Xvnc to XFree86 4.x in the cur-
rent VNC development releases has been a non-trivial ef-
fort for the VNC developers. The new port still requires a
non-trivial patch to be applied to the XFree86 code base in
order to compile Xvnc. For THINCing Together, this was
not an acceptable solution; we wanted to avoid any modi-
fications to the standard X code that would make THINC
difficult to deploy and jeopardize vendor support.

Some related work to address this issue was done by the
Linux Console Project [21]. The project consists of the so-
called “ruby” patch to support multiple X servers for the
purpose of attaching multiple video cards, displays, and
other input devices to a single machine, thereby allowing
multiple users to run their own X servers simultaneously
on the same host. The patch is applied to the Linux ker-
nel and blocks calls made by the X server to disable PCI
bus access when another X server is started. While users
report that this patch is functional, the THINC driver is
not actually interested in local PCI bus access because it
does not interact with local devices and only needs to re-
ceive proper notification of events for generating THINC
protocol messages. Even if the “ruby” patch did work for
THINC, a better solution would be desired since the patch
is specifically designed for Linux and is thus orthagonal to
X’s premise of multi-platform support. The acceptability of
the patch within the Linux kernel community is also a con-
cern because it tailors kernel code to a specific application
- something that kernel developers adamantly discourage.

After determining that none of these alternatives would
provide an adequate solution for THINCing Together, we
decided that the next step was to tackle the X code our-
selves. We set out to identify the code within the X server
that was caused the first server to stop responding upon
starting another server. Two salient symptoms on the first
server after starting the second were that neither the display

updated, nor would the cursor change when moving be-
tween windows. Key presses did not generate any display
updates, though after examining debugging output we no-
ticed that THINC was still receiving the key events. From
this we concluded that only display refreshes were not oc-
curing.

Upon further examination of the THINC debugging
logs, we found that the most noticeable difference
in the codepaths executed before and after starting
the second server was related to the cursor. In both
cases,thincHandleMotionEv() was being called,
but thincSetCursorPosition() was not be-
ing executed after starting the second server. We
proceeded to use a debugger to navigate X’s heavy
use of function pointers and found that a particular
function, xf86CursorMoveCursor() , checked
two boolean variables, ScreenPriv->SWCursor
and ScreenPriv->isUp , to decide whether it
should call the hardware cursor functions that invoke
thincSetCursorPosition() . After examining the
booleans, it was clear that after starting the second server,
the first server had been modified so thatSWCursor was
set toTRUEandisUp was set toFALSE, resulting in the
software cursor implementation being used instead of the
desired hardware cursor code.

We looked through the file where
xf86CursorMoveCursor() was defined,
xf86Cursor.c , to see where these two booleans
were being modified. One function that did so was
xf86CursorLeaveVT() , which also called a driver
specific LeaveVT() function. Another breakpoint-
backtrace iteration through GDB revealed that this
function was being called byxf86VTSwitch() , which
the first X server executes after receiving a signal when the
second server starts up. This function manages all of the
changes to the state of the X server when changing virtual
terminals and starting another server.

Our initial (naive) approach to bypass the
xf86VTSwitch() function resulted in the second
server no longer completing startup. We then analyzed
each piece ofxf86VTSwitch() to identify the vari-
ables critical to supporting multiple simultaneous servers
and the function calls that were manipulating them
would be necessary. Using the debugger to manipulate
the values ofSWCursor and isUp during execution
resulted in a segfault inthincRealizeCursor()
because it attempted to access members of a
NullCursor . Reading through documentation and
reference source code, this was inadvertently uncov-
ered a bug in the THINC code because it enables the
flag HARDWARECURSORSHOWTRANSPARENT and
must therefore handle the possibility of being passed a
NullCursor .

After fixing this, there was no longer a segfault, but
the cursor now turned transparent upon starting a sec-



ond server. The desired result was actually not to have
thincRealizeCursor() passed aNullCursor at
all. Another iteration through the debugger comparing ex-
ecution paths before and after starting a second X server
turned up the difference inxf86CursorSetCursor() .
Before starting the second X server, the variable
infoPtr->pScrn->vtSema was set toTRUE, re-
sulting in a normal cursor draw. Afterwards, how-
ever, vtSema was FALSE, leading to the undesired
NullCursor . Looking throughxf86VTSwitch() ,
the reason for this became obvious: one of the last pieces to
switching away from a VT was to setvtSema to FALSE.
Upon disabling this change tovtSema , the change in cur-
sor between windows worked as expected even after start-
ing a second X server.

