Text / Graphicsand Image Transmisson over
Bandlimited Lossy Links

by
Jeffrey Michael Gilbert
B.A. (Harvard University) 1993
M.Phil. (Cambridge University) 1995
A thesis submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in

Engineering Electrical Engineering
and Computer Sciences
inthe GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Robert W. Brodersen, Chair
Professor Eric A. Brewer
Professor Paul K. Wright

Spring 2000

Text / Graphicsand |mage Transmisson over
Bandlimited Lossy Links

Copyright © 2000

by

Jeffrey Michael Gilbert

Abstract

Text / Graphics and Image Transmission
over Lossy Bandlimited Links

by Jeffrey Michael Gilbert

Doctor of Philosophy in Electrical Engineering
University of California at Berkeley

Professor Robert W. Brodersen, Chair

This thesis describes the application of image compression and networking techniques to
the transmission of text / graphics and image data over bandlimitted and lossy links. While much
research has focused on image and data compression, this thesis proposes that compression alone
is not sufficient, and that transformations into progressive formats and explicit link scheduling can
significantly improve performance over bandlimited and lossy links. Analyses and solutions are
proposed for both application-independent and application-specific scenarios. Techniques includ-
ing bitmap and drawing primitive-based approaches, as well as a novel hybrid scheme, are pre-
sented. Image compression techniques optimized for text / graphics bitmaps are presented. The
application-independent techniques are then applied to the acceleration of the delivery of World
Wide Web pages over modem and wireless links. Application-specific techniques are illustrated
using the example of a web-based VLS| layout viewer. Various design points trading off band-
width utilization, error tolerance, and client complexity and power consumption are presented.
Architectures, algorithms, as well as prototyping techniques and devel opment frameworks are pre-
sented for many of the approaches. Lastly, unifying themes and requirements are synthesized and

their implications to network protocol design are discussed.

Robert W. Brodersen, Chairman of Committee

Table of Contents

CHAPTER 1

11

12
121
122
123

13
131
132
133

14.

CHAPTER 2

2.1
211
212

2.2.
221
222
223
2.24.
2.25.
2.2.6.
2217.

PART | Introduction
INtFOAUCTION ...t 1
TRESIS OVEIVIEW ..c.veeeesieeie ettt ettt este et e sse e s e sseesteaneesaeeneesaeeaesseensennenns 3
COMMON THEMES ...ttt e s e e be e saee e seesn b e e saaeenteesseeenneesnreas 3
Optimization from ENd-USer PErspeCiVE.vvieiieeee e 4
Global Ordering / REOTENNGeeeiuveeeeiereiieeeesieeeeieeessteeeesieeesaeeessseeeesteeessneeessnreeeeseeesnees 4
Local Progressive Image TransformationsS...........iccureeeeeieiiieeee e ciiveee e s s ssvsne e e e eesnsneee e e ssnsnees 4
EXiSting TECNIQUES.......coviiiiieii st e s 5
Problems of StAlE Data.......cccceeeeii e a e 5
Problems of Not Using User Intent to GoOVern OFderingceeecvvcveeeeeeeeiiiieeeeessesveeeeseeessneeens 5
Problems of TCP/IP OVEr WITEIESS.......uuiiieiiieiieesie st sies st sttt st s nees 6
THESIS Organi ZaEIONc..ooveiviiereere e nneene 7
PART I Application-Independent Transmission
OVEINVIBW...ceeeee ettt e e earae e e e s e earaee s 9
(@Y= = O 9
Remote Interactive COMPULBLION.c..oeiurieeeeeiiieeee et ee e e e e et e e s s e e e e e s nneeas 10
Multimedia Collaborationc.uueeei i e e et e e e e s etre e e e s s tre e e e s sennneeas 13
PreViOUS WOTK ..ottt ettt e see e stennae s bennaenteeneenes 13
D AT 110 (0T S Y= = SR 13
D= 1110 (=R 15
Low-BandWidth X (LBX)ueiiiieeiiiiiesiiee sttt sttt s s s e ssse e e nneeesnees 16
Higher Bandwidth X (HBX)......ueeieeiieiieeiiesieeiieesieesineesieesaeesite e stee e s snteesseessaesseenseesnneans 16
MiCrosOft TEIMINGl SEIVET......cccc it e e e rr e e e e e e eaeaeeeeeesesss s nnnnnnrnnnns 17
(=T g @ 8Ty o o =SSR 17
Virtual NetwWork COMPULING......ccecueeeiieeeiieeesieeeesieeeeieeesseeesiteeeenseeesneeesseeeesssessnnneessssnesn 18

CHAPTER3 Primitive-Based Approach............cccccovveeeeiiiiiniene e, 19

3.1 T g1 oo [F o1 oo HN TSP U RPN 19
3.2 Bandwidth and Latency Characteristics of Primitive-Based Systems............ccccveeveveeeene. 21
3.2.1 Latency Due to QUEUING DEIGYS......cccueeiirieeeiieeecieeesteeeesteeeeisee e ste e e s reeeenae e sneeesnteeeenreeeennes 21
3.2.2. LatenCy Penalty DUETO LOSS . ..cuuiiuiiiieseeriiesiesseeeteesieessesssesssasssesssessssesssesssnssnsesssesssnnans 22
CHAPTER4 Bitmap-Based Approaches.........ccccccovceveivcieee e, 25
4.1. Conventional Bitmap APPIOACHc.ueveieiriie et 25
41.1. Assessment of Conventional Uncompressed Bitmap Approachcceecveeevieeencieeevveeesiieeenns 26
4.2. InfOPad B/W BitmMap SYSLEIM ...cociiiiieiie ettt sttt st teesneesnne e 27
42.1. Pros and Cons of Uncompressed Bitmap SYyStemMcevvieiiieiniieeeree e 28
4.2.2. ASYMEOLIC RETADINTTTY ..eeeeeeee e e 29
4.3. Improved Bitmap using Virtual Framebuffer.........ccovevviiive i 30
43.1. Rate and FIOW CONLIOleeiiiiiieiiie ittt et sse e s e e st e e saee e naes 33
4.3.2. Analysis of Virtual Framebuffer Performancecocovveviiieiiie e 34
4.3.3. Integration of Virtual Framebuffer into Transport Control Protocolccoocvverceeenieeeiiennnne 37
cHAPTER5 Color Text / Graphics, and Video Support.................... 43
5.1 Bandwidth Requirements of Uncompressed COlOrccccevvveevienieviese e 43
5.2. Full-Motion Color Video Support viaa Separate Displayc.ccoeeeererereneeeneneneeene 44
521 Lossy Vector Quantization for Image and Video COMPreSSioN..........eeevveeeeeeerieeesnieeesseneesnns 44
5.2.2. VQ Vide0 ENCOUING. .. teiieiiiiiiiiee it e e seitti e e s s e st e e e e e st e e e e e sata e e e e e snbae e e e e sanbaneeeesansnneeasannns 47
5.2.3. Fast Fixed-Codebook VQ TranSCOINGeeveeirerrreesiersiessieessesssesssessssssssesssessssssssessessseens 49
5.2.4. MPEG t0 VQ VideO TranSCOUING.......euvereiurereiurireiiersieeessieeesseessseessssesssssesssseesssseessnseessnnes 51
5.25. Live VQ Video Display of MBONE TransmiSSIONS........cccovierreeeireeeireeesreeesneessree s 52
5.3. Motivation for Unified Text, Graphics, & Video Displaycccccevvvereererveceene s 52
54. Uncompressed Framebuffer, Compressed SENAS.........coeveereiineneneesecenese e 53
cHapTER6 Compressed Framebuffer Approach.........ccccevceveiinnen, 55
6.1. Minimizing Client Hardware and Power ConsumpPtioncccovevveeereseeneseesesseeenens 55
6.2. REGUITEIMENTS. ...ttt r e e n e 56
6.2.1. In-Place Modification of COMPresSet Daa.........ceeeireerrrereireee e e e 56
6.2.2. Update-Independence for Error TOIEraNCE.....ceccuuveiceeeieeeeiee et e siee et e st e s e sree e eeee e 57
6.2.3. Must Work for Text / Graphicsand Image/ VideO.........cccccueieiiiiieee et 57
6.2.4. Must Work for all Possible Screen Configurations...........c.ooueevrieeiieeenieesseee e 57
6.2.5. Must be Tailored to Typical SCreen CONLENESccveviirereriieeriee e sreeesiee e e e saes 58
6.2.6. Decompression Must be Low Complexity / COSEccioveevrirererieie e 59
6.3. Pseudo- Color or Colormapped Display asCompressed Framebufferc..ccocveceevenene. 59
6.4. A Compressed Framebuffer Compression Method - TGV Qccccvvvirinciccniennnieee, 60
6.4.1. Local vS. GlODal COlOr DIVEISItY......ueeeiieeeeiee e e e e 60
6.4.2. Yo o T @ o g 34" =SS 61
6.4.3. Vector Quantization of Micro-Colormaps and Patterns..........cccuveeeiiiiereesiiiieeeesiiieeeeeeeneeeennns 61

6.4.4. Determining BIOCK SIZE........cuiiiieiiiiiiiiiie et 63

6.4.5. ReQUITEMENt SatiSFACHIONeeeeieeeeei e 64
CHAPTER7 HYDIrid APProach........ccccoiiiiiiiiiiii e 75
7.1 IVIOLIVELION ...ttt bbb bbbt b e e b b e ettt e e s 75
7.2. APDIOBCR ..t 76
7.3. =S (@] 0 =T 1 o o TSRS 77
7.3.1. Primitive SOUASHING........eeiieiiiiee ettt st aee e sbe e e e ba e e enneesnees 77
7.3.2. Dense Primitive RENCEITNG.......uveeiiiii it 79
7.3.3. RePresenting REJION COPIES........veiiieierieeeiree et snee e e e e e e s snne e sne e e s snneesanneesanes 79
7.4. S - V=T @] o 1= - 1o o O 80
7.4.1. Progressive IMage TranSMiSSiON.uueieeeeiieeeesiieessieeessteeeeseeesssseesssreeessssessssseesssseessnsessnsees 81
7.4.2. PrimitivVe REOMAEITNG ..ccveiiieeie ittt 82
7.5. BeNEfitS/ CONCIUSIONSoiuiiiiiiieieee e 83
cHAPTER8 Text / Graphics Image Compression........cccccvveeeeeeennniee. 85
8.1 g1 oo [FTox 1o o VUSSP 85
8.2 IMage COUING OVEIVIEW ..ottt e e et et saeesae e stesreenaenreeneenes 86
8.2.1. DiSCIEtE-TONE IMBGES. ..t veeureestriateesiee sttt esseestesssteesseesaeessbeesbeesssesbeesbesssbesnseessessnsesnseessnnans 87
8.3. Previous Research / EXisting StaNdards............c.cuueeerereeieneeeeesese e 87
8.3.1 One-Dimensional Dictionary-Based TEChNIQUES.........ccccueeerieeeriiee e 88
8.3.2. Two-Dimensional Statistical TEChNIQUES.........cccveiiiiee e cciee et e et eee e 89
8.4. Flexible Automated BIock DECOMPOSITIONccveveueeiiiriesiisrieee e 91
8.5. Accelerating the SEArCh ..o 94
85.1. Big Fill, NO COPY SEAICN....ccitiiiiiiiiesiee sttt sttt st ae et e e e ssae e beesseesrneens 95
8.5.2. FaSt MAICH LISES ..eeeie ettt e e e e e e e e e e e e e s e e e e e e snnneeas 95
85.3. Bounded Search DEPth...........coi i s 97
8.5.4. Coarse/ FINEMEICNINGceiieeeeirieeeree e e s e s enn e nnneesanreenans 99
8.6. Entropy Coding TEChNIGUES..........ccveiiiiierie ettt nas 100
8.6.1. LT3 B (o T o LSRR 100
8.6.2. Transforming the Parameters.........cooireiiiiiie e 100
8.6.3. HUFFMEN COUING ...t sn e e n e s 102
8.7. RESUIES ..t b bt bbbt b b et be e e eneas 102
8.8. (@0 o Tox 110 o ISR 110
cHAPTER9 Development & Analysis Environment..............cc.c....... 111
9.1. INEPOTUCTION ...ttt bbb et b b bbb e ene s 111
9.2 Networking ENVIFONMENE..........cooiiirireieieert e 112
9.3. EIMUIBEON ... bbb bbb b b et be e e eneas 113
9.3.1. (@707 1 1o PP 115
9.3.2. Text / Graphics Display SUPPOI......ccoirieiiiii et 116
9.3.3. AUdio AN VIO SUPPOITeeeueeeesieeeesieee et e e e s e s s e e e e e ne e e sne e nneeesnneees 119
9.3.4. Traffic Monitoring and Control and Debugging HOOKS........ccccveeiiieeeriiererieeesiee e sveeesiee e 121

9.4. TEXt / GraPhiCS SEIVEScuiiviiierii ittt 123
9.5. VAL (= o TS o] oo g AR 123
PART 111 Application-Specific Transmission
cHAPTER 10 Optimization of Web for Bandlimited Links 127
0 I O 1 014 (oo (8 o o [PPSR 127
0 IV o 117 o] LU P PP PSPPI 128
10.3. Background / PreVioUS WOIKccccuiieiiiiininenisise st 129
10.3.1. Previous WOork in Web ACCEIEratiON.ccuiiiiiiiieie ittt 131
10.4. Quantifying Web Page Downloading..........c.ccvevuieienieiieiieseesiesee e eve e e e ssee e esne e 131
10.4.1. AnExample of Concurrent HTTP/1.0-Style Loatingccvevveeeeiieenenieeesieeeesieee e 132
10.4.2. AnExample of Sequential HTTP/1.1-Style LOadingcvveiireeiirireiirie e 134
10.4.3. HTML COMPIESSION. ...eeeiiureeeesreserreeesreeesanresesneeesssseesareeesaneeesasseesareeesnreesanneesansneesannees 134
10.5. Globally Progressive Interactive Web DElIVErYcccoveieeiiiie e 135
10.5.1. Globally Progressive TranSmMiSSION........c.ucuueeerureessureesesseeessiseessssreesssssessssseessssessssssesssnnees 135
10.5.2. Locally ProgreSSiVE DEIIVENYccocueiiiriieeiiee et 137
10.5.3. Globaly ProgressiVe DEIIVEIYooiiieeiiiieie et 138
O Y A 1 1= = ot (1YY @] o 1= = TS 142
10.6. Transport Protocol Prototyping via Web Proxies and Java AppletS.......cccovevevicieecnenne 143
OG04V ® o/ - o] o TP 144
10.6.2. HTTP PrOXY DESION..ceiiieiiiiieeeiiiee et e et e e s s e s e e snn e e e anr e e e sannneesnneas 145
0T T 1 0 7= o [e £ VA L= Ko o S 146
O3 A 1 0 7= o (oA o o L= 1= T oS 148
10.6.5. Proxy / AppPlet PerfOrManCeiiiiieiieeiiiesie st sireesee st siae et stae e sraeenneesnbeessaeebee s 149
10.7. Conclusions and FULUre DIr€CHIONS........cc.oeeirieriieiesieeie et e e ens 151
10.7.1. Integration with EXisting Web INfrastrUCtUre...........cueeeecieeiicieeesiieeeeiee e seee e seee s e s 152
10.7.2. Transparent Content NEJOLitiON.........ueeeecieeeiieeeecreeeesreeessree e e sreeeesate e e sneeeesnreeesnsreeesnneeas 152
10.7.3. Scalability through Server / Proxy Caching of Processed Data..........ccccvevreeeeiniieeeeniieeesnnneen. 153
cHAPTER11 Application-Level Link Management............ccccccuvee.... 155
11.1. WebChip - An Interactive Java-based VLS| Layout VIeWerccccoeeeriieneneseneennns 155
11.2. Techniquesto INCrease SPEEMccovcieiieiiiieie ettt re e e sra et e 158
2 TR B 11 o - A = v T o 1 S PRSP 158
11.2.2. L0BAING TECHNIGUES.eiiireeeeiree ettt snn e snee e 160
11.3. Techniques to Deal With WOrk [N Progress.........cccvecuveieieenieeieeseesie e seesseeseesseesseenneens 161
1131, Hiding SIOW LOAOING ... vviiitieiiieiiiiesiee st esieesieesireesieesbesssaessesssbeessaessbessssesssessnsessssesnsenss 161
11.3.2. Hiding SIOW DiSPIaY.....ceeiveeeeriieeerieeeiiieeesieeesteeesstseessteessseeessseeessseeesseeesssseessseessnneens 161
11.4. Conclusions and FULUIE WOTKcccoviiiiiiiiniiceesesesees e 162

CHAPTER 12 Development Environmentccccceeeeiiiiiieeee e, 163

12.1. Netem - NetWork EMUIBLOTcoeieiriiiieie ettt st 163
12.2. SpeedSurfer - PC Client-Side ProXYccccceioeieeieseeeesiesessee e seesees e seesesseesaessesseeseenees 165
1221, CHENt-SIO PrOXIES. ...ccviieiiiiisiete e e 167
12.22. Link Management Using Client-Side and Server-Side ProXi€S.........cuvvvveieeriiienieeneesessnnenns 169
12.3. SurfServ - SpeedSurfer Server / ProgressiVe PrOXYcc.ccveienereneneeenese e 170
PART IV Conclusions

cHAPTER 13 Conclusions and Future Directions............cccccceeeeeneee, 173
13.1. NEtWOrk REQUIFEIMENEScc.ee ittt sttt ae et te e besneenas 173
13.1.1. Lightweight, INdEPENdENt SIrEAMSviiriiieiieeesieeesree e rtee et e s e et e e ssee e sbeeesbeeens 174
13.1.2. Explicit Message INErdepentENCE.........coocueiiiieeiiiieeree e 174
13.1.3. Dynamic Reprioritization of the SIreams...........ceeiiiiriere e 175
T R (V1= To Y U 1o U1 g o S 175
13.1.5. Rate, Flow, and Congestion CONLIOl...........ccicueeeriieeeeiiereseeeesieeeeieeessseeeesreeesnneesneeesseeenns 176
13.1.6. Notification of Packet AMTiValcccecuiiiiiiiiiie e sae e 176
G 3 @0 1 o 11 o] S PPR 176
13.3. FULUPE DIFECLIONS. ... ccuiitirti ittt sttt sttt sb e b et e b e e 177

Bibliographyccooeeiiiiee e 179

APPENDIX A Software Documentationcooevvvviviivieeeeevevevenininnnns 187
A.lL (O0T0 /= o0 T0) 1024 r= S (1) [187
A.2. 0L () R 189
A3 g e ToTo g a] 072o N (1) PSS 194
A4 MPEJ2V (L) 1.ttt sttt et r e b e 197
A.5. L01=2 =0 T) PSS 203
A.6. 52 o YL [() TSPV PR URTPPSTRSOR 206
A.7. (S gl lTY] Vo] FetoTe (=t o oo 4 1Y/ N 1) S 215
A.8. S0 Y (1) 216
A.9. (VLo N o] = Y2 () USSR 219
A.L10. VO2COAEDOOK (L) .riuvereiuierinreriereeeeieeiesie sttt ettt st sr et r e nr e e sn e 224
AL XINFOPAH (L) eevieeeeeieeieitesies ettt sttt b e b b et se b b se e e ens 225
N B = 1L VLo (= o I () T USSP PTPPSR 227
0t 1 T o () SR 230

APPENDIX B The WebChip Applet ..., 235

B.1. IVIOTIVELTON ..t b ettt b e et sae b e s he e see s aeesbeenbesbeenbesaeanbeaas 235
B.2. (@7 o< = (10 o I V1o 4 - S PSS 237
B.2.1. New Window / ClOSE WINAOW........ccoiieeiieee et sre e e sre e e e ee s 237
B.2.2. Showing / Hiding Control Buttons and LabelS........cevuviiiiiieeiii et 237
B.2.3. THE SElECHON BOXi ittt sttt b e b e neenee s 238
B.2.4. EXPaNd / UNEXPANG.......ureiiiieieiieee et snne e n e s nnne s sneee s 238
B.2.5. ool aal oo JF= aTo = 0] 11 o o [SRR 238
B.2.6. L 01 o] - SR 239
B.2.7. SEBEUS PANEL. ...ttt n e n e n e e ane e n e 239
B.2.8. Design File Loading Status INCiCAEOTvveiverereesiieeseesieeseessieessiessssessssesssasssessssessnesnee 239
B.2.9. Display Mode ChOiCE BULLON..........eeiiiiee i siieestieessiee e sbeeessiteessaseessbeeessnreessaneessneeeens 240
B.3. L@o 01 11011 7= 11 o o VUSSR 240
B.3.1. RS L= TS 240
APPENDIX C The SpeedSurfer Application.........ccccceeeiviiiieeecccineen. 247
C.1 SPEEdSUITEr OPEIATIONc.ccvieeieiieiee et 247
C.1.1. CONMNECHION PAJE. ..o ettt et e e s e s mr e s e et e sne e e s anre e s anneesnneas 248
C.1.2. Sz] = [S 249
C.13. [I0T="o Ta o =t gl o SR 249
C.14. 0T () o LY PSR RTOPRR 252
C.2 Proxy-Proxy Link ProtOCOL............ccoirriiirininene s s 253

vi

List of Figures

FIGURE 1.1.
FIGURE 1.2.
FIGURE 2.1.
FIGURE 2.2.
FIGURE 2.3.
FIGURE 3.1.
FIGURE 3.2.
FIGURE 3.3.
FIGURE 4.1.
FIGURE 4.2.
FIGURE 4.3.
FIGURE 4.4.
FIGURE 4.5.
FIGURE 4.6.
FIGURE 5.1.
FIGURE 5.2.
FIGURE 5.3.
FIGURE 5.4.
FIGURE 5.5.
FIGURE 5.6.
FIGURE 6.1.
FIGURE 6.2.
FIGURE 6.3.
FIGURE 6.4.
FIGURE 6.5.
FIGURE 6.6.
FIGURE 6.7.
FIGURE 6.8.
FIGURE 6.9.
FIGURE 7.1.
FIGURE 7.2.
FIGURE 8.1.

Browsing in awell-connected TCP-friendly environment............c.coovvvevenennnenn 6
Browsing over a TCP-averse modem or Wirelesslinkcccoccvevvecivnceninnennnen, 6
Remote computation MOcceeeiieiece e 10
Challenges posed by text / graphics and image transmission problem 12
Xremote @rChItECIUIEovieeieeeeet e 15
Conventional primitive @pproachcceveceieeceese s 20
Latency due to qUEUING elaYScc.ccvevririnieeeeeee e 22
Latency penalty dUETO 0SSceeveieeeiiees e 23
Conventional bitmap approach.cccccveieceie i 25
InfoPad text / graphiCs SErVer CONEXLcuuivrerereeiieinene e 27
Improved bitmap approach using virtual framebuffer architecture.................... 31
Virtual framebUFfer...... ... 32
Reduced latency due to adaptive bandwidth compression (ABC)ccccceunee. 35
Reduced 1atency dUE t0 10SS........cocvieeerieese e 36
InfoPad full-motion VQ video support. Detailed in[15]cccccovevvvercieniennnnnn, 44
Vector quantized (V Q) Video eNCOdING........eoveeeirriririneeieeseeres e a7
Single frame from the video clip and luminance (Y) codebook adapted to it.... 48
Gain / shape codebook used for fast VQ encoding.cccceevvevveeeneieesnsennens 49
Comparison of adaptive and fast COAEDOOKS.ccrirereieeiniiniisereeeeens 50
MPEG to vector quantized (VQ) video transcodingccccceveveververnreenennenns 51
Typical screen image consisting of multiple graphical applications.................. 58
Block decomposition into pattern and micro-colormap (MCMap)..........c.c...... 62
Compression rate dependence 0N blOCK SIZE.ccvvcvevevierieniesieese e 63
Pattern code novelty and reuse versus block Size..........cccccovveeceieeciiecceieens 64
Using local color diversity to make text / graphics vs. video decision. 67
Automatic text / graphics and image / video merging using color diversity...... 69
Two typical images compressed With TGV Q......cccvevvvervevesiese e 70
A typical screendump with and without some continuous-tone regions............. 71
Rough architecture of compressed framebuffer TGV Q decoder..........ccccveevenee 72
The hybrid approach: pending primitive graph.cccocc v, 77
Primitive squashing: removal of unneeded primitives.c.ccccecveerinencneeenn 78
Typica image and itS redundanCies.cccuevveeeereecee e 92

Vil

FIGURE 8.2.
FIGURE 8.3.
FIGURE 8.4.
FIGURE 8.5.
FIGURE 8.6.
FIGURE 8.7.
FIGURE 8.8.
FIGURE 8.9.
FIGURE 8.10.
FIGURE 8.11.
FIGURE 8.12.
FIGURE 9.1.
FIGURE 9.2.
FIGURE 9.3.
FIGURE 9.4.
FIGURE 9.5.
FIGURE 10.1.
FIGURE 10.2.
FIGURE 10.3.
FIGURE 10.4.
FIGURE 10.5.
FIGURE 10.6.
FIGURE 10.7.
FIGURE 10.8.
FIGURE 10.9.

FIGURE 10.10.
FIGURE 10.11.
FIGURE 10.12.
FIGURE 10.13.
FIGURE 10.14.
FIGURE 10.15.
FIGURE 10.16.
FIGURE 10.17.

FIGURE 11.1.
FIGURE 12.1.
FIGURE 12.2.
FIGURE 12.3.
FIGUREB.1.
FIGURE B.2.
FIGURE C.1.
FIGURE C.2.
FIGURE C.3.
FIGURE C.4.
FIGURE C.5.

Automatic block deCOMPOSITION.cvririiiirireeeeee s 94

Match lists used for fast Match. ... 96
Hashed match lists - the two pairs of patterns each hash to the same................. 97
Coarse/ fiNe MALChING.cccviiieieee e 99
Discrete-tone pseudo-Color teSt IMAJESccverereereerere e 103
Bi-1eVEl tES IMAQES ...ovveiicecece et 103
Hybrid discrete / continuous tone test iMagesccoovvveeerenenienesene e 104
Graph of compression rates for various techniques.ccccccvevvecvecnnee s, 104
Bitplane decomposition of screendump image.cccevveveeievieveese e 108
Block decomposition of screendump2 image.cuvveeeereeneneneseseeeeeee 109
Bitplane decomposition of screendump2image.ccovevveeeveeeresieseeseeseeees 110
InfoPad development enVironmEeNtcceveveveeresie s 112
InfoPad terminal @MUIBLOTccoiiiiieiee e e 114
InfoPad emulator text / graphics pop-up CONLroIS.cocvevveeveeeniereeseeseeeenn 117
InfoPad emulator audio / video pop-up dialog.......ccccceeveeveeieciece e 120
Infopad emulator traffic and debug pop-up dialogs.........cccovvveriiininciieeenne 122
Web-page loading graph using concurrent loading of up to 4 connections......133
Web-page loading graph of sequential loading protocolccccccceeveecienenee. 133
Concurrent loading and HTML COMPreSSiONcccvevvereiirereneneneseseseenenens 135
Sequential loading and HTML COMPreSSIONcocvevueeeerieerieeeesieeieseesieeneeens 135
Example of progressive iMmagesS.cccceeiereeiieniesieee st eie st sae s 137
Simul. loading w/ locally progressive images (w/ HTML compression) 138
Sequential loading with locally progressive images (w/ HTML compression) 138
Globally byte-wise progressive loading (w/ HTML compression) 139
Globally layer-wise progressive loading (W/HTML compression) 139
Globally progressive loading with images scrolled to during loading.............. 141
Interactive loading with image interactively selected by usercccccevvenneen. 141
Web proxy / Java applet framework ... 144
Example of HTML modification to embed image appletsccocceveeevvecviennee. 145
Baat=To SR To] o] = L= Lo o 148
Performance evaluation SEIUPccoevieriieiininene e 150
Trace of conventional HTTP/1.0 concurrent 10adingcccccveevereenieenennnnnnns 150
Collected trace of proxy / applet Operation...........cccecveveseeieeieseese e 150
Example layout viewed with WebChip ..o 156
Example diagnostiC PrintOULS.covieeieeiere st 166
TWO VIiews Of SErver-side ProXi€S.c.ccvevveeeerieeieiseesie e see e e sae e e sae e 167
Two views of client-side and server-side proxies for better link contral.......... 167
Effects of style files on layout presentation.cccevevvecenverrsceene e se e 241
Stylefile used to produceimagein Figure 11.1.cccccevveivneenieeciesieseenens 242
SpeedSurfer CONNECLION PAGE........ccevrreiereeeieeee e 248
SPEEASUITEr SLAES PAGE .vvevvveveerreeerteete st e streeeste e e seestesee e sneesteesaesre e besneenseens 248
Example SpeedSurfer 10g fil€......covviiiece e 250
SpeedSurfer 10ading graph PAJE.ccveveiririeeieieeeee e 251
SPeedSUIfEr POrtSPAJEvicveieerereesieee sttt e e ee e besraesre e e sreeseens 252

viii

List of Tables

TABLES8.1.
TABLE8.3.
TABLE8.5.

TABLE 10.2.
TABLE 10.3.
TABLE 10.4.

TABLEC.1.

Effect of search depth limits on compression time and rate.............c.coeeeveennene. 97
Compression times for dictionary-based techniques on 168Mhz Sun Ultra2. 106
JBIG Bitplane deCOmMPrESSIONccvieuieiiieerieseeieseete e 107
Summary of concurrent and sequential 10adingcccovvererenininincee, 134
Summary of delivery methods and performances..........ccecvvevevevvveeseneeeenn, 140
Performance of Java/ proxy system on example CNN Interactive page......... 149
Proxy-proxy packet ProtoCOlccceirereerieinineseseeeeesre e 254

Acknowledgments

Firstly, | would like to express my sincerest thanks to my thesis advisor, Prof. Bob Broder-
sen, for the direction, freedom, advice, and questioning that has helped to make the past six years a
remarkable learning and growing experience. Itissafeto say that | have learned many thingsfrom
him that | could not have gleaned in a classroom or from a textbook. | would also like to thank
him for often having more confidence in my abilities than | myself had. (And this is no easy
task...) And finally thanksto him for objectively, and without compromise, wearing the many hats

that were required in the final months of my education.

Thanks to Prof. Jan Rabaey for being my secondary, non-thesis, pseudo-advisor and serving
asarole model for meto learn the art of teaching from. Being a Graduate Student Instructor (GSI)
for EE141 was definitely one of the most challenging and demanding experiences of my graduate
years, but receiving the Outstanding GSI award was one of my proudest achievements, and | don’t
think that it would have been possible without Jan. Most importantly 1'd like to thank Jan (and
Marlene, the Jansgroup socia coordinator - see below for more information), for letting me be an

honorary “Jan’s Group” member for his group’ srecreational retreats! Some day | may take him up

Xi

the challenge to telemark as he snowboards, though it may be at atime that we can reminisce about

the good old days of 0.001nmm technology.

Thanksto Dr. Alice Chiang for her role as a mentor and for her support over the past 9 years
at MIT Lincoln Laboratory and the Teratech Corporation. Her combination of creativity and tech-
nical excellence, and confidence in me, has in no small way helped my intellectual growth and

curiosity. | have full confidence in the future of the Teratech corporation.

I would like to thank the other members of my thesis committee: Prof. Eric Brewer and
Prof. Paul Wright. I'd like to thank Eric for the insight into my research he has shared with me. In
particular I'd like to thank him for not letting me settle on the compressed framebuffer approach of
Chapter 6 and to instead seek a more challenging problem, resulting in the hybrid approach of
Chapter 7. | must thank Paul for the support and encouragement over the past years through Info-
Pad, quals, and the Management of Technology (MOT) program. | would also like to thank Prof.
Randy Katz for chairing my qualifying examination - | just wanted him to have a practice run for

his role as department chair!

Thanks to Prof. Nelson Morgan for his support of some of my earlier investigations into
speech recognition as well as during my GSI of EE225d. It was a great experience from which |
learned alot. | would like to thank Prof. Anthony Joseph, Prof. Avideh Zakhor and Vivek Goyal
for their helpful comments and suggestions on two papers | wrote based on some of my thesis

research.

On the administrative side, 1'd like to thank Ruth Gjerde, Heather Brown, Sheila Hum-
phreys, and Tom Boot for keeping the EECS system running smoothly and making great strides to
improve the quality of life for students. | have not met someone as willing to drop everything for a

student at any time as Tom.

Xii

Funding for this research was supplied in part by DARPA and BWRC members Cadence,
Ericsson, Hewlett Packard, Texas Instruments, ST Microelectronics, Lucent, and Intel. | was the
recipient of an NSF Graduate fellowship for Fall 1994 through Spring 1997. And | must thank
Herschel Smith again for funding my year at Cambridge just prior to Berkeley. That year has

made a change in my life that will be with me for many, many years to come.

| am thankful to have had the privilege of interacting with some truly interesting, motivated,
and bright students over my years at Berkeley. It would be impossible to name them all without
having to publish this thesis in at least two volumes, but some of the BWRC folk that | will not
soon forget follow. The dinner Analog RF crew: Dennis Y ee, Chinh Doan, Brian Limketkai, and
Sayf Alalusi. Thanks Chinh for putting up with my constant quest for sushi - | will think of you
whenever I'm “not” having Mexican food! Thanksto Brian for making sure that someone out-ate
me! Thanks to Sayf for keep the gym momentum going just when we started slacking. 1'd really
like to thank Dennis for the informal education in wireless communication at the RSF “class-
room”. Pumping iron while learning about out-of-band blockers and the benefits of DC notchesin
wide-band CDMA systems - it just doesn’t get any better! Thanks for humoring my constant ques-

tioning and for some great advice over the years.

Thanks to the lunch / weekend crew: Marlene Wan, Josie Ammer, and Varghese “ George’
George (or was it George Varghese George? - | never could get it straight...) Thanks George for
being agreat friend and roommate. | can think of few people | would have rather lived with for the
past 4 years. Thanks to Marlene for being a constant source of entertainment - even if on arare
occasion it was at her expense... ;) | must thank Marlene and George for their undying encourage-
ment over the past years as | decided what | wanted to do when | grew up. Thanksto Josie for hav-

ing seen the error of her ways at MIT and becoming a bear! (Ok, | guess Mishahad a small part in

Xiii

this...) Thanks for teaching me wall climbing and the beginnings of hockey skating and just being

a “super nice” person.

Some other BWRC folk that have made my time here much more enjoyable are David
Sobel, Danny Patel, Johan Vanderhagen, Andy Klein, Vandana Prabhu, Chris Taylor, Trevor Per-
ing, lan O’Donnell, Tom Burd, and Chris Rudell. | must thank Dave for making sure that there
was always someone more “Harvard” than me around. :) You'd better return to complete your

Ph.D.!

Preparation for my qualifying exam was perhaps one of the most educational aspects of the
past 6 years, and would not have been one tenth as meaningful if not for the active role that so
many of the elder grads played init. In particular David Lidsky, Lisa Guerra, Ole Benz, and Karl

Petty jump to mind as having provided much time, guidance, and support.

Many thanks to Trina Chang for being aterrific friend and perhaps the most understanding
person | will ever meet. Her support over the past year has been unwavering and | am deeply
indebted to her for that. She will certainly make afantastic M.D. (or travel agent / sushi chef if she

chooses to go with her true passions!)

Thanks to (Prof.) Harry Gakidis for providing me with a constant source of business-ven-
ture diversions. When this thesis is valuable some day solely for mentioning his name in the acks
because he becomes a multi-billionaire, he will have the last laugh! Seriously, prof, don’t give up
the dream. Thanks for dropping everything at any time to give me advice or just cheer me up and

prevent me from “digging my own grave” on many, many occasions.

Thanks to my brother Len and sister-in-law Tam for advice on many topics from work to

life. And thanksto mom and dad, without whom this would not be possible:) | finally madeit!!!

Xiv

pART I INtroduction

CHAPTER 1 | ntroduction

The explosive growth of the Internet as well as the increasing proliferation of wireless and
broadband communication have caused significant shiftsin the way people work, play, and com-
municate. Information access is the application of the new millennium. The days of computer
screens equated with chunky green letters on a black 8" screen are over; vibrant images, full-
motion video, and intuitive graphical user interfaces are amust for most applications. But support-
ing these rich multimedia displays remotely requires judicious selection of which information to

send as well as how to send it. Compression is not enough.

However, interactively accessing this multimedia information, by its very nature, requires
transmission of the text, graphics, images, and videos in real-time from a remote server to users
machines. Thistransmission is often over modem or wireless links of limited bandwidth and reli-
ability. Transmission over the Internet introduces additional bandwidth constrictions and opportu-
nities for data loss. Thus it is crucia to efficiently code and schedule the transmission of the

multimedia data over the link. Compression is not enough.

Additionally, the push towards smaller, lighter, yet more powerful portable devices for
everything from web browsing to stock portfolio management and teleconferencing is necessitat-
ing some fundamental paradigm shifts. Conventionally, applications used on these portable
devices have to run locally on the devices. This constrains the size of the devices based on the
computational and storage requirements of the applications. However, the InfoPad project [14]
has shown that this constraint is not necessary if the applications are not run locally, but instead
run remotely on a well-connected compute-server with client-server communication achieved via
wireless links. This then shifts the burden to the design of networking and image compression
protocols and algorithms to interactively send the multimedia data from the server to the client.
Interactivity requires low latency, which in turn requires careful selection of the type of graphical

updates to send and when to send them. Compression is not enough.

While Internet access used to be confined to the world of academia, today, thanks to the
World Wide Web, it has become a significant consumer reality, and has tightly woven its way into
almost every aspect of life. HTML, HTTP, and TCP/IP provide a flexible method of delivering
multimedia content. However, many users connect to the Internet via slow modem links using
Internet Service Providers, and an increasing number are connecting via lossy wireless links.
Unfortunately, the original web protocols were designed for well-connected workstations and are
not particularly network friendly. This leaves home and untethered surfers with a suboptimal
setup. Yet, as shown in this thesis, if these protocols are designed to optimize interactive remote
operation, through a combination of compression and networking techniques, the situation for

surfersis greatly improved. Compression is not enough.

Most previous research attempts to improve upon text / graphics and image transmission
through either lossy or lossless compression techniques. As this thesis will show, in most cases,

simply compressing the information transmitted is not sufficient to obtain interactive operation

over bandlimited lossy links - link scheduling and image transformation are required to reduce

latencies and improve end-user experience. Compression is not enough.

1.1. ThesisOverview

This thesis examines text / graphics and image transmission techniques for scenarios rang-
ing from operating generic applications over wireless links to surfing the web over modems to
application-specific methods of improving interactivity over bandlimited and lossy links. The the-
sis examines each of the scenarios, presents an analysis of the challenges and difficulties, and pro-
poses and quantifies solutions combining image compression and networking techniques. Finaly,

the commonalities of the text / graphics and image transmission tasks are discussed.

For many of the areas, various design points trading off bandwidth utilization, error toler-
ance, and client complexity and power consumption are presented. Architectures, algorithms, as

well as prototyping techniques and development frameworks are also presented.

This work found its origin in the InfoPad project [14] as an application-independent means
to deliver the text / graphics and video data to a remote wireless black and white terminal, as
described in Chapter 4. Its scope has grown to include more sophisticated, larger color image-
enabled remote terminals, as well as other areas, such as the accel eration of web transmission over

bandlimited lossy links and application-specific accel eration methods.

1.2. Common Themes

There are several themes that pervade the many variations of text / graphics and image

delivery discussed in this thesis:

 Optimization from end-user perspective
» Global ordering / reordering
» Local progressive image transformations

1.2.1. Optimization from End-User Perspective

Interactive transmission of text / graphics and image data is a user-based activity, i.e. the
text, graphics, and images are transmitted because the user wants to see them. It iscritical to keep
the goal of the user in mind when analyzing and designing transmission systems. Too often total
transfer times are reduced through compression techniques alone while afar better user-experience
can be delivered by determining which limited information is of use to the end-user right away,

and which information is either not needed or is not needed initially.