The next step was to determine how to get the
display to update as well. Without this, it was un-
clear whether additional work would be necessary to
also get keyboard and other mouse events to work as
well. The function call within xf86VTSwitch()
which showed the most promise of affecting this
was EnableDisableFBAccess() . Using
GDB one more time to follow function pointers,
xf86EnableDisableFBAccess() was found to
set the clip mask for the root window to 0, which meant
that updates to the display were being masked out. Block-
ing this call to xf86EnableDisableFBAccess() ,
resulted in display updates being received by the THINC
client. With this in place, it became clear that both key-
board events and mouse presses were still being processed,
and it was in fact possible to run multiple concurrent X
servers.

4.2 Solution

The problem was reduced to three specific
functions/variables: xf86DisableVT() ,
xf86EnableDisableFBAccess() , and vtSema .
We proceeded to see if it would be possible to override
these functions and resetvtSema to TRUE without
modifying the actual core X code. Luckily, the modular
driver design meant that hooks were provided so that the
driver could supply driver-specificDisableVT() and
EnableDisableFBAccess() functions. The global
scope of thexf86Screens variable also meant that it
was possible to override these functions in the necessary
manner.

For DisableVT() , the THINC driver simply
calls xf86EnableVT() , which resets isUp to
TRUE and SWCursor to FALSE, undoing the un-
desired changes xf86DisableVT() did before
calling the THINC driver’s DisableVT() . For
EnableDisableFBAccess() a slightly differ-
ent approach was taken, manipulating the global
pointer to jump directly into the THINC driver’s
EnableDisableFBAccess() , which would then

only call xf86EnableDisableFBAccess() , when
the enable flag was set toTRUE, effectively blocking
any call to disable framebuffer access.

The only remaining issue is the modification of the
vtSema boolean. The modification of this flag within
xf86VTSwitch() occurs after all calls to any functions
that could be manipulated to point to THINC specific code.
It should be possible, however, to checkvtSema within
another function such as the wakeup handler, and set it back
to TRUEbefore missing any events. If this is not the case,
it may be possible to submit a patch to XFree86 to make
the change ofvtSema to FALSEoptional.

5 Synchronous Multi-User Sessions

5.1 Design

In designing synchronous multi-user sessions for THINC,
we wished to give the user the flexibility to enable different
levels of screen-sharing. Again, we also tried to make our
design transparent with respect to THINC’s remote display
capabilities. For our design, we have three sharing poli-
cies, ormodes of operation: single-user, unmanagedand
managed. A description of these modes is as follows:

• Single-user mode. Only a single client is allowed to
connect to a single THINC session at a time. Connec-
tion attempts by other clients are denied and reported
to the user who is interacting with the THINC session.
Obviously, this is useful for keeping screen sessions
private.

• Unmanaged mode. In this mode, multiple clients can
connect to a single THINC session. In addition, all
clients can control the cursor and keyboard for a given
session. The THINC server sequentially processes all
input events and re-broadcasts them to the connected
clients. This essentially gives the effect of an ”any-
thing goes” session where users (unwittingly) fight
over control for the cursor.

• Managed mode. As in unmanaged mode, multiple
clients can connect to a single THINC server. Control
of the screen is handled by atoken-passing mechanism
(similar to the floor control mechanisms described be-
fore) where only a single client controls the cursor
and keyboard during the screen-sharing session. The
client in control of the screen is said topossess the to-
ken. This token can be passed to any one of the clients
sharing the screen. Once client A passes the token to
client B, client A relinquishes control of the cursor and
keyboard to client B.

We selected these three modes for our design as they
best captured the basic collaborative functionality seen in
other thin-client systems. They also represent a foun-
dation upon which further refinements can be built (e.g.



application-specific sharing, screen-area sharing, etc.) We
also adopt a single-cursor model, though it is not beyond
the realm of possibility to integrate multiple cursor support
with the THINC architecture. As stated previously, Col-
laborative VNC allows up to eight cursors to be displayed
in a screen-sharing session, but doing so consumes addi-
tional bandwidth since the VNC server needs to rebroad-
cast these mouse events to all connected clients in order
to update their respective displays. On top of this, Col-
laborative VNC only allows a single cursor to send mouse
button events at a time, which means that much bandwidth
and CPU is wasted handling the cursor movements of other
connected users. We believe we are better able to optimize
bandwidth consumption using a single cursor, and we also
believe that this more intuitively reflects the user-desktop
interaction.