Thus the key is to determine which information is critical, and this often requires determin-
ing user-intentions. Often only a small part of alarge object is required since the amount of infor-
mation that a person can scrutinize at any given timeis limited, despite the fact that the amount of

information that can be scanned is large.

1.2.2. Global Ordering/ Reordering

The order of the data delivery can significantly effect the end-user experience. Often global
reordering techniques can quickly deliver the most time-critical information at the expense of

delaying non-critical information which may only affect final viewing.

1.2.3. Local Progressive Image Transfor mations

While reordering the delivery of the various text / graphics objects or images can yield sig-
nificant improvements, often finer granularity manipulation yields further improvements. Thus
parts of the objects need to be reordered or interleaved. However, it is required that the “more
important” parts are sent first, followed by the “less important” parts. Progressive codings can be

used to separate the more important from the less important parts. Conventional progressive cod-

ings are used on images to separate the components by spatial resolution or frequency. Applica-

tion-specific progressive coding can separate global properties from fine details.

1.3. Existing Techniques

There is almost always a trade-off between reduced time-to-market and optimized perfor-
mance. Reduced time-to-market favors modularity and optimized performance favors cross-
boundary application-specific optimization. However, it is arguable that current solutions favor
the former at the expense of the latter. One of the goals of this dissertation is to derive a new level
of modularity which could be reused to exploit commonalities across multimedia transmission

applications while obtaining the high performance required by these applications.

Current solutionsto remote text / graphics and image transmission typically consist of deter-
mining all of the data that needs to be presented, and sending it through a reliable mechanism such
as TCP/IP. When the user generates more updates via interaction, the results of these are queued
up, never to be discarded until successfully received by the remote terminal. Thisresultsin a sub-

optimal solution for several reasons.

1.3.1. Problems of Stale Data

By using a reliable mechanism such as TCP/IP for transport and passing all data to be dis-
played through it, data that is not useful will still be transmitted, and thus consume val uable band-
width. Whilein abulk file transfer, all datais useful, with text / graphics and image transmission,

often data becomes stale if new data to display in the same region is generated.

1.3.2. Problemsof Not Using User Intent to Govern Ordering

Additionally, not all text / graphics and image datais created equally. Transmission of text

/ graphics and image data is typically in an interactive setting where the user has particular goals

Internet

Loss Dueto Congestion
Delays < 100mstyp

Internet

Loss Due to Congestion
Delays < 100ms typ

ISP
[11

Modem / Wireless Link
Loss Due to Corruption

Web
! Large Delays
oo Dday
Web
Client
FIGURE 1.1. Browsing in a well-connected FIGURE 1.2. Browsing over a TCP-averse
TCP-friendly environment modem or wireless link

and intentions. Using these intentions requires intelligent data reordering and often recoding.

Simply queuing all datain the order that it was generated by applications can cause undue delays.

1.3.3. Problemsof TCP/IP over Wireless

The Internet Transmission Control Protocol (TCP/IP) is quite effective at sustaining multi-
ple connections across the heterogeneous and time-varying Internet, as well as across local area
networks. It is adaptive and scalable due to its congestion control mechanisms and end-to-end
implementation. It isdesigned for networks where lossis primarily due to congestion and central-
ized management is not possible or practical. While this describes the Internet and many LANS, it
does not aptly describe the situation presented by modem or wireless links at the last hop.

Figure 1.1 and Figurel.2 depict the difference.

Thisdifferencein topology has significant consequences in terms of TCP end-to-end perfor-
mance while web browsing or performing other operations using standard TCP/IP based connec-
tions. In the well-connected case, TCP/IP works as designed to allow hosts to establish links that
are as high capacity asis fair in some global sense. Connections quickly “learn” what their fair
share of bandwidth is. However, in the case of browsing over a modem or wireless link, many
problems occur due to the interaction of the last hop with TCP's congestion and flow control

mechanisms.

While research has addressed some of the issues involved with using TCP/IP over wireless
links [8], substantial further benefits can be achieved in high-loss environments through optimiza-
tion at the application-level. For instances of text / graphics and video transmission, eliminating

false-dependencies in the data streams can significantly reduce latencies.

1.4. Thesis Organization

Therest of thisthesisisorganized asfollows: Chapter 2 introduces application-independent
text / graphics and image transmission, presenting uses and previous work. Chapter 3 describes
conventional primitive-based approaches which communicate graphical information using draw-
ing primitives. Chapter 4 then contrasts this with bitmap-based approaches which transmit the
screen updates using rendered bitmaps. Chapter 5 extends the bitmap-based approach from mono-
chrome implementations to color implementations including full-motion video support, consider-
ing bandwidth and reliability limitations. Chapter 6 then seeks to further reduce client power and
cost through a compressed framebuffer approach. Chapter 7 proposes afinal approach to applica-
tion-independent text / graphics and image transmission which is a hybrid containing the best of
the primitive-based and bitmap-based approaches. Chapter 8 details the image compression

requirements for images of text / graphics and presents a novel compression technique designed

for that class of images. Chapter 9 gives aview of the development and analysis environment used
for the research described in the previous chapters. Chapter 10 begins the part of this thesis dedi-
cated to application-specific transmission by discussing optimization of web protocols for band-
limited links. Application-level link management is then discussed in Chapter 11 in the context of
an interactive Java-based VLSI layout viewer. Chapter 12 gives a view of the development envi-
ronment used to support the application-specific transmission research. Finally Chapter 13 con-
cludes the thesis by distilling the networking requirements of text / graphics and image

transmission, summarizing the findings of the thesis research, and presenting future directions.

ParT 11 Application-Independent
Transmisson

CHAPTER 2 Overview

2.1. Overview

Application independent text / graphics and image transmission is used for remote rendering
in a generic manner that is not tailored to a particular application. Text, graphics, and images are
specified in the most general terms such as “Draw the string ‘Hello' at (100,230) in Helvetica
11pt. font.” Applications describe the graphics they desire to present in this generic manner, leav-
ing it to a centralized text / graphics system to effect the rendering. One advantage of this
approach is that its flexibility allows almost any application to be supported. Additionally, it is
highly modular in that applications need not know the details of how rendering occurs, or whether
the display islocal or remote. Thus improvements to the rendering system will improve the per-
formance of all applications. However, due to thisflexibility and modularity, application-indepen-

dent transmission is the most difficult to implement efficiently.

Wirdess
Portable
Centrd & _ Phone/ISDN G- E Network
Resources Ry Cable/ WAN Sy Fj%ﬁ \ /(:OmpLLJEri—lee

FIGURE 2.1. Remote computation model

Two principal uses of application independent text / graphics and image transmission are

Remote I nteractive Computation and Multimedia Collaboration.

2.1.1. Remote Interactive Computation

Remote interactive computation refers to the technique whereby an interactive application
runs on aremote server while its display information is sent to alocal client and keyboard or pen
input is sent back from the client to the server as shown in Figure 2.1. Thusit extends the conven-
tional client-server model of only sharing applications and data one step further. To the end-user,
if the display data can be delivered rapidly enough, it appears as if the applications are running

locally. However, remote operation has several advantages:

Computational economies scale with bursty usage
Lightweight / inexpensive clients

Ubiquity of access

Facilitates portable operation (ala InfoPad)
Protects sensitive equipment and storage
Centralization of administration

Allows “leasing / renting” of computation

N o g A~ WD PR

Remote computation allows computational support of many users to be centralized in asin-
gle server or set of servers. In this way, the capabilities required to execute compute-intensive
application need not be replicated at each client. If the peak demands of the clients are high, yet

usage of resources is bursty and independent, centralization allows the resources to scale with the

10

average client demands, and not the peak client demands. Similar advantages of scale have been

obtained in UC Berkeley’s Network of Workstations (NOW) Project [2,21].

Remote computation allows complex tasks to be accomplished using only low-perfor-
mance, low-cost clients. This can result in areduction in total system cost and size. Additionally,
this facilitates ubiquity of access since only simple clients need to be replicated. Client simplicity,

in turn, enables portable client operation.

By reducing the compute and storage requirements of the clients, portable operation is facil-
itated. The InfoPad project [14], as described below, extends the remote computation concept by
reducing the clients to little more than framebuffers with radios. In this way, ultra-low power,
lightweight operation is possible since component count and battery requirements are dramatically

reduced.

Remote computation also allows centralization of sensitive equipment to increase security
and robustness. Since execution is remote, all storage is also moved away from the clients. Thus
hard-disk failures, a constant threat to laptop computers, can be dramatically reduced since the
disks are no longer moved. Additionally, sensitive information can be more readily safeguarded if

it is kept in a single stationary location.

The inherent centralization of resources can greatly simplify system administration. No
longer do all changes need be propagated to all clients, but rather the servers can be updated. As
the complexity and capability of the clients is reduced, the configuration requirements are also

reduced. Thus the “total cost of ownership” decreases.

Remote computation enables new economic / pricing structures. Using the remote compu-

tation model, computation is transformed from a product into a service. In thisway, users can pay

11

Challenges w/Desktop or Wireless Portabl e:

Desired Aspect Reality to Contend With
Fast Drawing Limited Bandwidth
Rapid Response Non-Zero Latency

Additional Challenges w/Wireless Portable only:

Reliability Lossy & Error-Prone

Long Usage Time Limited Battery Capacity

FIGURE 2.2. Challenges posed by text / graphics and image transmission problem

for computation on an as-needed basis and adaptation to varying needs is more agile. Addition-

aly, this could reduce the recurring need to upgrade user equipment.

2.1.1.1. Challenges Posed by Text / Graphics and Image Transmission Problem

Some of the challenges associated with text / graphics and image transmission are listed in
Figure 2.2. While the user requires fast drawing to display complex screens, thisis difficult using
alimited bandwidth connection. Similarly, the user’s desire for rapid response to retain interactiv-

ity is thwarted by non-negligible link latencies.

The wireless environment presents additional challenges. While users demand reliable
operation, the wireless link is often not privy to these demands. Similarly, the desire to operate
portably for hours or days is often hindered by the limited capacity to weight ratio of existing bat-

teries.

2.1.1.2. Connectivity Requirements Changed, not Created

It is important to note that although remote computation does require connectivity to send

the display updates, many of today’ s applicationsinvolve information access. Thus connectivity is

12

required at some level anyhow. Remote computation is simply moving the connectivity partition
but not adding new requirements per se. In many cases, using remote computation allows existing

applications to be reused in new and varying environments.

2.1.2. Multimedia Collaboration

Multimedia collaboration is the process whereby several geographically separated parties
can participate in electronic meetings sharing audio, video, and text / graphics information. While
the audio and video primarily communicate the images and sounds of the participants, the text /
graphics content can be shared whiteboards, pre-prepared slide presentations, or even shared
jointly-controlled application executions. This text / graphics content is similar in nature to the
text / graphics content produced by remote computation. In fact it can often be effected using the

remote computation model.

2.2. Previous Work

2.2.1. X Window System

The X Window system [62,63,64] was developed at MIT as part of project Athena begin-
ning in 1984, and gained significant popularity due to its free distribution. The X Window system
allows distributed graphical computing in UNIX environments. It has been ported to many variet-
ies of UNIX, including Linux and Solaris, and supports a range of graphics display hardware of
varying capability, bit-depth, and acceleration. The X Window System operates in a client-sever
model where the X server is run on a machine physically connected to a display monitor. Client
applications can be run either remotely via TCP/IP or on the same machine. Keyboard and mouse
input is sent to the clients from the server and text / graphics commands are sent back from the cli-

ents to the server.

13

The X Window system is designed with a highly layered architecture. The X protocol is at
the lowest layer and describes the actual primitive commands such as draw line, draw text, clear
area, etc. There are a set of toolkits that are layered on the basic X protocol to provide higher-level
abstractions such as menus and other look-and-feel widgets. Some programming languages such
as Tcl have been designed with toolkit extensions to X, such as Tk. Lastly, the basic X architec-
ture decouples the look-and-feel of the system from the base architecture by introducing window
managers whose sole purpose is to define the way that the user interacts with the system. These
window managers are separate processes which run independently from the main system and can

be freely interchanged.

The X protocol is drawing-primitive based which is described in the next chapter. This
helps bandwidth efficiency but the encodings used are not very compact since X is not designed
for bandwidth-limited environments. This typically leads to inadequate performance over band-
limited links such as modems. The encoding is also quite error-sensitive, requiring areliable pro-

tocol such as TCP/IP for proper operation.

A couple of architectural features improve interactivity of the X protocol. The first is the
use of graphics contextswhich store state which persists across multiple drawing primitives. The
graphics contexts include current foreground and background drawing colors, font information,
etc. This avoids respecifying the information in each drawing primitive request. Another feature
to improve interactivity over higher latency links is the use of asynchronous operations. Drawing
commands sent to the server are pipelined and identified using sequence numbers. Responses and
error codes are returned to the clients asynchronously and matched up using the sequence num-
bers. This reduces the total latency experienced by a sequence of commands to one round-trip

time.

14

Client 1 W

Client Serial Link

: Server » _
Client 2 Proxy B e Proxy [ao] X Server Display

Client 3

FIGURE 2.3. Xremote ar chitecture

2.2.2. Xremote

Xremote is transformation of the X protocol designed to efficiently send X over serial lines
[20,22]. The Xremote protocols works by running two proxies - one on each side of the slow
serial lineas shown in Figure2.3. Clientsthen connect to the client proxy using individual TCP/IP
connections as they would connect to a conventional X server. The client proxy communicates
with the server proxy via a managed, compressed protocol over a single serial connection. The

server proxy then forms multiple connections to the X server just as the clients typically would.

The Xremote proxies are useful over serial lines because they both aggregate multiple X
connections into a single stream, and additionally perform compression over the link. The com-
pression entails several steps, the most important of which are delta-encoding and LZW compres-
sion. First, the X messages are delta-encoded whereby each message that is 64 bytes or shorter is
compared to the previous 16 messages which were also 64 bytes or shorter. If a new message can
be represented more compactly as a modification of a previous message, this representation is
used. Thisisuseful as many messages, such as mouse movements, are used many times with very
similar contents. LZW dictionary compression[71] is then performed to exploit further redun-
dancy in the delta-compressed stream. LZW compression finds repeated byte patterns and repre-
sents them more compactly. Xremote uses areliable datagram transport protocol for transmission

over the serial connection.

15

Xremote's overall compression is typically about 2.4:1 by typically achieving 3:1 compres-

sion on text-based messages and 1.6:1 on geometric messages [22].

2.2.3. Low-Bandwidth X (LBX)
Low-Bandwidth X [19,27,73] extends upon Xremote by using techniques to further com-

press some of the data stream, as well as techniques to avoid transmission of some data entirely.

Some of the compression techniques used by LBX include the use of CCITT Group 4 FAX
compression for monochrome bitmaps [61]. This lossless compression technique exploits 2-
dimensional redundancies in images to reduce the number of bits required to code them. Addition-
ally many graphics primitives are recoded using 1-byte operands instead of 2-byte operands when-

ever possible.

The amount of data sent from the X server back to the client is reduced by caching of large
data queries, such as keyboard maps, and just sending tags used to identify the data items. The
type and size of the caches are negotiated upon connection of the LBX client to the server. Addi-
tionally, some constants which are typically queried from the server are handled locally or cached
by the LBX proxy. Lastly, the number of motion events used to report mouse cursor movement

can be limited to prevent excessive latency and uplink bandwidth utilization.

Like Xremote, LBX uses delta encoding and stream compression, but LBX uses the Zlib
compression library [28] based on LZ77 coding instead of LZW compression [71]. The Zlib

library typically compresses more effectively than LZW and also has patent-free status.

2.2.4. Higher Bandwidth X (HBX)
Danskin [22] further analyzed the work of Xremote and proposed improvements using sta-

tistical compression techniques on the X traffic in his HBX (Higher Bandwidth X) protocol. This

16

protocol improves upon Xremote's compression by about a factor of 3 to achieve roughly 7.5:1

overall compression relative to the standard X protocol on typical traces.

HBX uses arithmetic coding coupled with predictive models to compactly represent the X
traffic. Different models are used for the various drawing primitive parameters. For instance, a
polygon drawing primitive would be recoded by first converting all vertex coordinates to be rela-
tive and then statistically predicting later coordinates based on earlier ones. Text is predicted
using the PPMC’ method using hierarchical predictive models [47,10]. Bitmap images are com-
pressed using context pixels to determine statistical predictions for the current pixel, in a manner
similar to JBIG [4,43,61]. Small images, which are often reused, are cached at the server to avoid

retransmission whenever possible.

2.2.5. Microsoft Terminal Server

The Terminal Server edition of Microsoft Windows NT 4.0 Server supports application
independent text / graphics and image transmission, allowing multiple independent remote ses-
sionson asingle server [46]. The client machines display the remote data using a thin-client appli-
cation. The protocol used for data communication is the Remote Desktop Protocol (RDP), also

used in the Microsoft NetM eeting multimedia conferencing tool [45].

The Citrix Corporation has developed some low-bandwidth extensions to the terminal

server protocol which are used in its Independent Computing Architecture (ICA). [16]

2.2.6. GraphOn Bridges
The Graphon corporation has developed a Bridges technology to replace its previous Go
Global offering [35]. Go Global losslessly compressed X traffic from Unix workstations to thin

PC clients.

17

2.2.7. Virtual Network Computing

AT&T's Virtual Network Computing (VNC) is a freeware application that allows remote
operation of X Windows and Microsoft Windows [5]. VNC uses bitmap updates, as described in
Chapter 4, including a copy-block update to transmit the screen changes. VNC also uses various

image compression techniques to reduce the amount of data required for the bitmap updates.

18

cHapTER3 Primitive-Based Approach

3.1. Introduction

The primitive-based approach to remote text / graphics transmission involves sending draw-
ing primitives which describe symbolically what to draw. These primitives are often the same

drawing primitives used by the applications to describe their content.

Figure 3.1 depicts the operation of a typical primitive-based text / graphics system. Each
application connects to the text / graphics server individually and sends its content as graphics
primitives requests. The text / graphics server is responsible for combining these requests into a
single stream which is sent to the remote client. The text / graphics server is also responsible for
decoding user input, such as mouse or pen movements, and forwarding it to the correct applica-

tion, as well as providing session and access control.

The primitive approach places two important requirements on the transport system:

1. Losslesstransmission
2. Order and integrity must be preserved

19

Low-Bandwidth

total 1 Text/ Primitives
Server r ~ Terminal
letc>
Fill Oval gray
Drawing ¢ Draw Rect black N
Primitives : (
Fill Rect Stippled
o 3 Draw Text “3.14”
Fill Oval gray
e e Draw Rect black
© Fill Rect Stippled - J
@ o Draw Text 314
\ .
N— / \
V
Applications

FIGURE 3.1. Conventional primitive approach

The transport system must be lossless because if any primitives are lost, this can have sig-
nificant ramifications for the entire image. For instance, if a“cl ear screen” is dropped, the
entire display would be incorrect. Typically, primitive-based systems also use notions of graphics
contexts comprised of “current pen” and “current font” information. 1f commands to change these
graphics contexts are dropped, then all subsequent primitives which use these contexts will be

effected.

The transport system must preserve order and integrity. If primitives are reordered then
their meanings can be dramatically altered. Often there are direct dependencies between two
primitives; for instance, if a “set current col or red” and “draw line fromO, 0
to 10, 10" are swapped, the color of the line drawn would not necessarily be red. If a
“copy rectangl e” is swapped with commands used to initialize the area being copied, this

too would yield an incorrect result.

20

Thus transport-level protocols must ensure that the data stream is correct once it makes it to
the text / graphics subsystem. Standard protocols such as TCP/IP[42] can satisfy the above
requirements, even when using lossy links, and are thus typically used. However, this can result in

significant increases in latency as shown in the next section.

3.2. Bandwidth and Latency Characteristics of Primitive-Based
Systems

Primitive-based systems have the advantage that their bandwidth requirements are typically
low since primitives can usually be specified compactly. However, the use of primitive-based sys-
tems can result in significant latencies to the end-user when used over lossy and/or bandlimited

links.

3.2.1. Latency Dueto Queuing Delays

In a primitive-based system, the applications specify the primitives used to render their
graphical display. The text / graphics server must send each of these primitives, in order, to the
remote terminal to assure proper display. Since all primitives must be sent, transmission over a
bandlimited link can result in queuing delays as shown in Figure 3.2. The figure depicts the result
of aremote user scrolling through alist of foods over a slow link which can only transmit two text
items per time step. The positions the user is scrolling to are shown on the left side of the figure
while the data received by the remote terminal are shown on the right side. At time T=0, the user
has selected the top of the list and thus desires for the first four entries, Apple, Banana, Chicken,
and Dessert, to be displayed. However, due to bandwidth limitations, only Apple and Banana can
be sent over and Chicken and Dessert are queued to be sent over. At time T=1, Chicken and Des-

sert are received by the remote terminal but now the user desires to see Fudge, Gum, Ham and I ce,

21

Dedsred Display Actual Display

=

T= Large
Latency
T= Reduced
- Interactivity
Plzza
Quiche
T=5 Rice

FIGURE 3.2. Latency due to queuing delays

and thus they must be queued up. At time T=2, the user has selected the final position viewing
Pizza, Quiche, Rice, and Salt, but it is not until time T=5 that this appears. Thus queuing delays

result in significant latencies for the user.

3.2.2. Latency Penalty Dueto L oss
In order to understand the effect of data loss on latency, it is necessary to first review the

operation of reliable protocols.

3.2.2.1. Reliable Protocols

As previously presented, the primitive-based system relies on an end-to-end guarantee that
order and integrity of datawill be preserved. If thelink islossy, areliable protocol can be used to
assure that data is not lost or reordered. These reliable protocols work by detecting packet losses

at the receiver and reguesting retransmissions from the sender. |If a given packet is detected as

22

v
) _
f@/\ 7a=1 \ Error-Free Case!
0 B

k Single
round-trip
latency (A)

Text/
Graphics
Server

Lost Data Case:

Double
round-trip
latency for al
dropped and
subsequent data
(BCD)

CD Reduced
~ | nter activity

FIGURE 3.3. Latency penalty dueto loss

having been dropped, it is re-requested by the receiver. The reliable protocol then holds all data it
receives corresponding to packets which should follow the lost packet, until the lost packet is suc-
cessfully received. Thus the application receives all data in order and without loss, but with

increased latency if packets are lost.

3.2.2.2. Latency of Loss

The effect of reliable protocols on the transmission of text / graphics datais shown in Figure
3.3. Thefigure depicts the transmission of four drawing primitive packets - labeled A, B, C, and D
in response to a button push on the remote client. In the figure, the four packets are transmitted in
order, but packet B is lost in transmission, either due to signal degradation or congestion. The
drawing of packet A proceeds without delay, incurring only the single round-trip latency necessary

for the remote client to request an action, and the text / graphics server to effect that action. How-

23

ever, packets B, C, and D all incur at least a two-round trip delay since the loss of B needs to be

detected and sent to the text / graphics server for retransmission®. This results in reduced interac-

tivity.

1. Notethat protocols such as SNOOP [8] can reduce thisto asingle traversal over the wired network, but an additional
round-trip up to the basestation is still required.

24

cHapTER4 Bitmap-Based Approaches

4.1. Conventional Bitmap Approach

The conventional bitmap-based approach is depicted in Figure 4.1. In the conventional bit-
map-based approach, drawing primitives from all applications are combined and rendered by the
text / graphics server. The communication between the applications and the text / graphics server
is performed using primitives as before, but the communication between the text / graphics server

and remote terminal uses rendered bitmaps.

High-Bandwidth
Server Termina
..I.I._ =
315 HE

Fill Oval gray

Draw Rect black
Fill Rect Sippled
DrawText“314”

Applications

FIGURE 4.1. Conventional bitmap approach.

25

The bitmap-based text / graphics server operates similarly to a conventional text / graphics
server attached to aframebuffer. The text / graphics server maintainsits own framebuffer in mem-
ory since the information in a given primitive often does not contain enough information to deter-
mine all pixels in an update. For example, the “‘copy bl ock” primitive requires the current
contents of the screen for proper operation. Additionally, since bitmap updates are typically sent
as rectangular blocks or unions of such blocks, primitives which would not completely modify all
pixelsinablock - suchas“draw ci rcl e” or“draw t ext " - requiretheold pixel valuesto be
known for use in the update packets. The connection between the text / graphics server and remote
terminal is established using either areliable link or a reliable transfer protocol layered on top of

an unreliablelink.

4.1.1. Assessment of Conventional Uncompressed Bitmap Approach

The conventional bitmap approach, as described, has one primary advantage, which is
reduced complexity requirements in the remote terminal. Since the text / graphics server performs
all rendering, the remote terminal needs only know how to display bitmap updates. Thus all draw-
ing algorithms, intermediate state, and font information is confined to the text / graphics server.
As described below, the InfoPad project exploited this to develop low-power, lightweight portable

clients.

However, the conventional bitmap approach suffers from lower bandwidth efficiency which
translate into greater latency using a given bandwidth link as compared to the primitive approach.
This is because typically the bitmaps are less compact than the primitives used to generate them.
Both the latency due to queueing delays and the latency due to loss previously described would

still apply to the conventional bitmap system as described.

26

Sarver

1
Application Sde | I
I
\ Text/ |
- et =
Application | x Protocol Server IcUstom
I
[
I
|

Termind
Side

/ (pfoxy) Protocol

FIGURE 4.2. InfoPad text / graphics server context

Application

4.2. InfoPad B/W Bitmap System

The InfoPad project [49] delivers ubiquitous portable computing using the remote interac-
tive computation model described in Section 2.1.1. All applications are executed on a central
compute cluster while display updates are sent to wireless portable “pads’ as shown in Figure 4.2.
Pen and audio information is sent back to the compute serversto allow user interaction. In order to
obtain hours of operation using lightweight batteries, the InfoPad hardware is kept as simple and
efficient as possible. Through careful system design, the pad hardware is reduced to a multimedia
terminal with highly optimized data paths for heavily used functions such as the text / graphics and
video. The text / graphics server forms the bridge between the custom low-power terminal hard-

ware and the generic applications.

The text / graphics hardware subsystem is little more than a monochrome framebuffer that
also decodes data packets specifying bitmap screen updates. The screen updates are sent as data
packets with headers specifying the x, y, width, and height of a rectangular update region, as well
as a data portion specifying the uncompressed bitmap. One bit is required for each pixel of data
The header and data are independently encoded, optionally using an error protection coding and

checksum mechanism to protect against and detect bit errors.

27

Typically the graphics packet headers use error protection while the graphics packet data do
not. (The exception is the implementation of asymtotic reliability described below.) This means
that if the packet header isin error then the packet will not be processed. |If the packet header isin
error, the location or size of the update will not be correct, and thus the data will not be useful.
However if alocalized error occurs in the data, individual pixels might be incorrect but the bulk of

the data will be correct and thus useful.

4.2.1. Prosand Cons of Uncompressed Bitmap System

While this simple bitmap update scheme does require significant bandwidth to support

interactive applications, it offers some advantages in system performance and simplicity.

First, as previously stated, it allows for low-power hardware decoding. The entire datapath
for decoding the packets and placing them into the framebuffer is readily implemented in custom
logic resulting in very low power consumption. All protocol decoding consumed 1.9mW and the

text / graphics framebuffer consumed 0.5mwW [15].

Secondly, it reduces channel robustness requirements since data can be corrupted or lost
without significant implications to system performance. The bitmap packets are independent, in
that the loss or corruption of a given packet will effect the region of the screen it is targeting, but
not subsequent updates. This means that if packets are dropped, it is not necessary to have them
retransmitted and received before processing subsequent update packets. Thus a reliable transport
protocol is not required and the latency due to loss of Section 3.2.2. isavoided. Thisisto be con-
trasted with the primitive approach of Chapter 3 where an error in one primitive might effect many
later primitives. Additionally, if individual data bits in the packet are incorrect, the display errors
will be small and localized. While the errors might be perceptible, they will rarely effect the over-

al intelligibility of the screen.

28

4.2.2. Asymtotic Reliability

Although it is acceptable for some temporary pixel errorsto occur in order to greatly reduce
latency, it is desirable if the “long-term” display is correct. Long-term error-free transmission
must be designed not to prevent low-latency operation and should be possible if excess link band-
width isavailable. In thisway the user obtains the best of both worlds - low-latency and error-free
display. The process by which slightly incorrect data will be displayed initially yet eventually the

display will be error-free is called asymtotic reliability [36].

Asymtotic reliability, as described in [36], is achieved by using alow-latency unreliably pri-
mary display of data as previously described, combined with a background higher-latency reliable
transport. In this way, afast “best effort” is made which may result in some scattered bit-errors,
followed shortly by one or more “refresh” updates which will be higher latency but will not intro-
duce errors. The asymtotic reliability system reduces complexity requirements in the remote ter-
minal since no uplink acknowledgments are necessary. Additionally, it can be used as a scalable
information dissemination mechanism since only downlink traffic is used, any number of receivers

can participate.

The refresh packets are sent at a low rate, in the background, using a higher level of error
correction as well as error detection. The higher level of error correction reduces the probability
that an error will occur. Error detection is used to suppress the display of packetsif any error does
occur. This error detection is critical to assure asymtotic reliability. Since only error-free packets
are processed, asymtotically all errors on the screen will be corrected. Smaller packet sizes are
used for the refresh packets since the packets must be error-free to be useful and the probability of

one or more errorsin a packet is exponential in the packet size.

29

4.3. Improved Bitmap using Virtual Framebuffer

While the system previously described allows remote operation of awide variety of applica-
tions on alightweight portable terminal, it does require a high-bandwidth communications link for
interactive operation. Intuitively, since each drawing request results in the transmission of one or
more screen update packets, actions that cause many updates to the screen in a short period of time

can easily result in a backlog of the communications channel.

The key to efficient text / graphics transmission is to determine which information the user
wants to see and how to send this information. In the case of remote text / graphics rendering, the
user only wantsto see current information. Thusif auser scrolls through along list, they typi-
cally only want to see where they end up. If auser isviewing aprogress bar, they only want to see
the current value of it. If the user is participating in avideo conference, they typically only want to
see the most current image. Thetask is then to determine how to send only current informationin
such a way that a limited bandwidth link does not cause backlogs, and errors do not result in
increased latency. Another way to view the problem is that the applications are typically designed

for a high-bandwidth environments but the communications link is low-bandwidth.

One critical observation isthat transmission of text / graphics information over bandlimited,
lossy links is aform of remote-rendering just as transmission of video is. Two mechanisms which
facilitate operation over bandlimited lossy links are data compression and data reordering. While

video transmission techniques have used both of these aspects, text / graphics compression has so

far been typically restricted to data compression onlyl. Thus in order to provide better perfor-

mance, intelligent data reordering must occur.

1. Oneexception, in particular, is[37].

30

Application = -

<
Applicstion < b | - - -
Master Y Save Bitmap Updates
, <) Thred Thread
Application \ Remaote
¥ Protoc® ;
Eh Termina
Text/ GraphicsSaver

. Master |+ Save
|
I

| |
|- Writes to Virtual Framebuffer |- Reads from Virtual Framebuffer

——

f Operates at Workstation speed | f Operates at Link speed
» Generic | ¢ Tailored to wireless environmen
L . L _I

Always send most current information

FIGURE 4.3. Improved bitmap approach using virtual framebuffer architecture

The virtual framebuffer architecture, shown in Figure 4.3 achieves this goal. In this archi-
tecture, the text / graphics server is split into two halves - the master and slave - which are coupled
through an auxiliary buffer called a virtual framebuffer. The master communicates at full speeds
with the applications and tracks the current contents of the screen on the virtual framebuffer. The

slave then watches the virtual framebuffer and sends on any changes to the remote terminal.

31

e o E:’:" 'ﬁm
;BG wf
uoload oo] Blook
Glopa) H ’ Update
Update A BT Flags
Semgphore .
Row -k
Update .
Aeaos L |

FIGURE 4.4. Virtual framebuffer

The virtual framebuffer, shown in Figure 4.4, consists of two arrays whose size matches the
size of remote terminal’ sdisplay. Thefirst array containsthe actual pixel data being displayed and
is continually updated by the master and read by the slave. The screen is then divided into a set of
blocks with one flag in the second array assigned to each block. These flags are used to indicate if
the blocks have been updated by the master since the last read by the slave. The block size is cho-
sen to be small enough such that granularity of updates is not too coarse, and large enough such
that there are not so many blocks that the overhead of checking the blocks is noticeable. For effi-
ciency reasons, row update flags are used to indicate if any blocks in a given row have been
updated while a global update semaphore is used to block the slave until the master has updated

something.

The master communicates with the applications at full workstation speeds. It responds to
primitive drawing requests by rendering to the virtual framebuffer pixel buffer. When the master
draws on part of the virtual framebuffer, it also sets the updated regions' “updated” flags. If the
flags were already set, they remain set. In this way multiple updates are combined, reducing the

amount of data sent to the remote terminal.

32

The slave runsin its own thread and asynchronously scans the virtual frame buffer from top
to bottom in raster scan order. When it encounters blocks on the screen whose updated flags are
set, it clearsthe flags and sends the data to the remote terminal. The slave uses region growing to
form larger rectangular blocks from sets of contiguous blocks. This reduces the per-block over-

head in transmission to the remote terminal.

The slave can also scan the virtual framebuffer in non-raster scan order to prioritize the dis-
play of certain parts of the screen. For instance it can scan the region surrounding the cursor more
often than the rest of the screen since that areais typically of greater interest to the user. The spa-

tial independence of the bitmap representation allows this.

4.3.1. Rateand Flow Control

The output of the slave can then be subjected to rate or flow control to match the link char-
acteristics. Since it is decoupled from the master and applications, the slave’s execution can be
blocked without impacting application performance. The initial implementation in the InfoPad
system used a rate-control system to limit the text / graphics traffic to be under a given rate. This
rate is less than the capacity of the radio channel and can be dynamically changed. It was then
expanded to include negative acknowledgments (NACK) described in Section 4.3.3.1., and can be
extended to acknowledgment (ACK) based flow control as described in Section 4.3.3.2. Initially

asymtotic reliability was used to reduce client complexity and protocol requirements.

Asymtotic reliability isreadily integrated into the virtual framebuffer architecture by having
the slave send refresh packets at a given rate while also sending normal updates. Adaptive band-
width control is performed by setting the refresh rate as a number of bytes per complete slave pass
through the virtual framebuffer and setting a minimum interval between complete passes through

the framebuffer. Establishing the refresh rate in terms of bytes per complete slave pass causes the

33

amount of bandwidth dedicated to refresh to automatically reduce as the amount of foreground
traffic increases. It also scales with the size of the “updated” area such that if a small area of the
framebuffer is rapidly updated, refresh of the rest of the screen will still proceed rapidly, but if a
large area of the framebuffer is continually modified, more bandwidth will be dedicated to its dis-
play, at the expense of slower refresh. Setting a minimum interval between complete passes estab-
lishes a maximum frame rate and can be used to reduce bandwidth utilized if a small region of the
screen is updated very rapidly. At aminimum, it makes sense to set the transmitted frame rate to

be no higher than the frame rate / refresh rate supported by the remote display device.

4.3.2. Analysisof Virtual Framebuffer Performance

In this section, the benefits of the virtual framebuffer technique are explored by analyzing

the reduction in latencies due to queuing delays and loss.

4.3.2.1. Reduced Latency Dueto Queuing Delays

Using the virtual framebuffer approach, latency due to queuing delays is bounded and dra-
matically reduced by the virtual framebuffer architecture through a process called adaptive band-
width compression (ABC). ABC isadirect result of the virtual framebuffer architecture’s ability
to combine multiple writes to the same region of the screen. Recall that if the master writes to the
same region of the virtual framebuffer before the slave has had a chance to send on the contents,
the earlier updates are overwritten by the latest update. Thus effectively the bandwidth going into
the virtual framebuffer is the high bandwidth of the application and coming out is the lower band-

width that the link can support.

The example depicting latency due to queuing delays is revisited in Figure 4.5. Again the
link capacity is set to two lines per time step. At time T=0, the user has selected the first four

entriesinthelist. The slave starts sending from the top, only having time to send the first two lines

Primitive& OIld Bitmap _ Input Virtual Framebuffer

T=0

T=1

T= Large
Latency

_ * Lossy transmission due to ABC

T= (Chicken, Dessert, Fudge, Gum not displayed)
* Reduced bandwidth P increased latency

T=5 * Progressive and targeted transmission possible

FIGURE 4.5. Reduced latency due to adaptive bandwidth compression (ABC)

- Apple and Banana. At time T=1 the user has selected to see Fudge through Ice. The slaveis now
reading the bottom half of the screen and would send over Ham and Ice. Chicken and Dessert
would never be sent. At time T=2, the user has selected to see Pizza through Salt. The slave is
now at the top of the screen and Pizza and Quiche would be sent. Fudge and Gum were thus over-
written before they could be sent. Finally at T=3, the user has not caused any further updates and
the slave is at the second half of the screen and can send over Rice and Salt. At this point, all
regions of the screen have been communicated and all updated flags are cleared. Thus using the
virtual framebuffer technique, the user has a complete, correct picture of the screen only one time-
step after they cease input activity, while the conventional primitive and old bitmap techniques

require three additional time steps.

As a numerical example of the improved interactivity, consider user scrolling through a
document in a 500x500 pixel monochrome window over a 500 kbps link. Each frame would

require 250 kbits of data or about a half-second to send. Thusif the user scrollsfive timesin a sec-

35

3 \0“
D 1 rror-Free Case:
——41444 Single round-trip
E CD latency for Al
. undropped
Graphics
Sgpva - | | daxACD)
B A
CD
S
\ O
'V\ i ~ Log DataCase
D’ay,, N e | k Extralatency
< N7 for dropped
- dataonly (B)
|
AB|
Improved

J | nter activity

FIGURE 4.6. Reduced latency dueto loss

ond, it will take an additional 1.5 seconds for all of the datato be delivered. If they continue at this
rate for 5 seconds, it will take an additional 7.5 seconds for the final data to be delivered. Using
the virtual framebuffer system the lag would always be at most the time to update the screen or 0.5

seconds in this case.

4.3.2.2. Reduced Latency Dueto Loss

Figure 4.6 shows how the virtual framebuffer approach using asymtotic reliability resultsin
reduced latencies due to packet loss. Asin the example of Figure 3.3, the figure depicts what will
happen if the second (B) of four packetsislost. The three packets which were successfully com-
municated (A, C, D) are displayed with a single round-trip latency while only the dropped B
packet is delayed. Using asymtotic reliability, it would be delayed until a refresh packet could
deliver the data. Using more sophisticated methods described below, the latency can be further

reduced.

36

4.3.3. Integration of Virtual Framebuffer into Transport Control Protocol

The virtual framebuffer can be integrated into the transport protocol for further increasesin
throughput and reliability. Conventional transport protocols, such as TCP/IP, order individual
packets in a stream with a sequence number. They use these sequence numbers to assure that
every packet in the stream, and thus every byte in the stream, is successfully communicated in
order. Since conventional transport protocols have no knowledge of the underlying data, their goal

has to be to successfully transmit the entire stream of data. This|eads to two problems:

1. Once data enters the transport layer, it will consume bandwidth.

2. Since no dependency information is known, it is assumed that all data
is dependent on all other data and thus all ordering must be preserved.

However, in the case of the virtual framebuffer, the location on the screen that an update
corresponds to contains valuable information that can be used to remedy the above problems. The
integration of the virtual framebuffer with the transport layer works as follows: Instead of having
a separate buffer to store data that has been committed but not yet acknowledged, the virtual
framebuffer serves as the holding buffer. The update flags indicate which data must be sent and
thus the actual data need not be copied. Thus actual packetization of the data does not occur until
just before the packet is going to be sent over the network. In thisway, old data cannot be queued
up since old data is superseded as previously described. The virtual framebuffer can be used to
implement a negative acknowledgment (NACK) or positive acknowledgment (ACK) based sys-

tem as described next.

4.3.3.1. Negative Acknowledgments (NACK)

The InfoPad downlink traffic consists of text / graphics, video, and audio data. While the
total available bandwidth to the pads is fixed at approximately 500kbps, the portion dedicated to

each type of data varies based on the amount of traffic dedicated to the others. For instance, if no

37

other streams were present, text / graphics could use the full 500kbps link, but if a 300kbps VQ

video clip (see Section 5.2.) is playing, the amount available to text / graphics drops to 200kbps.

The separate multimedia streams are not combined until a gateway which follows the text /
graphics, audio, and video “type servers’. This makesit more difficult for the type servers to mea-
sure the amount of traffic generated by other sources. In addition to long-term rate adaptation,
short term management of the traffic is necessary. Since the gateway combines the various traffic
streams, it is able to determine when the net rate exceeds the link capacity. The gateway buffers
data, and thus if the total incoming traffic is greater than the outgoing rate limit, packets in the
buffer will be aged. These “old” packets can be dropped to assure that the backlog of data is
bounded. The gateway then sends negative acknowledgments (NACKs) back to the sender. These
NACKSs can then be integrated quite easily into the virtual framebuffer architecture by simply hav-
ing the slave set the “updated” flags of the region corresponding to the packet that was NACKed.
Thusthe NACK indicates that the data specified in the packetsis still outstanding and thus must be
sent again. Note that if, in the interim, part or all of the region specified by the packet was modi-
fied again, the updated flag would already be set and thus no extra bandwidth will be consumed by

the retransmission.

Note that with the simple scheme above, superfluous retransmission could occasionally

occur that would waste bandwidth, but not produce an incorrect result. An exampleisasfollows:

Region of screen is updated and transmitted as update A.

Same region is updated and transmitted as update B.

Update A is removed by gateway and NACK isreturned.

Region isinvalidated, thus causing resend of region.

Region is retransmitted as update C which isidentical to update B.
Update B received correctly.

Update C received correctly.

N o g A~ WD PR

38

Thus an additional update packet is sent because a region is updated between being sent and
NACK’ed. However, since current data is always sent, extra update packets will never cause the
incorrect results to be shown. An extension to the basic NACK algorithm could include keeping a
sequence number, as described below in the ACK scheme, to avoid extra retransmissions in the
above case: If aregion is updated after a packet is sent, al retransmissions due to that packet are

aborted.

4.3.3.2. Positive Acknowledgments (ACK)

While negative acknowledgments allow for rapid notification of congestion, they are not

well suited for packet loss or error notification for the following three reasons:

1. Itisoften difficult to detect the absence of a packet.
2. NACKs can increase congestion if sent over the bandlimited medium.
3. If the NACKs are sent via alossy medium, they too can be lost.

For these reasons, positive acknowledgments (ACK) are preferred. This was not imple-

mented in the InfoPad system but could be used in similar systems.

The ACK-based system works by tracking the update packets sent to the remote terminal
and having the remote terminal send back acknowledgments of each graphical update packet or set
of such packets. Inthisway, the text / graphics server can track which updates have been success-
fully communicated to the remote terminal and retry any that have not. As before, no intermediate
storage buffers are used since the only data that is useful is the most current data, which can be
found in the virtual framebuffer. Also as before, multiple updates to the same region are combined

whenever possible, discarding old updates.

1. Notethat theideasin this section, unlike those in the previous section, have not been implemented but are provided
as an extension of implemented work.

39

In order to track the reception of each packet, a sequence ID is used. The sequence ID is
incremented for each transmitted packet such that it will be unique to all packets that could be in
flight. The virtual framebuffer includes a sequence ID and transmit time field for each block as
described below. Each block in the virtual framebuffer also has a status field that can indicate one

of three states:

1. Not updated
2. Update required
3. Updatein flight

The “not updated” state is used when the contents on the remote terminal are current and
thus the local contents in the virtual framebuffer have not been updated recently. When an update
does occur, via the master, the status of the block is changed to “update required”. No sequence
ID is associated with the block in either the not updated or update required states. Once the slave
detects that the block has been updated, it generates a graphical update packet, assigns it a
sequence ID and transmits the packet. The sequence ID and time of transmission are recorded in
the virtual framebuffer and the block’s state is changed to “update in flight”. When an acknowl-
edgment of the update is received from the remote terminal, all blocks covered by the acknowledg-
ment whose sequence ID still matches the ID of the acknowledgment are changed to the “not

updated” state.

If any of the blocks are updated between the time that the update packet is sent and the time
that acknowledgment was received, the master will then revert their state back to the “update
required” state and their sequence ID field is no longer relevant. When the slave detects that they
have to be sent, it will generate a new update packet with a new sequence ID. All links to the old
update packet in flight will be forgotten since this would be stale data. Thus when the old

acknowledgment packet is received, its sequence ID will not match the sequence ID of the blocks

40

and their state will not be changed to “not updated” until an acknowledgment of the most recent

update is received.

If datais lost or corrupted, it must be resent. This can be detected by the absence of an
acknowledgment of the packet. The absence is detected with via atime-out - i.e. if the acknowl-
edgment is not received within a certain amount of time from the transmission of the packet, the
packet is assumed to have been lost. Additionally, if packets transmitted after the packet in ques-
tion are acknowledged, but the packet in question has not been, then it may be safe to assume that
the packet has been lost. If the network can cause out-of-order delivery to occur then this must be
considered before assuming that a packet has been lost. Much research based on TCP/IP has

addressed these issues.

The packet loss detection can be incorporated into the slave’s scanning process. As the
slave scans to see if any blocks have been updated, it can also check if any blocks are in the
“update in flight” state and should be treated as lost. In this case, they are implicitly switched to

the “update required” state and a new update packet is generated.

The acknowledgment protocol must differ from byte-stream reliable protocols such as TCP/
IP. TCP/IP uses cumulative acknowledgments; a TCP/IP receiver sends back the sequence ID of
the latest packet which has been successfully received and had all previous packetsin the sequence
also successfully received. In this way, each acknowledgment of a given packet also acknowl-
edges all prior packets. This can be useful if an acknowledgment is dropped as later acknowledg-
ments may accomplish the acknowledgment. However, in our case, this would create false-
dependencies. Thus each packet must be individually acknowledged. A bit-vector representation
can be used to acknowledge multiple packets in a single acknowledgment. |.e. an acknowledgment
packet could contain the sequence ID of the first and last packet to be acknowledged and then a bit

vector specifying which of the intermediate packets should aso be acknowledged. The acknowl-

41

edgment of a given packet could be contained in multiple acknowledgment packets to protect

against loss of acknowledgment packets.

Graphical updates whose data is partially corrupt but still usable could be displayed but not
acknowledged. In this way, the user could obtain a mostly-correct display very rapidly and the

fully correct display would follow as soon as the retransmission is successful.

42

cHapters Color Text / Graphics, and
Video Qupport

5.1. Bandwidth Requirements of Uncompressed Color
The bitmap approach previously described, as demonstrated in the InfoPad project, yielded

an interactive display supporting an effective graphical user interface. However, the 640x480
monochrome display requires several hundred kilobits per second of bandwidth for interactive
operation. While a color display is preferable from user and application perspectives, it does sig-
nificantly increase the demands on the communications link. Without using compression, the
monochrome display requires one bit per updated pixel. Thus a 200x200 window, updated at 10
frames per second (fps), would require 400kbps - which is feasible using high bandwidth indoor
radios. However, using atrue-color display, each pixel requires 24 bits - 8 for red, 8 for green, and
8 for blue. Thus the same 200x200 window updated at 10 fps would require almost 10Mbps, or
given the same 400kbps link, an update rate of less than one half of a frame per second would be
possible. Using a conventional 8-bit per pixel paletized display, about 3.2Mbps is required for a
10fps update rate and 400kbps will alow slightly more than one frame per second - neither of

which yields a good system solution.

43

128

32 <+——>
i ' Y Y 7
el ™ |Codebook [#—240|[Luminancet_______p,
vl 6 bits/pix
64 2
T&» | | YIQ Display
| | —» - 150|| Chrom. H- 2x2 t»=| to | A} (noteunusual
v / ratio)
v
64
16 A<—>
4—)p Q Q
301 Q 7™ |codebook ™ 120 Cg_]r;m_. %2 _>v
v 6 bits/pix

Codeframes Codebooks
8-bit codes per 256 entries
4x4 block of 4x4 pix
6-bit pixels

FIGURE 5.1. InfoPad full-motion VQ video support. Detailed in [15]

5.2. Full-Motion Color Video Support via a Separate Display

One way to enable full-motion color video, while not impacting the display of text / graph-
ics used in applications, is to retain the monochrome display for text / graphics and use a separate
display for full-motion color video. The InfoPad project used this approach to allow independent
research into text / graphics and video delivery. From the perspective of wireless link research, the
text / graphics traffic necessitated low latency delivery of bursty traffic, while the video traffic

required high, but more or less uniform, bandwidth.

5.2.1. Lossy Vector Quantization for Image and Video Compression

The InfoPad project used lossy Vector Quantization (V Q) to deliver full-motion color video

with minimal power consumption and hardware costs! [15]. Vector quantization entails repre-

senting groups of pixels, such as 4x4 pixel blocks, within the image using a single index into a
“codebook”. The codebook contains sets of the groups of pixels. Since the number of bits
required to specify the codebook index is much smaller than the number of bits to specify the col-
ors of the pixelsin the group, compression is achieved. However, since not all possible combina-
tions of pixels can be represented in the codebook, the compression islossy. (If all combinations
were represented then the codebook index would have to be as large as all of the pixelsin agroup
combined.) Typically each group of pixelsin the input image is assigned the index of the code-
book entry which has the group of pixels that is most similar to it, as determined by a minimum

mean squared coding error.

While vector quantization does not yield the highest quality video for a given bit rate, it
does perform significant compression with low-complexity decompression. The coding is asym-
metric in that compression is computationally intensive but decoding is not. Since the decoder is
typically a portable device, and coding of movies needs only be performed once, it is well suited
for a remote wireless portable device. Additionally, vector quantized video does not cause error
propagation within each frame or across frames. Bit errors are localized to a particular region and
will not persist into the next frame. However, bit errorsin codebook updates will persist across all

frames that use the codebook entriesthat arein error.

Decoding of the vector quantized bit stream can be performed in hardware as a set of mem-
ory lookups and an optimized coordinate space transformation. The InfoPad |low-power hardware
decoding operates with a power consumption of less than 2mwW. VQ encoding can be computa-
tionally intensive since a codebook search has to be performed for each group of pixelsin the

image. However, techniques described below show how trade-offs between coded image quality

1. Whilethis section presents my work in real-time VQ video transcoding, it should be clear that the choice of VQ dis-
play, the hardware, coding, and format were determined by Chandrakasan and Brodersen before my joining the

group.

45

and encoding time can be achieved through the choice of the codebook and codebook search algo-
rithm. Both high complexity (low-speed), high-quality coding, as well as low-complexity (high-

speed), lower quality compression techniques are described.

The details of the InfoPad VQ video decoder implementation are shown in Figure 5.1. A
display of 128x240 pixels is generated from a modified luminance (Y) / chrominance (I1Q) color
space where the | and Q have been decimated by 2 in both the horizontal and vertical directions.
The decimation is to exploit the reduced sensitivity to chrominance information of the human eye
to reduce system bandwidth requirements. The exact coefficients used to convert the Y1Q into
RGB were determined as a compromise between hardware power savings and the benefits of
decoupling and subsampling the chrominance components with respect to the luminance compo-
nents. The 128x240 Y image and 64x120 | and Q images are each generated through vector quan-
tization decoding via a table lookup. All vectors in the system are 4x4 sample blocks where this
corresponds to 4x4 pixels in the case of the Y component or 8x8 pixels in the case of the | and Q
components, due to upsampling. The vectors for the Y, |, and Q images are selected from three
256-entry codebooks. Thus the images are specified by 32x60 8-bit Y codes and 16x30 8-bit |
and Q codes. Typically the codebooks are updated infrequently so that only the Y, I, and Q codes
are updated on a frame by frame basis. This requires 2880 bytes total, allowing 30 fps operation
given a 690kbps downlink. If the vector quantization is not used, and the video is specified by 24-
bit true-color pixels, each frame would consume 92160 bytes, requiring more than 22 Mbps for a

30 fps video stream. Since only the codebook and indices are retained in memory, and decompres-

sion is performed on the fly, memory requirements are significantly reduced’.

1. Notethat this approach, while implemented in hardware as a compressed framebuffer, istreated in this chapter and
not Chapter 6 because the video is sent in complete frames, and thus none of the issues related to independent manip-
ulation of subregions of the display are relevant.

46

Input Video Frame

| Resize Image |

128x240 (64x120 for fast coding)

Y
Colorspace Conversion
Y =128x240 (64x120 for fast coding) Optional Codebook
I, Q=64x120 (32x60 for fast coding) Y Adaptation
=777 &X|codebook

V ector Quantizati oN|-g———

FIGURE 5.2. Vector quantized (VQ) video encoding

5.2.2. VQ Video Encoding

The steps required to encode a VQ video stream are shown in Figure 5.2. Since the VQ
video compression format does not use inter-frame compression, such as motion compensation,
the input frames are encoded independently. The input video frame is first resized to the size of
the VQ display, 128x240. For fast coding, described below, a half-sized image is produced. Next
the image is converted into the Y 1Q color space via matrix multiplication or a table-lookup equiv-
alent. Finally the image is quantized by considering each of the 4x4 sample blocksintheY, I, and
Q image planes separately, and selecting the entry in the appropriate codebook that exhibits the
least mean-squared error. The codebook can be chosen adaptively from the video clip or statically,

yielding higher image quality and reduced coding time respectively.

5.2.2.1. Adaptive VQ Encoding
Adaptive VQ encoding entails generating the codebook based on the video sequence to be

coded. Inthisway the codebook will most effectively represent the images in the video. A single

47

FE_JdFfFEnaNTEw
El‘.l"'i'. L] LN
-
L}

=

"&EED

AN EEE

i
n
-
L
1
=
~
L1
-
L
-
r
|
=
-
3

EnJiEERmArENEn
I I O O W M

FIGURE 5.3. Single frame from the video clip and luminance (Y) codebook adapted toit.

codebook can be used for the entire video or else the codebook can be periodically updated on a
scene-by-scene basis, or whenever the coding error exceeds a given threshold. In either case, the
number of frames used to determine the codebook is typically limited to reduce the time to gener-

ate the codebook.

The K-means clustering algorithm is used to generate a representative codebook from a
sequence of input frames. All 4x4 blocksin the frames of the input video are considered as train-

ing vectors. TheY, I, and Q codebooks are generated separately.

The K-means clustering algorithm adapts the codebook as follows: An initial codebook is
used to code the input vectors. Then each codebook entry is recomputed as the average of all
image vectors for which it is the best match. Thus each codebook entry is modified to better repre-
sent the vectors that match it. All vectors are then recoded and the codebook is updated until the
total coding error stops decreasing. The initial “seed” codebook can be specified externally or

defaults to the static codebook used for the fast coding described in the next section.

Some extra steps are used to ensure that the codebook best represents the diversity in the

image. The 256 codebook entries are compared to each other, and if two are too similar then oneis

48

vO|vl]|v2]|v3

v0145 | v2367
v4 |v5|v6 |v7 ,—D
v8|Vv9 |VA |vB

v89CD |vABEF

vC|vD |VE|VF

Solidindex: (v0145 + v2367 + v89CD + VABEF) / 4
Horizindices: (v0145 +v2367)/ 2,
(v89CD + vVABEF) / 2
Vertindices: (v0145 +v89CD) / 2,
(v2367 + VABEF) / 2
Diagl Indices. (2*v0145 + v2367 + v89CD) / 4,
(2*vABEF + v2367 + v89CD) / 4
Diag2 Indices: (2*v2367 +v0145 + vVABEF) / 4,
(2*v89CD + v0145 + VABEF) / 4

FIGURE 5.4. Gain / shape codebook used for fast VQ encoding.
It consists of 56 solid gradients and 50 each of vertical, horizontal, and both diagonal
gradients.

“freed” up for use by some other vector. The vectors which matched the freed codebook entry are
then assigned to the one that it was similar to. Next, the unused codebook entries are filled with the
input image vectors which had the greatest coding error, to ensure codebook diversity and reduce
the worst-case coding error. Figure 5.3 shows the luminance (Y) codebook adapted from a video

sequence.

5.2.3. Fast Fixed-Codebook VQ Transcoding

As presented, the VQ video encoding time is dominated by the time to search the codebook.
In excess of 10 million pixel differencing operations are required per frame for the 128x240 video
format. Thisresultsin acoding rate of only afew frames per second using optimized C code on a
Sun UltraSparc 2 workstation. However, the search can be accelerated by tailoring the codebook

design for fast search.

Gain / shape codebooks orthogonalize the “shape” of the codebook entries from the extent

or “gain” of the entries. In this way if there are a few basic shapes, and the best gain for each

49

Fast Pr eset
_Codehook codeboo

FIGURE 5.5. Comparison of adaptive and fast codebooks.
L eft usesfixed, fast codebook, while center uses another video's codebook, and right
uses a codebook adapted for the video in question

shape can be quickly determined, then matching can be greatly accelerated. The gain/ shape code-
book used isshownin Figure 5.4. It consists of 56 solid gradients and 50 each of vertical, horizon-
tal, and both diagonal gradients. The best match is determined by subsampling the 4x4 pixel
blocks by two and using each of the four values to select the best gain for each of the five shapesin
asingle lookup. The indices used for fast match lookup are shown in the figure. Tables map the
index value or indices values to the best codebook for each shape. The error is then computed for
the best candidates of each of the five shapes and the codebook entry giving the least error is cho-
sen. Because the gradientsin the fixed codebook are smooth, half-resolution comparison is possi-

ble. The fast coding method can achieve 30fps coding for real-time compression

Figure 5.5 shows a comparison of the image quality delivered by coding frames from two

video clips using three methods: fast coding, coding to a codebook adapted to another video clip,

50

| Decode MPEG |

L, Cr, Cb Image
(Cr, Cb at half-resolution)

| Resize Image |

L=128x240 (64x120 for fast coding)
Cr, Cbh=64x120(32x60 for fast coding)

Y
Colorspace Conversion | Optional
Y,1,Q Codebook
Adaptation
Y ~ "X|codebook

V ector Quantizati oN|-g———

.

Y

VQ Video File

FIGURE 5.6. MPEG to vector quantized (VQ) video transcoding

and coding to a codebook adapted to the video clip in question. As can be seen, the fast coding
method yields a coarser looking video, coding to another video can result in some artifacts, while

adapting to a particular video results in the most aesthetically pleasing image.

5.2.4. MPEG to VQ Video Transcoding

Due to the abundance of MPEG video clips, an MPEG to VQ Video Transcoder was
designed both as a source of VQ videos to demonstrate the pad as well as to serve as a vehicle to
explore issues in VQ coding techniques. The data flow used to transcode MPEG to VQ videos is
shown in Figure 5.6. MPEG natively generates separate luminance and chrominance images
where the chrominance images have been subsampled by two in each direction. The MPEG and
VQ color spaces differ, however, as the MPEG color space was optimized solely for human visual
perception while the VQ color space also considers hardware color space conversion complexity.

The utilities used to generate VQ video clips are detailed in Section 9.3.3. and Appendix A.

51

5.2.5. LiveVQ Video Display of MBONE Transmissions

VQ video encoding was also integrated into the MBONE video gateway (VGW) [1] to
allow live viewing of MBONE transmissions. The fast coding method allows real-time display.
The GUI of the MBONE applications can be displayed in monochrome on the main text / graphics

Sscreen.

5.3. Motivation for Unified Text, Graphics, & Video Display

In order to minimize power consumption and complexity while supporting both general pur-
pose user-interface based applications, as well as streaming video, the InfoPad system, as previ-
ously described, employs separate text / graphics and streaming video displays. The text / graphics
display is a 640x480 monochrome, conventional framebuffer-based display. This allows individ-
ual pixel addressability to enable most user-interface based tasks, such as a shared whiteboard,
handwriting recognition, and web browsing. The monochrome nature allows timely delivery of
even uncompressed bitmap updates given a moderately high bandwidth wireless link. The mono-
chrome display is not suitable for full-motion video, and thus an auxiliary display supporting color
and compression is required. For this purpose, a separate vector quantized full-motion color dis-

play was used.

While using separate displays is quite effective to demonstrate the individual components,
the low-power consumption achievable, aswell asthe capability of remote operation of both user-
interface and streaming video tasks, it requires special applications to display the streaming video,
only one video can be displayed at a given time, and the size and quality of the video is con-
strained. Additionally, the user-interface based applications cannot enjoy the benefits of color.
Thus it is advantageous to have a single display which can seamlessly display both user-interface

based graphics as well as full-motion video.

52

5.4. Uncompressed Framebuffer, Compressed Sends

One approach to improve this situation is to compress the bitmap updates before transmit-
ting them. Thus the same basic infrastructure is used, though the updates are compressed before
transmission and uncompressed at the receiver end. This can significantly reduce bandwidth
requirements. Though it should be noted that this often renders corrupt packets useless. Different
degrees of compression and channel coding allow a trade-off between bit rate requirements and
error tolerance. Much research has focused on compression of continuous-tone images such as
photographs. Some techniques include JPEG [40] and Wavelets [60]. Chapter 8 will present
background and a new technique for compression of discrete-tone images such graphs, text, and

most graphical user interfaces.

53

cHapTErs Compressed Framebuffer
Approach

6.1. Minimizing Client Hardware and Power Consumption

While the compressing bitmaps for transmission reduces the bandwidth requirements
imposed on the communications link, it does not reduce the amount of storage required on the
remote client. Thisthen impacts the power consumption and cost of the portable terminal. As pre-
sented previously, the storage requirements of a color screen are 8 to 24 times that of a mono-

chrome screen.

As Chandrakasan [15] demonstrated with the compressed VQ video display, further reduc-
tion in portable client power consumption and complexity can be achieved through the use of a

compressed framebuffer.

A compressed framebuffer stores the data to be displayed in compressed form, and decom-
presses the data “ on the fly” during the monitor refresh readout. In this way, the storage require-
ments are reduced. Additionally, since the amount of memory per frameis reduced, the bandwidth
requirements from the memory can be reduced, and this can result in lower power consumption if

the decompression technique is also “low-power”.

55

However, retaining only a compressed framebuffer means that all possible display configu-
rations cannot be realized and thus the compression technique must be carefully designed to avoid
excessive visual distortion. This chapter discusses the application of the compressed framebuffer

approach to text / graphics display.

6.2. Requirements

A compressed framebuffer imposes constraints upon the choice of compression algorithm
that do not exist if the compression algorithm is used only for transmission of the images. This
section describes some of those additional constraints. (Note that additional transmission-only

compression can be applied beyond the compressed-framebuffer compression.)

6.2.1. In-Place Modification of Compressed Data

Compression algorithms, particularly lossless data compression algorithms, often yield
reductions in data requirements by exploiting inter-symbol correlation. Thus, the fact that one
symbol can be predicted, at least in part, from a previous symbol, means that it can be stored more
compactly if this prediction is incorporated into the coding. Only the information that cannot be
predicted needs to be stored. However, this means that the later symbols depend on the earlier

ones, and cannot be individually decoded.

However, the data in a framebuffer is modified in a random-access manner when a particu-
lar part of the screen is modified. It istypically not acceptable to send the entire contents of the
screen to update a small region. Additionally, since the uncompressed framebuffer is not present,

the modifications cannot be performed in the uncompressed domain.

56

The combination of these two factors requires that the modification of aregion of the screen
does not result in the insertion or deletion of data in the framebuffer, but rather simply the modifi-

cation.

6.2.2. Update-Independencefor Error Tolerance

In Section 3.2.2. it was demonstrated that a large latency penalty isincurred if the update of
one block is dependent on that of preceding blocks. While the updates of blocks in an uncom-
pressed framebuffer are independent, most compression algorithms exploit spatial redundancy
between regions of the image, and thus would be subject to the latency due to loss. Thusthe com-
pression algorithm must be designed such that the interdependence between updates is minimized

or trade-offs between interdependence level and bandwidth utilization can be controlled.

6.2.3. Must Work for Text / Graphicsand Image/ Video

As previously noted, the unified framebuffer contains both discrete-tone text / graphics
regions as well as continuous-tone image / video regions. Thus either the same compression algo-
rithm must work for all regions of the screen or else several compression schemes must be imple-

mented with an automated way to select the best one for a given region.

6.2.4. Must Work for all Possible Screen Configurations

One of the advantages of the compressed framebuffer is reduced storage requirements. This
requires that all possible screen configurations, when compressed, will fit into the framebuffer
memory. Since no lossless compression will always result in data reduction, lossy compression or
a lossy mode must be used. Furthermore, the minimum worst-case compression ratio is dictated

by the ratio of the uncompressed framebuffer size to the compressed framebuffer size.

57

rL‘ Text Editor V3 [badlands.EECS.Berkeley.EDU] - rasterfile.h, dir; fusr/include
File = View + Edit = Find =

IPE @(#irasterfile.h 1.11 69708721 SHI w7

xclock

] Fri Now 3 01:52:50 1335

=
- */Descrw‘pt'iun of header for files containing raster images
®

#ifndef _rasterfile_h
#define _rasterfile_h

struct rasterfile £

ras_magic; /* magic number *f
int ras_width; A width (pixels) of image */
int ras_height; /* height (pizels) of image */ b
int ras,?epthh ;* 'Idepthhm(ﬂ 8, gr’ %4.b'its) ?f pixnel */ B [bauia
int ras_length; * Tengt wtes) of image * y
int ras_type; /% type of file; see RT_* below */ Edit =)
wnt ras_naptype; /* type of colormap; see RMT_* helow */
nt ras_maplength; /¥ length (bytes) of following map */ summary (Tg_vq_in, age, Micro_cmap_image *cmap_image)}
I* color map follows for ras_maplength bytes, followed by image */
3 cnap_sel_bits, c ts16, cmap_bits;
#define RAS_MAGIC 0x59366a95 pin_bits_per_wq_pix, wq_sel_bits, vo_codebook_bits:
/* Sun supported ras_type’s *f derr,
#define RT_OLD a /% Raw pixrect inage in 63000 byte order */ sing %dw%d blocks -» %d of %d possible wq patterns (%.2f%%)\n",
#define RT_STANDARD 1 J* Raw pixrect inage in 68000 byte order =/ va_image->block_width, wo_inage->block_heiaht,
#define RT_BYTE_ENCODED 2 /* Run-length compression of bytes */ YO wmaqe >vg_ codebook-rhash_tahle_entries_i uaed
#define RT_FORMAT_RGE 3 J* ¥RGB or RCB instead of XBGR or BGR */ vg_image-rsize_blacks,
#define RT_FORMAT_TIFF 4 /% tiff <->» standard rasterfile */ 100.0 * wg_ wmaqe syg_codebook->hash_table_entries_used /
#define RT_FORMAT_IFF /= iff (TAAC format) <-» standard rasterfile =/ vo_image->size_blocks):
#define RT_EXPERIMENTAL Dxffff /% Reserved for testing */
er,vq,pw‘x = ceil(log{doubledcnap_image->block_si = ertj
o /% Sun regwstered ras_maptype’s */ its
#define RMT_RAR ouble)cmap image->cnap_table-rhash_table_entries
o /¥ Sun supported ras_| mapgyne 5 *f] h i b ; Tog{2.0) / cmap_inage->block_size; gueyibvshiemiRenorts |
#define RMT_NONE 1} # ras_maplength is expected to be 0 * r‘
#define RMT_EQUAL_RGE 1 /¥ redlras_maplenath/3],greenl],blue]l */ its16 = 16.0 (Sl R) il S [e e O]
i = 16.0 * cnal
* NOTES: cmap_i
* Each Tine of the image is rounded out to a multiple of 16 bits. 'Im;((duu
This corresponds to the rounding convention used by the memory pixrect]ag(z [
* package (Jusr/include/pixrect/memvar.h) of the SunWindows system. k_bits = p1><
i The ras_encoding field Ca'lways set to 0 by Sun’s supported software) va_imal
* was renamed to ras_lenath in_release 2.0. As a result, rasterfiles vg_ima
of type 0 generated by the old software claim to have 0 Tength; for
- derr,
| 1 vg_sel_hit
160 Llues= 5 % 2 2 CPAPBTESTR T total =% 2f)
161 144 uses = 3 2 26 (mapiie'\ih
162} luses= 3 & 2 6 26 -
vl fbadlands/badlandsL/gi Ibert /tgus dup | & b Forintfistderr,
/val/badlands/badlands1/gilbert /tgv> screendunp | tee screendunp.r. "\tFised: vo sel_bit
‘ol Al ands badlandsLfailberty /gy screendunp | tee screendunp,rd | | CN3P-PTES=R.2F totalo% ory
vg_sel_bit

, static To_vg_image *create_tg_vg_structure{Micro_cmap_inage *image)

FIGURE 6.1. Typical screen image consisting of multiple graphical applications

6.2.5. Must be Tailored to Typical Screen Contents

As with all image compression techniques, the compression algorithm must be tailored to
the types of updates encountered using remote rendering. While the VQ video coding used for the
full-motion video display allows for a significant reduction in framebuffer size and bandwidth
requirements, and does satisfy the above requirements, its lossy nature and design for continuous-
tone images would be inadequate for most applications, as most user-interface components would
be rendered unintelligible. A typical screen image is shown in Figure 6.1. This image contains

text and graphics as found in many GUI applications.

58

6.2.6. Decompression Must be Low Complexity / Cost

The second advantage of the compressed framebuffer approach presented was a decrease in
power consumption and complexity. For thisto be the case, the on-the-fly decompression method
must be low-power and low complexity, or else all gains achieved through the compression will be

negated.

6.3. Pseudo-Color or Colormapped Display as Compressed
Framebuffer

One type of compressed framebuffer that is often used in computer displays is called a
pseudo-color or colormapped framebuffer. The term “8-bit color” display typically refersto this.
Most personal computer or workstation framebuffers are either colormapped or support a color-
mapped display mode as it significantly reduces memory requirements as compared to uncom-

pressed or true-color modes.

Colormapped displays use both a framebuffer and a colormap (or color LookUp Table -
LUT). Instead of storing the red, green, and blue values for each pixel, the framebuffer stores an
index into the colormap. The colormap is a small (typically 256-entry) array of color descriptors
which contain the red, green, and blue value of the colors. In this way, each pixel in the frame-
buffer only requires 8 bits. Since the colormap contains only 256 entries, it is small as well. If 8
bits are required for the red, green, and blue intensity index then the colormap would be 256* 3 =
768 bytes and the main framebuffer would be 1* Width* Height bytes. Thisisto be contrasted with
a display where each pixel has its red, green, and blue values specified, which would require
3*Width*Height bytes. Both storage and bandwidth requirements for the framebuffer are reduced.
Since graphics memory often does not reside directly on the processor bus, access to it can be quite

costly. The use of colormapped displays can reduce this cost.

59

The main drawback of the colormapped display method is that the number of colorsthat can
be displayed simultaneously is limited. Applications must then compete for allocation of the col-
ormap entriessinceit is ashared global resource. A centralized text / graphics server performsthis
function. Applications must be able to operate even if they cannot reserve all colors that they
request, and thus operate with whichever colormap entries are active. Often image display appli-

cations dither between colors in the colormap to emulate colors that are not in the colormap.

Colormapped displays have another advantage in addition to reduced memory size and
bandwidth requirements. Using colormapped displays, atechnique called pal ette animation can be
used to perform smooth animation without the use of auxiliary buffers. Palette animation exploits
the fact that multiple pixels on the screen can be changed simultaneously by simply changing one
or afew colormap entries. Thus new frames of an animation sequence are written to the screen in
such a way that they map to the same set of colors as the old frame until a rapid colormap update

occurs and the colors of the new frame are made visible.

6.4. A Compressed Framebuffer Compression Method - TGVQ

This section describes a compression technique which can be applied to text / graphics data,
typically yielding less than a bit per pixel storage requirement, and satisfies all of the requirements
outlined in Section 6.2. The text / graphics compression technique is also well suited for integra-
tion with alossy continuous tone image compression technique as shown in Section 6.4.5.3. The
text / graphics compression algorithm is based on hierarchical vector quantization and is thus des-

ignated TGV Q.

6.4.1. Local vs. Global Color Diversity

Typical text / graphics images can contain high global color diversity but aimost always

contain low local color diversity. Color diversity isthe number of colorspresent in aregion. Thus

60

global color diversity is the total number of colors present in the entire image while local color
diversity is the number of colors present in a small local region of the image. Globally an image
might use many colors, particularly if there are continuous-tone regions in the image. However, in

any small discrete-tone region in the image, only afew colors are used repeatedly.

The conventional colormapped framebuffer technique described in Section 6.3. relies on the
assumption that the global color diversity of an image can be limited to 256 colors without causing
significant visual degradation. However, limiting globally to 256 colors does impose restrictions
on the images - which can result in some degradation particularly for the display of continuous-
tone images. Additionally, limiting to 256 colors still resultsin 8 bits per pixel which istoo high
for many applications as described in Section 5.1. Exploiting limited local diversity, however, can

result in even greater savings, as will be demonstrated.

6.4.2. Micro-Colormaps

A new technique called micro-colormaps exploits limited local diversity by assigning indi-
vidual colormaps to small blocks within the framebuffer as shown in Figure 6.2. In thisway, since
the number of unique colors in each block is typically quite small, only a few bits per pixel are
required. For instance, if only four unique colors are used in an 8x8 block, only two bits per pixel
are required for the pixels in the block. The colors used in the block are listed in the block’s
micro-colormap while the arrangement of the colors, called the pattern, is stored in the main
framebuffer portion. Each block thus needs an indication of which micro-colormap it uses, as well

as the number of bits per pixel (though these two are related).

6.4.3. Vector Quantization of Micro-Colormaps and Patterns

While the above exploits limited local color diversity to effect some compression, by

exploiting spatial locality and redundancy via vector quantization, further coding gains can be

61

W, These use the
N\ same MCM ap
)/ and Pattern

it ="These usethe ¥

]
oh same MCMap

MICRO
COLORMAP

2
1
0]

FIGURE 6.2. Block decomposition into pattern and micro-colormap (MCMap).
Thetwo blockson theright sharethe same micro-colormap and pattern whilethe two
on theleft share only the same micro-colormap. The pattern and micro-colormap for
the lower left block is shown.

PATTERN

NN E N EE
N P = N s
o|o| oo -|]]
JHREN RN JFHRN RN RN RN EN PN
N EEEENEE
NN NSNS

N R EEEREE

O|O|O|O|Of|o|0|O

achieved. The key observation is that both the same micro-colormaps and patterns are typically
used across the image multiple times; the same sets of colors typically find themselves used

together in multiple blocks, and often in the same configuration.

Vector quantization entails storing micro-colormaps and pattern blocks in two tables or
codebooks, and having the blocks in the image contain indices that refer to the entries in the two
codebooks. In this way, multiple blocks which use the same micro-colormap can share the mem-
ory required to store the colors, and blocks which use the same pattern entry can share that mem-
ory. This vector quantization is a lossless process as the micro-colormap and patterns are stored
exactly. Thus conceptually, the framebuffer consists of an array of W/BlockSize by H/BlockSize
pattern and micro-colormap pointers as well as micro-colormap and pattern codebooks of fixed
total sizes. The amount of memory required for each entry will depend on the number of colorsin
the micro-colormap the bit depth used in the pattern. The amount of memory dedicated for the
codebooks is determined by examining the amount of memory required to render typical images

and then adding some “slack” factor. In thisway, typically some part of the codebook will be “in

62

Compression rate dependancy on block size

0O MCMap codes O Patterncodes O MCMap index Pattern index

3.00

2.00 T—

1.50 T—

Bits / Pixel

0.50 T— —

0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Patternindex | 16.00 4.00 178 1.00 0.64 0.44 0.33 0.25 0.20 0.16 0.13 0.11 0.09 0.08 0.07 0.06

= MCMapindex | 16.00 4.00 178 1.00 0.64 0.44 033 0.25 0.20 0.16 0.13 0.11 0.09 0.08 0.07 0.06

O Patterncodes | 0.00 0.00 0.01 0.04 0.11 0.18 0.24 0.33 0.40 0.51 0.57 0.56 0.59 0.68 0.77 0.76

O MCMapcodes| 0.00 0.01 001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Block Size (n x n)

FIGURE 6.3. Compression rate dependence on block size.
This graph shows the dependence of the various components of the coding rate on the
chosen block size. 16-bit indices and 18-bit colors are assumed.

use” and the rest will be “free” - asis required for in-place modification as described next. The
micro-colormap and pattern codebooks can be kept in the same memory or different memory
banks. The former alows for reduced total memory requirements while the later can slightly
reduce the size of indexes required to specify codebook entries. The rest of this section assumes

that a single unified codebook is used.

6.4.4. Determining Block Size

The choice of block size will clearly effect the compression rate. The stacked chart in Fig-
ure 6.3 shows the effect of varying the block size on the compression rate for the sample image in
Figure 6.1. The chart shows the contributions of the four components. the pattern index, the
micro-colormap index, the pattern codes, and the micro-colormap codes. This assumes 16-bit
indices and 18-bit color. The pattern and micro-colormap indices each take 16 bits per block in
order to be able to address alarge enough codebook. Thus with ablock size of 1x1 pixel, the over-

head is 16 bits per pixel but as the block size increases, the contribution of the indices decreases

63

Pattern Novelty

60 %
’ ’

o N

40% /

30% /

20% /

10%

0% N g T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Percent Unique Patterns

Block Size (n x n)

FIGURE 6.4. Pattern code novelty and reuse versus block size.
The graph showstheratio of unique patternsto total number of blocks.

until it is only 1/16 bit per pixel per index at a block size of 16x16 pixels. The micro-colormap
data requires very little storage since a few micro-colormaps are reused many times. The storage

requirements are typically less than 1/100 bit per pixel.

The storage requirements of the pattern bits increase with increased block size. This is
because as the blocks grow in size, the average number of times that a particular pattern is seenin
the image decreases since the block “uniqueness’ increases. Thusthe gains of the vector quantiza-
tion decrease. Figure 6.4 shows the reduction in pattern code reuse, or the increase in code novelty
as the block size isincreased for theimage in Figure 6.1. The net combination of the four compo-
nents levels off at a block size of about 7x7 or 8x8 and stays fairly constant at a rate of 0.8 to 0.9

bits per pixel for the sample image.

6.4.5. Requirement Satisfaction

This section describes how the requirements described in Section 6.2. are all satisfied by the

compression scheme described above.

6.4.5.1. In-Place Modification of Compressed Data

The compression system allows in-place modification as described in Section 6.2.1. In-
place modification works as follows: Local copies of the codebook and index framebuffers are
kept by the text / graphics server. While the index framebuffers are spatially mapped such that the
locations always correspond to a particular region on the screen, the codebook is only mapped
based on which indices point to it. Thus entries in the codebook are assigned dynamically in a
manner similar to dynamic heap memory allocation. Since multiple indices can point to the same
locations in the codebook, reference counts are required to determine when particular regions of
memory are no longer in use. The reference counts are incremented when an entry is referred to
by a new block, and decremented when that block no longer referstoit. Thus the sum of all refer-

ence counts is the number of blocks in the image.

When a section of the screen is modified, the colors in each block are examined to deter-
mine the unordered sets of colors constituting the micro-colormaps. If a micro-colormap with the
required colors for agiven block is already present, it can be reused. In this case, the new block’s
micro-colormap index is set to the index of the existing micro-colormap. Otherwise, a new micro-
colormap entry is“allocated” in the codebook, its contents are sent to the remote terminal and then
the new block’s micro-colormap index is set to the index of the new micro-colormap entry. In

either case, the reference counts are updated as described above.