5.1.1 Unmanaged Collaboration

In unmanaged mode, any number of users can connect to a
single THINC server and begin issuing and receiving mes-
sages. Mouse input events from all clients are queued by
the server and broadcasted to the other connected clients.
Keyboard events are also queued and sent to the X server,
which in turn sends the event to the application in focus. If
the THINC server is configured to handle a hardware-based
cursor, it sends a special message to the connected clients
indicating that the cursor should be moved to a different
location on the screen using specified coordinates. Clients
process these mouse events by relocating the cursor to the
given coordinates. Otherwise, raw cursor updates are sent
to each client.

An unmanaged synchronous session can be useful for
quick collaboration involving a small number of users.
However, an unmanaged session among many users for ex-
tended periods of time may be undesirable. Because the
THINC server does not filter events from clients in this
mode, users can negate, or ”cancel out” the cursor move-
ments of other users who are moving the cursor at the same
time. To allow for a more amicable collaborative environ-
ment, a managed session provides a better solution.

5.1.2 Managed Collaboration

Our design for managed sessions is modeled such that only
one client controls the remote desktop at a time. We use
the notion of atokento represent the control of the desktop,
whereuponownership of the tokengives the client control
of the desktop. The client in possession of the token is also
called thecontrol client. The control client can relinquish
control bypassing the tokento another client. Clients that
are not in possession of the token merely observe the ac-
tions of the the token owner and cannot send any events to
the server. Table 1 details the messages used for managed
collaboration.

Command Type Description
Init Server Upon handshake time,

informs the client of
the number of currently
connected clients and the
client in ownership of the
token.

AddUser Server Informs already-connected
clients of a newly con-
nected client.

DeleteUser Server Informs already-connected
clients that a client has dis-
connected.

PassToken Client Passes ownership of the to-
ken to another connected
client.

PassTokenError Server Informs client of an error
while attempting to pass
the token.

NewMaster Server Informs already-connected
clients that a new client has
received the token.

Table 1: Protocol Messages For Managed Collaboration

A simple description of the normal flow of token passing
is as follows. The control client selects a recipient client
from a list of connected clients to pass the token to. The
control client then sends a message to the server indicating
that the token should be passed. The control client relin-
quishes control at this point. The server then sends a mes-
sage to the recipient client to inform that it is the new con-
trol client. If the recipient client happens to disconnect be-
fore the control client’s list of connected clients is updated,
the server sends an error message to the control client, and
the token does not get passed (i.e. the control client regains
control). Once the recipient client receives the message, it
takes control of the screen, and the server sends a message
to all other connected clients, including the previous client
in control, of the new control client. If the control client
should somehow lose its connection, the server automati-
cally passes the token to the client that connectedafter the
control client.

To facilitate token passing, a list of connected clients
must be maintained. Each time a client connects to the
server, the server sends a list of currently connected clients
along with other initialization data. A header message for
this list indicates the number of users connected along with
the client currently in control of the session. If other clients
are currently connected, then whenever a new client con-
nects the server sends a message to these clients notifying
them of the appearance of this new client. Clients then up-
date their list of currently connected users respectively.



5.1.3 Cursor Modes

In order to support unmanaged and managed modes of op-
eration, we also require a mechanism to manage the cursor.
As stated previously, the THINC protocol supports the use
of a hardware cursor. Having cursor updates handled by the
client’s hardware cursor saves the server from sending raw
updates each time the cursor is moved. However, updates
generated by other clients connected to the same session
must be reflected on all screens in a synchronous session.
Thus, cursor updates using a client’s hardware cursor could
potentially prevent the user from controlling her computer.

To capitalize on this bandwidth optimization and to pro-
vide control of the cursor for the user, we provide the abil-
ity to display asoftware cursorthat is locally drawn by the
client. The software cursor is treated by the server in pre-
cisely the same manner as the hardware cursor except it is
manually drawn by the client. In addition, we introduce
two additional cursor states,attachedanddetached, to rep-
resent whether the cursor is handled automatically by hard-
ware or drawn by software. When the cursor is attached,
the client uses the hardware cursor to interact with the re-
mote framebuffer. When the client is detached, the client
frees up the the hardware cursor for the user to control.
Framebuffer updates occur as they normally do, and cur-
sor updates are redrawn manually by the client. The user
is able to detach her cursor, i.e. enable the software cursor,
by simply hitting a pre-defined key combination. To attach
her cursor, the user need only click the screen.

5.2 Implementation

The synchronous THINC implementation integrates with
most of the aspects of the existing THINC architecture,
both on the client and server side. We present details of
the implementation in the following sections.