6.4.5.2. Update Independencefor Error Tolerance

If a transport protocol incorporating explicit dependencies is used as described in Section
13.1.2., the dependencies between an index update and the preceding codebook update used to set
up the codebook entry should be noted. Thus an index update will not be effected by the terminal
until the codebook update it required has taken place. Additionally, a codebook update is depen-

dent upon the index that was pointing to it being updated. Thusif thisis not explicitly coded, it is

65

advantageous to reuse codebook entries in a LRU (least recently used) manner. This also pro-

motes reuse of codebook entriesif an entry is briefly not used but then later reused.

6.4.5.3. Must Work for Text / Graphicsand Image/ Video

While the algorithm, as described, is lossless, and thus could not result in guaranteed com-
pression rates, with the addition of a video coding, this can be achieved. The text / graphics vs.
image / video decision can be made in a manner closely related to the text / graphics coding
method in a way such that those regions that would not compress well with the text / graphics

method would be selected as image / video.

Each block can classified as text / graphics vs. image / video by using the local color diver-
sity used to determine the micro-colormaps. By simply counting the number of colorsin a given
block, and applying some continuity constraints, an effective text / graphics vs. image/ video deci-
sion can be made. Figure 6.5 plots the local color diversity of a typical image with both text /
graphics and image / video regions using 8x8 pixel blocks. Blocks with more than 4 colors are
classified as “image/ video” while those with less than or equal to 4 unique colors are classified as
“text / graphics’. In this way, those blocks with high color diversity, which would require large
and often unique micro-colormaps and patterns, will be coded using a lossy coding. Continuity
constraints prevent small high-diversity patches from being interpreted as image / video and small

low-diversity patches from being interpreted as text / graphics.

Figure 6.6 shows an example of automatic text / graphics and image / video merging based
on color diversity. Thetop image is a section of the original image from Figure 6.5 while the bot-
tom image has the blocks with color diversity greater than 4 replaced with a crude image coded
version. The image coding entailed conversion to YUV space, decimating Y by 3x3and U and V

by 6x6. The three intensities were then coded at 6 bits per sample for a net coding rate of 1 bit per

66

synchronize

Transmission

] x -
) 224.100.100.100/5000 | | Text Editor V3.4 [bad| @ @ >U1 - screendump| = xclock
Jeff Gilbert (UC Berkeley) Bl File o) view) Edit Sun Bpr 7 21:53:19 199
I’ vicmenu
u.44 BT]
It

Rate Control 750 237K

[—
)
1 Encoder
ST [’
T | somea |y v | [
P & 0mp 9_codsbook_bits=0.24 total=1.02

color sets (0.31%)

ot | g | |or:
auaity N R (S

T B

v = ——
[Siceu | Miodo.. | Disniss | e ailberg
] o5 cota] 1a08
‘ ! s 9 1 Session es; tota] 23

Query Problem Reports

Dest: 224100100100 Port:S000 ID: 82083475 TTL: 1 |6; fotal 37 (0.2

Create Problem Report

Name: Je Gibert (UC Berkeley) 0.25 <map,hits:n “Report a GNATS Problem |
Fie Edt View Go Bookmarke Optione Directory Window U patterns (2g.([FePorta GNATS Problem |
T Key o Cobebonk bt 520 info

I Mute New Sources. I” Sending Siides color sets (1,174

Quit
s; total 5517 @
Tile... | Members| Colors | Dismiss o hoaT oai4
| osi total 1562 138 v

Losation: | Bttp://infopad cecs berkeley

ot] et c.....||m| e N..n.mdw

PLAIN TEXT VERSION

NAME

s

TT
) Calculator V3.4 [hadlands EECS.Berkeley.ED U]

va pley -~ VQ end RAW Video
PlyerforX Windowrs

SYNOPSIS
fle] [opions..]

DESCRIPTION

vq_play is used to display VAQ videa (see vq(5)) or RAW video (see raw_video(5)) format iles

TwoTon
For Dither
VWW

1Codor Par 2CdosPa 3CdosPa 4CdosPa >4CdosPe
LEGEND gx8Block 8x8Block 8x8Block 8x8Block 8x8Block

FIGURE 6.5. Using local color diversity to maketext / graphicsvs. video decision.
Theoriginal image, shown above, isprimarily text / graphics with three image/video
regions. Thelocal color diversity using 8x8 pixel blocksis shown below. Blockswith
mor e than 4 colorswould be classified asimage while those with lessthan or equal to 4
colorswould be classified astext / graphics. Continuity constraints would prevent
small high-diversity patches from being interpreted asimage/video and small low-
diversity patchesfrom being interpreted astext / graphics.

67

pixel. As can be seen, even this crude coding does not introduce excessive image degradation since
it isonly occurring in continuous-tone regions. Note that continuity constraints are not imposed so
some isolated text / graphics regions, such as on the web browser buttons, are detected as being
image regions and are coded using the lossy coding. Using a more sophisticated coding such as a
DCT-based approach used in JPEG [40] would result in higher image quality and/or greater com-

pression rate.

6.4.5.4. Must Work for All Possible Screen Configurations

While the lossless text / graphics coding described above cannot bound compression, when
coupled with the lossy image / video coding, the overall system memory requirements can be
bounded. Thus if the memory usage of the lossless portions ever exceeds the allowable amounts,
blocks can be converted to the lossy format which will always fit. For example, using 8x8 blocks
on typical text / graphics screens as described next, the lossless coding codes at |ess than 1 bit per
pixel. The crude lossy image coding previously described codes at 1 bit per pixel. Thusif 2 bits

per pixel of memory were available then all possible screen configurations could be stored.

The flexibility of TGV Q method allows detail to particular regions to be tailored as desired.
In particular if small regions of the screen require high fidelity, they can be losslessly coded

regardless of whether they are text / graphics or image / video.

6.4.5.5. Must be Tailored to Typical Screen Contents

Figures 6.7 and 6.8 show typical images and their compression rates. In the case of both
screendumps in Figure 6.7 as well as the screendump without the continuous-tone images in Fig-
ure 6.8, the compression algorithm results in coding less than one bit per pixel. Even with some
continuous-tone regions, as in the top image of Figure 6.8. The compression rate is still under 2

bits per pixel. If a separate lossy coding for continuous-tone regions is used, as described in

68

cpu

page

| |
fl‘ 224.100.100.100/500

= | Text Editor ¥3.4 [bad|

Tl &l

File =1 Miew =) Edit

01_ =
Jeff Gilbert {UC Berkeley) 'IJ

vic menu

Transmission

100

128

o™

| Size.., | Mode... | Dismiss |

i

1
B bl T m 2
in t+andard 11622000 8 olan loe S ot

M Transmit Rate Control 155 237 kb/s
I~ Lock I | 867 kbps
el o s
Encoder
& nv ~wr IPey - small
~w cellb - h261 & nomal | o RTVC
e SOF w MpEg ~w large
3ession

Metscape: vq_play(1) manual page

File Edit Yiew Go Bookmarks Opfionz Directory Window

Back

I Key: |
= a B 3 I~ Mute New Sources I~ Sending Slides
o || By Gl @ 2| S| = @
el Home Reload Images Cpen Print Find =le)
Tile... Members Colors Dismiss |

Dest: 224100100100 Port: 5000 ID: 829834752 TTL: 16
Mame: Jeff Gikert {UC Berkeley) |

Location: Iﬂnttp: Jrinfopad. eecs berkeley. edusfresearchfapplicaticns ma ||

|
.dr |7 224.100.100.100/5000
Jeff Gilbert (UC Berkeley)

= | Text Editor ¥3.4 [bad|

Tl &l

File =1 Miew =) Edit

vic menu

Transmission

cpu 100
¥ Transmit Rate Control 15Ffs 237 kb/s
I Lock |I e 867 kbps
Rl a= 121ps
Encoder
page 128
o jpeg v small
< tellb -~ h261 « normal | o RTVC
W SO~ mpeg ~ large
'IH Quality] 2 Port... | Type...l
L | Size... | Mode... | Dismiss |
B blas ——— oo e Session
£l A tandacd 11622900 2 olag o B mrrterdfBAS]

Metscape: vq_play(1) manual page

File Edit Yiew Go Bookmarks Opfionz Directory Window

Back

Dest: 224100100100 Port: 5000 ID: 829834752 TTL: 16
Mame: Jeff Gikert {UC Berkeley) |

I Key: |
n I~ Mute Hew Sources I~ Sending Slides
A | Elmlf =] S| - ®
SOrEr| Home Reload Images Cpen Prim. Find =le)
Tile... Members Colors Dismiss |

Location: IThttn: Irinfowad. eecs berkelev. eduiresearchrfamnlications ma

FIGURE 6.6. Automatic text / graphics and image / video merging using color diversity.
Thetop imageis a section of the original image from Figure 6.5. The bottom
image hasthe blocks with color diversity greater than 4 replaced with a crude
image coded version. Theimage coding entailed conversion to YUV space,
decimating Y by 3x3and U and V by 6x6. Thethreeintensitiesarethen coded at 6
bits per samplefor a net coding rate of 1 bit per pixel.

69

2 Adobe FrameMaker - [C:AD ata\ Thesis\ThesisChaps. fm] M= B
[g Fle Edt Fomat View Spesial Graphics Iable Window Help |

2|7 &S| L] 2B PIBI7 U584 ablab|as] . &
J |_+|r|+| FarTitle -

[2 i [z 4 i g [e i [

remotely on a well-connected corpute-sever with client-server commuinication achieved through:

L»Mhmg

wireless links. This then shifts the burden to the design of networking and image compression:
protocols and algorithms to interactively send the multimedia data from the server to the client.
g Interactivity requires low latency, which m turn requires careful selection of what type of graphi-

cal updates to send and when to send them.]

Compression is not enough.y

While Internet access used to be confined to the world of academia, today, thanks to the
Word Wide Web, it has becorne a significant consumer reality and has tightly woven its way into
almost every aspect of life. HTML, HTTP, and TCP/IP prowide a flexible method of delivering
multimedia content. However, the many users connect to the Internet via slow modem links using;
| Internet Service Providers and an increasing number are conmnecting wvia lossy wireless links.

Unfortunately the web was designed for well-connected workstations and is not particularly net-

otk friendly. This leaves home and untethered surfers with a suboptimal setup. Yet, as shown in

i thic thacie if thaca mrctasnlc ara dacicns rtirmiza intaractitg sarn o arsticg tha citiiatise hd
Fiow: A 1. ParTie e A ET o R i =

i3 Start| [E Adobe FrameMaker -... §lifariview Esd- @ z20pm

2 Adobe FrameMaker - [C:AData\Thesis\ThesisChaps.fm]
[g Fle Edt Fomat View Spesial Graphics Iable Window Help

e d i =1 = = W G TS
I—f NE W File Edit V\aw He\p
Hame | Size [Tupe [Modified 123 | o P
| 2] QuickPat bt KB Test Document 12/5/38 5:20 PM F3
- screent g KE faniiiew 4/28/00 222 PM 4
e smalras BKE Ifaniview 10/18/95 1:55 PM =
remotely on a el smalias KB Wfaniew 10/18/96 1:55 PM gh a
(] SurSer KB File 1207498 314 PM =
wrireless links | EDTACC Combined ppt.gz 201KE WinZip File 4727438 10:55 PM on
T TACC-Combined? ppt oz 201KE WiZip File 4/27/98 11:17 PM
[#]tg_vac TKE CFie 10/18/95 5:08 PM
protocols and alg o v h KB H File 11/3/951:31 AM prit.
Q_vao 16KE OFile 10/18/95 5:08 PM
Fle Edt View Help | [#ta_ve_test 148KB File 10/18/95 5:08 PM hi-
e TTm Q_va_teste BKE CFie 10/18/95 303 PM
T o] ¢ Inch Flopay Disk | vt 17KE OFils 10/18/95 4:42 P _|_|
2] Local Disk 4l | >
&2 D] Local Disk 1 obiect(s] selected |37.0kB A
2D on Lefty' [F) Metwork Connection o=
=2 Users on hitz) Network Connextion
Contral Panel System Folder
%] Printers System Folder ternet to the
81, Ui ip Networking Spstem Folder | o
b, it [y into
; il [CHex Gpee Cloa CBn | [Gbeg CRsd Cogad |
<! 0 ‘ Aseect | [T Ciwe [[Back| cE | ¢ ering

multimedia content. il EI_[ILI ﬁl ﬂﬂﬂﬂﬂﬂ using;
Internet Service Pro EI EIEILI ﬂl ﬂﬂﬂjﬂﬂ liriss.
Unfortunately the we _I _I—Iﬂl ﬁl JJJJEM

N Y T QT O 1
otk friendly. This 1 EI ﬂlﬁlﬁl il ﬂﬂﬂﬂﬂﬂ Wi i

i thic thacie if thaca rrofomcle ara daciomed mrF i Ta it aractiTta tarmota odnaral o Fha cifiatioe hd
Flow: A 1 ParTitle e 20f252) 120% | z | Z|@[m@)] « i =

IifartView - Clipbward (1 024x768xEEFF,
Adobe FrameMaker - [C:\... | #fIfariview - Cipboard (1024, | ‘—JU:\gibertiviay

FIGURE 6.7. Two typical images compressed with TGV Q.
Thetop imagerequires 0.84 bits/pixel while the bottom requires 0.94 bits/pixel.

net-

|| 2 My Computer Esd- @ z3apm

70

NM_com - Netscape
ile Edit View Go Communicator Help
€« ¢ A 4 2 £ S & T
Hack Foneard Reload Home Search Guide Print Secuity Stop
" Bookmarks & Location: [Fitg /s crn.com/ L
22 Instant Message Members wsbMail Connections 2
I - s . ™ = . z
add o « | ElVideo on Der |feation achieved throughi <
CNNsidebars 3 I MoCain, in Vietnam, —
toNetscape6 ! ittt | 2oy g sl wen
fraqiiin pnd image cornpressiorn:
Click Here
Pl d
Search === I|he server to the client.
iateh CHH
CMM.com = Find RIS
of what type of graphi-
FEATURES:
e Mo time, no Met stocks for
= space? Create a keeps
WEATHER simple potted herb "
BUSINESS darden in a day
1a, today, thanks to the
SPORTS
TECHNOLOGY In Other News: . .
SPACE + Income levels top pace of spending in U.S bly woven its way into
HEALTH + Miami police chief quits over Gonzalez raid & thod of del
e method of deliverin
ENTERTAINMENT + hass amnesty to free thousands in Yietnam €
BoLmCS Government seeks Microsoft split + McCain Wrong guys won' Vistnam YWar &
- 3 . i oo low modermn links using
_— . rt t it
TRAWEL The Justice Department and 17 states asked a AUYEIS Bk COULID I \mr.num o mm_ :
roon federal judge on Friday to break up Microsoft + Utah police detain suspect in deadly shootin lossy wireless links.
SIS Corp. into two smaller companies as + Study: Mo link between Three Mile Island ace
RS punishrnent for the software giant's antitrust death .
BOOKS winlations, the New York Attorney General's cancer deains is not particularly net-
HATURE. office said. + Hundreds of hoat people shipwrecked off Bat
IN-DEPTH + Federal program aims to remove 7000 guns ketup. Yet, as shown in;
e One company would be in charge of the et . - '
»
[= = | anaratinn tha citiatinn
[it/ o o, comdalmanac/dailys GE il 4

dobe Frame... | eltarifiew Ci. | CiUAgiberpgy | [ECaeuiaior || By Compuer | (I CAWINNTWP.. | (O Higiberi |[FECNN com - . [dsf @& 237Pw

NN.com - Netscape

le Edit Yiew Go Communicalor Help
4 2 A D » £ d I3 & B
Hack Fomsed Reload Home Seach Guide Imagss Pint Sscuity Stop
7 Bookmatks i Loation [rttp: s o o/

WebMail Connections

Members

& Instant Message Bizlaumal Smartlpdate Mktplace

[E8 C2IT Sidebar ‘@] ation achieved through

L»Mb*a

£ums control
advocateswamn and urage COMpression:

click hre. Click Herel @ nuelear threat stil,
exists
e server to the client

[E CNIY Interactive Search Play video
[ocom = T [Find . .
o M ateh of what type of graphi-

] myCNN | Video | Audio | Headline News Brief | Free E-mail | Feedback

MAINFAGE Y [piit 28, 2000 - Updated 05:54 p.m. EDT, 2154 GMT, @054 intemet time
WORLD HRE?EIJ:E At least 5 killed in suburban Pittsburgh shooting spree. Details to come
us.
WEATHER: X -
BUSNESS [Tustice Department seeles Microsoft split E FEATURES: 15, today, thenks to the
seoms bolscts
Lreale a simple
TECHNOLOGY etz 0 G B @ tly woven its way into
SPACE Ina day
HEALTH @ e method of delivering
ENTERTAINMENT
FOLITICS In Other News: low modern links using
Law + One killed, 2 injured in suburhan Pittshure
e i lossy wireless links
. shootings ¥

FOOD Justice Department seeks ‘l .

Microsoft split + Miami police chief quits over Gonzalez ra
ARTS & STYLE P! _
I + Senate panel postpones hearing on Elian iz not particularly net
TR The Justice Department and 17 states asked a seizure [

federal judge on Friday to break up Microsoft

IN-DEPTH Mo inbe e mrasllne marananine ne

» H
onaration tha citnatinnd 7
[|Document: Dane ST |zl « _>|_|
Iarviews - Cliphoard [1024x7584BEF)

g stant| [adebe Frame. . | Rirtariiew - Ci.. | 3 UAgibertpigy

setup. Yet, as shown in:

MNASA unveils quartet of asteroid muwea_lj

aeviator |)My Computer | CACAWINNT . | (1 Hizkgiberi [[BECNN.com- . [$d & 392pM

FIGURE 6.8. A typical screendump with and without some continuous-tone regions.
The screendump with continuous-tone regions (top) requires 1.7 bits/ pixel while the
onewithout (bottom) requires only 0.93 bits/pixel. In acompleteimplementation, the
continuous-tone regions would be coded using a lossy method.

71

MCMap MCMap
Index [Codebook

1

Memory Memory

Counter Lp-| Block >
L — Combiner Output
Pattern Pattern
-
Index Codebook
Memory Memory

FIGURE 6.9. Rough ar chitecture of compressed framebuffer TGVQ decoder.
Notethat any number of the memories shown could be combined into single unified
memory.

Section6.4.5.3., the compression rate would be further reduced and bounded. Thus if the frame-

buffer is allocated 2 bits/pixel then typical images can be fully losslessly encoded.

6.4.5.6. Decompression must be L ow Complexity / Cost

The TGVQ method is readily implementable in hardware. Its implementation would bear
many similaritiesto the VQ Video described in [15] and referred to previously in Section 5.2.. Fig-
ure 6.9 shows a rough architecture of the compressed framebuffer system and some of the princi-
ples of operation are briefly described here. Also note that while multiple separate memories are
show, they could be combined into a single unified memory to promote reuse between the two
codebook arrays, but at the possible expense of power consumption due to tighter access time

requirements.

A counter cycles through the two index memories in order to retrieve the indices for the
blocks as the image is scanned. These indices are used to select codebook entries from the two
codebooks. The counter output is also distributed to the pattern codebook memory so that it can
produce the correct line within the pattern. A block combiner indexes the pixels from the pattern

memory into the MCMap to produce the rendered pixels. It could also incorporate a lossy image

72

coding technique for video as previously described. Since the system works “open-loop”, latency

is not problematic, and this can be used to reduce power consumption though pipelining.

73

74

CHAPTER 7

Hybrid Approach

7.1. Motivation

In Chapter 3, the primitive-based approach is presented which allows for good bandwidth
utilization, but can result in high latency due to loss or queuing delays. In Chapter 4, Chapter 5,
and Chapter 6, bitmap-based approaches are discussed which significantly reduce latencies, but at
the expense of less efficient bandwidth utilization. This then leads to the question of whether a
hybrid approach can yield the benefits of both the primitive and bitmap approaches as shown in the

table below:

This chapter presents some ideas and directions on the implementation of such a hybrid

approach.

Bandwidth | Perceived Client

Utilization | Latency | Complexity
Conventional Primitive Good Bad Ok
Conventional Bitmap Bad Bad Good
Improved Bitmap Ok Good Good
Hybrid Approach ? Good ? ? Good ? ?0k ?

75

7.2. Approach

In order to obtain the best of both the bitmap and primitive approaches, a hybrid schemeis
employed. The primitive approach obtains its bandwidth efficiency by retaining and transmitting
the drawing requests in the compact primitive form, while the bitmap approaches deliver reduced
latencies by reducing false-dependencies and eliminating updates that are superseded before they
can be transmitted. The two key concepts required to combine these are primitive dependency

tracking and primitive squashing.

The architecture proposed is the virtual framebuffer architecture presented in Section 4.3.
with the modification that the virtual framebuffer is not a bitmap-based buffer but rather a primi-
tive-based framebuffer. While the primitive approach simply queues the drawing requestsin asin-
gle linear list, the hybrid approach explicitly notes dependencies by arranging the queued
primitives in a set of directed acyclic graph (DAG) structures called the pending primitive graph.
The primitive framebuffer stores the primitives that have been requested by an application but
have not yet been sent and acknowledged from the remote terminal. Each primitive also has aflag
indicating whether it has been yet transmitted to, but not acknowledged by, the remote terminal.
Other information such as the time of transmission and graphics context information may be
recorded. A secondary bitmap-based buffer is used to satisfy application image queries. The bit-
map buffer contains the current rendered contents of the screen as with the bitmap-based virtual

framebuffer architecture.

76

e 3
2l ’th///.;%la%

4 A Ta A
EC B 2L B

1 2

v
v
314159
FIGURE 7.1. The hybrid approach: pending primitive graph.
Primitivesthat have been queued for transmission to theremote client, but not

transmitted and acknowledged, arearranged in a set of directed acyclic graphswith
links explicitly denoting dependencies and overlap.

7.3. Master Operation

When a new drawing primitive is received from an application, the master places it as a
child of all drawing primitives that must be rendered before it. This would include any previous
primitive which geometrically overlapped the primitive in question. Figure 7.1 shows an example
of a calculator image and its dependency graph. The calculator is comprised of a solid back-
ground, a surrounding border, a number area and a set of keys. Each key consists of a solid back-

ground, a border, and alabel. The keys do not overlap with each other or with the number area.

The master also renders the primitives to the bitmap buffer so that later application queries
for the current contents of the screen can be satisfied locally. The existence of afully rendered bit-

map buffer also allows sessions to be suspended and resumed.

7.3.1. Primitive Squashing

While the bitmap-based approach automatically replaces old updates with new ones via
Adaptive Bandwidth Compression as described in Section 4.3.2.1., the hybrid approach, via the
master, must do this manually. When anew primitive is added to the pending primitive graph, it is

placed as achild of all previous primitives which overlap it. Before placing the new primitive, the

77

FIGURE 7.2. Primitive squashing: removal of unneeded primitives.
When a new primitive obscures previous primitives that have not been sent to the
client, the previous primitives areremoved since their effect hasbeen nullified. The
above shows what happens when a new object (the squar e/cir cle combo) isdrawn,
obscuring some old primitives.

graph is examined and if the new primitive completely obscures any existing primitives, they are
removed. If they have been sent already, but not acknowledged, they are forgotten. If they have
not been sent, they will not be sent. In this way, redundant primitives will not consume valuable

link bandwidth. The process of removing stale primitivesis called primitive squashing.

Only primitives whose removal would not alter the final display rendering can be removed.
In particular, if a non-opaque primitive such as XOR area completely covers an earlier pending
primitive such as aline, box, or text, that earlier pending primitive cannot be removed as it would
change the final display. However, if this is then completely covered with a later opaque primi-
tive, the earlier opague and non-opaque primitives can be removed since they will no longer effect

thefinal display.

78

7.3.2. Dense Primitive Rendering

The virtual framebuffer architecture decouples the application from the remote terminal and
protocols used to communicate with the remote terminal. Thus both operations on single primi-
tives and multiple primitives can be effected. Since the primitives are queued in the pending prim-
itive graph until being sent, during heavy usage, the pending primitive graph could contain many

pending primitives.

While primitives are typically a more compact representation than bitmaps, if an application
draws very fine detail, or uses many spatially small primitives, a bitmap representation of a given
high-detail area may be more compact than the pending primitives specified by the application.
This is particularly possible if bitmap compression as previously described is used. To this end,
the hybrid approach can dynamically convert pending primitives to a pending bitmap update.
Since the master knows the exact screen contents, it can create a bitmap write primitive that speci-
fies the current contents of a particular region, and use it to squash all underlying primitive updates
specified by the application. If later primitives are queued before the bitmap update is delivered,
the new primitives are rendered into the virtual bitmap framebuffer and the updated image super-
sedes the previous one. This can be used to bound bandwidth requirements for high-detail images.

Furthermore, progressive image delivery techniques as described below can be used.

7.3.3. Representing Region Copies

Bit Block Transfers (called BitBIt or Bit Blits) which cause a source region of the screen to
be copied to a destination region of the screen, need to be noted both at their source and destina-
tion. For the destination region, they appear like any other primitive and can be opaque if they are
a direct copy, or non-opaque if they are to be combined with a logical operation such as AND or
XOR. BitBlts must also be noted at the source as a dependency since the block copy must be exe-

cuted after all queued primitives in the region it references but before any subsequent primitives

79

that may further modify the region. This is because the application issuing the copy request
assumes that its primitives will be executed in order and thus all primitives requested before the
copy will have completed but none of the primitives requested after the copy will have begun.

Thus a special copy link is needed which notes both source and destination.

BitBIts prevent squashing of the source region across the source reference in order to assure
that the copied state referenced is rendered. However, the destination region can cause the copy to
be squashed just as other primitives are squashed. If the destination region warrants squashing
then the BitBIt primitive is removed and its reference to the source is removed. This could then

allow further squashing if it was prevented by the existence of the source reference.

7.4. Save Operation

The slave scans the primitive framebuffer as before, and sends any primitives that are not
children of (dependent on) any other queued, but not sent, primitives. The ordering of this scan is
flexible as will be discussed below. Once the primitives are sent, they are marked as such and then
any of their children can be sent. The dependencies are also transmitted with the primitives such
that if any primitive islost, only those later primitives which depend on the lost primitive are not
rendered until the lost primitive is retransmitted successfully. However, the rendering of indepen-

dent primitives need not be delayed.

The primitives are coded in aformat that is appropriate for transmission to the remote client.
Compression and error-corrective coding can be used to trade off error-tolerance, bandwidth

usage, and client computational requirements.

A particular primitive is removed as soon as it and all primitives it dependends on are

acknowledged. When an acknowledgment for a particular primitive is received from the remote

80

terminal, that primitive is marked as acknowledged, and if it is not the dependent of any unac-
knowledged primitives, it is removed from the pending primitive graph. Additionally, if it had any
dependents which were acknowledged but not removed because the parent was not yet acknowl-

edged, they are removed as well.

7.4.1. Progressive Image Transmission

While the image display requests issued by the application are queued as single primitives,
they do not have to be sent to the remote terminal as such. Multiple-pass hierarchical transmission
is often quite useful for bandlimited or lossy links since it allows the user to quickly get a coarse
idea of what is on the screen. If transcoding occurs in the text / graphics server, applications need
not be designed for operation over aslow link. Often applications, such as Adobe FrameMaker ®,
use image primitives for text rendering in order to retain full control over typesetting and font
style. These applications are difficult to operate remotely over bandlimited links if image trans-
mission is not efficiently handled. Additionally, standard video player or video conferencing
applications can be used remotely if the image transmission to the remote terminal is performed in

a bandwidth-conscious manner.

Progressive image transmission can be effected by having the slave, or some independent
lower-priority thread, transcode and compress pending images into progressive formats. For con-
tinuous-tone images, spatial-frequency decomposition such as that used in progressive JPEG and
wavelets could be used. For discrete-tone images, interlacing similar to interlaced GIF and PNG
would be more appropriate and yield superior image quality at a given bit-rate. The choice of
whether to use progressive images and which type to use could be made based on the server CPU

load, client capabilities, link bandwidth availability, and type of image.

81

Once the images have been transcoded, each pending primitive has associated with it a set
of flags indicating which layers have been sent. The layers are sent independently and the remote
terminal acknowledges the receipt of particular image layers, and not just the entire image primi-
tive. The images can be divided further spatially such that particular parts of particular layers
could be independently sent and acknowledged. Thisis particularly useful in conjunction with the

cursor-targeted updates via primitive reordering described in the next section.

The various layers are prioritized differently with respect to other images and other drawing
primitives. Typically higher detail-level layers would only be sent after all other primitives have
been transmitted, as they are only needed for final image quality. In this way, if an animation or
movieis playing, other regions of the screen such as the player’s GUI or other applications will not
experience excessive delay in updating. The high-detail layers typically consume the greatest
number of bytes yet deliver the smallest delta in image utility. Lottery scheduling [69] could be
used to assure that high resolution images are not delayed indefinitely in the presence of other con-

tinuous activity.

Care must be taken if other primitives depend on the transcoded image since the other prim-
itives cannot be rendered until all layers in the image are rendered. Alternatively, the dependent
primitives can be re-rendered after each successive layer of the image is rendered. Also, if the
image is later the source of a BitBlt, the image must be fully rendered before the BitBIt can pro-

ceed.

7.4.2. Primitive Reordering

As previously mentioned, using the virtual framebuffer architecture, the order in which

primitives are sent from the text / graphics server to the remote terminal isindependent of the order

82

that the applications send the primitives to the text / graphics server. This can help to reduce the

net latency due to loss as well as the delay for the user to see the data they are interested in.

The latency due to loss can be reduced by sending primitives in an ordering that as few
primitives as possible are dependent on other in-flight primitives. If along stream of dependent
primitives are transmitted and one of the earlier primitivesis lost, the subsequent primitives must
be delayed until the lost primitive is successfully retransmitted. However, if multiple independent
streams are transmitted then losses will only delay the update of smaller regions of the screen.
While dependencies cannot be removed, by sending primitives in a “breadth-first” manner as
opposed to a “depth-first” manner, the number of outstanding dependencies can be reduced and

improved performance in alossy environment will result.

Additionally, the updates can be targeted such that regions of user-interest receive greater
bandwidth. One way to infer user-interest isto assume that the cursor areais of higher priority and
prioritize updates to that region before updates to other regions. In this way, even a low-band-
width link supporting a complex display can retain interactive operation of a graphical user inter-
face since typically the most responsiveness is required around the location of the cursor. A

similar concept is applied to World Wide Web transmission described in Section 10.5.4.

7.5. Benefits/ Conclusions

Thus it has been demonstrated that the hybrid approach combines the best of both the bit-
map and primitive approaches by simultaneously reducing bandwidth requirements as well as
reducing latency due to queuing and loss. By further separating the applications from the commu-
nications link, generic applications can be used in a bandwidth and loss aware manner. Progres-
sive image techniques and information reordering allow limited resources to be directed at the

goals of the user.

83

cHapTErs lext/ Graphicsimage
Compresson

8.1. Introduction

In the past chapters, application-independent text / graphics and image transmission archi-
tectures have been proposed. While these architectures varied in bandwidth, latency, and client
complexity requirements, all of the techniques transmitted images at least some of the time and
could thus benefit from image compression techniques. The primitive-based approach of Chapter
3 used image transmission whenever the application chose to send images. The bitmap-based
approaches of Chapter 4 and Chapter 5 transmitted images for all updates. The compressed-
framebuffer approach of Chapter 6 could use additional image compression to reduce bandwidth
requirements beyond the compression afforded by the compressed framebuffer algorithm. Finally,
the hybrid approach of Chapter 7 used image transmission whenever the application chose to send

images, as well as when many dense primitives were drawn.

This chapter gives some background on image compression techniques suited for transmis-
sion of text / graphics images and proposes a new algorithm specifically tailored to this class of

images. It will be shown that dictionary-based image compression techniques determine and

85

exploit redundancy in images by decomposing the input image into repeated sequences and coding
them as such. Conventional approaches such as Graphical Interchange Format (GIF) and Portable
Network Graphics (PNG) are restricted to 1-dimensional repeating patterns. The technique
described in this chapter, Flexible Automatic Block Decomposition (FABD), performs two-
dimensional block decomposition to exploit arbitrarily-si zed rectangular repeating blocks. Several
optimizations are used to reduce the computation required for the block matching to approximately
the same as traditional one-dimensional techniques. Employing simple entropy coding techniques
to the compression of typical text / graphics images, a coding rate of 0.03 - 0.20 bpp can be
achieved. Thisis 1.5 to 5.5 times more compact than GIF and up to 3.8 times more compact than
PNG. Decompression is fast and simple, as is required in a web browsing or remote portable ter-

minal environment [32].

8.2. Image Coding Overview

The basis of all lossless image compression techniques is the detection and exploitation of
redundancy in the image to be compressed. The detection typically involves predicting parts of
the image yet to be coded from those that have been previously coded and general knowledge
about the class of images being compressed. The exploitation of the redundancy is effected by
sending only the novel aspects of the data so that the more “predictable” the image by a given

algorithm, the greater the achievable compression.

For instance, if it was known that a synthetic input image always consisted of a discrete set
of squares of varying size, location, and color, then this could be exploited by coding the image as
a few parameters, namely the number, size, location, and color of the squares and the color of
background. Thus the size of the compressed image would be independent of the number of pixels

in the image and the compression could be quite substantial.

86

However, if the image coder only expects the input images to consist of solid horizontal
lines, the “square” images would have to be coded as many horizontal lines. While this would typ-
ically be more efficient than coding each pixel individually, it would not be as efficient as coding
as squares since many horizontally lines would be required for each square. Thus as compression
algorithms contain more information about an image class, they can compress the images more

effectively.

8.2.1. Discrete-Tone Images
Discrete-tone images are those in which the pixel intensities do not vary smoothly, asin a

photograph, but rather assume a small discrete set of values. Discrete-tone color images are com-
puter generated and include screendumps, diagrams, and renderings of text - the types of images
used in the transmissions systems described in this thesis.> These synthetic images typically
exhibit significant redundancy in that large areas of the image are solid or consist of lines or shapes
which can be predicted from other places in the image. Solid regions can be specified compactly
as in the square example above, and text and symbols from one area in the image can be predicted
from those in another area since identical patterns of pixels will appear for the same letters and

words.

8.3. Previous Research / Existing Standards

Two existing approaches to the image compression problem are one-dimensional dictio-
nary-based techniques (used in algorithms such as JBIG) and two-dimensional statistical tech-
niques (used in algorithms such as GIF and PNG). Each exploits certain aspects of the input

images and has strengths and weaknesses.

1. Continuous-tone images can be quantized or dithered to a discrete set of tones but will still exhibit characteristics of
continuous-tone images. Scanned bi-level images are similar to dithered continuous tone images in many ways.

87

8.3.1. One-Dimensional Dictionary-Based Techniques
Dictionary-based image compression techniques find repeating sequences in images by cre-
ating a“dictionary” of common strings and then coding the sequences by their index into the dic-

tionary. Theimageis considered asingle, albeit long, sequence.

The Lempel Ziv Welch (LZW) data compression algorithm maintains an explicit dictionary
of recently used strings. The dictionary initially contains only the single symbol sequences for all
symbols. The coding proceeds by finding the longest sequence in the dictionary that matches the
next symbolsto be coded. Thedictionary isgrown by adding a new sequence consisting of the old
sequence with the addition of the symbol that follows it (as determined by the decoder once the
next sequence is received). In thisway, the dictionary has a 'prefix closed' property whereby the
prefix of every sequence in the dictionary is also in the dictionary. Thus the encoder and decoder
can both build the same dictionary automatically without it being explicitly sent. The dictionary
can be reset or frozen by the compressor. Compuserve's Graphical Interchange Format (GIF) uses
the LZW compression algorithm on the pixel values in the image in standard left to right, top to

bottom raster-scan order.

Since GIF uses a 1-dimensional coding, horizontal patterns are effectively compressed but
vertical patterns are not; while horizontally adjacent pixels appear consecutively in the scan order,
vertically adjacent pixels are separated by large gaps consisting of the rest of the pixelsin theline.
For instance, a solid blue horizontal line appears as several consecutive blue pixels while a solid
blue vertical line would cause several isolated instances of blue pixels, separated by the scan line
width. Additionally, a text character would have to represented as many horizontal patterns
instead of a single two-dimensional pattern. The method described in this chapter overcomes both

of these shortcomings.

88

The Lempel Ziv 77 (LZ77) data compression algorithm works by considering the datato be
encoded as the dictionary. Instead of specifying sequences as indexes into a dictionary, the
sequences are specified as parts of the data stream which have already been coded by sending their
“length” and “distance”. For example, a sequence could be specified as “17 symbols starting 34
symbols from the last symbol coded” where its length would be 17 and its distance would be 34.
Additionally, single symbols can be coded in case they are not present in the recent history. Porta-
ble Network Graphics (PNG) [59] combines LZ77 with Huffman coding [39] of the length and
distance parameters to more compactly code common values. Additionally PNG performs sub-
byte pixel packing so that for images with 1, 2, and 4-bit pixels, multiple pixels are joined into one
byte before compression. Aswith GIF/ LZW, horizontal patterns are effectively compressed but
vertical patterns may not be and would thus suffer from the same problems. PNG performance
typically outperforms GIF by 10-30% and additionally has improved progressive display capabili-

ties and patent-free status.

8.3.2. Two-Dimensional Statistical Techniques

Statistical prediction has been effectively used to compress images by using a context
around a given pixel to predict its value. When the value is often the same as the predicted value,

little additional information must be sent and low coding rates can be achieved.

The Joint Bi-Level Image Processing Group’ s JBIG codes pixelsin abi-level image using a
10 or 12 hit context and arithmetic coding [4,43,61]. The neighboring pixels are used to estimate a
probability distribution for the current pixel. This distribution dictates the codes to be used for 0
and 1 pixel values. Using arithmetic coding, codes can be fractions of abit. If aparticular pixel is
predicted as being more likely to be a 0, the 0 code will be shorter than one bit in length while the
1 code will, by necessity be greater than 1 bit. In this way, if the prediction comes true, only a

fraction of a bit will be required for the pixel. When the prediction is not correct, a pixel will

89

require more than one bit. The more skewed the probability, the shorter the “likely” code is and
the longer the “unlikely” code is. Additionally, the “likely” code will occur more often and the
“unlikely” code will occur less frequently. The combination of these two effects results in fewer
total bits being required for coding. JBIG can be applied to grayscale or pseudo-color images
using bit-plane decomposition. As will be shown in Section8.7. and Figure 8.12, this can lead to
redundancy and poor coding when a similar structure appears across several bit-planes. However,
despite this problem, JBIG performs well on both bi-level and color images. Its performance is

particularly impressive on scanned and dithered images.

While JBIG uses statistics adapted over the entire image, each pixel must be coded individ-
ually. This is to be contrasted with the dictionary based techniques which can code entire
sequences of pixels using a single code word. For instance, for a single character to be coded by
JBIG, a code for each pixel has to be specified. While each code could be a fraction of a bit in
size, thisis to be contrasted to 1-dimensional dictionary-based techniques where roughly one code
would be required per scanline of the character or a 2-dimensional dictionary-based technique,
such as that in this chapter, where one code would be required per entire character or for several

characters.

The Piecewise-Constant (PWC) image model [6] extends statistical coding beyond bi-level
images. Inthismodel, arithmetic coding is used to code the pixel colors of a palette image by pre-
diction based on neighboring pixel colors. It assumes a model that images consist of small regions
of pixels of the same color. The statistical framework is constructed through the use of four per-

pixel questions:

Q1: Isthe current pixel’s color identical to that of a specified rectilinear connected neighbor?

Q2: Isthe current pixel’s color identical to that of a specified diagonally connected neighbor?
Q3: Isthe current pixel’s color identical to a guessed value?
Q4: What is the current pixel’s color?

90

Using context-based arithmetic coding, the answers to these questions can be coded effi-
ciently. Assoon as one question is answered affirmatively for a given pixel, the other questions
need not be answered. Q1 and Q2 exploit the fact that pixels are often the same color as neighbor-

ing pixels while Q3 exploits the fact that often in a region a small set of pixels are used. In this

way a “guess’ pool is kept of recently seen pixel colorsl. Finaly if Q1 through Q3 are all
answered negatively, another method, such as linear prediction, must be used to answer Q4. Since
statistical methods are employed, dithered images can be coded efficiently. However, as with

JBIG, global statistics are used but each pixel must be coded individually.

Other approaches to bi-level image coding have focused on the subset of images consisting
of primarily typed or printed text [18,38]. Image segmentation into “marks’ is used to locate and
individually code the characters. The residual is then coded in alossy or lossless manner. While
this allows full two-dimensional matching, this explicit segmentation limits the class of applicable
images to those similar printed text. (Non-segmentable regions can be coded using other tech-
niques.) Additionally the size of the segments is typically limited to single characters, reducing
potential coding gains compared to using larger regions. The segmentation is required to make the
matching computationally feasible by restricting the pattern matching to occur at fixed “mark”

boundaries.

8.4. Flexible Automated Block Decomposition

In order to obtain high lossless compression rates, it is necessary to determine and exploit
the redundancy found in the input image. While GIF and PNG implicitly assume that the redun-
dancy is one-dimensional, and JBIG and PWC code pixel-by-pixel, assuming some local two-

dimensional redundancy as well as global statistical redundancy, it is apparent from looking at

1. Thisissimilar but devel oped independently from the color age notion introduced in Section8.6.2.1..

91

! T
rinn ’aster @

util.c

magic number =/
width (pixels) of fimage]*/ 11
; A ' _—
Qg;?ﬂ%ﬁ%?f? 24 gqﬂggﬁ UF pinel */ B [bauianus.ccCS.Berkeley.ED
length (hytes) of image */

tex

type of file; see RT_* below */ Edit =) Find
type of colormap; see RMT_* below =/ |
length {bytes) of following map */ sumnary(Tg_vg_im

FEEEEEEEE

ngth _bytes, followed by image *

cmap_sel_hits, cscreendun'ts
pis_bits_per_vg_pix, vg_sel_t

derr,
xrect image 1n 68000 byte order */ sing #dwisd blocks -» &d of %
wrect image in 68000 byte order */ vq_image->block_width, wgq_
ngth compression of bytes */ vi_image-»vg_codebnok->has
r RGB instead of XBGR or BGR */ vo_image-»size_blocks,
-» standard rasterfile */ 100.0 * wg_image->vq_codeh
AAC Format) <-» standard rasterfile =/ vo_image-rsize_blocks)
ed for testing */

er_vg_pix = ceili{log{{double
/ its =

oublelcmap_image->cmap_table
Tog{2.0) / cmap_image->bla

plength is expected to he 0 */ = T
s_maplength/3],green[],blue[] */ 1ts16 = 16.0) i i
= 16.0 * cma
amap_i

FIGURE 8.1. Typical image and its redundancies.
Thevertical lined blocks are copy blocks, the horizontal lined blocks ar e fill blocks,
and the hashed block isa punt.

synthetic images that much block-level global two-dimensional redundancy is present - whole
blocks are repeated throughout the image. These blocks may be in the form of text or shapes.
Additionally, large solid blocks are a form of redundancy and their efficient coding can aid com-

pression.

The FABD algorithm, described in this chapter, decomposes an input image into two-
dimensional blocks by scanning the image from left to right, top to bottom and dividing the image

into a set of three types of blocks:

1. Copied blocks
2. Solid fill blocks
3. Punts

Figure 8.1 shows a typical image with the three types of blocks. Copied blocks (shown in
with vertical lines) are regions of the image which appear verbatim before the current location. No
restrictions are placed on the size or location of the source and destination blocks except that the

start of the source block must appear before (above or on the same line and to the left of) the start

92

of the destination block. Solid blocks (shown with horizontal lines) are regionsin the image which
consist of asingle color. Finally, punts (show with hashed box) are the areas in the image which
do not fall into either of the first two categories. This decomposition can lead to efficient coding if
the blocks are large such that a small number of blocks are required to represent an image. By
parameterizing the image in terms of these three types of blocks, efficient entropy coding is possi-

ble.

Decomposition proceeds in a greedy manner from the top-left of the image to the bottom-
right until all pixels have been accounted for. The area currently being classified is called the des-
tination region. For copies, the location being copied from is called the sourceregion. The desti-
nation region isincreased in size until it no longer is consistent with a solid fill or block copy. All
width and height combinations are tried to maximize the number of uncoded pixels covered by the
block. Sincethe regionsare arbitrarily sized rectangles, overlap is possible. Once a pixel has been

covered by one block, it is neither advantageous nor detrimental to recode it.

Figure 8.2 shows the result of automatic block decomposition. Pixelsin ablock denote pix-
els from the same copy or fill block though the particular colors are not important. For copies, the
source of the copies is not shown and for fills, the color is not shown. Punted pixels are shown in
white. The decomposition leads to average block sizes of 200-400 pixels so that a compression
rate of 0.1 bpp can be achieved if the blocks can be coded at 20-40 bits per block. Typical images
result in only about 1% pixels punted which, even at a coding of 3 bits/pixel, only accounts for

0.03 bits/pixel.

93

ning rester immesp | Y 1 'Erﬂ
?j -
hm

mierm_amps wille

wm | "
w ML N

YO (Lirw

FIGURE 8.2. Automatic block decomposition.
Solids blocks denote regions of same copy or fill. White pixelsare punts.

8.5. Accelerating the Search

While it may be evident that the previously described decomposition could lead to effective
compression, it is not immediately clear that it can be done in a timely manner. As stated, the

algorithm requires a full block search over the entire image for each pixel coded, requiring
W2+ H% BlockSize comparisons and supporting instructions. For a 1000x1000 pixel image with
an average block size of 200 pixels, 2* 1014 comparisons would be required, which on a 100MIPS
machine would take several weeks. However, the BlockSize factor drops out since search is only
performed on pixels not yet coded, reducing the time to several hours. Thisis still not acceptable

for many applications. The optimizations described in this section reduce the time to a matter of

seconds.

Typically implementations of a GIF encoder [57] compress at rates of approximately 200-
400 kilo-pixels per second (kps) on a Sun UltraSparc 2. For the 1000x1000 pixel image, this results

in compression in 2.5 to 5.0 seconds. Without optimization, the FABD algorithm would code at

94

approximately 0.1kps. However, using the four optimizations presented here, the rate can be

increased to that of GIF, 200-400kps.

8.5.1. Big Fill, No Copy Search

For large solid regions, the search for a copy match is not necessary since the solid regions
can be coded quite efficiently as fills, and thus coding them as copies yields little benefit. Addi-
tionally, the search is likely to be lengthy since the solid regions are likely to match alarge portion
of the destination region. In regions covered by fill blocks of at least 20 pixels in width or height
or 50 pixels in area, the copy search can be suppressed with negligible loss in compression. This

typically increases the compression speed by afactor of 5 to arate of 0.5kps.

8.5.2. Fast Match Lists

Although blocks can be any size, most useful blocks are larger than some minimum size
such as 4x4. Otherwise stated, a source location is only worth investigating if a 4x4 region
anchored by the source matches a 4x4 region surrounding the destination location. A minimum
size of 4x4 was empirically determined to have a negligible effect on compression performance
while increasing speed. Larger minimum sizes can result in faster compression, but lower effi-

ciency.

To exploit this observation, the following optimization is performed: First, all overlapping
4x4 blocks in the image are categorized by pattern by placing all 4x4 blocks of the same patternin
fast match lists. Thelists are sorted in reverse raster-scan order (bottom to top, right to left). Next,
block decomposition is performed. However, to perform the copy search for each destination, it is

no longer necessary to search over all possible source locations. Instead it is sufficient to search

95

Heads
(Pattern Info) &@—bibﬂp I XX

v v N
(7,|42) (17, 72) (65, 52) (3,0) Match Lists

(list matching dest blocks)

4— 4

(23/34) (1.O) (20)

(0, 0) Top of screen = bottom of lists

FIGURE 8.3. Match lists used for fast match.
Four patternsareshown horizontally and the locationsthey arefound in theimage are
shown vertically.

over those with the same initial 4x4 block, saving much timet. Using the fast search lists reduces

the search time from 30 minutes to between 10 seconds and 10 minutes depending on the image.

The fast match lists must be generated quickly. An efficient way to represent the match lists
isto create alist of all used 4x4 patterns and associate with each member of this list another list of
pointers to where the patterns are used in the image. (See Figure 8.3.) Thelist of patternsis called
a head list while the patterns themselves are called heads. These heads form the beginning of

match lists which link the destination locations together.

To generate the list of lists, the image is scanned from left to right, top to bottom. The 4x4
pattern at each pixel is compared to each of the heads, and if it matches, the pixel's location is
prepended to the beginning of the head’ s match list. If it does not match any, a new head is created

with the pattern.

The heads are kept sorted in order of last match so that if a pattern repeats, it will be found
quickly. Hashing functions allow the head list to be split into multiple shorter head lists using a
14-bit hash on the value of the 4x4 pixel patterns (see Figure 8.4). These optimizations allow the

fast match list to be generated in a second or two for typical images.

1. Notethat the degenerate case of large solid regionsis handled by the optimization of Section8.5.1.

96

Hash Table

Hash1 HashN

Hasho /
\4

> oo 9P

Match Lists

(7, 42) (17, 72) (65, 52) (3,0) (list matching dest blocks)

(23,34 (1L,0) (20 Top of screen = bottom of lists

0, 0)

FIGURE 8.4. Hashed match lists - the two pairs of patterns each hash to the same

Max Search Screendump S(é(r)ent]en(rjggp Paper5 cggp?r(fss

Depth bits/pixel i bits/pixel s
10 0.144 bpp 2.6 sec | 0.108 bpp 3.9sec
50 0.128 bpp 2.9 sec | 0.086 bpp 4.6 sec
100 0.126 bpp 3.2sec | 0.083bpp 5.4 sec
200 0.125 bpp 3.6 sec | 0.080 bpp 6.2 sec
500 0.124 bpp 4.4 sec | 0.078 bpp 7.9 sec
1000 0.124 bpp 5.2sec | 0.078 bpp 9.4 sec
100000 0.123 bpp 34.4 sec | 0.077 bpp 82.6 sec

TABLE 8.1. Effect of search depth limitson compression timeand rate

The net result of the fast-match lists is a speedup of 3-200x to yield atypical coding rate of
1.5 kps to 100 kps. The wide variation is due to the dependence of the search time on the input
image. In particular, if there are many blocks with the same 4x4 patterns, the block matching can

take significantly longer.

8.5.3. Bounded Search Depth
Every candidate location in the list has a high probability of yielding a block copy match.

Since the fast match lists are ordered from bottom to top, physically closer candidates will be

97

searched first. Asthe compressiontimeislargely determined by copy block search time, it allows
a trade-off between compression time and resultant bit rate. Limiting search depth proves to be
very effective in reducing the compression time while not noticeably impacting the compression
rate. Limiting also prevents troublesome regions in the image from taking too long. A limit of
1000 does not sacrifice compression while keeping the compression time usually well under a
minute. Limits as low as 50 dramatically reduce the compression time while only minimally
impacting the compression rate. Table8.1 shows the effect in terms of compression rate and time
of different limits on two typical images. The resultsin Section8.7. are given for limits of 100 and
1000. Ascompressed datais generated on the fly, the limit could be dynamically varied to match
compute time and compressed data rate on an outgoing channel for interactive applications. The
bounded search depth results in a speedup by a factor of 1.5 to 50 yielding a coding rate of 75kps

to 150 kps. Thus the coding rate becomes much |ess image dependent.

98

MICro_ Cms -

R
g)
‘!!m:?!ﬁ
textedit.dc
Jaulanus.cclCh,

FIGURE 8.5. Coarse/ fine matching.
The solid boxes represent 4x4 tiles that match exactly via coar se match while the
striped boxesrepresent regions of partial matcheswhich would only be found through
refinement. The coarse match reveals 16x8 pixel match while refinement growsit to
18x11 pixels

8.5.4. Coarse/ Fine Matching

The time to perform the block search can be further reduced by using fast-match lists of
Section8.5.2. to perform the actual block comparisons (as well as specifying which blocks should
be compared as just described.) Recall that the fast-match list membership of a given block
uniquely determines the colors of the 4x4 pixels at a given area. Thus a comparison of the per-
block fast-match list pointer can be used to quickly compare the entire 4x4 blocks. A two-stage
processis used whereby afirst coarse pass grows all candidate regions 4x4 pixels at atime in order
to get the best match size (modulo 4) in a fraction of the time. (See Figure 8.5.) Then once the
best coarse match is found, a refinement pass determines the exact size of the largest match. In
this way the pixel-level comparison needs only be performed for one block instead of many,
resulting in a speed increase by afactor of 1.5 to 3 to yield a net coding rate of 200-400kps, which
is similar to one-dimensional decompositions such as LZW and LZ77 used in GIF and PNG.
Although the final block size accuracy is not compromised due to the refinement pass, the best

match determined by the coarse phase could in some cases not be the true best match which would

99

result in a non-optimal choice of blocks. However, results show that the impact on compression

performance istypically less than 1%.

8.6. Entropy Coding Techniques

The block decomposition stage generates a parameterization of the input image in terms of
block copy, fill, and punt primitives. Although there are many fewer blocks than pixels, these
parameters still have to be coded efficiently. This is the job of the entropy coder. A simple
entropy coder based on Huffman codes was used to verify the potential utility of the two-dimen-
sional flexible block decomposition. More sophisticated entropy coders could result in further cod-

ing gains.

8.6.1. What to Code

The block decomposition generates the following three types of primitives:

CopyBlock(dest_x, dest_v, width, height, src_x, src_y)
SolidBlock(dest_x, dest_v, width, height, color)
PuntBlock(dest_x, dest vy, numPixels, pixell, pixel2, ..., pixelN)
Thedest_x and dest_y fields are not transmitted as they are implicit in the order that the data
istransmitted. For copy blocks, the dimensions and source location have to be transmitted, for fill

blocks the dimensions and color have to be transmitted, and for punt blocks the punted pixel val-

ues have to be sent.

8.6.2. Transforming the Parameters

While the block decomposition is a transformation of the pixel data into a new parameter
space, which results in more efficient coding, additional transformations of the parameters aid in

entropy reduction. A few transformations will be discussed here.

100

8.6.2.1. Color Age

The input images consist of 8-bit pseudo-color pixels. The colors of punted pixels, and to
some extent filled blocks, exhibit a large degree of spatial locality. It is common for only a few
unique colors to be used in a given region. Text regions typically use only two colors. However,
throughout the image, different sets of colors might be used. Thusit isbeneficial to code arelative

property of the colors instead of the colors themselves. Given a stream of pixel colors:

red, blue, brown, brown, brown, red, brown
the color age is the number of unique colors present between a given instance of a particular

color and the previous instance of that same color. In the above case the color ages are:

red="?, blue=?, brown=?, brown=0, brown=0, red=2, brown=1
It is not possible to determine the color age of the first three colors since they depend on the
previous colors encountered. To initialize the system, the color history is set such that the initial

color age of each color isits pixel color.

As evidence of the utility of the color age technique, using adaptive Huffman coding, the

average number of bits to encode the fill and punt colorsin the screendump image drops from 3.63

and 3.05 using the actual colorsto 2.03 and 1.62 using color agel.

8.6.2.2. Relative Copy Source

Spatial locality suggests that blocks will often be copied from nearby regions. Thus, therel-
ative sources will be small and non-uniformly distributed, and hence have lower entropy. Addi-
tionally, many images, particularly ones with text, have significant spatial structure that can be

modeled by coding the source location relatively. For the screendump image, coding the source x

1. Lempel-Ziv compression of punted pixels did not appear to yield better compression.

101

coordinate relatively reduces its entropy from 7.58 bits/pixel to 7.26 bits/pixel and coding the

source y coordinate relatively reduces its entropy from 7.41 bits/pixel to 5.56 bits/pixel.

8.6.3. Huffman Coding

After the parameters are transformed, conventional entropy coding techniques are used to
exploit the skewed probability distributions present. Adaptive Huffman codes are used since the
al phabet sizes are large enough not to require arithmetic coding. The various parameters are coded
independently. Joint coding of height and width did not perform as well due to undersampling
effects: when pairs of parameters, such as block width and height, are considered jointly, there are
more unique symbols, and thus the overhead of introducing new symbols is greater. Using joint
coding, the number of symbols is proportional to the product of number values of each parameter
while using independent coding, the number of symbols is proportional to the sum. Joint coding
might be more advantageous for large sample sets (i.e. large images) and if there was a strong cor-

relation between two parameters.

8.7. Results

The FABD algorithm was evaluated on several images which typify the class of images
described in Section8.2.1. Calculator, textedit, paper, and screendump, shown in Figure 8.6, are
discrete-tone snapshots of the type used in remote computation. The first three show single appli-
cations while screendump shows a number of applications running. These images stress the com-
pression algorithm on both simple and complex images. Paper5, paper5_big, and paper9, shown
in Figure 8.7, are bi-level images generated from PostScripta files, differing in density and con-
tent which will allow performance variations over varying image detail to be analyzed. Paper5

contains atypical page of text in aproportional font at 130dpi while Paper5_big contains the same

102

Flle©) Views) Editt) Fndc

Gur_coT BTock[1] =
S0t neRt_pis;

»

cur_col_Elock(i] = mununia_cols:
DT BTock Cnun_uma_colse+] =+ cur_pix block(il;

noxt_pi:
fpripefGoedere, “Curplx bock = -
o e amta e 25 T nkCstderr, 34 *. cur_pinblockli s 1234567890
Forintt Ceederr- i e o en custc
72 Hash Togkup cur._col lock
cuasl i = PN S EOTE Sty v s 0150 v) (sase 7) (1ot) (Frac ar
Gcrar D pivbiock, SizerFiven) inuntacots,
e fode) sz (o1 [
§F Carminder == -2)
perror*ind_hash_table_entry fron gen_nicro_cnep_inoge’); i3 i) @D &b ED &
ation
= (e)2 s JCe)/
- 1F Gt == 1)
D ED & 2)2) -
crap_index nap_tak]e-shash_table_entries_used:
i R e
Cuenar cur ot block. sizedr (ixei) * mun_uria.cols, ex Jose. J(o J - B«
s indet, hasningen) = 1)

porror (*ads_hash_table_entry fron gon_nicro_chap_uage");
ettt

g Calculator

nev-cnap.tatle_usage[cuag_indexl s
Rev-cnanindex e 00 num] - chap. ndes

)
o e
iG] gt STl finales
Hlev) Wew o) Edte
(T Tem Eaitor rasterfileh, elock
flo) Vewr) Efdt) Fimdr
o T s S
- .
= bescription of header for files containing rester inages cd Esample: 1011 Reforence
! 21 Group: 3 b e Lowels
st _rastertilo 10
fibitise it 4 ace
—— -
72 vasic ruter +/
i © RS BT ot tanas vy
i ?: gﬂéhl‘?mml) o énzq L e) Reference.
ine 2 Bttt s o / efEhi Exampl: 1011001010101100 L2
n 7 a6 ol B i el S4321 Growp: &5 ¢ € Fah
ength (bytes) of fn”nwmq nag /. [sunwary (Tg_va_in{Scy 3ge. Ficro_chap_inage “cnap_inage; 22110
T catar 2o o for ras_aastenseh Byeec, ol ove by el o)
. cuss_co1_oits, 16, caao ot
Hdefine RAS_MAGTC 0459266235 pix_bits_per_va_oix, va_sel bits, Vm(nﬂnhnnklﬂ[s, Reference.
7o sun sumorted rss_tye’s +f o Lovell
setine 11015 0l et o 0 0000 e ordr &7 [T g bloke - 31 o 50 possi v asterns (129
Herihe M-St e o Bhurect Thase 1o 20008 bke o O o ot ro e e e .
Hering e Enmuzu z 7= Run-Tength compression of bytes °/ VL nage->va_cofebook >hash.table_entries. used. Figure 3
Hierine s e o TR T2 O Sk s o/ TR =6
EemAERER L UR UL (S e S ottt b1 v o £
DERINENYAI ﬂxffff /’ Reserved for testing oinageeize Reference.
er_va_p1x - cof) ClooCCoubledcnsn msge-sblock s 2 Leweto
2 s osistoreg ras wste’s °f o
tine g7 e
wstine m EEUE?’:Z:. :{“ "“/?L;L[mwmgg Sepectat ot 0 o0cz.05 /¢ le our differential representation stored in the Figure 4
= o reTa st Soent? uatl” ° d
need to be able to comvert it back into the o agume that we could be reading as late a
SLach 1130 of the age fs roundod aut to 3 auTEIgle o 1 bits. hich it was generated. The metfod i¢ QU Thege o factors reslt in the readout differg
(T 0 o I LI the ordered digits, count the mumber of digits g o B rence,
s st Held (Gl S hyzsu:nsvgg:nériéé ES;mm jis greater than and that is its unordered valie. gy is Jimited to 3.3V, it is crucial that we
s i ple of 12 00 which mapped to 1302w ppec 5 achieve 412.5mV per level writin|
2 back as follows: Lis greater than the Oto it oif® i oot R e 1
T r than the 3 or 2. Thus itis greater than Tigit 00t e wou
lceives the unordered value 1. The 3 is greater supply rail, 5
ol batands badlandeitber/tqv> scrosna | 10 sresndop.r rrrereeerr, el JCs JCe JC/ = nd 2 to its right and thus is greater than tWo gionre 9 shows the actual diagram of the encod
Jevem—————————p—— | | LSRR o arn | 62D 62D 6 nd receives an unordered value of 2. The 085 "\vOS, PMOS, and CMOS pass gates
i it 20ts right and thus its unordercd value is 0. Corovont e output voltage range)
N o) (o e any valts o issight and ths s unowdered ansisiors requied. An entinely NMOS o
¢ have obtained the 12 00 back! would cause V, drops for high and low leve]
static To_va_fnsge *creste_to v structur(Micro_cspinage *Hnace) fully CMOS structure would be very Targe,)

Screendump Paper

FIGURE 8.6. Discrete-tone pseudo-color test images

mmRIT

S i i e e s i 3 170 e e ms e
ST AN D MG, T s

o iy

SRS

. e gmpoti J"“‘.«"'::“T-):J

TSR LR U
TR T e S
S S

Paper5/ Paper5 big Paper9

FIGURE 8.7. Bi-level test images

text rendered at 200dpi. Paper9 is a simple circuit schematic rendered at 150dpi. Finally,

screendump?2 and netscape, shown in Figure 8.8, are primarily discrete-tone images that have

103

[Fie L [-vew [| s | opvee [ovesry | it |

EEEREEIETE

H

Friday, May 9, 1997

1 Sonding Sdes

The... | Members| Colors | bismiss

gy .o cov_] options.]
DESCRIPTION

gy ued o ispley VQ viden (s y3) o RAW vide (s s dsa(3) o

Screendump?2

FIGURE 8.8. Hybrid discrete/ continuous tone test images

Compression Rate Comparison

3 1.400

X

& 1200 I EGIF

wn

= 1.000 PNG

© 0.800 O JBIG

©

% 0.600 O PWC

© J

= 0.400 M FABD100
@ FABD1000

2 0.200 1 n II

o

% 0.000 -

O

@f&@g&éﬁ?&ffﬁ@*ﬁ

Image

FIGURE 8.9. Graph of compression ratesfor various techniques.
FABD100 and FABD1000 refer to FABD using maximum sear ch depths of 100 and
1000 respectively.

some sizable continuous-tone regions. These are useful to analyze performance of the algorithm

on images not completely in the anticipated domain.

The compression levels obtained by FABD, GIF, PNG, JBIG, and PWC are shown in Fig-
ure 8.9 and Table8.2. The ratios indicate FABD’s compression advantage over the other tech-

niques. The top and bottom FABD results for images correspond to maximum search depths of

104

FABD | GIF PNG JBIG PWC
Bpp Bpp | Ratio | Bpp Ratio | Bpp Ratio | Bpp Ratio
0.176 2.540 1.010 1.298 7
cal culator 0.446 0.177 0.228 77
(456x298) 0.177 2.525 1.004 1.290 7
paper 0.091 3.127 2.673 1.128 1.272
0.283 0.242 0.102 0.115
(836x993) | 0.001 3.104 2.653 1.119 1.263
screendump | 0.124 3.767 2.497 1.430 1.181
0.467 0.309 0.177 0.146
(1152x900) [0.126 3.711 2.460 1.408 1.163
- 0.064 3.720 2.629 1.246 1.271
textedit 0.238 0.168 0.080 0.081
(593x646) 0.064 3.705 2.618 1.241 1.266
papers 0.078 0.310 3.966 0.241 3.082 [0.125 | 1.599 0.251 1.607
(1132x1465) | 0.083 | 3733 | 2.901 1.506 ' 1.513
paper5_big | 0.044 5.675 4.162 1.970 1.987
0.248 0.182 0.086 0.087
(1675x2168) | 0.048 5.169 3.791 1.794 1.810
paper9 0.029 0 5.323 1.951 | 0.026 | 0.888 0.869
154 0.056 0.025
(1245x1611) | 0.031 4.926 1.806 0.822 0.804
0.426 1.684 1.263 1.529 0.827
netscape 0.717 0.537 0.651 0.352
(741x938) | 0.427 1.680 1.260 1.525 0.825
screendump2 | 0.650 1.794 1221 [1252 | 1.925 0.809
1.166 0.794 0.526
(1152x900) [0.652 1.789 1.218 1.921 0.807

TABLE 8.2. Compression ratesfor various techniques.
Thetop numbersin each pair correspond to FABD max depth of 1000 whilethe
bottom correspond to a FABD max depth of 100. Theratioisthe other method’s
coding rate divided by FABD's.
100 and 1000 respectively. A depth of 100 typically sacrifices at most 10% of the compression
obtained using a depth of 1000. Table8.3 shows the time required by the techniques to compress
the images. The breakdown of the bit usage for FABD coding of each image is shown in

Table8.4.

Since FABD is non-progressive, the JBIG compression was also performed in the non-pro-
gressive mode which delivers better compression than the default progressive mode. The JBIG

bitplane decomposition is shown in Table8.5.

105

FABD 100 FABD 1000 GIF PNG
Time | Rate Time | Rate Time | Rate Time | Rate
(Sec) | (Pix/Sec) | (Sec) | (Pix/Sec) | (Sec) | (Pix/Sec) | (Sec) | (Pix/Sec)
calculator
(456x298) 0.4 | 340,000 0.8 | 170,000 0.3 | 450,000 0.4 | 340,000
paper
(836x993) 2.5 | 33,0000 4.6 | 180,000 2.3 | 360,000 2.1 | 400,000
screendump
(1152x900) 3.2 | 320,000 5.2 | 200,000 2.9 | 360,000 3.2 | 320,000
textedit
(593x646) 1.1 | 350,000 1.6 | 240,000 1.1 | 350,000 1.1 | 350,000
paper5
(1132x1465) 5.4 | 310,000 9.4 | 180,000 4.3 | 390,000 7.4 | 220,000
paper5_big
(1675x2168) 10.4 | 350,000 | 18.0 | 200,000 9.8 | 370,000 | 18.4 | 200,000
paper9
(1245x1611) 4.8 | 420,000 7.2 | 280,000 55 | 370,000 | 10.1 | 200,000
netscape
(741x938) 2.3 | 300,000 3.9 | 180,000 1.9 | 370,000 2.1 | 330,000
screendump
2 4.4 | 240,000 6.4 | 160,000 2.9 | 360,000 3.2 | 320,000
(1152x900)

TABLE 8.3. Compression timesfor dictionary-based techniques on 168M hz Sun Ultra 2.

It is readily apparent that the algorithm outperforms the one-dimensional dictionary-based

techniques GIF and PNG on all images, dramatically so on most images. FABD outperforms the

two-dimensional statistical JBIG on all but one image and PWC on all but three images.

worthwhile to discuss the performance on the images grouped by type of image.

It is

FABD outperforms GIF on the discrete-tone images calculator, paper, screendump, and

textedit by a factor of 2.5 to 3.8 due to its ability to exploit the two-dimensional redundancy. It

similarly out compresses PNG by a factor of about 2.5 on three of the four images. However, its

compression is similar to PNG on the small calculator image as it cannot find many large two-

dimensional regions. It compresses 12% - 43% more efficiently than JBIG and 16% - 27% more

106

Copy Blocks Fill Blocks Punt Pixels

Total
Rate Ave | Net Ave | Net Pixels | Ave | Net
(bpp) | Blocks| Size | Effect | Blocks| Size |Effect] (% of | Size | Effect
(bits) | (bpp) (bits) | (bpp) | total) |(bits)| (bpp)
calculator 0.060 0.036 | 3439 0.060
(456x298) 0.176] 357 |22.67 (34%) 398 ([12.30 20%) | 2.5%) 2.36 (34%)
paper 0.055 0.015 | 4897 0.014
(836x993) 0.091] 1652 |27.73 (60%) 899 (1351 (16%) | (0.696) 2.29 (15%)
screendump 0.056 0.024 | 15591 0.033
(1152x900) 0.124] 2233 |25.97 (45%) 1818 |13.83 (19%) | (1.5%) 221 (27%)
textedit 0.030 0.014 | 2077 0.014
(593x646) 0.064] 429 |[27.22 (47%) 349 ([14.91 22%) | (0.5%) 2.56 (22%)
paper5 0.056 0.012 | 4822 0.005
(1132x1465) 0.078] 3283 |28.48 (72%) 1563 [12.22 (15%) | (0.3%) 1.75 (6%)
paper5_big 0.032 0.006 | 4972 0.002
(1675x2168) 0.044] 3900 |29.88 (73%) 1787 |[13.17 (14%) | (0.1%) 1.78 (5%)
paper9 0.018 0.006 | 2619 0.002
(1245x1611) 0.029] 1237 |28.92 (62%) 855 (14.81 21%) | (0.19%) 191 (79%)
netscape 0.049 0.035 | 48636 0.320
(741x938) 0.426] 1352 |[25.25 (12%) 1701 (14.17 %) | (7.0%) 4.57 (75%)
screendump?2 0.063 0.040 | 128113 0.527
(1152x900) 0.650] 2544 |(25.64 (10%) 2769 |15.14 6%) |(12.4%) 4.26 (82%)

TABLE 8.4. Bit breakdown for FABD 1000.
Note that theresultsrelating to copy and fill are per block while the punt is per pixel.
Fraction of contribution that isnot copy, fill, block is overhead associated with block

type, color map, etc.

Total K bytesin Total K bytesin

Rate Bitplanes Rate Bitplanes
o Lo | s | [t [omome | o
(gitls;ggg) 0.651 bpp 17l //67//66//76 ?irlegfgcr)g? 0.177 bpp 12'81./83}81/.53 .
ey | oo |osrosres | [Ty [vseme | 2101278
(11235’(?:’65) 0.125 bpp 26 (é‘;’;txegj:(s) 0.080bpp | 3.3/0.2/0.3
(Eg";gfz—l%g) 0.086 bpp 39

TABLE 8.5. JBIG Bitplane decompression

107

FIGURE 8.10. Bitplane decomposition of screendump image.
Original ison far left while the monochrome images formed from each of the 5 bit-
planes are shown toitsright. The bit planes account for 12.8k, 3.8k, 3.1k, 1.8k, and
1.5k bytes of the JBIG image respectively.

efficiently than PWC on these images based on JBIG and PWC’ s inability to code multiple pixels
at once. The JBIG bit-plane decomposition of screendumpis shown in Figure 8.10. As can be
seen from the figure as well as Table8.5, most of the information is, by chance, in bitplane O so
there is not too much redundancy across bit planes and JBIG has a chance at efficient coding.
However, quite often text and other structures will be striped over multiple planesiif its foreground

and background colors differ in more than one bit. In these cases, JBIG will be less efficient.

FABD allows 3.7 to 5.6 times more compact coding than GIF and 1.8 to 4.2 times more
compact coding that PNG on the bi-level images paper5, paper5_big, and paper9. PNG’s superior
bit-packing compared to GIF is probably responsible for much of the difference in the results of
the two techniques. However, since there is a significant amount of two-dimensional repetition,
FABD outperforms both. FABD outperforms JBIG onpaper5 and paper5_big dueto its ability to
exploit the repetitive patterns in the image at a high level. While JBIG efficiently models each
pixel, FABD spots letters, words and sometimes phrases that are used more than once. Astheres-
olution is increased, the compressed file size does not increase dramatically since the number of
blocks remains roughly constant. The number of pixels more than doubled but only 15% more
blocks are required. JBIG very slightly outperforms FABD on paper9 because paper9 is so sim-

ple, consisting of mostly horizontal and vertical lines, which JBIG can very accurately model at

108

2 Sy

e e T L

=
o 17
i — I)
L e
il
=
I A T P :

FIGURE 8.11. Block decomposition of screendump2 image.
The white regions represent punted pixels.

the pixel level. PWC performs similarly to JBIG since in the case of bi-level images, the two tech-

niques are roughly equivalent.

JBIG is tailored to bi-level images so it is notable that FABD can achieve better compres-
sion on this class of images. However, JBIG iswell suited for scanned and/or half-toned images as
well, which FABD will not compress as compactly. These types of images have a probabilistic
regularity but low deterministic regularity. Most of the pixels can be predicted correctly but, many
cannot. Thus JBIG will incur a coding penalty for the wrong pixels but FABD will have to reduce

the size of the entire blocks, effectively incurring a penalty on all of the pixelsin the block.

Lastly, netscape and screendump2 are primarily discrete-tone color images with some siz-
able continuous-tone regions. FABD is still able to outcompress GIF and PNG on these images
due to its improved performance in the discrete-tone parts of the image. As seen in Table8.4,
approximately 80% of the FABD bits are used for the 10% of the pixels which are punted. The
continuous regions of the images do not lend well to block matching and are thus punted. Figure
8.11 shows the block decomposition of screendump2 with punted pixels shown in white. In

screendump2, each punted pixel requires more than 4 bitsto code. Sincetypically puntsarerare, a

109

FIGURE 8.12. Bitplane decomposition of screendump2image.
Original isin center while bitplane images surround it.

simple coder was used but for improved coding of hybrid images, a more sophisticated technique
could be used such as lossless JPEG, or possibly even a lossy coding. FABD still outperforms
JBIG by afactor of 1.5 to 2 on these images due to the fact that the images do not split well across
bit-planes, as seen in Figure 8.12. Additionally, the continuous regions are not well suited to JBIG
compression. However, the continuous regions are exactly what PWC is designed for and thus it

can code in 20% fewer bits than FABD.

8.8. Conclusion

This chapter describes how two-dimensional global structure can be effectively exploited to
achieve efficient coding of discrete-tone images. While GIF and PNG are limited to one-dimen-
sional global structure and JBIG and PWC only use a local context, FABD is able to obtain the
best of both. Dueto FABD’s lossless nature, efficient matching is possible. The two-dimensional
flexible automatic block decomposition provides a different method of compressing images which
outperforms one-dimensional dictionary and two-dimensional statistical techniques on many
images, and could be combined with more sophisticated entropy coding techniques to achieve

even greater performance.

110

cHaPTER9 Development & Analyss
Environment

9.1. Introduction

Many of application-independent compression techniques described in this part of the thesis
were prototyped in the context of the InfoPad project, previously described. This chapter
describes the development and analysis environment created during the InfoPad project which was
used to develop, debug, analyze, and improve the algorithms previously presented, as well as fur-
ther the research of othersin the InfoPad research group working on topics ranging from wireless

networking protocols to CMOS high-bandwidth radio design.

The design environment allowed full development of the software infrastructure and appli-
cations before the actual InfoPad hardware was deployed. In this way, the hardware and software
development could proceed concurrently. Additionally, debugging hooks in the system allow
emulation and analysis in the software domain that would be more difficult or impossible using the

actual hardware system.

111

Pen
Server

Audio —

Application Server I

Video Base
Server Station

Text/
Graphics
Server InfoPad-

Specific
Protocols

AL/IPL

Application

InfoPad
Emulator

FIGURE 9.1. InfoPad development environment

9.2. Networking Environment

Figure 9.1 shows the InfoPad development environment. Standard Unix / X applications
shown on the far left communicate with InfoPad-specific type-servers which translate the standard
protocolsinto InfoPad-specific protocols. Thetype-servers operate on different types of data: pen,
audio, video, and text / graphics, and are described in sections that follow. The type-servers com-
municate the InfoPad-specific data over the InfoNet networking infrastructure. InfoNet manages
tasks such as routing and hand-off of networking data as well as overall pad state maintenance,
tracking and control. A nameserver database manager is used to keep track of the state of various
components in the system, including versioning information as well as operational status. The
InfoNet networking layer is typically overlaid on top of standard TCP/IP to allow the InfoPad net-

work to run on multiple machines.

Remote terminals or “pads’ can connect in one of two ways as shown on the right side of
the figure. Hardware pads connect wirelessly through hardware / software basestations. The base
stations connect to the rest of the network via standard IP protocols and to the wireless pads

through custom or commercial radios[49]. Each basestation is responsible for a particular cell and

112

as hardware pads migrate between cells, their connections are handed off via | nfoPad-specific cell-

servers and gateways.

Alternatively, an all-software environment can be used by connecting to InfoNet with a
software InfoPad Terminal Emulator described below. The emulator uses the same protocols as
the hardware pads, allowing the type-servers and InfoNet to operate exactly asif ahardware padis
inuse. However, the emulator displaysits dataon any X Window terminal, allowing greater avail-

ability. Debugging and analysis hooks allow performance characterization and emulation control.

9.3. Emulator

The InfoPad terminal emulator, shown in Figure 9.2, allows emulation of the InfoPad hard-

ware terminals, debugging of the InfoPad software components, and analysis of protocol and sys-

tem performance’. The emulator connects to the InfoPad network just as hardware terminals via
basestations do, but instead presents its user interface to any X Window terminal. The emulator
supports text / graphics, video, audio, and pen traffic as well as control messages. Several pop-up

windows described below control detailed aspects of the emulator operation.

The emulator is written as a hybrid C / Tcl/Tk application where Tcl/Tk code controls the
user interface and high-level control, and underlying C code is used to interface to InfoNet and
perform per-packet time-critical processing. This allows the flexibility and rapid prototyping

capabilities of Tcl/Tk with the low-level processing power of C.

1. Theemulator was originally developed by Brian Richards.

113

N EMU {vdev)

|2 Recognizer ENPNG] Launcher: InfoPad 62 - badlands

File Lexicus GuickPrint

abc | t | 5 ! |

i ! | |
|http://inFDpad.eecs+| << | Clea:rl
Caps | Shift |

] MPEG Play

STATUS: 1 scrawl window currently open, --> badland=s:1,0

i Quit +» Hide Controls 4 Attached Controls -~ Popup Controls

Moved PAD 62 to GW 62
_ . :
% CONNECT! REMOTE REFRESH{ MOVE! POLLED (running veurrent) Gateway: 62

Pad Server:gﬁz
OFTIONS: TEXT f GRAPH: TRAFFIC: BER: A fV: STATS
Tahlet Device:gifdevfttya

DEBUG: T/G STATS: ; TABLET: Type: Wacom UD-0B607

RESET ; Name server on rainier up since Fr Sep 27 19:00:11 PDT 1996 with 54 files left
KILLPAD: PS8 Version:ivcurent X ‘I."ersiun:gvdev Pen ‘I."ersiun:gvcurrent Audio ‘.'ersiun:gvcurrent
UPDATE § rinning vcurrent rnning videy running vcurrent rinning vcurrent

FIGURE 9.2. InfoPad terminal emulator

114

9.3.1. Operation

The main window shown in Figure 9.2 emulates the text / graphics display as will be
described below in the next section. Below that are controls which give the user control beyond

that which the pad hardware supports.