5.2.1 Initialization

The mode of collaboration is set by an option speci-
fied in the XF86Config file. At server startup time,
configuration settings are parsed by a function called
xf86ProcessOptions , and the mode is set based on
the value provided by the collaboration option (either
single-user, unmanaged, or managed). If the option is not
set, then the server defaults to single-user mode. The server
notifies all clients of the collaboration mode during a hand-
shake phase which takes place upon connection initializa-
tion. Clients that connect to the server after this point
are then set in this mode throughout their session with the
server.

It is possible to allow clients to dynamically change the
mode of collaboration during a given session. However,
this poses security risks since a user can potentially lose
control of her desktop to another user if that ”collaborator”
decides to change the session from managed/unmanaged

mode to single-user mode. There are several issues to con-
sider here, and we discuss them in our future work section
(section 7).

Clients supply the login name of the connecting user by
calling getpwuid and sending it to the server at hand-
shake time. This login name is used to provide a mean-
ingful representation of connected users, though it is pos-
sible to provide functionality where user-defined name can
be set. The server also records the IP address of connecting
clients using thesockaddr in structure upon connection
accept. Since multiple clients can connect from the same
IP address, the server also assigns a unique 16-bit integer
to identify each connected client.

Individual client connections are managed by the server
in a data structure containing client state such as frame-
buffer and cursor location information. The server man-
ages multiple client connections by keeping a linked list of
these structures. For each successful client connection, a
new client data structure is allocated, several variables are
initialized on the data structure including the login name,
IP address, and unique ID for the client, and the data struc-
ture is added at the head of the list. Once the normal client-
server operation commences, each time a server needs to
notify a client of a state change (e.g. a framebuffer up-
date), a message is sent to all connected clients by travers-
ing the linked list, retrieving the client’s socket descrip-
tor, and sending the message with any accompanying data
to the client. It is this basic mechanism that enables the
THINC system to provide screen-sharing capabilities.

5.2.2 Handling of Collaboration Modes

For the most part, the server manages the mode of collab-
oration for all connected clients, though for optimization
purposes the client enforces some behavior for managed
mode. Clients display the mode of collaboration in the title
bar of the window using theXStoreName function. If the
server is set for managed collaboration, the current client in
control is reported in the title bar as well. Using the title bar
to report changes in the collaboration session was the most
intuitive way to notify the user, and prevented the need for
the user to monitor an extra window for this display.

In handling single-user mode, the server allows only one
client to connect at a time by checking a lock variable in a
global state structure. The server tests against this variable
each time a client attempts to connect. If the server is set in
single-user mode and no other client is currently connected,
the server accepts a single connection and initializes the
session for the client attempting to connect. If a client is
already connected, additional connections by other clients
are accepted, the login names and IP addresses of those
clients are recorded by the server, and the connection is
closed. In addition, no client structures are allocated for
these clients.

As mentioned before, for unmanaged and managed
modes, the server collects information at handshake time,



reports the collaboration mode to connected clients, and
keeps a local record for each client. In unmanaged mode,
the server performs some extra handling of cursor updates
(see section 5.2.3) but does little more than queue input
events from and send framebuffer updates to connected
clients.

In managed mode, the server also keeps track of the ID of
the control client to determine which client to process input
events from. Also, some additional steps are taken during
the client-server handshake for this mode. After reporting
the mode of collaboration, the server sends a message to
the newly-connected client indicating the unique ID of the
control client, the ID assigned by the server to the client
itself, and the number of users currently connected. The
server then traverses its internal list of clients and sends
the login name, IP address, and ID of all connected clients
to the newly-connected client using theAddUser mes-
sage. In turn, the server sends the information of the newly-
connected client to the clients on the list using the same
message type (the server skips sending this information to
the newly-connected client). If the newly-connected client
is the first client to connect, it is designated the control
client and possesses the token.

During normal operation in managed mode, clients that
do not possess the token are prevented from sending key-
board and mouse events, although cursor, framebuffer, and
user list updates are still received. This is done as an op-
timization to keep the server from handling unnecessary
event messages. The token is passed by an explicit com-
mand using thePassToken message from the control
client to the server, indicating the unique ID of the client
that is to receive the token. Once thePassToken mes-
sage is issued, the control client immediately stops sending
keyboard and mouse events to the server and resets a lo-
cal flag telling itself that it is no longer in control. The
server processes this message by locating the ID specified
by the PassToken message in its own list and sending
a NewMaster message containing the ID to the receiv-
ing client. The receiving client recognizes that it is the
new control client by matching the ID of theNewMaster
message with its own ID, and it enables itself to send key-
board and mouse events. The server then issues the same
NewMaster message to all other clients including the pre-
vious control client. To show that the control client has
passed the token to another client, the title bars of all con-
nected clients are updated to display the username and IP
address of the client now in control. Should a problem oc-
cur while passing the token to a particular client, e.g. the
receiving client disconnects in the middle of token passing,
then the server notifies the delivering client that an error has
occurred with aPassTokenErr message, and the token
is not passed.

In all supported collaboration modes, once a client is dis-
connected, the server frees its associated data structure in
a cleanup function. If the server is in managed mode, the

server notifies the remaining clients to update their respec-
tive lists using theDeleteUser message. If the discon-
nected client happens to own the token, then the client pro-
ceeding it in the linked list of clients kept by the server
obtains the token (i.e. the client that connected after the
disconnected client).

Note that there is a brief period of time when neither the
control client nor the recipient client are in control while
the token is being passed, and no clients are capable of
sending input events to the server. In the event that both
the control client and the recipient client disconnect at the
same time during token passing, the server still believes
that the original control client is still in control. In this
case, the server simply passes the token to the next client
in its linked list. This avoids the potential case where no
clients can control the screen at once.

Client modifications to support the new collaboration
protocol messages were straightforward. Clients keep a lo-
cal list of connected clients that is centrally managed by
message updates from the server. Adding and removing
connected clients from this list amounted to simple linked
list management. An additional state to the client was
added to indicate whether or not the client is the control
client, which determines its ability to send input events to
the server. Clients are able to view the list of connected
users by issuing a key command, which is trapped in the
same manner as cursor attach/detach toggling (see section
5.2.4). In managed mode, token passing occurs by keying
through the list and selecting the user.

5.2.3 Cursor Management

We use a function calledXWarpPointer() to update
the hardware cursor placement on all connected clients. In
both managed and unmanaged modes, each time the cur-
sor is moved the server sends a corresponding event to all
connected clients to move their respective hardware cur-
sors. The clients process this event by passing coordinates
to XWarpPointer() which, in turn, relocates the cur-
sor. BecauseXWarpPointer() issues a mouse event
each time it is invoked, the client must suppress the event
in order to avoid sending the event to the server. This
avoids a ”mirror effect” where the client and server may
repeatedly send redundant mouse events to each other. To
suppress the event, the client keeps a count of all mouse
events that are issuedby the server. In other words,
the count is incremented each time the client must used
XWarpPointer() to relocate the cursor. If the count
is greater than zero, then the mouse event generated by
XWarpPointer() is discarded and the counter is decre-
mented.

The server must also deal with a potential mirror effect
by preventing itself from sending duplicate mouse events
to the client that initially sent the event. In addition, it must
also detect whether mouse events were actually issued by
a client, or if the cursor was relocated by an application.



Each time the server receives a mouse event, the server
identifies the local client structure that it associates with
the mouse event. It also increments its own counter which
tracks all mouse events issued by clients. If the counter is
greater than zero, then the server broadcasts the event to all
connected clientsexcept the one that issued the event. If the
counter is zero, then the mouse event is sent toall clients.

5.2.4 Cursor Attaching and Detaching

Modifications to support cursor attach and detach occur
solely on the client side. To toggle the detach mode, a key
command (CTRL-ALT) is carefully trapped. Once the key
command is received, the client replaces the hardware cur-
sor with a software-drawn cursor. At this point, the soft-
ware cursor represents the location of the cursor on the re-
mote framebuffer, and the hardware cursor is free to move
as the user wishes. The toggling is triggered only once
when either CTRL or ALT are released, but only after both
of them are pressed. This prevents any interference with
applications that rely on key commands that use a combi-
nation of CTRL and ALT plus an additional key3.

Client complexity increases slightly as a result of han-
dling the software cursor. Cursor image data is represented
by two separate images; a source pixmap and a bitmap
mask. Normally, the video card processes the image data
directly in order to draw cursor image. The client manually
draws the software cursor by creating a stipple for both the
mask bitmap and the source bitmap and filling the stipples
with the background and foreground colors of the cursor
respectively. These fills are done directly on the client win-
dow, which requires the client to repaint the window from
its backing store using the cursor’s previous coordinates.
Despite having to perform fill operations each time the cur-
sor is moved, the client incurs minimal CPU overhead in
drawing the cursor manually.