On theright, the user can select which gateway and pad server number they want to connect
to. The “GATEWAY:” pull-down menu queries the name server to see which gateways are cur-
rently running and displays their numbers and the version of the gateway code that they are run-
ning. If the gateway or cellserver are down, this is indicated. The “PAD SERVER:” pull-down
menu queries the nameserver to display which pad servers are operational and their versions.
Finally the “TABLET DEVICE:” pull-down allows the user to enter which port the pen tablet is con-
nected to. The “Type:” pull-down menu allows selection of the tablet type and the “ TABLET” tog-

gle button controls whether a connection to the tablet is attempted.

The bottom row of indictors show further status information from the nameserver. Itsloca-
tion and time it was started are displayed. Below, the status of the currently selected pad, X (text /
graphics), pen, and audio server are displayed. It isretrieved from the Name Server periodically.
When any critical event occurs, such as selecting a new pad server or gateway, the emulator polls
for status more often for a while. The “UPDATE” button forces the status to be reread. The pull-
down menus for “PS VERSION”, “X VERSION”, “PEN VERSION", and “Aubpio VERSION” control
the version of the respective servers which is used if they are auto-started by connecting to a pad
cluster which isnot running. The “KiLLPAD” button kills the currently selected pad server, causing

termination of all associated type servers as well.

The user can connect to and disconnect from a pad cluster using the “CONNECT” button.
The “REMOTE REFRESH” button causes the display to be updated. The “mMoOVvE” button forces a

hand-off to a new gateway while the “PoLL” button indicates that the emulated receive signal

115

”

strength has been queried by a cell server. The “OPTIONS’, “TEXT/GRAPHICS”, “TRAFFIC", “BER”,

“ " u (LT3

AV, “STATS", “DEBUG”, and “T/G STATS” buttons invoke pop-up display presented below.

9.3.2. Text/ GraphicsDisplay Support

The text / graphics data is displayed in the main emulator window. The 640x480 mono-
chrome mode used by the pad hardware is supported. Additionally, color modes of varying size
which support some of the techniques outlined in Chapter 4, Chapter 5, and Chapter 6 are sup-

ported to allow research into future protocols.

The pop-up dialogs shown in Figure 9.3 control various aspects of the operation of the text /
graphics subsystem. The Start-up Options dialog is used to set configuration options which are
sent to the nameserver and passed to the text / graphics servers when they are auto-started. The “X
coNFIG” field is used to set the X configuration file that is used to control pad user and session
preferences. It is used instead of login authentication. The “MODE” controls if the X server is
started in monochrome or a color mode while the “SCREEN SIZE” is used to select the size of the
emulated screen when a color mode is used. When the text / graphics server is running, it periodi-
cally transmits the screen size and mode parameter to the emulator so that the emul ated screen size
is adjusted properly. The “RATE LIMIT” and “MAX REFRESH” sliders are used to adjust the initial
rate limiting and refresh rates. These can be adjusted during operation using the traffic control and
monitoring popup described below. The “MAX PACKET SIzE” and “BUFFERED WRITES” boxes are
used to control the packet size and whether the network interface is buffered. The* INTER-PACKET
DELAY:” slider is used to limit the rate that packets are generated. Finally the “CURRENTLY RUN-
NING:” line indicates the results from querying the name server as to the configuration of the cur-

rently running text / graphics server.

116

rL‘ options_popup

Start-up Options

Text!/Graphics Server = tg_stats_popup

X Confiy: Choices... § Per-Pad Default Per-Pad Default gilbertj Text/ Graphlcs Statistics

& bit puts: 0% pixzels 0% blocks
4 bit puts: 19% pizels 17% blocks
Screen Size: 800 by {600 Standard Sizes..] Zhitputs: 28% pixels 23% blocks
1 bit puts: 22% pizels 19% blocks
Rate Limit: b 300.0 Khitsfsec Block fills: 31% pixels 1% blocks

Mode: ., Monochrome : 4 Colormapped 8-bit ;| - -

Max Refresh: ok 10 % of Capacity Average bits per pixel: 1.550

Metwork: Max Packet Size:l 1024 ¥ Buffered Writes! Hbiaispai=g Sl Slnies se

Frame rate: 9.0 frames/sec

Inter- Packet Delay: Lk Hone
~» Regular 4 Both .. Protected
Using per-pad default X configuration.
Currently running: Colormapped 8- hit 500x600 @ 2370khps with no refrash D|3M|33§

Eutfered writes of at most 1024 bytes L

DISMISS%

e ta_popup
Text { Graphics
C R
Emulated System Local Color Visual
~» Monochrome ~ G-Bit Static
4 Colormapped 8-bit g B-Bit Dynamic
~ JeffColor Deluxe - O-Bit DynaStat
4 24-Bit %

@ Auto Detect Mode§
i 4 Private Colormap |
Gaminad 170 #i° ¥ Shared Memory%

4 Invert Protected Pkis Gamma: 1.25

i Invert Regular Pkis

ol

DISMISS%

FIGURE 9.3. InfoPad emulator text / graphics pop-up controls.
Top-left isthetext / graphics start-up options dialog, top-right isthetext / graphics
statistics dialog, and bottom center isthe text / graphics control dialog.

117

The text / graphics control dialog controls the current emulated display mode. The emulator
will emulate “MONOCHROME”, “COLORMAPPED 8-BIT”, or “JEFFCOLOR DELUXE" (TGVQ) dis-
plays. The “AuTto DETECT MODE” enables decoding of packets from the text / graphics server
indicating which type of display is being used. The “GAMMA:" box allows the gamma correction
factor to be applied to the of the emulated screen data to be entered. Gamma correction is applied
on-the-fly. The “INVERT PROTECTED PKTS” and “INVERT REGULAR PKTS’ buttons allow regular
or protected packetsto be inverted on the screen for easier identification. Recall that the protected
packets are those which are used for asymtotic reliability refresh, have higher forward error cor-

rection applied, and are dropped if an error is detected in their data.

Emulation of aterminal window which could potentially contain any configuration of colors
on an X Window display possibly with limited 8-bit colormapped display requires on-the fly map-
ping of colors. The Local Color Visual section allows the user to select the mode that the emul ator
text / graphics X Window is displayed. The basic problem is that the emulated terminal screen can
potentially contain any color. However, since the emulator runs as a standard X Window applica-
tion, it cannot be guaranteed to be able to render all colors. The Local Color Visual box allows the
user to select the mode that the screen should be emulated. The emulator can run on 8-bit color-
mapped or 24-bit true-color displays. On 24-bit true-color displays, there is not a problem since
any possible color configuration can be rendered since each pixel’sred, green, and blue values can
be individually set. 1n 8-bit colormapped displays, the emulator can choose to co-exist with other
applications’ colormap requests, in which case it can only use some fraction of the 256 physical
colormap entries, otherwise it can use its own colormap, so it can control all 256 colormap entries,
but the screen will flash when the mouse enters and exits the application since the emulator color-
map is only active when the cursor isin the emulator window. The former is chosen by deselect-
ing the “PRIVATE COLORMAP” box while the latter is chosen by selecting it. If in 8-bit mode, the

“8-BIT STATIC” mode refers to a mode that a static color-cube of specified dimensionsis allocated

118

and colors to be displayed are chosen from this color cube. “8-BiT DYNAMIC" mode entails allo-
cating colors as the emulated display needs them, and any colors that cannot be allocated are repre-
sented by the closest color that can be allocated. “8-BiT DYNASTAT” is a hybrid of the two
techniques that first allocates a static color-cube and then allocates additional requested colors
dynamically. Inthisway, afixed base set of colorswill always be present, but often exact matches
will be possible. Finally the “X SHARED MEMORY” button indicates if the X Window shared
memory image transfer protocol should be used. If the emulator is running on the same machine
asthe X server it is being displayed on (not to be confused with the text / graphics server servicing
the pad), the X shared memory protocol allows image data to be transferred in shared memory,
avoiding copying throughout the networking subsystem. This reduces the computation load of

rendering, thus allowing higher frame rates.

The “Text / Graphics Statistics’ pop-up displays statistics of the text / graphics data
received. The “8-BIT PUTS’, “4-BIT PUTS’, “2-BIT PUTS", “1-BIT PUTS’, and “BLocK FILLS’, and
“AVERAGE BITS PER PIXEL" are used for analysis of a compressed bitmap transmission algorithm.
They display the percentage of pixels and blocks that are sent using 8, 4, 2, 1, and 0 bits per pixel
aswell as the average bits per pixel. The “UPDATE RATE" indicates the net pixel display rate aver-
aged over the last second, and the “FRAME RATE” indicates the frame update rate achieved calcu-
lated from new-frame packets received from the text / graphics server. The “REGULAR”,

“PROTECTED”, “BOTH" selection indicates which types of update packets the above measurements

apply to.

9.3.3. Audio and Video support

The emulator supports emulation of pad audio input and output as well as VQ-video output

through the Audio / Video pop-up shown in Figure 9.4.. The audio is coded as 8 kHz, 8-bit mlaw

119

rL‘ av_popup

Audio
£ AUDIO AUTO: ¢ AUDIO PLAY: @ AUDIO REC:

e VERBOSE% Downlink Buffer Size: %2043

Video
@ VIDEO AUTO: @ VIDEO PLAY: @ VIDEO DROP:

Maxzimum Display Rate: §15

DISMISS%

FIGURE 9.4. InfoPad emulator audio / video pop-up dialog

PCM coded samples, and is accessed directly through the Sun Workstation’s / dev/ audi o
device. The uplink and downlink can be individually enabled through the “Aupio PLAY” and
“AUDIO REC” buttons and an automatic mode is enabled through the “Aubio AUTO” button,
whereby the audio is enabled as soon as the first downlink audio packet is received. Diagnostic

dataisdisplayed if the “ VERBOSE” button is checked.

Low latency audio data, required for synchronized audio and video as well as effective
video conferencing, requires that the number of samples of buffered audio is kept low. The
“DOWNLINK BUFFER SizE:” box allows the amount of data that is buffered in the emulator and the
/ dev/ audi o device buffer to belimited. If more datathan isallowed is queued, the extradatais
dropped, emulating a limited size downlink buffer. By varying the size of this buffer, the effects
of network jitter and packetization can be explored and the requirements of the hardware downlink

audio buffer size can be determined.

The Audio / Video popup aso controls the real-time color 128x240 VQ video display. The
actual display of the VQ datais performed by the video utility vq_pl ay described below, but the
emulator is responsible for controlling when vq_play is opened and closed as well as combining
video packets into complete VQ video frames and sending them tovq_pl ay. Thus the use of a

separate stand-alone application for video display is hidden from the user but allows greater mod-

120

ularity and code reuse. The VQ video window is opened and closed viathe “vIDEO PLAY” button.
If “VvIDEO AUTO” is enabled then the VQ video window is opened whenever VQ video arrives.
The frame rate can be manually limited for performance reasons by entering the maximum desired
frameratein the “MaxiMum DisPLAY RATE” box and selecting “VIDEO DROP’. This can be used
to assure that emulation of the video screen does not impact the performance of the other sub-

systems. Frames are dropped to assure that the aggregate rate does not exceed the specified limit.

9.3.4. Traffic Monitoring and Control and Debugging Hooks

Figure 9.5 shows the emulator traffic and debug dialogs which are used to monitor down-
link traffic rates and latencies, optionally limit downlink traffic rates, and monitor uplink traffic
rates. At thetop, the rate in packets per second, kilobits per second, and average bytes per packet
are shown for each of the individual uplink and downlink data types as well as the aggregate
uplink and downlink traffic. The text / graphics data is further subdivided into regular and pro-
tected traffic where as previously described, the protected traffic is used for asymtotic reliability

and is dropped if in error.

Below the traffic rate display, a measurement of the latencies of the downlink traffic is pre-
sented. Minimum, average, and maximum latencies over the past second are displayed. This
information is obtained by comparing time-stamps placed in the packets by their senders with the
time that the packets are processed by the emulator. Clock skew, which could occur if the packets
are sent by a different Unix host than the emulator is running on, is removed by assuming that the
lowest-latency packet ever received during the lifetime of the emulator-pad connection will be 0
ms. Thisis based on the assumption that most delays are due to queuing and not transport delays.

The latency measurements are particularly useful when combined with the downlink rate limiting.

121

rL‘ traffic_popup .
Uplink Info; & Downlink Infoi 3 Latency Info; & Controls
Uplink
Pen: 0.0 packetsfsec 0.000 khitsfsec 0 bytesipacket
Audio In: 31.6 packetsfsec 67.767 khitsfsec 268 bytesfpacket
Total: 31.6 packetsfsec 67.767 khitsfsec 268 bytesfpacket
T | debug_popup
Downlink Debug Hooks
Text/Graph: 178.0 packetsfsec 456.150 khitsfsec 320 bytesfpacket
. IG Packet Tracing
(regular): 153.3 packetsfsec 453.381 kbitsfsec 370 bytesfpacket : :
(refresh): 247 packetsisec 2770 Khitsisec 14 bytesipacket JialacealGliackets §
Video: 0.0 packetsisec 0.000 Kbitsisec 0 bytesfpacket . CearTGTrace .
Audio Out: 32.6 packetsisec 44.914 khitsfsec 172 bytes/packet Print TG Trace %
Total: 2107 packetsisec 501.064 kbitsisec 297 bytesipacket
: Flow Control
Drop Late Packets
Latency P
) | @ Retransmit Skipped Packets
Text/Graph (regular): 209.6 ms min 234.6 ms ave 230.0 ms max
{ 82% dropped): 250.0 ms min 257.8 ms ave 287.0 ms max Print Timestamp fdjs
Text/Graph (refresh): -——-.— mSs min -——-.- ms ave -———.— mSs max
. . BER Injection
(---% dropped): -———.— mSs min -——-.- ms ave -———.— mS max |
Video: —-——.— ms min —-——.- msave —-——.- ms max .; Show BER Stats
(---% dropped): -———.— mSs min -——-.- ms ave -———.— mS max i Show Proto Error w/BER
Audio Out: ----.- ms min ----.- ms ave ----.- mMs max :
DISMISS
(---% dropped): -—-—-.— mSs min -——-.- ms ave -—--.- MS max . ..m.m.wj
Downlink Rate Limit: i 500.0 Khitsisec
T/G Rate Limit: i 300.0 Khitsfsec
Video Rate Limit: i 400.0 Khitsfsec
DISHMISS g
1

FIGURE 9.5. Infopad emulator traffic and debug pop-up dialogs

The “DOWNLINK RATE LIMIT”, “T/G RATE LIMIT”, and “VIDEO RATE LIMIT” sliders are used
to control the downlink sender rates by sending messages to the gateway, text / graphics server,
and video server (send_vq described below) requesting rate limiting. The sliders are logarithmic
to allow fine control over alarge range of rates. The far right position is “unlimited” whereby the

senders are instructed not to limit their data generation.

The Debug Hooks popup is used to expose various debugging hooks in the emulator. In

particular text / graphics packet statistics can be gathered and information about incoming T/G

122

packets can be displayed. The Flow Control options allows the user to select if late packets are
dropped as the gateway would drop them for flow control. The “RETRANSMIT SKIPPED PACKETS’
controlsif NACK packets are sent back to the sender. Finally “PRINT TIMESTAMP ADJS” displays
the timestamp offsets used to cancel out clock skew. The BER Injection is used in conjunction
with the BER popup window (not shown) which can be used to automatically corrupt the data

stream at a specified Bit Error Rate to observe the effects on protocol reliability.

9.4. Text/ Graphics Server

The Text / Graphics algorithms were devel oped by augmenting an X Window server to sup-
port the Split X design®. The X Windows server was amenable to modification due to its modular
architecture and freely available source code. The X Windows server is designed to be ported to
different display adapters, and thus the InfoPad port is implemented as a new display adapter.
Upon initialization, a new slave thread is spawned which communicates via InfoNet to the pad.
The virtual framebuffer is placed in shared global memory and semaphores and mutexes are used

for synchronization. The manual page for XInfoPad can be found in Appendix A.11..

9.5. Video Support

The VQ video subsystem of the InfoPad system was developed using a set of utilities which
generate VQ video clips, play the clips on standard workstations, play the clips through the Info-
Pad network to an emulator or hardware pad, and manipulate and display the clips. The manual
pages of the applications to perform these tasks are listed in Appendix A and the applications are

described below.

1. Notethat Richard Han and/or Brian Richards did the original work on the integration of InfoPad hooks into the X
server athough | expanded upon it significantly through the implementation of the virtual framebuffer algorithms,
color support, as well as support of transmission of block, instead of just line, packets.

123

VQ video files used to save and exchange the VQ video clips are stored in a custom file for-
mat detailed in Appendix A.13. (vq (5)). The video format allows arbitrary dimension video clips
with codebook updates both at the beginning and throughout the video clip. The latter would
allow for new VQ codebooks to be sent between major scenes for improved image quality. Video
files can al'so be exchanged in aRAW format, described in Appendix A.12. (raw_video (5)), which
allows for arbitrary dimensions of the Y, I, and Q components. These RAW videos can then be
transcoded into VQ videos as described below. Thus they are a useful interchange format which

allows non-InfoPad applications to generate VQ videos.

VQ videos can be generated from MPEG and RAW clips using npeg2v(q as detailed in
Appendix A.4. (mpeg2vq (1)). mpeg2vq alowsresizing of video clips and transcoding from par-
ticular subregions of the source clip. It allows the video frame rate to be specified as well as frame
dropping to obtain a desired frame rate. nmpeg2vq can generate adaptively-coded or fast-coded
video clips as discussed in Section5.2.. Additionally, video clips can be coded to an existing arbi-

trary codebook.

VQ and RAW videos can be played on standard X workstations using vg_play asdetailed in

Appendix A.9. (vg_play (1)).

VQ clips coded for a 128x240 display can be sent to an InfoPad terminal or emulator using
the send_vq utility as described in Appendix A.6. (send_vq (1)). send_vq can be used to inject
text / graphics, audio, and other types of datainto the InfoPad network for general purpose debug-
ging. Rate limiting options can be specified to prevent overflow on bandlimited links and code-
book information can be included or overridden. send_vq will also deliver synchronized audio

and video if an audio file is specified.

124

VQ codebooks can be displayed and extracted using the Codebook2ras,
show| vq] codebook|[y],and vg2codebook utilities as described in Appendix A.1., Appen-
dix A.7., and Appendix A.10.. Codebook2r as converts a codebook into a Sun Rasterfile which
can then be viewed. The codebook images in this thesis were generated with that utility.
show| vq] codebook[y] is a shortcut to extract and display the codebooks. Finaly
vg2codebook extracts a codebook from aVQ video clip. This codebook can then be sent man-

ually using send_vq or another video can be coded to this codebook using npeg2vq as previ-

ously described.

125

126

rarT 111 Application-Specific
Transmisson

ciapTer10 Optimization of \Web for
Bandlimited Links

10.1. Introduction

This chapter applies the techniques and methodology developed for application-indepen-
dent text / graphics and image transmission to the web. Since web browsing is an interactive pro-
cess and downloading a web page can take several seconds to several minutes over slow links, the
information presented to the user during this time is important. New metrics and visualization
techniques to illustrate and quantify web page loading are presented. Given the insight afforded
by the metrics, a methodology to improve web access using a new technique, globally progressive
interactive web delivery, is proposed. This technique views the web delivery process as the
remote display of a web page, similar to application-independent transmission previously
described, and entails applying progressive coding to the document transmission process in its

entirety. It also allows the user to explicitly direct link bandwidth to images of interest. This glo-

127

bally progressive interactive framework has been prototyped without modifying either existing
web browsers or servers through the use of a web proxy and browser-side Java applets. The
framework allows for both protocol and image compression research in a platform-independent
manner. Methods for integrating the architecture into existing web infrastructure for greater per-

formance and ability to scale are discussed [31].

10.2. Motivation

Delivery is everything. “The web experience” is much more than the web pages visited - it
also encompasses the speed of access and the quality of information delivered. While browsing
over a T3 line can be highly productive, web access over dial-up or wireless modems often leads to
the phenomenon known as the “World Wide Wait”. Network congestion and bottlenecks within
the Internet can also limit the gains of a high-speed last link. However, aswill be shown, web per-
formance over these slow links can be dramatically improved through efficient link scheduling and
data compression tailored to web transmission. Although some previous work has accelerated
web access through lossy image compression [25][41][65], this, by necessity, resultsin areduction
in image quality. Transport protocol modifications designed to reduce the total web page delivery
time [52][9][54] aso improve web performance, but further gains can be achieved by combining

image coding and networking techniques as described in this chapter.

It isimportant to view web browsing as a form of remote display, similar to the application-
independent transmission described previously in this dissertation. Browsing is not the bulk trans-
fer of information for off-line storage, but rather the “real-time” rendering of a web page on a
remote client. Thus the speeds at which various parts are rendered are useful metrics to gauge the

browsing experience.

128

Web browsing is an interactive process where the user often has specific goals when brows-
ing. The goals may beto read the text, glance at all of the pictures, or closely examine a single pic-
ture. In order to maximize the utility to the user, it is important to incorporate these goals as best
as possible. Currently the level of interaction is limited to aborting the downloading of a page or
suppressing all image downloads until they are explicitly requested. Thus, the user is at the mercy
of the delivery system and must wait for the image or images of interested to be delivered. A
method is proposed for incorporating feedback to allow the user to guide the bandwidth utilization
throughout the downloading process: by simply moving the mouse cursor into an image’ s window,

the image will gain full use of link bandwidth.

Incremental deployment is essential in global Internet applications such as the web. It is
infeasible to expect all existing web browsers and servers to be converted. Two levels of incre-
mental deployment of the protocols are proposed. Firstly, by deploying intermediate proxies to
perform image and protocol conversion, the improved delivery system can be used on slow links
with modified web browsers to view content on conventional web servers. Secondly, aweb proxy
[Java applet prototyping framework is used which does not require the web browsers or serversto
be modified. The proposed system is benchmarked and a discussion of the strengths and weak-

nesses of the framework is presented.

10.3. Background / Previous Work

Web pages are multi-object documents. They consist of a main HTML object, which con-
tains the text and formatting information, and zero or more additional objects such asinline images
and Java applets. The main HTML object contains references to other objects by specifying their
uniform resource locator (URL). These objects are retrieved individually by the web browser

from the web server using the HyperText Transfer Protocol (HTTP).

129

HTTP/1.0 [11] uses a separate TCP connection to retrieve each object. Several concurrent
connections are maintained between the browser and server to load multiple objects at once in
order to hide TCP connection establishment and slow-start [42] delays. However, this increases
overhead and network congestion, thus impacting scalebility [66]. Typically the number of open

connectionsis limited to about 4.

HTTP/1.1 [23] improves upon the delivery protocol through support of persistent connec-
tions [54] between the servers and browsers. By using a single connection to sequentially deliver
all of the HTML and images in a web page, the connection establishment and slow-start delays can
be amortized over the cost of the entire page, the connection packet overhead can be reduced, and
better responsiveness to network congestion is achieved. HTTP/1.1 also supports compression of
the HTML objects viathe deflate coding of the public domain zlib compression library [28]. (This
isahybrid LZ77 [72] / Huffman coding [39]). When applied to HTML data, it can typically result

in agreater than 3x reduction in the size of the HTML file [52].

TCP sessions [9][53] have been proposed to allow sharing of state between related TCP
connections, such as those connecting the same host pair, at the transport layer. If any connection
in the session experiences congestion, all connections can reduce their windows. In this way the
network-friendly behavior of HTTP/1.1 can be obtained while decoupling sensitivity to losses
between different image transfers. Additionally, only the server-side TCP stack needs to be modi-

fied - no browser or server modifications are necessary.

The MUX protocol [51], a work in progress which is part of the next generation HTTP
effort (HTTP-ng) [50], provides a method to layer lightweight multi-session delivery on top of a
reliable stream-oriented transport such as TCP. The MUX protocol can be used by multiple appli-
cations to share the same transport stream as the main HT TP connection in an application indepen-

dent manner.

130

The WebTP project [70] is addressing transport requirements of the World Wide Web
through their “User-Centric Web Transport Protocol”. This is a receiver-driven architecture to
improve upon scaling of web-servers while retaining TCP-friendliness. It uses rate-based flow

control and does not require hard state at the sender.

10.3.1. PreviousWork in Web Acceleration

UC Berkeley’'s Transend [25][26], Intel’s QuickWeb [41], and Spectrum’s FastLane [65]
improve upon web access over slow links by reducing image size via lossy compressi on'. Web
proxies are used to transform the images through resolution and color reduction. Users of Quick-
Web have noted that it can cause significant degradation of image quality [44] and the service has
been discontinued. Use of FastLane also results in image quality degradation [7]. The three sys-
tems allow the user to explicitly load the original undegraded images, but no further user interac-
tion is supported. In contrast, the globally progressive interactive system described here does not

cause reduction of the final quality of the images delivered, and allows greater user interaction.

10.4. Quantifying Web Page Downloading

Since downloading web pages can take from several seconds to several minutes using
modem links, the information presented to the user during this period is critical. For instance, if it
requires one minute to download a page, it is clearly better to have most of the text and images
present after 10 seconds with the remaining filling in over the minute, than to have nothing until
the whole page appears at the one minute mark. Y et in both cases the total time to load the pageis
the same. Thusthetotal timeto load a given pageis often not an accur ate measurement of the

utility of the loading process.

1. Transend isaso designed to operate with clients of varying computational and display capabilities and perform other
types of manipulations.

131

Object Name Bytes Object Name Bytes
HTML index.html 41,261 |Imagel horoscopes120.gif 4,313
Image2 ad_info.gif 92 JImage3 still_468x60.gif 9,374
Image4d cnnin_logo.gif 2,225 |Image5 icon_arrow_|left.gif 261
Image6 white.gif 35 |Image7 roof top.gif 1,205
Image8 search_infose.gif 441 |Image9 right_corner.gif 102
Imagel0 top_ruins ap.jpg 17,774 JImaegll custom_clint.jpg 6,112
Imagel2 video_transp.gif 170 |Imagel3 cnn_website.gif 2,980
Imageld web_services.gif 11,623 |[Imagel5 custom_arrow.gif 137
Imagel6 tv_generic.gif 1,291 |Imagel7 heath2.gif 2,124
Imagel8 thumbnail.jpg 2,580 JImagel9 week_in review.gif 986
Imge20 dianajpg 2,507 JImage2l infoseek logo.gif 555
Image22 pointcast.gif 6,983 JImage23 red_468.gif 10,486

TABLE 10.1. Contents of typical web page (CNN Interactive - www.cnn.com).
Shading denotesimages not initial visible when viewed on a 1024x768 scr een.

In order to fully encapsulate the loading process as viewed by the user, it is necessary to
visualize and quantify the loading of the constituent parts of the page, and not just the time to load
everything. A web-page loading graph can be used to more precisely illustrate and quantify the
effects of different transfer protocols on atypical web document. The CNN Interactive (tm) home
page (http://www.cnn.com/) will be used as an example. The constituent objects are listed in
Tablel0.1 in order of their appearance and the shaded entries correspond to images that the user
would have to scroll to see when using a 1024x768 pixel web browser window because they are

not initially visible.

10.4.1. An Example of Concurrent HTTP/1.0-Style L oading

Figure 10.1 shows aweb page loading graph of the document loaded using the conventional
HTTP/1.0-style concurrent loading protocol. The graphs in this section display timings using a

simulated constant 3K B/sec link similar to a 28.8kbps modem, in order to best illustrate the perfor-

132

HTML
Image3
Image6 F
Image9 ¢
Imagel2 |

'__ HTM L’/)E A” on-screen
. LN loaded | images loaded
Initially - .
n-screen ™ ! S
N\ — ; L All images
Initially =__ Ioaded/
off-screen 1 v
o 10 20 30 40

Time (seconds)

FIGURE 10.1. Web-page loading graph using concurrent loading of up to 4 connections

HTML}
Image3t
Image6f
Image9t
Imagel2f

.10.

L

T
Time (seconds)

FIGURE 10.2. Web-page loading graph of sequential loading protocol

mance of the different loading styles apart from implementation specifics. The results shown in
Section 10.6.5. are based on actual data collected from our prototype proxy / applet system. The
objects in the page are listed on the vertical axis while time traverses the horizontal axis, with the
lighter gray used for images outside of the viewable window. The bars indicate the time during

which a particular object is being delivered.

In order to quantify the loading process, it is useful to define the following metrics: the time
that the HTML is loaded, the time that initially visible images are loaded, and the time to load the
entire page. The time to load the HTML determines how long it will take to view the text on the
page, and the time to load the initially visible images determines when the user thinks that the page

has loaded. In the example we can see that the HTML is loaded within 30.6 seconds, all visible

133

Timetovisible | Timetoentire

Timeto text document document
Concurrent 30.6 sec 36.9 sec 42.4 sec
Sequential 14.3 sec 28.2 sec 42.4 sec
Conc. w/comp. 6.6 sec 29.4 sec 31.8 sec
Seg. w/comp. 3.7 sec 17.7 sec 31.8 sec

TABLE 10.2. Summary of concurrent and sequential loading

images are loaded within 36.9 seconds, and the entire page is not loaded until 42.4 seconds have

€l apsed.

10.4.2. An Example of Sequential HTTP/1.1-Style L oading

The web-page loading graph for the same web document loaded using the conventional
HTTP/1.1-style sequential loading protocol is shown in Figure 10.2. Using the sequential loading,
the total time to load the entire web document remains 42.4 seconds but the time to see the visible
images has dropped to 28.2 seconds, simply by reordering the data being sent. Additionaly, the
time to see the text is reduced to 14.3 seconds - less than half of the time required using concurrent
loading. Thus, despite the fact that the total loading time is the same as the previous case, the

delivery orders have very different consequences for the user.

10.4.3. HTML Compression

If HTML compression is used, the size of the HTML object in our example is reduced by
about afactor of 4, from 41261 to 9950. The corresponding web-page loading graphs are shownin
Figure 10.3 and Figure 10.4. While the total time to load the document is only reduced by about
25% from 42.4 seconds to 31.8 seconds, the time to see the text is reduced by a factor of 4 and the
time to see the entire visible part of the document is reduced by about 20% and 40% for the con-
current and sequential modes respectively. However, the delivered document is identical to the

original. These results are summarized in Tablel0.2.

134

HTML [e——

Image6 - M

Imageg:— : T—

Imagel2 S — :
-_u e .: N T E T —
0 10 . 20 30

Time (seconds)
FIGURE 10.3. Concurrent loading and HTML compression

HTML [o— T

Image3 F | —

Image6 | ; ".

Imagel2 F e
0 10 20 30

Time (seconds)

FIGURE 10.4. Sequential loading and HTML compression

10.5. Globally Progressive Interactive Web Delivery

Once metrics and methodology are in place to examine web document delivery, it is possi-
ble to investigate alternatives. Although sequential transmission is an improvement over concur-

rent delivery, using progressive and interactive techniques, significant improvements can be

realized.

10.5.1. Globally Progressive Transmission

Progressive image transmission entails sending a layered coding consisting of alow quality
version initially, followed by refinements. Thus, after the initial bytes are received, a complete,

albeit non-aesthetically pleasing, version can be displayed, and as time progresses, the image qual -

135

ity improves. Progressive techniques are ideally suited for transmission of human-viewed data
over band-limited links since they allow the user to quickly deduce the salient features and only

require the user to wait for the full load times to see full detail.

10.5.1.1. Existing Progressive | mage For mats

Progressive image formats are already common on the web. CompuServe's lossless Graph-
ical Interchange Format (GIF) [17] has an “interlaced” mode in which rows are sent in a progres-
sive manner. Portable Network Graphics (PNG) [59], a graphics format which has been formally
accepted as a standard MIME type by the World Wide Web Consortium, has a mode that is pro-
gressive in both rows and columns to achieve better subjective quality after a smaller amount of
data has been received. Both GIF' s and PNG’s progressive modes result in some reduction in
compression rate due to the increase in local entropy. PNG also enjoys a patent-free status and
typically achieves 5%-25% better compression than GIF [56] by using zlib’s LZ77 / Huffman
compression instead of GIF's Lempel Ziv Welch (LZW) [72][71] compression and packing sub-

byte pixels.

The Joint Picture Expert Group’s JPEG includes a lossy DCT-based coding technique
which has a progressive mode that divides layers by spatial frequency and quantization level [56].
The number of layers and their composition can be varied, and are specified in the image header.
Figure 10.5 shows an example comparing JPEG’s non-progressive and progressive (PJPEG)
modes. The baseline JPEG quantization levels are used, resulting in a coding rate of 1.84 hits/
pixel which, from an informal survey, istypical of JPEG images on the web. As can be seen from
the lower set of images, a very crude version of the image is available after receiving only 8% of
the progressive data. After 19%, enough detail is available to easily discern the contents of the

image. Subsequent data provides further detail, with the later layers only becoming noticeable

136

(i =
1055 bytes 2522 k}ytes 4228 b/ytes 7441 b/yt% 13095 tytes
8% 19% 32% 57% 100%

FIGURE 10.5. Example of progr essive images.

JPEG (top) and PJPEG (bottom) showing display of incomplete data. 1mage was
quantized to JPEG default level yielding 1.84 bits/pixel coding.

under closer inspection. It is important to note that this is exactly what lossy image compression
proxies such as QuickWeb, TranSend, and Fastlane rely upon - by performing lossy image com-
pression they are removing some of the fine detail, similar to that in the final layers of PIPEG.
While the degradation is not severe to cursory inspection, it does reduce the final image quality.

However, by using progressive techniques, the end quality need not be sacrificed at all.

10.5.2. Locally Progressive Delivery

Progressive image formats are of limited benefit when using standard loading protocols
since they arelocally progressive - each imageis progressively coded but the document as awhole
isnot. Otherwise stated, the loading processitself is not progressive. Figure 10.6 and Figure 10.7
show web page |oading graphs of locally progressive images loaded concurrently and sequentially.
The lighter parts to the left correspond to coarser layers while the darker parts to the right corre-
spond to refinements. For illustrative purposes, the layers have been divided according to the divi-

sion of the lower imagesin Figure 10.5.

137

HTT "___I i T i " T " " T " T
|rnage3— E _._ Layer3|o_a:ledforal —
ImegeBr N (in-s:remlmages ==
Imagedf L e —
Imegel2f | ayer 1 logdey/ === : "

] fo?/al onstreen. ¢ LayerSI&jed
P Imeges | :

0 10

i

Time (seconds)

FIGURE 10.6. Simul. loading w/ locally progressive images (w/ HTML compression)

L= | e
Image3 - A w L ayer 3
Image6 F ; I -Laéj/er 4
Image9 - ! e —— m| ayer 5
Imagel2 F : g
0 10 20 30

Time (seconds)

FIGURE 10.7. Sequential loading with locally progressive images (w/ HTML compression)

The amount of time to deliver enough of all of the images to see a certain number of layers
in each image can be used to quantify the progressive delivery. As can be seen from Figure 10.6,
the time to concurrently load at least the first layer of each of the images is 10.1 seconds, to load
the first two layersis about 12.7 seconds, three layersis 15.3 seconds, four layers is 20.5 seconds,
and the time to load all layers for all visible images is still 29.4 seconds. Figure 10.7 shows that
the layers in each image for the sequential case are loaded in rapid succession since the images

have access to the full link bandwidth.

10.5.3. Globally Progressive Delivery
However, by using globally progressive loading, further benefits can be achieved. Globally

progressive loading considers the whole document as a progressive object and displays a coarse

138

HTML
Image3 |
Imageb |
Image9 |
Imegel2 ¢

HTML |
Images [
Imageb6 ¢
Image9 t
Imagel2 t

Time (seconds)

FIGURE 10.9. Globally layer-wise progressive loading (w/HTML compression)

version followed by more refined versions. In the case of a web document, the HTML might be
considered the coarsest layer since it is required to decode the rest of the document and conveys
the bulk of the information. The next layer of the document would include the first layer of all
images and subsequent layers of the document would include subsequent layers of each image. By
using globally progressive loading, the user is very quickly presented the text and coarse versions
of all visible images and can rapidly proceed to analyze the page’s contents. Thisis particularly

useful when combined with interactive loading described in the next section.

Figure 10.8 shows globally progressive loading using a byte-wise equality metric such that
the scheduling attempts to keep the number of transmitted bytes of each visible image similar, and

Figure 10.9 shows globally progressive loading using a layer-wise equality metric dictating that a

139

Protocol Timings

HTML [Concur / Visible | Visible | Visible | Visible| Visible | Complete

Compr | Sequen Progressive|| Text Layer 1|Layer 2 [Layer 3|Layer 4|All Layers|Document
No Conc No 30.6sec| na n/a n/a n‘a 36.9sec | 424 sec
No | Sequen No 143sec| nla n/a n/a na 28.2sec | 42.4 sec

Yes Conc No 6.6 sec n‘a n/a n/a na 29.4sec | 318 sec
Yes | Sequen No 3.7 sec na n‘a n/a na 17.7sec | 31.8 sec
Yes | conc | EOAY 1166 sec |10.1sec]12.7 sec|15.3sec| 205 sec| 29.4sec | 31.8 sec
Progressive
Locally
Yes | Sequen . 3.7 sec [15.8 sec|16.0 sec|16.3sec|(16.8sec| 17.7sec | 31.8 sec
Progressive
Bytewise
Yes Both Globally |[3.7 sec | 6.8 sec | 9.6sec |12.3sec|15.1sec| 17.7sec | 31.8 sec
Progressive
L ayerwise
Yes Both Globally |[3.7sec | 48sec | 6.3sec | 8.2sec [11.7sec| 17.7sec | 31.8 sec
Progressive

TABLE 10.3. Summary of delivery methods and per formances

given layer in one visible image should not be loaded until the previous layers are loaded in all
other visible images. While the layer-wise metric allows earlier layers to be loaded for all images
sooner, the byte-wise metric is typically preferable since it allows link scheduling to be indepen-
dent of image coding and also prevents large images from severely delaying smaller images. For

these reasons, the byte-wise metric is used in our prototype system described in Section10.6..

Tablel0.3 shows a summary of the comparison between locally and globally progressive
loading. As can be seen, the time to load all visible layers is the same for the sequentially loaded
locally progressive case as the globally progressive cases, but in the locally progressive case, the
benefits of progressive loading are minimal. In the simultaneously loaded, locally progressive
case, thereisadelay until the base layers of some of the later images are loaded, as well as a delay
in finishing the visible images due to competition with images that are not visible. However, in
the globally progressive cases, the text is shown very quickly, followed immediately by coarse

versions of all images and then refinements.

140

HTML ["™~ "~ T 7 7 7 7 T 777
Image3 | m -
Image6 [o
Image9 | O I
Imagel2 e
N pl
Images 12, 13 and 14
: displayed here —
0 10 20 30

Time (seconds)

FIGURE 10.10. Globally progressive loading with images scrolled to during loading

HTML | o — ' '
Image3f —
I mage6f o A
Imageg; .- s —
Imagel2f = =
Image3 given E
priority here
L., ————
0 10 20 30

Time (seconds)

FIGURE 10.11. Interactive loading with image inter actively selected by user

If an image that is not initially displayed is made visible during the loading process, it is
boosted to the same priority as the other visible images so that bandwidth isinitially dedicated to
only that image until it has loaded to the same degree as the other images. Then all visible images
resume loading in unison. An example is shown in Figure 10.10. In this example, images 12, 13

and 14 were previously off screen but then scrolled into view after about 12 seconds. Similarly,

the priority of images that are scrolled off screen can be reduced®.