Nonetheless, the increased client processing cost associ-
ated with drawing the cursor is offset by the benefits. The
two additional cursor states not only prevent the user from
losing control over the cursor, but also allow the user to ob-
serve the cursor movements of other connected users while
interacting with other applications. Moreover, we are able
to provide this functionality without making any additional
server changes or any sacrifice of bandwidth.

6 Experimental Results

The goal of our implementation was to transparently pro-
vide scalable multi-user support to an existing thin client
protocol, in a way that compares favorably to other multi-
user thin-client protocols. To exhibit transparency, we com-
pare our implementation of THINCing Together with the

3VMWare [36] uses a similar mechanism to detach the cursor from the
virtual machine instance. It is also the only application that we know of
that uses CTRL and ALT to do the detaching, though it allows the user to
specify a different set of key combinations to do so as well.

original single-user version. We measure scalability by
testing THINCing Together with an increasing number of
connected clients. We also run comparisons between multi-
user THINC and a competitor, Collaborative VNC.

6.1 Measurement Methodology

Increasing the number of thin clients connected to the
server machine puts the burden on the server, in terms of
both throughput and CPU usage. As only one thin client is
run on each client machine, the burden on any one client
machine does not change. Hence, we designed our experi-
ments to put stress on the server.

For each experiment, we monitored the server-side net-
work activity and CPU usage using atsar [3], a system ac-
tivity report tool. We used a packet monitor to monitor the
network activity at each client.

Benchmarks involving multiple clients were generally
run at full speed in order to test server scalability, but we
also employed slow-motion benchmarking [31] in order to
measure the display quality at the client. Slow-motion ver-
sions of the benchmarks were run on a single client con-
nected to a single server to obtain reference values of the
amount of data that would be transferred in a ”perfect” run.
If the thin server had an infinite capacity to scale, every
client would receive this much data in a fixed amount of
time no matter how many clients connect to the server. The
amount of data actually received by each client is compared
to this figure, and their ratio gives a measure of the display
quality perceived by the client.

6.2 Experimental Testbed

We used a semi-isolated experimental testbed to test thin-
client performance under controllable network conditions.
The testbed consisted of four isolated machines: a thin-
client server, a network emulator, a packet monitor, and a
web benchmark server. A number of machines from an
adjoining computer lab were used to run thin clients (one
client per machine) that connected to the thin server via
the machine running the network emulator. The network
emulator was set to emulate a 100 Mbps LAN network.
Details of the testbed machines are summarized in Table 2.

6.3 Application Benchmarks

To measure thin-client performance with respect to display-
intensive applications, we used web and video application
benchmarks based on those that have been used previously
to test THINC.

The web benchmark is based on the Web Text Page Load
test from the Ziff-Davis i-Bench 1.5 [40] benchmark suite.
It consists of a JavaScript-controlled load of a sequence of
54 web pages from the web benchmark server. This bench-
mark was modified to allow slow-motion benchmarking by
introducing an optional delay of several seconds between



Role / Model Hardware OS / Window System Software
Packet Monitor 933 MHz Intel PIII Debian Linux Testing Ethereal 0.9.13
IBM Netfinity 4500R 512 MB RAM (2.4.20 kernel)

9.1 GB Disk
10/100BaseT NIC

Web Server 933 MHz Intel PIII Debian Linux Testing i-Bench 1.5
IBM Netfinity 4500R 512 MB RAM (2.4.20 kernel) Apache 1.3.27

9.1 GB Disk
10/100BaseT NIC

Thin Server 933 MHz Intel PIII Debian Linux Unstable Ethereal 0.9.13
IBM Netfinity 4500R 512 MB RAM (2.4.20 kernel) Collaborative VNC 0.4

9.1 GB Disk XFree86 4.3.0, TWM 4.3.0 THINC servers
10/100BaseT NIC

Network Emulator 933 MHz Intel PIII Debian Linux Unstable NISTNet 2.0.12
IBM Netfinity 4500R 512 MB RAM (2.4.20 kernel)

9.1 GB Disk
2 10/100BaseT NICs

Thin Clients 1GHz Intel PIII Red Hat Linux Collaborative VNC client
Dell Dimension 4100 256 MB RAM (2.4.20 kernel) THINC clients

10/100BaseT NIC

Table 2: Testbed machine configurations

the loading of pages. The delay ensures that the thin client
receives and displays each page completely, and prevents
temporal overlap in transferring the data belonging to two
consecutive pages. The benchmark is run using Mozilla
1.4. The browser’s memory cache and disk cache are en-
abled but cleared before each test run. In all cases, the
browser window is 1024x768 in size, so the region being
updated is the same for all clients.

The video benchmark is a MPEG1 video clip that is
played on a server using Mplayer 1.1 [24], a media player
that runs on Unix-based systems. The video file is 5.11
MB, and it contains a 34.75 second clip that consists of 834
video frames with an ideal frame rate of 24 frames/sec. The
video benchmark is run on the server and is thus displayed
on any connected clients. Slow-motion benchmarking is
used by monitoring the amount of data traffic at two play-
back rates, 1 frame per second (fps) and 24 fps. The 1 fps
playback rate ensures that all data packets from the server
to a client are recorded, in order to establish the reference
data size transferred from the server to the client that corre-
sponds to a perfect playback. This is measured for a single
client connected to a single server. To measure the video
quality for multiple clients, we monitor the packet traffic
delivered to each thin client at the normal playback rate
(this is estimated by computing the total amount of data
sent by the server divided by the number of clients) and
compare the total data transferred per client to the refer-
ence data size. This ratio multiplied by 24 fps then gives
the effective frame rate of the playback.

6.4 Measuring Synchronous Sessions

We would like to measure the following quantities with re-
spect to synchronous sessions. First, we want to measure
the client processing overhead due to using a software-
drawn cursor rather than a hardware-drawn one. Second,
we want to measure the server bandwidth and processing
overhead with respect to the number of clients, to see how
well the server scales. We do this for both the original
single-user THINC and our multi-user THINC, to see what
additional costs result from our implementation, and also
for Collaborative VNC, to see how well we compare with
a competitor product.

6.4.1 Cursor Draw

As discussed earlier, multi-user THINC uses a hardware-
drawn cursor when the cursor is attached but switches to
a software-drawn cursor when the cursor is detached. The
use of a software cursor increases the processing overhead
at the client machine but does not affect the server, as the
same messages are still sent back and forth with respect to
cursor movement.

To measure the client processor overhead, we instru-
mented THINC to report the number of CPU clock cycles
were used for each cursor update. The overhead was mea-
sured for two experimental setups. In the first experiment,
two clients were connected to a server. One client used
the default hardware-drawn cursor, while the other client
detached its cursor so that its THINC cursor was software-
drawn. TheXWarpPointer() function was run on the
server 5000 times at a rate of ten times per second, using



Movement
Type

Soft
cursor

Hard
cursor

Ratio

warp 28032 1651 17.0:1
smooth 23785 1508 15.8:1

Table 3: Overhead due to software-drawn cursor

randomly generated coordinates to jump around the screen.
In the second experiment, three clients were connected to a
server. The first client was used to control the cursor, and
the other two clients were as before. The mouse of the con-
trolling client machine was used to move the cursor quickly
around the screen for one minute, resulting in 5640 cursor
moves. The results of both experiments are tabulated in
Table 3.

The results show that using a software cursor is about 17
times more expensive to the client CPU than using a hard-
ware cursor when the pointer warps to a new location on the
screen. When the pointer moves more smoothly, the soft-
ware cursor performs slightly better. The overhead could
become a factor on slower client systems, but in general it
should not be a problem.

6.4.2 Web Benchmark

The i-Bench web benchmark was run on three versions
of THINC as well as on Collaborative VNC. The three
versions of THINC were as follows: ”branchpoint” is the
single-user version that we started with, ”multiuser” is the
multi-user version that we developed based on the branch-
point version, and ”newglyph” is a more recent single-user
version with additional optimizations. Though the single-
user versions do not support collaboration between clients,
they do display the desktop on all connected clients, so it
is possible to run display tests with multiple clients for all
three versions.

We ran the web benchmark for each platform as follows.
The appropriate server was run on the thin server machine.
A number of corresponding clients were connected to the
server. Mozilla was executed on the server, and the web
benchmark was initiated by the controlling client. Run-
time, data traffic, throughput, and server CPU utilization
were measured by running atsar on the server machine. The
results for each platform are depicted in Figures 1 to 4.

We observed that the multiuser version performs as well
as the branchpoint version with respect to all measured
quantities. This implies that the added functionality of
multi-user THINC produces negligible server overhead.
Cursor movement was not tested here, but that should have
little effect on server performance, since the changes in cur-
sor handling are at the client end.