1. However, detecting images scrolling off-screen is not possible using the Java prototype.

141

While the above assumed strict priority scheduling, a stochastic algorithm such as Lottery
Scheduling [69] could be used to assure progress of all images. Additionally, techniques such as
Class Based Queuing (CBQ) [24] could be used to increase flexibility and allow more complex
policies. Web page designers could also incorporate delivery and image transcoding hints into

image tags to assert more control over the delivery process.

Globally progressive delivery is also well suited to take advantage of networks with variable
Quality of Service (QoS). There is an implicit ordering of the importance of the data with text
being most important, initial bytes or layers of images being a little less important, later bytes or
layers being still less important, and off-screen images being even less important. While it is cur-
rently used to prioritize data within the web connection, it could also be used to prioritize data
transmission across multiple connections, web or otherwise. For instance, if text over any web
connection is given higher priority than images over any web connection, then even as the network
becomes congested, the text delivery performance will not suffer as much. Likewise, if off-screen
images are given lower priorities, the downloading of long pages by some users will not hamper
the interactive operation of other users. The prioritization could be used within a web server to

ensure timely servicing of text and coarse image requests.

10.5.4. Interactive Operation

While globally progressive loading rapidly delivers coarse versions of all visible images,
the user must still wait for all refinements, even if they are only interested in a single image in
detail. However, by allowing the user to easily instruct the system as to which image they are
interested in, this image can be loaded more quickly by dedicating all available link bandwidth to
it. Since the layers are loaded in synchrony, the user is able to quickly determine which image or
images are most interesting. One method for incorporating user image preference is to detect

when the mouse cursor is inside a particular image, and give that image priority. Figure 10.11

142

shows the effect of selecting image 3 after itstwo first layers have been displayed. As can be seen,
in thisway, the entire refined image can be loaded by the 10 second mark, alittle more than half of
the time required in the absence of user intervention. Further interactivity could include targeting
exactly which parts of the image are transmitted first. Explicit targeting may be useful in cases of

large images where semantic quality requires high fidelity, such as maps.

When interaction is allowed, the amount of data buffered in the connection between the web
server and web browser must be limited in order to allow rapid response. Once the user preference
is detected and transmitted to the web server (or proxy), the high-priority image can be queued, but
this data will not reach the browser until all other data queued in that connection has been deliv-
ered (unless out-of-band signalling or more sophisticated transport protocols are used). For
instance, using a 28.8k baud modem connection, in order to obtain a one-second response time, at
most 3.6K bytes can be buffered even in the absence of network congestion. The buffered data
consists of the data queued in the kernel buffers as well as the packets queued in the network rout-
ers. Kernel-level scheduling of the images can be used to eliminate delay due to the former[55]
while TCP window-size limiting would have to be used to reduce the latter. Severely limiting the
amount of queued data can reduce link utilization, particularly for high-bandwidth, high-latency

links such as satellite links.

10.6. Transport Protocol Prototyping via Web Proxies and Java
Applets

In order to prototype the globally progressive interactive delivery scheme, a proxy-based
architecture allowing full control over image delivery and display was designed. This architecture
can be used as a test-bed to develop and experimentally deploy a range of network protocols not
restricted to HTTP or even TCP. Additionally, non-standard image compression techniques can

be used over the link.

143

Web Browser

Web Fast
Server » Internet
Connection

Web
Server [¥

Web /
Server

‘ }
B eb Browsey

A 4 e o o

s

FIGURE 10.12. Web proxy / Java applet framework

10.6.1. Proxy Operation

While conventional web proxies can transform the content of the web pages, they must
work within the confines of the HTTP protocol specifications. For instance, they cannot alter the
number of connections that the browser opens, change the ordering of the requests, or respond to
fine-grained user interactivity - thus precluding implementation of a protocol similar to the one
just described. However, through the use of Java applets to load and display the images on the
page, much greater control is possible. A block diagram of the framework is shown in Figure

10.12.

The globally progressive interactive delivery is best implemented by using a single multi-
plexed, prioritized connection between the web browser and web server or proxy. However, in the
case of the proxy / applet system described here, separate HTML and image connections are
required to allow the HTML to go directly to the browser core while the images are sent to the

Java applets over a single multiplexed connection.

144

Original HTML.:

For ny honmepage, click here <I MG
SRC=hone. gi f ></ A>

Modified HTML:

For my homepage click here

<APPLET CODE=" Speed| mage. cl ass”
W DTH=54 HEI GHT=39
ARCHI VE=" ht t p: // proxy. com Speedl mage. j ar”
CODEBASE="htt p: // proxy. com " >
<PARAM NAME=i mageHost Port VALUE=9999>
<PARAM NAME=sT C
VALUE="htt p:// home. coml ~ne/ hone. gi f” >
<PARAM NAME=hr ef
VALUE="htt p:// home. com ~ne” >
</ APPLET>
</ A>

FIGURE 10.13. Exampleof HTML modification to embed image applets

10.6.2. HTTP Proxy Design

The HTTP Proxy substitutes Java applet tags for image tags, as shown in Figure 10.13, as it
sends pages to the browser, causing applets to appear where the images were. The applets are sup-
plied the URL of the image to display as well the host name and port of the Image Proxy. If the
width and height are not specified in the IMG tag, they are determined by prefetching the image
and decoding its header since the applet dimensions must be specified in the APPLET tag (unlike
I M G tags where the dimensions should be specified.) HTML compression is achieved viaHTTP/

1.1 transport encoding.

10.6.2.1. Streaming HTML Conversion

One important technique used in both the HTTP Proxy and the Image Proxy is that of

streaming conversion. Streaming conversion entails converting both images and HTML text “on-

145

the-fly” whenever possible, instead of first retrieving the entire objects before processing them.
This is critical if the response from the web server is slow due to network congestion or server
loading. If the proxy waits for the entire object to be received before sending any part of it out, the
time for the user to receive any part of it will be substantially increased, and the total time to
retrieve the object can be doubled. For the HTTP Proxy, streaming conversion means that the
HTML istransformed and compressed on the fly. While compression and simple textual substitu-
tion would not be problematic, incorporating image size information in applet tags requires asyn-

chronous retrieval and parsing of image headers to determine their sizes.

10.6.2.2. Link Scheduling

The HTTP Proxy performs limited link scheduling by tracking the amount of data outstand-
ing in HTML and non-HTML (typically image) links. It does not send data on non-HTML links
until the amount of HTML data outstanding is below a given threshold. The image proxy also sup-
presses custom image data until the amount of HTML data outstanding is below a given threshold
in order to effect the text prioritization needed for globally progressive transmission as described

in Section10.5. The fine-grain inter-image scheduling takes place in the Image Proxy.

10.6.3. Image Proxy Design

The Image Proxy is responsible for retrieving images from the web servers, transforming
them, and sending them over the custom managed link to the Image Applets. A strict priority
round-robin system is used with priorities dynamically specified by the Image Applets depending

on whether they are on-screen and where the cursor is.

10.6.3.1. Image Conversion

As the images are retrieved, their type is determined from the HTTP meta-data. Type-spe-

cific conversion is performed to generate progressive versions. JPEG images are converted to Pro-

146

gressive JPEG (PJPEG) using the Independent JPEG Group’s JPEG library [40]. This conversion
is lossless and does not significantly effect compression rate. GIF images are converted to aloss-

less format similar to interlaced PNG.

Additionally, conversion from GIF to PJPEG is attempted and the PJPEG image is used
whenever a high-quality lossy JPEG conversion results in a reduction in size compared to the
PNG-like coding. By keeping the JPEG quality setting high, discrete-tone images not well suited
to lossy compression will compress less compactly with JPEG than with alossless coding such as
GIF or PNG, and thus the lossless coding will be used. However, photographic images are often
stored on web sites in lossless GIF while lossy JPEG coding dramatically reduces the size of the
image while not resulting in any perceptible degradation. Since progressive coding is used, a high

guality setting can be used while still allowing quick delivery of a coarse version of images.

10.6.3.2. Streaming I mage Conversion

As described previously, an important aspect of effective proxy operation is forwarding data
as soon as possible to reduce user-perceived delay. However, conversion to progressive formats
requires the entire image to be present. In order to minimize delay, the original datais streamed to
the browser until the entire image is loaded and converted. A switch to the progressive coding is
done when advantageous. For the case of JPEG to PIPEG conversion, a heuristic of requiring less
than half of the data being sent is used. For the case of GIF to PJPEG conversion, the size of the
PJPEG data has to be less than the number of bytes of the GIF image remaining. Typically the
total increase in the amount of data sent due to streaming image conversion is not large, yet it can

substantially improve perceived latency.

147

Image/ Priority Requests

S oo

I
Image Data Global Applet
ag »| _Image

‘--\'-\
e liliii..-C > Image

Applet

Image Proxy

FIGURE 10.14. Image applet design

10.6.3.3. Link Scheduling

The Image Proxy explicitly manages the link to the Image Applets. Theimage priorities are
determined by the Image Applets (described next) as dictated by the globally progressive interac-
tive delivery scheme, and communicated to the Image Proxy. Within apriority class, images send-
ing processed data (progressively coded images) are given priority to those sending unprocessed
data since the unprocessed data may have to be flushed, as previously described, if the processing

proves to be advantageous.

10.6.4. Image Applet Design

Image Applets request the data for their images from the proxy and display it. They are
nearly indistinguishable from images they replace, responding to mouse clicks to follow web links
as standard images do. The Image Applets also respond to keyboard commands to create new
windows which are copies of the images as well as zoom and pan within the images. Thus the

document is an active entity that can be manipulated.

Figure 10.14 shows the internal architecture of the Image Applets. There is one applet per
image on the page, though the images communicate through shared static objects. Static Java
objects are shared among all applets running in the same Virtual Machine - i.e. al applets running

in the same browser. |In particular, a shared image database is used to track which images have

148

Text 5.1sec Visible Layer 4 16.9 sec
VisibleLayer 1 10.1sec Visible All Layers 20.0sec
Visible Layer2 12.3sec Complete Document 33.3 sec

VisibleLayer 3 14.4sec

TABLE 10.4. Performance of Java/ proxy system on example CNN Interactive
page

been loaded already and allows the same image to be shown in multiple applets without requiring
the image to be loaded more than once. The loading of the images is centralized via a single Java

thread which contacts the Image Proxy and manages all browser-proxy communication.

10.6.5. Proxy / Applet Performance

In order to evaluate both conventional and proposed globally progressive interactive loading
protocols, the SpeedSurfer client-side proxy described in is used as shown in Figure 10.15. The
client PC was a Pentium 11/266 PC running Microsoft Internet Explorer 4.0 web browser under
Windows NT 4.0 and connected to the Internet via a 28.8k baud modem. The web proxy and local

web server ran on a Sun UltraSparc 2 workstation.

The web page loading graph depicting loading the example page from alocal server using
conventional HTTP/1.0 is shown in Figure 10.16. The initial vertical line in each object’s row
indicates when the HTTP request is issued while the bars indicate response timing. The loading
pattern has similarities to both Figure 10.1 and Figure 10.2 due to the interaction of the multiple
simultaneous TCP/IP connections. Although up to four requests are open simultaneously, due to
TCP/IP' s adaptive congestion control, new flows receive less bandwidth than existing connections

until equilibrium is reached.

The graph of loading the page using the globally progressive interactive technique via the

proxy / applet prototype is shown in Figure 10.17 and summarized in Tablel0.4. The perfor-

149

ClietPC \webBrowser
Speedh,
Surfer
Proxy["
FIGURE 10.15. Performance evaluation setup
HTML [———— —— ' ' '
Image3 F | | n wm w
Image6 [! ! I.'.'-
Imageg ;_ IIIIIIIIII---_ nn
Imagel?2 | o .
I 1 | 1 ||.|.I..- [B}
3 II | II -I Il-
3 J -
0 10 20 30 40 50

Time (seconds)

FIGURE 10.16. Trace of conventional HTTP/1.0 concurrent loading

HTML [=== ., m
Image3 :— i 1 e NN NN —
Image6 [ATy
Irl‘ﬂn;gagig z i II IIIIIIIIIII...-_I
| " " " L | " " " " 1 "
0 10 20

Time (seconds)

FIGURE 10.17. Collected trace of proxy / applet operation

150

Time Amount Time Amount Time Amount

(sec) (bytes) (sec) (bytes) (sec) (bytes)
1.543 1460 3.956 1460 5.098 1960
2.855 2540 4.857 2540

TABLE 10.5. Data Reception of HTML Object of Figure 10.17.
Packet times arein seconds since request.
mance is improved significantly over conventional loading but is slightly slower than predicted.
Comparing Figure 10.17 to Figure 10.8 illustrates a few notable differences. The increased timeto
text can be seen in the segmentation of the HTML object bar indicating unsteady flow of data due
to TCP/IP slow-start. The TCP/IP data reception timing shown in Tablel0.5 further verifies this.
The increased time to the first layer of images is an artifact of the Java implementation: the web

browser does not start the Image Applets until the entire web page has been loaded and thus their

requests are delayed.

The time to perform on-the-fly compression and image conversion did not contribute signif-
icant overhead. Gzip compression of the 41261 byte HTML object to 9950 bytes required only
0.10 seconds while conversion of the 17774 byte / 47600 pixel top_ruins_ap.jpg image from JPEG
to PJPEG required 0.12 seconds. Conversion of the same image from GIF to PJPEG would
require 0.16 seconds. These all result in converted data rates of approximately 1 Mbit/second and
thus a high performance workstation can support the compression and conversion for roughly

thirty 28.8k baud modems. Caching and distributed computing could further increase scal ability.

10.7. Conclusions and Future Directions

With the explosive growth of the Internet and increasing proliferation of low-bandwidth
wireless access, efficient and expedient delivery of web content has become more important than
ever. This optimized delivery is only possible through carefully analysis of the factors affecting

loading speed. As has been shown, by viewing web delivery as a form of remote display, and

151

combining networking and image compression techniques, significant gains have been demon-
strated. Additionally, this point of view yields opportunities for further devel opments as described

below.

10.7.1. Integration with Existing Web Infrastructure

While the Web Proxy / Java Applet architecture described in the previous section is useful
to evaluate and optimize the globally progressive interactive web delivery, further gains can be
achieved by incorporating the methodology into existing web servers, proxies, and browsers and
by building upon current HTTP protocols and related work described in Section10.3.. Public-
domain open-source browsers and servers / proxies provide a state-of-the-art starting point [3],
[48], [72]. The functionality of the Image Applets can be directly incorporated into the browser

while the functionality of the web proxy can be integrated into the web server / proxy.

Interoperability is achieved through protocol negotiation on connection. A mechanism such
as MUX can be used to support transmission of multiple images over asinglelink. One disadvan-
tage of MUX using TCP is its use of a single buffered connection, which forces multiplexing to
occur before buffering. This can result in additional buffering delay, impacting interactive switch-
ing of image priorities as described previously. Alternatively, TCP sessions could be employed if
explicitly prioritized queuing is added [55]. TCP sessions have the advantages of application inde-
pendence and removing false-dependencies across images. However, the use of TCP sessions
requires server kernel modifications and may result in greater kernel overhead and resource utili-

zation since anew TCP connection is required for each image.

10.7.2. Transparent Content Negotiation

The globally progressive interactive web delivery requires the ability to access both

transcoded versions of images as well as the original. The underlying protocol must be able to

152

specify which image conversions should occur. While HTTP/1.0 provides very crude content
negotiation via “accept” headers, it lacks sufficient expressive capabilities, which can lead to
name-space conflicts. Transparent Content Negotiation, however, as described in [23] allowsfor a
more flexible, powerful mechanism which allows “variants” of an object to be described and

named differently than the original object.

Integration of an automatic content conversion mechanisms into a web proxy or server also
allows delivery of improved formats, such as PNG, JBIG [4], [61], or wavelets [60], while retain-
ing originalsin the highly compatible legacy formats - GIF and JPEG. The web servers or proxies
can automatically negotiate with the browser to determine the best mutually supported format, and
perform conversion. In thisway, the latest image coding techniques can be used without sacrific-

ing compatibility.

10.7.3. Scalability through Server / Proxy Caching of Processed Data

Since the same progressive image codings are used for both high-bandwidth and low-band-
width links, transcoded images can be cached and reused. When coupled with streaming conver-
sion, this allows conversions to be delayed when the load on the server gets high, and yet assure
that performance is never worse than without the conversions. However, if several users access a
given web site via different web proxies, the objects on the site must be converted by each of the
proxies. By integrating the functionality of the proxy into the server, the server / proxy can pro-
cess the objects on the site only once per creation or update, regardless of how many geographi-
cally separated users access the objects. By transmitting the converted objects over the Internet,
the delay of the wide-area access is mitigated by the globally progressive interactive delivery. The
same scalability for dynamically created objects cannot be obtained but most images are not

dynamically created, even at sites that use dynamically created content.

153

154

ciapter11 Application-Levd Link
Management

In this chapter, techniques for optimizing the transmission of text / graphics information for
a specific application are presented and compared to the application-independent methods previ-
ously described. While the application-independent techniques of Part |1 allow any application to
be used remotely, further gains are often achievable by optimizing for the particular application.
The specific application that is used as a case study in this chapter is a Java-based VLS| layout
viewer called “WebChip”. This application is chosen because it is both information- and display-

intensive and requires interactive operation.

11.1. WebChip - An Interactive Java-based VLS Layout Viewer

WebChip is Java-based VLSI layout viewer that allows users to embed active layouts in
their web pages instead of only using static images. It is information-based as it is designed to
view a large layout database remotely. It is also display-intensive, particularly considering it is
designed to operate on arelatively restricted Java virtual machine. While the implications of Web-

Chip in terms of application-specific text / graphics and image transmission are described in this

155

[Cached Block Mods <]

I U (e U U AR 1 o L LU T U |
[Iltlsn] .jw"mh.. TR iy ".1|:..-|u!

::EE ﬁhﬂ

g
B
B
]
g
g
g
g
g
g
g
g
g
B
B
g

FIGURE 11.1. Examplelayout viewed with WebChip

chapter, further details about its use and operation can be found in Appendix B (The WebChip

Applet).

WebChip, like other instances of application-specific text / graphics and image transmis-
sion, could be designed as a local client that did not know about remote transmission and instead
relied upon atext / graphics server to perform application-independent transmission as described
in earlier chapters. Whilethiswould allow full functionality, typically with reduced design time, it
would also result in severely degraded interactivity, increased bandwidth utilization, and increased

latency over low-bandwidth links.

Using application-independent transmission would require all layout data to be fully ren-
dered before transmission and thus whenever the particular desired view changed, the image
would have to be re-transmitted. Application-specific transmission allows client-side caching of

view-invariant data, such as layout cells. Also, rendered data in the form of primitive draw com-

156

mands or bitmaps, is typically less compact then the source data it came from, since it has greater

expressive capability.

The WebChip application is used to present application-level techniques to hide the effects
of slow networking and image rendering. Many of the issues in application-independent text /
graphics and image transmission as well as web-specific delivery find parallels in application-spe-

cific domain as described below.

There is a need to combine compression and link scheduling to most effectively utilize the
limited bandwidth link. Compression alone will yield some benefit, but only in conjunction with

link scheduling can very low-bandwidth links be managed.

Progressive techniques can be used, as before, to assure that the user is delivered the coars-
est information first, so that in a very short amount of time a crude version of the entire layout can
be seen. While in the case of web delivery, a crude version refers to reduced spatial resolution, in
the case of alayout viewer, this refers to seeing only higher-level cells. The data within the cells

could also be arranged progressively.

As with the application-independent and web-specific cases, it is critical to infer user intent
to guide the use of the limited bandwidth link. In the case of the layout viewer, the intent is mani-
fest in the choice of cells to layout cells to expand. This information is then provided to the net-
working layer so that the expanded cells are given higher loading priority and their data is

transferred sooner.

In order to retain interactivity during the loading process, the user interface, networking,
and rendering layers of the application must be decoupled. In thisway, the user interface will not
block because the application is waiting on data from the network, or because the applicationisin

the middle of a compute-intensive drawing operation. Once this decoupling has occurred then the

157

constraints on the networking and rendering layers can be relaxed while still achieving interactiv-

ity.

Even large, highly detailed VLSI layouts can be viewed interactively over aslow link. The
key is that at any given time the user’s immediate requirements of data are typically modest,

although they do need the ability to view the entire layout when desired.

11.2. Techniquesto Increase Speed

11.2.1. Display Techniques

The simplest way to produce stipples is using the AWT drawimage to copy pre-determined
swaths of semi-transparent stipples. The swaths are basically sets of IndexedColorMap images.
Rendering is limited to within the window and clip rect to avoid unnecessary computations. Sub-
cells are only recursed into if they contain some part in the current clip rect or window. This has
the advantage of relative simplicity although the swaths have to be generated and determining

where on the screen to draw layersis non-trivial given ahierarchical design with transformations.

This method is too slow, particularly under Unix. Unix currently uses interpreted Java
while the PC implementations use just-in-time compilation. More importantly in Unix, the display
is handled by another process - the X server, and each drawing request is very costly. Under Win-
dows 95/NT on a PC, the drawing can be performed by the Java application directly using Direct-
Draw, and thus the overhead is substantially less. By running the “top” utility in Unix, it is clear

that in AWT mode, the X server isindeed consuming the bulk of the cycles.

11.2.1.1. Image Blocks

Performance can be improved upon by performing the rendering to abyte array in Javaon a

cell by cell basis. Once a cells has been rendered into a byte array, it is displayed using a single

158

drawimage request. Inthisway, far fewer drawing requests are made. Instead of using the AWT's
semi-transparent copy, the block mode routines that generate the byte data use something more
akin to stippled rectangle drawing. The code has been unrolled and optimized to achieve respect-

able performance, even under interpreted Java.

11.2.1.2. Cell Image Caching

A more architecturally significant improvement comes by a technique dubbed cell image
caching. Most designs are hierarchical while currently most display programs display “flattened”.
If many copies of agiven cell are displayed, the cells are rendered one at atime. This can lead to

very slow rendering of large expanded layouts.

Instead, it is beneficial to save the image of a cell once it is rendered at a given magnifica-
tion, and then upon having to render it again later, the image can be retrieved instead of having to
redraw the layers from scratch. Since hierarchical designs include rotated and flipped subcells,
either the cell image rendering has to be able to rotate and flip the images, or else an image has to
be cached for each rotation. WebChip uses the latter option due to Java's lack of support for rota-
tion. Not all browsers supported the 10 argument drawimage which allows flipping. There can be
up to 8 different combinations of rotations and flips. The transform matrix is examined to deter-

mine the orientation.

In the case of stippled drawing, the stipple patterns must always align or else different layers
in different cells can obscure each other. It suffices to round out the box sizes to the basic granu-
larity of the stipple which istwo. |.e. in the 8x8 stipples, most transparent patterns, except nwell,

repeat on a 2x2 basis.

A cell image caching system must be able to revert back to either non-cached blocks or
primitive AWT in case there is insufficient memory for the images, or the cell image rendering

will be more costly than the primitives. WebChip has both modes of fall-back.

159

While cell image caching is very useful for WebChip, allowing it in some cases to render
more rapidly than Magic or Cadence, it could also be extended to those tools. It is ageneric tech-

nique useful for dealing with hierarchy.

11.2.2. Loading Techniques
Since the time to load layout over slow links is an important factor in interactivity, ways to

improve it were investigated.

11.2.2.1. Compression

Thefirst way to reduce load-time is to compress the data being loaded. Magic filesare plain
ASCII text which has the advantage of being human-readable, but not particularly compact. Con-
verting the layout into a binary form and doing application-specific compression would yield very

good compression at the expense of reduced portability. An alternativeisto use Java's GZIP com-

pression support on the ASCI|I cells.

WebChip supports reading both compressed and uncompressed layout files. If it does not
find one type then it looks for the other. It assumes that most of the cellsin a particular design will
be compressed, or most will not. If it finds one compressed file, it checked for the next one being

compressed before reverting to searching for the uncompressed version.

11.2.2.2. Concurrent Loading

Additional reductions in loading time can be obtained by issuing multiple layout cell
requests simultaneously. This technique is commonly performed by web browsers when retriev-
ing the images associated with a particular page. It amortizesthe TCP/IP connect time cost. How-
ever, opening too many connections simultaneously can result in aloss in performance particularly

over a modem link as the connections are never able to stabilize. For these reasons WebChip is

1. Thiswas suggested by Michael Shilman.

160

currently set up to handle 3 concurrent loads. Additionally, by allowing the layout editor to issue

the requests in the order it seesfit, it can request the top cells that the user istrying to view.

11.3. Techniques toDeal with Work In Progress

As mentioned, even once all efforts have been made to accelerate loading and display, addi-
tional mechanisms should be put in place to make the best of the speed that can be obtained. This

section describes ways to operate effectively with non-negligible load and display times.

11.3.1. Hiding Slow Loading

Conventional CAD systems load the design database and then use it. Web-based agents,
however should consider the loading process asignificant part of their operation and thus allow the

user to interact and perform useful work during thistime. WebChip does just this.

Typically cells are created when they are loaded. Instead, WebChip creates cells the first
time they are referenced. Then they are scheduled to be loaded as soon as possible. 1n the mean-
time, however, the database is still consistent and can be manipulated. The display subsystem
knows how to render a cell that has not been loaded. (Typically their bounding box is drawn in
gray.) Additionally, the loading subsystem places a call-back to the rendering subsystem as the

cell is loaded so the user can get an up-to-date view.

11.3.2. Hiding Slow Display

Existing systems typically also consider the rendering process as something that startsand is
then completed before further interaction can occur. In very fast systems operating on small
designs, thisis not a problem. However, on slower systems or very large designs, the user often

has to interrupt the display process. WebChip allows interaction even during display by maintain-

161

ing a separate display thread for each active view window. The GUI interaction occurs in yet

another thread so that it is not blocked.

Proper accounting keeps the display thread focused on the correct task. This is how, for
instance, the selection box can be manipulated while redraw is in progress. (The actual mecha-
nism for maintaining the selection box isto actually create 4 Canvas objects for each of the 4 sides

and these are mapped over the view window.)

11.4. Conclusions and Future Work

This chapter has presented a method for interactive display of large VLSI layouts over the
web. The WebChip applet achieves this through a number of optimizations focused on reducing
and managing load and display time. Although the viewer is written in Java, similar techniques

could be used on any platform.

162

cHaPTER12 Development Environment

In this chapter, the development environment for the application-specific techniques is pre-
sented. First presented is netem, a network emulator which is used to model bandlimited channels.
Next presented is the SpeedSurfer client-side proxy which is used to perform client-side link mon-
itoring and analysis. Last described is SurfServ, the SpeedSurfer server-side proxy, which is also

used to prototype the globally progressive interactive web delivery as described in Section 10.6..

12.1. Netem - Network Emulator

net em, detailed in Appendix A.5. (netem (1)), is a network emulator that can be used to
emulate bandlimited linksin real-time in order to study the effects of bandwidth limitations on sys-
tem performance and user interaction. net emwas used extensively in the development of the
Globally Progressive Interactive web delivery protocol described in Chapter 10, as well as the

WebChip VLSI layout viewer described in Chapter 11.

net em allows multiple simultaneous connections to be emulated, and operates at the
stream level. Currently only TCP/IP connections are supported and emulation occurs at the TCP/

IP connection level. net ememulates bandlimited links with fixed individual or total link capac-

163

ity. It can also emulate transport latency. The modeling is performed with an emphasis on high
throughput rather than IP packet-level modeling accuracy. Thus to obtain highly accurate models
of the interaction of multiple TCP/IP streams, or their reactions to packet loss or congestion, atool

such as the Network Simulator - ns [68] should be used.

net emis configured by specifying a set of connections that it should forward and emulate
from the local machine to some remote host. For instance, consider that netem is running on a
machine called emhost.eecs.berkeley.edu. It could be configured to forward connections from

port 1234 to port 23 on otherhost.eecs.berkeley.edu via the command:

net em 1234=ot her host . eecs. berkel ey. edu: 23
This would allow emulation of telnet connections, which by default use port 23. If a user
now telnets to port 1234 of emhost.eecs.berkeley.edu, atelnet session to otherhost, through netem
is established. Thiswould operate the same as a direct telnet connection to otherhost. However, a

slow modem link can be emulated if rate limiting is specified via:

netem-rate |imt_bps 25000
1234=o0t her host . eecs. ber kel ey. edu: 23

Now connections to port 1234 of emhost are still forwarded to otherhost, but only at a max-
imum data rate of 25Kbps. Note that a typical 28.8kbps modem connection will result in through-
put closer to 20-25Kbps due to byte-level and packet-level synchronization and overhead and
prevailing phone line and Internet conditions. If multiple connections to port 1234 of emhost are
established then the total rate of all connections are limited to 25Kbpsin order to simulate a shared
link. The-rate_limt_individual option can be used to allocate 25Kbps for each con-

nection to emulate independent links.

Fixed latency can be specified viathe- | at ency_ns option asin:

164

netem-rate |imt_bps 25000 -l atency_ms 200
1234=o0t her host . eecs. ber kel ey. edu: 23

This adds the addition restriction that data incurs a delay of 200ms while being forwarded.

This can emulate latency due to network queues and packetization delays.

In addition to forwarding connections to fixed addresses, netem can act as a web proxy and
determine which host to connect to via the data stream. The following command demonstrates

this:

netem-rate_linmt_bps 25000 1234=web
Now if aweb browser is used with its HTTP proxy set to emhost port 1234 then all web
pages viewed with the web browser are directed through the proxy and will consequently be sub-
jected to rate limiting. In this way, the performance of a slow link can be experienced on a net-

work without such slow links, and the effects of different networking protocols can be explored.

Netem can also print connection rate information as well as log the data being transferred on
the emulated connections by varying the - ver bosi t y level. One such exampleisshown in Fig-

ure 12.1. Other features and options are described in Appendix A.5. (netem (1)).

12.2. SpeedSurfer - PC Client-Sde Proxy

The SpeedSurfer client-side proxy is a Windows 95/NT application that acts as a local cli-
ent-side proxy as well as arbitrary TCP/IP connection forwarder. It can be used in conjunction
with SurfServ, described in the next section, to encapsulate multiple TCP/IP connections across a
lossy bandlimited link in an explicitly managed manner. Additionally, it can perform real-time

data flow analysis and generate real-time web-page loading graphs described in Section 10.4..

165

Usi ng buffer of size 128
Port mappi ngs:
Port 1234 -> Wb
Accepted client from 128.32.62.75 port 1794 as connection O
Got (128) “GET http://Badl ands. EECS. Ber kel ey. EDU: 8090/ ~gi | bertj/
HTTP/ 1.0\ r\n
Proxy- Connecti on: Keep-Havering
User-Agent: Mozilla/4.5 [en] (WnN' fromclient O
Http server Badl ands. EECS. Ber kel ey. EDU: 8090 i s 128. 32.139.53 port
8090
Connection O is to Badl ands. EECS. Ber kel ey. EDU: 8090 to perform
GET /~gil bertj/ HTTP/ 1.0

Sending to server 0 "GET /~gilbertj/ HTTP/1.0\r\n
Proxy- Connection: Keep-Alive\r\n
User - Agent: Mozilla/4.5 [en] (W nN'
Finished writing 90 to server
Got (128) "T; I)\r\n
Pragma: no-cache\r\n
Host: Badl ands. EECS. Ber kel ey. EDU: 8090\ r\ n
Accept: image/gif, inmagel/x-xbitmap, image/]jpeg, inmage/pjpeg, im"
fromclient O
Finished witing 128 to server
Got (95) "gel/png, */*\r\n
Accept - Encodi ng: gzip\r\n
Accept - Language: en\r\n
Accept-Charset: is0-8859-1,*,utf-8\r\n
\r\n" fromclient O
Finished writing 95 to server
Got (128) "HTTP/ 1.0 200 Docunent follows\r\n
Server: CERN 3.0A\r\n
Date: Mon, 20 Mar 2000 18:44:42 GMI\r\n
Content-Type: text/htm\r\n
Content-Length: " fromserver O
Fini shed witing 128 to client
Got (128) "4108\r\n
Last-Modified: Mn, 07 Jun 1999 00:24:28 GMI\r\n
\r\n
<ldoctype htm public "-//w3c//dtd html 4.0 transitional//en">\r\n
<htm >\r\n
<h" from server O
Fini shed witing 128 to client
Got (128) "ead>\r\n

<meta http-equiv="Content-Type" content="text/htm ; char-
set =i s0-8859-1">\r\n

<meta nane="Author" content="Jeff G lbert"" fromserver 0
Finished witing 128 to client
Got (128) ">\r\n

<met a nanme="GENERATOR"' content="Mozilla/4.5 [en] (WnNT; U)
[Net scape] ">\r\n

<title>Jeff Glbert's Home Page</title>\r\n

FIGURE 12.1. Example diagnostic printouts.
Generated by netem 1234=web -verbosity 31 -rate_limt_bps 20000

166

- - Modem /
|Modem/W|reIe£sL|nk | Wireless Link

Web Web
Client Client

FIGURE 12.2. Two views of server-side proxies.

Theview on theleft is semantic while the view on theright is closer to actual
implementation.

Modem /
Wireless Link

FIGURE 12.3. Two views of client-side and server-side proxiesfor better link control.
Again the view on the left is semantic while the view on theright is closer to actual

implementations. Notethat the proxy server should be placed near the | SP for optimal
performanceif it cannot be replicated at each 1SP.

While a summary of the SpeedSurfer application is presented here, details of its operation can be

found in Appendix C (The SpeedSurfer Application).

12.2.1. Client-Side Proxies
Conventional (server-side) web proxies only reside on the web-server side of slow links as

shown in Figurel2.2. In order to use these proxies, the address of the web proxy is specified to a

167

web browser. The browser then sends all requests to the proxy instead of the address of the
requested web page. While this setup means that the client does not have to run any special soft-
ware, it also means that the protocol going over the slow or lossy link must be the protocol that the
web browser understands. This can significantly limit the flexibility and power of the system. The
Java applets described in Section 10.6. are one way to obtain greater flexibility without browser
modification but are limited to web delivery, and have limited interface capability and perfor-

mance constraints.

However, if a web proxy is run on the client’s side of the link as well, as shown in
Figure 12.3, then the data travelling over the modem or wireless link can be fully controlled to best
exploit the characteristics of the link. In this scenario, the web browser is told that there is a proxy
located on the client’s machine. Thus all requests are routed through the client-side proxy. The
client-side proxy, in turn, knows how to contact the server-side proxy. Although the user has to
run a proxy on the same side of the slow link as the browser, the actual web browser need not be
modified. Additionally, the client and server proxies are standard applications and the network

infrastructure need not be modified.

The same proxy architecture can be used for non-web connections. Most applications such
astelnet, ftp, and X Windows can be instructed to connect to adifferent location - one of the client
proxy’s ports, to effect the connection. A single client proxy can accept connections on multiple
ports to handle multiple services. Since all (or most) connections over the constrained link go
through the client and server proxies, centralized link management is possible, leading to more

efficient link utilization.

168

12.2.2. Link Management Using Client-Side and Server-Side Proxies

The client-side proxy architecture can be used to investigate link management from a net-
working perspective since all outgoing network connections are passed through the client / server
proxy pair. Thusall traffic over the limited bandwidth links can be centrally controlled. In partic-
ular, link aggregation was explored where all incoming TCP/IP connections are combined into one

persistent connection with the server-side proxy.

Multiplexing the multiple transient streams through one persistent TCP/IP connection has
several benefits in terms of increasing performance. It eliminates the per-connection TCP/IP con-
nection establishment overhead and slow-start delays. It also reduces contention between the mul-
tiple connections. Additionally, the combination and prioritization of the links can be controlled
by the two proxy servers. In the case of web access, it can be used to experiment with coercing

HTTP/1.0 connections into an HTTP/1.1-like stream.

Furthermore, some of the overhead of TCP and IP headers of small packets can be amor-
tized over multiple connections since the information needed to demarcate the various streams in
the single TCP connection is much less than the overhead if each was its own TCP connection.
Additionally, since there is a single dominant stream, it is safe to disable the Nagle algorithm

which can delay packetization.

Finally, since the TCP/IP connections between the web server and browser have been
divided into two parts on the server side, buffering can occur at the server-side proxy. The server-
side proxy smooths out the bursty traffic that comes from the remote web servers over the Internet.
When a direct connection is made from the web browser to the servers, this kind of buffering can-

not occur effectively as losses due to congestion in the Internet will cause degradation in link per-

169

formance. The client / server proxy pair could be used to perform lossy or lossless source coding

or encryption without modifying either the end-server or end-client.

The SpeedSurfer and SurfServ proxies are used to analyze a performance limitation in the
Berkeley dial-in modem pool. By multiplexing multiple independent web connections and limit-
ing the amount of data queued for transit over the modem link to 2000 bytes, extraneous TCP/IP
errors and time-outs are eliminated, allowing transmission at about 90% of the link capacity com-

pared to only about 50% link capacity without the proxies. [30]

In addition to adding more flow control to the TCP/IP connection, UDP packets could be
used instead to allow full redesign of the reliable protocol. Thiswould likely be necessary for ade-
guate performance over awireless link. Alternatively other flavors of TCP/IP such as Vegas could
be investigated. Based on the previous observations, it seems that Vegas would be much better

suited since it avoids forced congestion and packet |oss.

12.3. SurfServ - SpeedSurfer Server / Progressive Proxy

Sur f Ser v, detailed in Appendix A.8. (SurfServ (1)), is a unix-based application that per-
forms the necessary connection establishment, multiplexing, and demultiplexing to support the
SpeedSurfer client-side proxy. The SurferServ is optimized to handle multiple SpeedSurfer ses-
sions efficiently. Simple techniques such as minimizing data copying and efficient use of select()
make it possible for the SurferServ to have a minimal load on the CPU. Each session with adis-
tinct SpeedSurfer client is forked into a new process so that the connections will not adversely
affect each other, and also to get around the per-process limitation of 64 open files. The Speed-

Surfer sessions are long-lived so that the impact of the new process creation is minimal.

170

SurfServ also acts as the server-side proxy for the Globally Progressive Interactive Delivery
prototype described in Section 10.6. It performsthe HTML image to applet tag translation as well
as managing the image delivery links from the Java applets. The connection to the web serversis
made using HTTP/1.1 with persistent connections whenever possible, reducing the number of new
web browser connections. Thus a new process can be used for each new connection and a new
process is used for connection to the Java applets. This reduces open-file limitations. Individual
light-weight threads are used to perform the progressive image transcoding so that the transcoding

of one image does not impact that of another.

171

172

paRT IV CoOnclusons

CHAPTER 13 Conclusonsand
Future Directions

13.1. Network Requirements

There are many common themes which pervade the various types of text / graphics and
image transmission described in this thesis. This section distills the common networking require-
ments in effort to propose new services which will allow modular reuse of these capabilities. By
coupling the applications more closely with the network protocols, but keeping the packet-level
scheduling in the operating system, the necessary agility can be retained while not sacrificing effi-

ciency.

In this section, messages refer to the atomic unit of communication where a part of a mes-
sage is of no value until the whole message is received. (Others have referred to this as an atomic

data unit.) A stream refersto one ordered set of messages where in-order delivery of the messages

173

isrequired. A packet is the unit of data physically transferred over the network and a connection

subsumes the entire set of data transferred for the application.

13.1.1. Lightweight, Independent Streams

One recurring theme seen throughout this thesisis that text, graphics, and image data trans-
mission involves multiple lightweight streams. The granularity and size depend on the particular
application. For the case of the web, the streams are simply the objects in the web page. Applica-
tion-specific instances define their own granularities - the WebChip application uses independent
streams for each VLSI layout cell. For the case of the bitmap-based approaches, the ultra-light
streams correspond to the individual blocks in the image. The conventional primitive approach
allows one stream per application. The hybrid approach uncovers much more packet indepen-

dence allowing disjoint sets of primitives to occupy separate streams.