In comparing THINC with Collaborative VNC, some
patterns emerged that applied to both platforms. We ob-
served that, for both platforms, data traffic increased su-
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Figure 1: Web Test - Runtime
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Figure 2: Web Test - Data Transferred
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Figure 3: Web Test - Server Throughput
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Figure 4: Web Test - Server CPU Utilization
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Figure 5: Video Test - Runtime

perlinearly with respect to the number of clients (Fig-
ure 2). This means that the amount of data sent to each
client increased with an increase in the number of clients.
THINC suffered from this problem more than Collabora-
tive VNC, probably because VNC compensates and re-
duces the amount of data traffic by having the server wait
to send screen updates to a client until that client is ready to
receive them. Still, the newglyph version of THINC com-
pleted runs sooner than Collaborative VNC (Figure 1).

The results pertaining to server utilization were disap-
pointing for both thin clients. Neither of them utilized
more than a small fraction of the available bandwidth or
CPU (Figures 3 and 4). The poor performances may be
due to TCP issues, as the packet monitor did detect that
many packets were being dropped. Alternatively, they may
be due to some issue with Mozilla. Perhaps increasing the
TCP window or using another browser would produce bet-
ter results.

6.4.3 Video Benchmark

The video benchmark was run on the newglyph version of
THINC as well as on Collaborative VNC. The other two
versions of THINC could not be tested, because the branch-
point version (and thus also the multiuser version) does not
support displaying video on multiple clients. The newg-
lyph version uses XVideo for video playback.

For each platform, the appropriate server and clients
were run, and Mplayer was executed from the server. Run-
time, data traffic, throughput, and server CPU utilization
again were measured by running atsar on the server ma-
chine. The results for each platform are depicted in Figures
5 to 9.

Video playback is perfect for three THINC clients, and is
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Figure 6: Video Test - Data Transferred
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Figure 7: Video Test - Server Throughput
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almost perfect with four clients (Figure 5). Beginning with
five clients, the runtime increases linearly with the num-
ber of additional clients, at a rate of 9 seconds per client
(or approximately one-fourth of the length of the video).
The slowdown after four clients is attributable to reach-
ing the throughput limit, as the server utilizes more than
90% of the available bandwidth at that point (Figure 7).
Server CPU utilization is not an issue in this case (Figure
8). The amount of data transferred (Figure 6) is about 110
MB per client regardless of the number of clients. This
almost matches the amount of data (110.7 MB) resulting
from a perfect slow-motion run of the video, thus the video
quality is almost 100% (Figure 9).

Collaborative VNC plays the video in real time for two
clients (Figure 5). The playback is not perfect, though, as
it skips some frames to preserve real-time playback. Be-
ginning with three clients, the runtime increases linearly at
about 30 seconds per additional client (or approximately
the length of the video). By skipping frames, VNC is able
to reduce the amount of data transferred by the server, to
about 60 MB per client. This is about half the amount of
data (120.2 MB) that results from a perfect slow-motion
run of the video that does not skip frames. Hence the video
quality is about 50% (Figure 9). It utilizes only about 20%
of the available bandwidth (Figure 6) and about 50% of
available CPU (Figure 8).

Here we see that THINC scales well with the number
of connected clients. The THINC server uses almost all
of the available bandwidth. Had there been more avail-
able bandwidth (sayB Mbps), the video would play per-
fectly with b B

25c connected clients. Collaborative VNC, on
the other hand, suffers from problems similar to those seen
with the web benchmark. That is, it converges to a rela-
tively low server throughput and CPU utilization, so it is
wasting available resources. Again, this is likely due at
least in part to the way VNC handles screen updates.

6.5 Measuring Asynchronous Sessions

We very recently developed a working implementation of
asynchronous multi-user sessions. We have not yet had a
chance to run performance tests for such sessions. In the
future, we plan to run experiments similar to those we used
to test synchronous sessions.

7 Conclusions and Future Work

Coupled with the existing THINC system, we believe that
THINCing Together provides a solid multi-user environ-
ment and lays an architectural foundation for further col-
laborative features to be added. In implementing our de-
sign, we were able to address a major architectural issue by
allowing multiple versions of the THINC server to run con-
currently. We proved that the THINC protocol design was
flexible enough to allow for synchronous sessions, and we

were able to implementation them without modifying ex-
isting features. We also show that THINCing Together has
a negligible impact on performance over a version of the
THINC system without multi-user functionality, and com-
pares favorably to Collaborative VNC.

Further refinement of the collaboration features offered
by THINCing Together can be done in a number of ways.
The development of a graphical user interface to facilitate
token passing among clients participating in a synchronous
session would be particularly useful. We also wish to ex-
periment with the ability to share specific windows and
screen regions so that host clients can ”hide” areas of the
desktop from other users. Ongoing, a stronger security and
authentication model will be needed to prevent malicious
users from invading a host client’s desktop and arbitrarily
executing commands.
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