Uncovering parallelism and removing false dependencies is almost always beneficial. Par-
allel computer architectures require this for efficiency, multiple-issue microprocessors can exploit
it, networking can exploit it to better cope with packet loss. By exposing the true dependencies to
the networking layer, the application need not individually manage the sub-streams but can enjoy

the benefits of their management.

The MUX protocol [51] described in Section10.3.1. implements lightweight streams over
TCP/IP which does expose the interface to applications, but layering upon TCP/IP introduces
false-dependencies in that the use of asingle TCP/IP stream will cause losses in one sub-stream to

delay datain another sub-stream.

13.1.2. Explicit M essage I nter dependence

In the case of the hybrid approach, simple streams do not suffice to expose all dependencies.

More complicated directed acyclic graphs are required to express the fact that some primitives can

174

be dependent on multiple other streams. Thus more complex message interdependence exists.
Streams are a special case where there are linear dependency graphs, and thus general purpose

interdependencies can be used to describe streams as long as efficiency is not compromised.

Explicit packet interdependence can also be used to improve sending of individual images
in web transmission if the independent regions in the data are noted. This can expose further par-

allelism and further reduce latency due to loss (see Section3.2.2.) in highly lossy environments.

13.1.3. Dynamic Reprioritization of the Streams

Interactive text / graphics and image transmission requires dynamic reprioritization of the
data streams to obtain low latency over bandlimited and/or lossy links. Explicit prioritization
allows better link management to assure that the data that needs to arrive quickly is delivered first.
In the case of application-independent transmission, it allows low-bandwidth, high-impact data
such as text and non-image graphics primitives to be delivered quickly. It also allows regions of
interest, such as where the cursor is, to be delivered more quickly than other areas. For web trans-
mission, it allows on-screen images, to be delivered before off-screen images and images where
the cursor isto be delivered before other on-screen images. Application-specific instances such as

WebChip use prioritization to assure that base cells are transferred before underlying cells.

13.1.4. Message Unqueing

In addition to reprioritizing messages, some cases, such as the application-independent
transmission, benefit from being able to unqueue messages that have been enqueued earlier. This
is primarily used for removal of redundant messages when one text / graphics primitive or bitmap
update is superseded by a later one. In these cases, correctness still is maintained if the earlier,
stale packet is delivered, though it will consume additional bandwidth. Thus as soon as the text /

graphics server knows that the message is no longer useful, it will unqueue it. In this way, if the

175

message is queued in the network buffers, it can be removed before it is sent, and if it has already
been sent, no bandwidth will be wasted attempting retransmissionsiif it is not delivered. Thiswas

also proposed asimplicit annihilation in [37].

13.1.5. Rate, Flow, and Congestion Control

While applications desire tight control over how their share of available bandwidth is used,
they still need to coexist in a global Internet with other traffic streams. Thus the sum of their traf-
fic must behave like one or multiple TCP/IP streams to promote fair resource utilization. Thisalso
allows applications which run over varying networks to adapt to the network and conditions. Care
must be taken to prevent loss due to wireless link corruption from being confused with packet loss.
Techniques to adapt TCP/IP to wireless links, such as SNOOP, can be used while retaining the

multi-stream architecture [8].

13.1.6. Notification of Packet Arrival

As we have seen in the bitmapped and hybrid approaches, the applications often keep addi-
tional state associated with datain flight, and must be notified of the delivery of the datain order to
free the state. Thus they often need feedback from the transport system when successful data
delivery occurs. Additionally, if reliable transmission at the network level is not used then atime-

out notification back to the application is useful.

13.2. Conclusions

Compression is not enough.
This thesis has shown that image and data compression alone are not sufficient to obtain
interactive performance over many bandlimited and lossy links. Link scheduling, progressive

techniques, and suppression of stale data in conjunction with image and data compression yield a

176

far more effective strategy for compensating for bandwidth limitations and data loss. It is critical
to view interactive text / graphics and image transmission as a user-based activity and optimize the
results as experienced by the user. This entails determining which information the user is most
interested in and sending it first, and realizing that this interest can change dynamically over time.
Increased concurrency of delivery of data on various parts of the image is required to allowed con-
tinued interactivity in the face of reduced connectivity. When these steps are taken, interactive
operation using alarge screen or of alarge design significantly improves over low bandwidth, high

error-rate links.

13.3. Future Directions

While Section 13.1. defines some criteria for a network protocol that would be useful to a
wide range of text / graphics and image applications, there are still many details to be resolved and

an implementation has yet to be developed and deployed.

Similarly, Chapter 7 describes a hybrid approach to text / graphics and image transmission
with many ideas and motivations grounded in previous completed work, but the hybrid approach
itself has not been implemented. It would be useful to implement the hybrid approach into a thin
client and either a modified X server, as used in the InfoPad system, or Windows Terminal Server,

to allow bandwidth-efficient remote access to windows applications over wireless lossy links.

Chapter 10 describes how web access over slow and/or lossy links can be improved by
using globally progressive interactive web delivery. Analysisand aJava/ proxy prototype are pre-
sented, as are the drawbacks of the prototyping method. More seamless deployment on a large
scale can be achieved by integrating the client-side functionality into a popular web browser and

integrating the server-side functionality into a popular web server and proxy. Severa of the

177

advantages are described in that chapter. Additionally, by using the improved networking services

previously described, improved performance, particularly over wireless links, can be achieved.

This future research could further confirm that although compression is an important ingre-
dient in efficient text / graphics and image transmission over bandlimited lossy links, compression

is not enough.

178

[1]

[2]

(3]

[4]

[5]

(6]

[7]

(8]

Bibliography

Elan Amir, Steve McCanne, and Hui Zhang, “An Application Level Video Gateway,”

Proc. ACM Multimedia '95, San Francisco, CA, November 1995.

Thomas E. Anderson, David E. Culler, David A. Patterson, and the NOW Team, “A Case

for Networks of Workstations: NOW.” |EEE Micro, Feb 1995.
The Apache Group, “The Apache Web Server Project.” http://www.apache.org.

Arps, R.B. and T.K. Truong, Comparison of International Standards for Lossless Still

Image Compression. Proceedings of the IEEE: 82:889-899, June 1994.
AT&T. Virtual Network Computing homepage. http://www.uk.research.att.com/vnc

P. Ausbeck, Jr., “Context Models for Palette Images’, in Proc. of the 1998 Data

Compression Conference, (Snowbird, Utah), pp. 309-318, April 1998.

Backman, Dan, “Spectrum Lets You Dial In On The FastLane,” Network Computing

Online, http://techweb.cmp.com/nc/907/907sp4.html.

H. Balakrishnan, S. Seshan, E. Amir, and R. Katz, “Improving TCP/IP Performance in

Wireless Networks,” Proc 1st ACM Conference on Mobile Computing and Networking

(MOBICOM), Berkeley, CA, November 1995.

179

[9] Balakrishnan, Hari, and Venkat Padmanabhan, Srinivasan Seshan, Mark Stemm, and

Randy H. Katz, “TCP Behavior of aBusy Internet Server: Analysis and Improvements.”

Proceedings of IEEE Infocom ‘98. March 1998.

[10] Bell, Timothy C., John G. Cleary, and lan H. Witten, Text Compression, Prentice Hall,

Englewood Cliffs, NJ, 1990.

[11] Berners-Lee, Tim, R. Fielding, H. Frystyk., “Informational RFC 1945 - Hypertext
Transfer Protocol -- HTTP/1.0,” MIT/LCS, UC Irvine, May 1996.

http://www.w3c.org/Protocol s/rfc1945/rfc1945

[12] Boutell, T., T. Lane et a. “PNG (Portable Network Graphics) Specification,” W3C

Recommendation, October 1996, RFC 2083, Boutell.Com Inc., January 1997.

http://www.w3c.org/Graphics/PNG.

[13] A. Broder and M. Mitzenmacher. “Pattern-based compression of text images,” in Proc.

of the 1996 Data Compression Conference, (Snowbird, Utah), pp. 171-180, March 1996.

[14] R.W. Brodersen, A.P. Chandrakasan, S. Sheng, “Design Considerations for Portable

Systems’, 1EEE International Solid-state Circuits Conference pp. 168-169, February
1993.

[15] Chandrakasan, Anantha, “Low Power Digital CMOS Design,” Ph.D. Dissertation,
University of California, Berkeley. Berkeley, California, 30 August 1994.
[16] Citrix Corporation. “ICA Technology.” http://www.citrix.com/products/ica.asp

[17] CompuServe Incorporated, “Graphics Interchange Format - Version 89a,” 1987-1990.

http://www.w3c.org/Graphics/Gl F/spec-gif89a.txt

180

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

C. Constantinescu and R. Arps, “Fast Residue Coding for Lossless Textual Image
Compression” in Proc. of the 1997 Data Compression Conference, (Snowbird, Utah),

pp. 397-406, March 1997.

Converse, D et al. - X Consortium, “Low Bandwidth X Extension.”

ftp://ftp.x.org/pub/R6.4/xc/doc/specs/ X ext/Ibx.mif

Cornelius, David, “XRemote: a serial line protocol for X,” 6th Annual X Technical

Conference, Boston, MA 1992.

David E. Culler, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Brent Chun, Steven
Lumetta, Alan Mainwaring, Richard Martin, Chad Yoshikawa, Frederick Wong,
“Parallel Computing on the Berkeley NOW”. JSPP'97 (9th Joint Symposium on Parallel

Processing), Kobe, Japan .

Danskin, John, “Compressing the X Graphics Protocol,” Ph.D. Dissertation, Princeton

University. Princeton, New Jersey, January 1995.

Fielding, R., J. Gettys, J.C. Mogul, H. Frystyk, T. Berners-Lee, “RFC 2068 - Hypertext
Transfer Protocol -- HTTP/1.1,” UC Irvine, Digital Equipment Corporation, MIT.

http://www.w3c.org/Protocol s/rfc2068/rfc2068

Floyd, Sally and Van Jacobson. Link-sharing and resource management models for

packet networks. |EEE/ACM Transactions on Networking, 3(4):365-386, August 1995.

Fox, Armando, Steve Gribble, Yatin Chawathe, and Eric Brewer, “The Transend

Service,” http://transend.cs.berkel ey.edu/about

181

[26] Fox, Armando, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Elan Amir,
“Adapting to Network and Client Variability via On-Demand Dynamic Distillation,”
Proceedings Seventh International Conference on Architectural Support for Programing

Languages and Operating Systems (ASPLOS-VII), October 1997, Cambridge, MA.

[27] Fulton, Jim, and Chris Keat Kaatarjiev, “An update on low bandwidth X (LBX),”
Proceegins of the 7th Annual X Technical Conference January 1993, O'Reilly and

Associates.

[28] Gailly, J. and M. Adler, “ZLIB documentation and sources,” available at

ftp://ftp.uu.net/pub/archiving/zip/doc

[29] Gettys, James, and Philip L. Karlton, and Scott Mcgregor, “The X Window System,

Version 11,” Software Practice and Experience vol. 20(S2), S2/35-S2/67. October

1991.

[30] Gilbert, Jeff. “Optimizing Web Access Over Modem (and Wireless) Links Using Client-

Side Proxies.” EE228a Project Report. December 4, 1997.

[31] Gilbert, Jeffrey M. and Robert W. Brodersen. “Globally Progressive Interactive Web

Delivery.” Proceedings 1999 | EEE Infocom. New Y ork. 21-25 Mar 1999.

[32] Gilbert, Jeffrey M. and Robert W. Brodersen. “A Lossless 2-D Image Compression
Technique for Synthetic Discrete Tone Images.” 1998 |IEEE Data Compression

Conference. Snowbird, Utah. 28 Mar - 1 Apr 1998. p.359-368.

[33] Gilbert, JM. and Yang, W. “A Real-time Face Recognition System using Custom VLSI
Hardware.” Proceedings 1993 Computer Architectures for Machine Perception. New

Orleans, LA. 15-17 Dec 1993. p.58-66.

182

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Gilbert, Jeffrey M. “A Real-time Face Recognition System using Custom VLSI

Hardware.” Undergraduate honorsthesis, Harvard College. Cambridge, MA. May 1993.

Graphon Corporation, “ Graphon Corporation Homepage,” http://www.graphon.com

Richard Han and David G. Messerschmitt, “A Progressively Reliable Transport Protocol

for Interactive Wireless Multimedia.” Multimedia Systems vol 7(2): pp. 141-156, 1999.

Richard Y. Han and David G. Messerschmitt, “Asymtotically Reliable Transport of
Multimedia / Graphics over Wireless Channels.” Proceedings Multimedia Compution

and Networking, San Jose, CA, Jan 29-31, 1996.

P. G. Howard, “Lossless and Lossy Compression of Text Images by Soft Pattern
Matching” in Proc. of the 1996 Data Compression Conference, (Snowbird, Utah), pp.

210-219, March 1996.

Huffman, D.A., “A Method for the Construction of Minimum Redundancy Codes,”
Proceedings of the Institute of Radio Engineers, September 1952, VVolume 40, Number

9, pp. 1098-1101.

Independent JPEG Group’ s JPEG library. ftp://ftp.uu.net/graphics/jpeg.

Intel Corporation, “QuickWeb homepage”. http://www.intel.com/quickweb

Jacobson, Van, “Congestion Avoidance and Control,” Proceedings of ACM SIGCOMM

‘88, p. 314-329. Stanford, CA, August 1988.

M. Kuhn. Softwarekit for jbigkit. Available viaanonymous ftp from ftp.unierlangen.de

as/pub/doc/1S0/IBIG/jbigkit-0.7.tar.gz.

McWilliams, Brian, “Intel Announces Server-Side Browser Accelerator,” PC World
Online, January 20, 1998. http://www.pcworld.com/news/daily/data/0198/

980120192859.html

183

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Microsoft Corporation. NetMeeting Home. http://www.microsoft.com/netmeeting.

Microsoft Corporation. “Windows NT Terminal Server Edition.”

http://www.microsoft.com/ntserver/terminal server/default.asp

Moffatt, A., “A note on the PPM data compression algorithm,” Research Report 88/7,
Department of Computer Science, University of Melbourne, Parkville, Victoria,

Australia.
MozillaHome Page, http://www.mozilla.org

S. Narayanaswamy, S. Seshan, E. Brewer, R. Brodersen, F. Burghardt, A. Burstein, Y .-
C. Chang, A. Fox, J. Gilbert, R. Han, R. H. Katz, A.. Long, D. Messerschmitt, J. Rabaey;
“Application and Network Support for InfoPad” IEEE Personal Communications

Magazing Mar 1996.

Nielsen, Henrik Frystky, “Hypertext Transfer Protocol - Next Generation” homepage.

http://www.w3c.org/Protocol S HTTP-NG/

Nielsen, Henrik Frystky, “MUX Overview” W3C Architecture Domain.

http://www.w3c.org/Protocols/MUX

Nielsen, Henrik Frystky, et al., “Network Performance Effects of HTTP/1.1, CSS1, and
PNG.” W3C NOTE-pipelining-970624. June 24, 1997.

http://www.w3c.org/Protocol HTTP/Performance/Pipeline.html.

Padmanabhan, Venkat and Randy H. Katz, “Addressing the Challenges of Web Data

Transport,” unpublished.

Padmanabhan, V.N. and J. Mogul, “Improving HTTP Latency,” Computer Networks and

ISDN Systems, v.28, pp.25-35, Dec. 1995.

Padmanabhan, Venkat - personal correspondence.

184

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Pennebaker, William B. and Joan L. Mitchel, JPEG Still Image Data Compression

Standard, New York: Van Nostrand Reinhold, 1993.

J. Poskanzer. Pbmplus - image file format conversion package:

http://www.acme.com/software/pbmplus

T. Richardson, Q. Stafford-Fraser, J. Weatherall, K.Wood, A. Harter, C. McLachlan, P.
Webster. AT&T Virtual Network Computing homepage. http://

www.uk.research.att.com/vnc.

Roelofs, Greg., “PNG (Portable Network Graphics) Home Page” http://

www.cdrom.com/pub/png

Said, Amir, and William A. Pearlman, “An Image Multiresolution Representation for
Lossless and Lossy Compression,” SPIE Symposium on Visual Communications and

Image Processing, Cambridge, MA, Nov. 1993.

Sayood, K., Introduction to Data Compression. San Francisco, CA: Morgan Kaufmann

Publishers, Inc., 1996.

Scheifler, Robert W., “The X Window System Protocol.” M.I.T. Laboratory for

Computer Science. 1988.

Scheifler, Robert and James Gettys. X Window System. Digital Press, Burlington, MA,

1992.

Scheifler, Robert W. and Jim Gettys, “The X Window System.” Transactions on
Graphics 5(2), 79-109, April 1986, and Software Practice and Experience vol 20(S2),

S2/5-S2/34, October 1991.

Spectrum Information Technol ogies homepage, http://www.spectruminfo.com

185

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Spero, Simon E, “Analysis of HTTP Performance Problems,” July, 1994.

http://www.w3c.org/Protocol s/HTTP/Performance/Pipeline.html

J. A. Storer and J. Reif, “Low-Cost Prevention of Error-Propagation for Data
Compression with Dynamic Dictionaries” in Proc. of the 1997 Data Compression

Conference, (Snowbird, Utah), pp. 171-180, March 1997.

“UCB/LBNL / VINT Network Simulator - ns (version 2)”

http://www-mash.cs.berkeley.edu/ns

Waldspurger, Carl A. Lottery and Stride Scheduling: Flexible Proportional-Share

Resource Management, Ph.D. dissertation, Massachusetts Institute of Technology,

September 1995.

“WebTP Home Page, EECS, UC Berkeley”. http://webtp.eecs.berkeley.edu

Welch, T., “A Technique for High-Performance Data Compression,” Computer, June

1984.

Wessels, Duane, “ Squid Internet Object Cache.” http://squid.nlanr.net/
Ziv J. and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” |EEE

Transactions on Information Theory, Vol. 23, No. 3, pp. 337-343.

X Consortium, “LBX X Consortium Algorithms.”

ftp://ftp.x.org/pub/R6.4/xc/doc/specs/ X ext/Ibxal g.mif

186

AprENDIX A Software Documentation

A.1. Codebook2ras (1)

NAME

codebook?2ras - VQ Video Codebook to Sun Rasterfile Converter

SYNOPSIS

codebook?2ras < codebook_file > codebook_picture.rs

DESCRIPTION

This short program converts VQ Video codebooks into aform suitable for viewing or fur-
ther manipulation. (For manipulation, rasttopnm followed by any of the pnm* toolsworks
well.) The codebook files can be generated from vq(5) files via vg2codebook(1) and
viewed viamany views, particularly xloadimage and xv.

OPTIONS

It does not take any command line arguments. Input must come from the standard input
and the output goes to standard outpui.

OPERATION

Codebook?2ras arranges the data in the codebook so that it iseasier to interpret (i.e. in 4x4
block, etc) with the Y codebook on top of the | codebook, which is on top of the Q code-
book. The whole resultant image is 324x1004.

187

SEE ALSO

showcodebook(1) mpeg2va(1) send vqg(1) vg play(1) va(b)

AUTHOR

Jeff Gilbert <gilbertj @eecs.berkeley.edu>

188

A.2. emu (1)

NAME

emu - InfoPad Emulator

SYNOPSIS

emu [- Gatewayld] [- Padld] options...

DESCRIPTION

The InfoPad emulator isa Tcl/Tk application which emulates the pad at the protocol level.
Messages as they would appear over the radio link are interpreted and generated. The
emulator connects to a gateway which independently connects to the various servers. The
emulator displays both text / graphics output as well as VQ video on a separate popup
window. (See aso vq_play man page). Pad audio input and output are also emul ated using
the workstation's microphone and speaker ports. (Currently only Sun SparcStations are
supported.) Pen input can be generate either by using the mouse or an external tablet.
(Many brands of tablet are supported.) Keyboard input is aso available to aid in devel op-
ment.

Additional debugging aidsinclude adisplay of the radio traffic statistics into and out of
the emulator (or pad). This can be used to analyze bandwidth requirements. The effective
downlink audio buffer size can be varies to determine the buffering necessary compensate
network jitter.

The emulator istightly coupled with The Name Server to allow the auto-start version of
the various servers (pad, t/g, pen, and audio) to be selected during operation. The status of
the servers and gateway is continually displayed to quickly identify which are running.
Pull-down menus locate running gateways and available pad servers.

OPTIONS

-show_traffic

Causes the traffic window to be displayed initially. Otherwise the TRAFFIC button
has to be hit to display it. This can be useful for automated demos.

-show_av
Causes the A/W window to be displayed initially. Otherwise the A/V button hasto be
hit to display it. This can also be useful for automated demos.

-tablet <tablet type> <tablet device>

Enables tablet support for the pen emulator. <tablet type> must be: scriptel, gazelle0,
gazellel, wacom_old, or wacom_ud. <tablet device> must be the UNIX file name of
the tablet device - for example /dev/ttya.

189

-helpp

Liststhe above options. Note that -help will not work as Tcl/Tk interceptsit before the
emu application can get at it. Any invalid command-line option will work.

OPERATION

When emu is started, it displays the main window which consists of the emulated black
and white text / graphics display with various widgets below it which control the operation
of the emulator. If a Gatewayld and Padld are both specified on the command line then
the emulator connects to the specified pad server through the specified gateway at start-
up. Otherwise the emulator comes up in an unconnected mode.

The following buttons, menus, and text entry widgets at the bottom of the window control
the emulator operation:

QUIT
Quits the emulator. Will disconnect first if necessary.
CONNECT

Theindicator in the connect buttonison if the emulator is currently connected to a pad
server through a gateway. If there is no current connection, (i.e. the indicator is off)
pressing CONNECT button attempts to connect to the pad server and gateway speci-
fied in the text entry boxes. If thereisaready a current connection (i.e. theindicator is
on) then the connection is broken.

REMOTE REFRESH

Causes an xrefresh to be sent to the text / graphics server to force afull refresh of the
display.
STATS

Displays a pop-up with neat BER and CELL POWER bars which can be manipul ated
but actually do nothing as of yet. They were put in by original author for functionality
not yet fully implemented. It did not hurt anything and may well prove useful soon so
| did not remove it.

TRAFFIC

Displays the traffic pop-up which shows packets/sec, kilobits/sec, and average bytes
per packet for each of the uplink and downlink datatypes as well asthe overall down-
link and uplink statistics. The display is updated every second.

AUTO REMAP

Selects automatic remapping, which like the STATS box has all of the hooks neces-
sary to alow handoff (??) but is not supported by the rest of the system. Currently if
AUTO REMAP ison then when it get polling packets the cell power barsin the
STATswindow are randomly varied.

POLLED

190

This button is actually just used as an indicator of the reception of polling packets.
These are generated automatically by the pad server. When received, the POLLING
button is flashed. They are received periodically whenever there is an active connec-
tion.

MOVE

Causes the current connection to be broken and a connection to the new padserver and
gateway specified in their text entry boxes to be established.

AV

Displaysthe A/V (audio and video) pop-up window which allows control of the audio
and video emulation. The window has the following controls:

Audio Play - If on then downlink audio is sent to workstation /dev/audio.
Audio Rec - If on then uplink audio is read from workstation /dev/audio.

Audio Auto - If on, the audio play and rec are turned on upon reception of downlink audio
data and turned off upon disconnection. By default, this is selected. Note that only one
program can be connected to a Sparc's /dev/audio at atime so if AF isrunning, the emu
cannot connect to the speaker and microphone. A message will be displayed and audio-
less operation can continue.

Verbose (audio) - Logs audio downlink buffer information to the console if selected.

Downlink Buffer Size - Selects the amount of audio data that can be buffered in the emu-
lator. This should be set to the amount of buffering which would occur between the gate-
way and the pad Codec (thus it includes Tx chip fifo and audio chip fifo.) Altering this
allows determination of the proper buffer size required to tolerate network jitter but also
not delay the audio too much.

Video Play - Displaysthe VQ Video window for downlink VQ video. Thevq play(1) pro-
gram is used for this. Clicking on it again closes the window.

Video Auto - If on, the video window is opened upon reception of any VQ Video dataand
closed upon disconnection. By default, thisis selected.

Video Drop - When selected, the Maximum Display Rate value is used to make sure that
only that many frames per second are sent to the vg_play program. Additional frames are
discarded in the emulator. It is necessary to use frame dropping to prevent the vq_play
program and X Windows server from consuming too much CPU time making the emula-
tion unrepresentative. Setting it to about 15 frames per second still gives reasonable per-
formance without causing a bottleneck.

If Video Drop is not selected then all video data received is sent to the vq_play program
and the emulator can block waiting to write into its pipe to vq_play. By default, it is
selected.

TABLET

191

Enables and controlstablet support. If tablet is selected then the TY PE menu must be
set to the tablet type and InfoPad pen emulation using the tablet occurs. The Tablet
Devicetext entry box should be set to the device (for example /dev/ttya) that the tabl et
is connected to.

GATEWAY

This pull-down menu and text entry box allow selection of the gateway to connect
through. A number can be entered directly into the text box or else the current running
gateways (from the name server) are listed in the pull-down if the left mouse button is
clicked on the Gateway button.

The status of the currently selected gateway and cell server are displayed to the left of
the word “ Gateway”. The statusis either “not running” if neither are running, “run-
ning” if both are running, “CS down” if the gateway is up but the cell server is down,
or “GW down” if the oppositeistrue.

PAD SERVER

This pull-down menu and text entry box allow selection of the pad server to connect
to. A number can be entered directly into the text box or else all registered pad servers
are listed in the pull -down menu if the left mouse button is clicked on the Pad Server
button. Their statusis also shown in the menu (unlessit is onDemand.)

TABLET DEVICE

Selects the unix device to connect to for the tablet. The pull-down menu has afew
common choices.

SERVER STATUS AREA

The status of the currently selected pad, X (text / graphics), Pen, and audio server are
displayed at the bottom of the main emulator window. It is retreived from the Name
Server periodicaly. When any critical event occurs, such as selecting a new pad server
or gateway, the emulator pollsfor status more often for awhile. Additionaly, the
UPDATE button forces the status to be reread.

The Pulldown menus for "PS Version", "X Version”, "Pen Version", and "Audio Ver-
sion" control the version of the respective servers which is used if they are autostarted
by connecting to a pad which is not running.

KILLPAD

This button kills the currently selected pad server. This causes (or should cause) the X,
pen, and audio serversto go down as well.

ENVIRONMENT

The environment variable EMUVERSION controls which version of the emulator is
started. If thisis not set then it will default to vcurrent, which is the most current stable
version.

The DISPLAY environment variable should be set to where the emul ator window should
go.

192

SEE ALSO

vqg play(l

BUGS

Uplink audio can stop unexpectedly under high downlink video traffic. If this happens,
simply go to A/V window and stop and restart the AUDIO REC.

The vq_play program blocks on input if no video datais sent to it so it will not redraw
itself in responseto an X paint request. Need to send stay alive packets out to VQ play.

AUTHOR

Currently maintained and improved by Jeff Gilbert <gilbertj @eecs.berkeley.edu>

Initial work and developement until about October 1994 by
Brian Richards <richards@eecs.berkeley.edu>

193

A.3. imgcomp2d (1)

NAME

imgcomp2d - Two-dimensional fast automatic block decomposition compressor /
decompressor

SYNOPSIS

imgcomp2d [options| filename

DESCRIPTION

imgcomp2d is the compression program used to perform research into the Flexible Auto-
matic Block Decomposition (FABD) algorithm. The application performs compression,
decompression and al so generates diagnostic images which depict the size and location of
copy and fill blocks. The application alows many parameters of the compression to be
tailored to investigate tradeoffs between compression time and efficiency.

OPTIONS

-help

Show this message
-COMpress

Compressras->FABD
-uncompress

Uncompress FABD->ras
-compress_test

Compress, uncompress & verify
-write in_ras

Write input rasfile to stdout
-no_write_out

Don't write any output file
-test_bit_pack

Test bit packing code
-make_diag_image

Make diagnostic image
-make _diag_image slow

Slower method

194

-make _diag_image really _slow
Y ou guessed it...
-save distribs
Used with -make_diag_image to save param distributions to files

-min_fill_wid_no_search n
Minimum fill width,

-min_fill_hel_no searchn
-min_fill_area no_searchn

height and areato avoid copy search

-min_copy_block_width n
-min_copy_block_height n
-min_copy_block sizen

Minumum copy block width, height, and unmarked pixels to consider.

-max_copy_block_width n
-max_copy_block_height n

Maximum copy block width and height to consider

-min_fill_block_arean
-min_fill_block_sizen

Minimum width* height and unmarked pixels for afill

-max_fill_block widthn
-max_fill_block height n

Maximum fill block width and height to consider
-max_matches to try n

This is the maximum number of matches for each block to try
-one_pass_mode n|

Single more accurate pass
-two_pass moden

Coarse size mod 4x4 pass followed by mode accurate pass on winner (default)

-verbosity n

O=quiet, higher=noisier
1=Just summary info
2=Also show progress
3=Also save stats to stat.doc
4=Also print as go along
5=Print too much stuff

195

SEE ALSO

“Gilbert, Jeffrey M. and Robert W. Brodersen. “A lossless 2-D image compression tech-
nique for synthetic discrete tone images.” 1998 |EEE Data Compression Conference.
Snowbird, Utah. 28 Mar - 1 Apr 1998. p.359-368.

BUGS

What’'s a bug?

AUTHOR

Jeff Gilbert <gilbertj @eecs.berkeley.edu>

196

A.4. mpeg2vq (1)
NAME

mpeg2vq - MPEG and RAW to InfoPad VQ and RAW Video Transcoder

SYNOPSIS
mpeg2vq [mpeg_file] [options...]

DESCRIPTION

The MPEG and RAW to VQ and RAW Video transcoder converts MPEG or RAW files
into VQ or RAW video format files (see vg(5) and raw_video(5)). The mpeg decoding
capabilites of the transcoder are taken from mpeg_play. MPEG files can be converted
directly to VQ or else the RAW format can be use as an intermediary. This could be for
further processing or inspection and additionally the RAW file format can be generated by
external sources which would like to be shown on InfoPad. A RAW-to-RAW conversion
is possible but would only be useful for resizing or resampling in L, Cr, Cb space.

Many different modes of operation are supported, allowing coding speed and accuracy to
be traded off. A fast coding technique can be used to code at frame rate while adaptive
codebook methods allow higher quality for off-line VQ file generation. Frames can also
be dropped to code a 30 fps movie at 15 fps to reduce network and bandwidth require-
ments at playback.

GENERIC OPTIONS

-help

Print help message describing options.
-raw_in

Read in aRAW video file (raw_video(5)) instead MPEG.
-nob

Skips over MPEG type B framesin source if reading MPEG.
-nop

Skips over MPEG type P frames in source if reading MPEG.
-eachstat

Shows MPEG statistics if reading MPEG.
-quiet

Suppresses diagnostic messages.

-max_frames <number>

197

Convert only <number> frames. The rest are discarded.
-frames _per_sec <number>

Thisvalueisplaced inthe VQ or RAW file asthe desired frame rate. If thisis not
specified then the value is taken from the source file. If the source file also does not
contain frame rate information then a default of 30 frames per second is used.

-skip_every <number>

Causes the specified number of frames to be skipped for every framethat is
transcoded. Thus -skip_every 9 causes only 1 out of 10 frames to be transcoded result-
ing in areduction in bandwidth requirements of 10. To halve the frame rate, use -
skip_every one. Theframe rate recorded in thefileisautomatically corrected. Defaults
to 0.

-SIC_geometry <w>x<h>+<x>+<y>

Describes the rectangle within the MPEG or RAW source movie from which the
image should be taken. This can be used to zoom into a particular part of the source
image. Defaults to the full size of the source. If the source contains |luminance and
chrominance planes at different resolutions then the largest dimensions are used as a
reference and the others are scaled accordingly.

-dest_geometry <w>x<h>

Specifies the dimensions of the target VQ screen or RAW file. For VQ, thisis mea-
sured in descompressed pixels - i.e. the number of Y pixels - and defaults to the Info-
Pad video screen dimensions of 128x240. For RAW outputs, thisiswith respect to the
largest plane (usually the luminance plane) and defaults to the source dimensions. The
relative sizes of the luminance and chrominance planesin a RAW output file can be
set using the -raw_ratios option below.

VQ OPTIONS

-dump_codebook

For VQ, specifies that the codebook should be placed at the beginning of the VQ file.
Thisison by default.

-no_dump_codebook
For Vg, specifies that the codebook should not be placed in the VQ file.
-codebook_file <filename>

Code to an existing codebook file. A full codebook search method is used whichis
slower (afew frames per second on a Sparc10) than the fast coding method (20-25 fps
on a Sparc10, over 25-40 fps on asparc 10) but obtains better resultsif the codebook is
good. Codebooks can be extracted from vq(5) filesusingvg2codebook(1). Thevqfiles
(and hence codebooks) can be generated with this program using codebook adaptation
(see -adapt_frames below).

-fast_coding

198

Uses afast codebook hand-constructed out of different shapes and intensity variations.
It conists of solid blocks, horizontal, vertical, and diagonal gradations. Since mpeg2vq
knows the exact hierarchical nature of the codebook, it is able to quickly determine
which entry is best matched. Most of the transcoding time is spent decoding the
MPEG. This option ison by default. If itison, it implies -hafres_coding unless -
fullres_coding is specified.

-uniform_coding

Uses a codebook consisting of solid entries - i.e. each of the 4x4 pixels has the same
value. Thisresultsin avery blocky VQ picture and is mostly only good for debugging
purposes. It isaso very fast.

-halfres_coding

Causesimage to be coded at half-resolution. Thusif the destination format is 128x240
(i.e. InfoPad) - a64x120 image is computed and broken into 2x2 blocks. This results
in an increase in coding speed but should not be used except for with fast and uniform
coding as it will introduce errors unless the 4x4 codebook blocks are smooth. Thisis
on by default with fast and uniform coding but can be overridden with -fullres_coding.

-fullres_coding

Opposite of -halfres_coding. Causesimagesto be coded at their full resolution. Should
be used with any full codebook search as implied with -codebook_file or -
adapt_frames.

-no_VQconv

Suppresses the VQ conversion step. Only the MPEG decoding is performed. Can be
used to tell how much timeis going into the MPEG decoding and how much is going
into image resizing and VQ coding.

-adapt_frames number

Enables codebook adaptation. The codebook is determined by running a K-meanstype
adaptive algorithm to generate a representative set of vectors for the codebook. The
first number of frames are used for adaptation. The adapted codebook isthen saved in
the VQ file and also used for coding. The -adapt_global _threshold option below can
be used to for the codebook to be recomputed in the middle of the movie.

-adapt_global _threshold <number>

Causes codebook (re)adaptation to occur if the coding error ever exceeds the specified
threshold. The codebook is re-adapted and placed in the vq file so the the player or
hardware decoder knows that is has changed. This could be used for scene-level code-
book adaptation. Currenly not supported well by hardware due to flashes on the screen
that happen during codebook updates. adapt_frames must also be specified.

-error_tolerance <number>

Thisis used with full-codebook search methods (either via -adapt_frames or -
codebook_file. It causes the search for the best codebook entry to stop when the error
drops below the specified limit. Since the codebook entry that was used in the previous
frameisused astheinitial guessfor the current frame, this allows quicker coding espe-

199

cialy for movies where some parts of the image are stationary. Setting this too high
can result in areduction in coding quality. coding

-print_vq_error
Causes the VQ coding error for each frame (for each of Y, I, and Q) to be displayed.

RAW OPTIONS

-raw_out

Specifiesto write raw video instead of VQ. Identical to -raw_ratios22111 1. (see
below).

-raw_ratio<L_h><L v><Cr_h><Cr_v><Cb h><Cb v>

Specifies to write raw video instead of VQ but using a particular ratio of L (lumi-
nance), Cr (red chrominance), and Cb (blue chrominance) frame sizes. The exact value
of the numbers does not matter, only their ratio. Theratiosof L_h: Cr_h: Cb_hgives
the ratio of the widths of the L, Cr, and Cb frames in the raw output frame. Similarly,
theratiosof L_v : Cr_v : Cb_v givestheratio of the heights of the L, Cr, and Cb
framesin the raw output frame. Specifying azero height or width for aparticular plane
causes it not to be present in the out. A standard 4:1:1 encoding (which is default) is
specifiedvia221111. A 4:2:2encodingwouldbe211111. A grayscaleimage
(luminance only) can be produced using110000.

If afilenameis not specified then the standard input is assumed.

OPERATION

The operation of the transcoder can be broken down into five distinct pieces: MPEG or
RAW decoding, |mage resizing, colorspace conversion, Vector Quantization, and Code-
book Adaptation (optional). If RAW video is generated instead of VQ, the last three
pieces are not used.

-> 1) MPEG or RAW decoding

Mpeg2vq starts by decoding the MPEG or RAW fileinto avirtual frame buffer. For
MPEG, this part was taken directly from mpeg_play. The frame buffer isin lumi-
nance-chrominance format with separate buffers for L (luminance), Cr (red chromi-
nance), and Cb (blue chrominance). The L buffer is at twice the resolution of the Cr
and Cb buffersin both dimensions. (Just asthe VQ's Y isat twice the resolution in
both dimensions of the | and Q buffers.) The image frame buffers are sized according
to the source MPEG's dimensions.

For RAW video file decoding (or really just reading), the L, Cr, and Cb buffers are
sized in accordance with the size of the image planesin thefile. If image planes are not
present in thefile, they are smply not read.

-> 2) Image resizing
The next step isto resize the images into the size needed for the VQ coding or RAW

200

file output. For VQ, if -fullres_coding is in effect then the L buffer isresized to the -
dest_geometry size, and the Cr and Cb buffers are resized to half of this size (although
they start out half aslarge in each direction anyhow so the rescaling is by the same
amount.) If -halfres_coding isin effect then all image buffers are reduced further by a
factor of two in each direction.

For RAW output, the images are resized to the size specified by dest_geometry and the
raw_ratios. The dest_geometry defaults to the source geometry and the raw_ratios
default to 4:1:1. For RAW output, the process is complete and the resized image buff-
ers are written out.

-> 3) Colorspace Conversion (VQ only)

For VQ, next the Cr and Cb image buffers are converted into | and Q space using alin-
ear combination. Cr/Cb space differs dlightly from 1/Q space.

-> 4) Vector Quantization (VQ only)

Finaly for VQ, theresized, colorspace-converted Y, |, and Q frame buffers are passed
to the vector quantization module which attepts to fit the 4x4 pixel blocks (or 2x2 for
half-res coding) to the current codebook. This can be with the fast, uniform, or full
search methods. This generates a set of codes which are written into the VQ file.

-> 5) Codebook Adaptation (VQ only - optional)

If selected viathe -adapt_frames option (and possibly -adapt_global _threshold as
well), the codebook is adapted to the set of pixel vectors to derive a codebook well
suited for the particular images present. Thisis done by considering all 4x4 pixel clus-
tersof agiventype (Y, |, or Q) over all framesto be adapted as a set of regular 16 ele-
ment vectors.

The codebook adaptation requires an initial estimate of the codebook. Thisisthe code-
book that would be used if -adapt_frames was not specified: the fast (deterministic)
codebook if -fast_coding, or an existing codebook if -codebook_file was specified.

The K-means clustering algorithm adapts the codebook as follows: The codebook is
used to code the vectors. Then each codebook entry is recomputed as the average of al
image vectors for which it isthe best match. Thus the codebook entries are modified to
better represent the vectorsthat it is representing. Then the vectors are recoded and the
codebook recomputed until the total coding error stop decreasing.

A couple of extra steps are used to ensure that the codebook represents the diversity in
the image. Firstly, the 256 codebook entries are compared to each other and if two are
too similar then oneis"freed" up for use by some other vector. The vectors which
matched to the freed codebook entry are then assigned to the one that it was similar to.
Next, the unused codebook entries are filled with the input image vectors which had
the greatest coding error. Thisis done to ensure codebook diversity.

ENVIRONMENT

None.

201

SEE ALSO

vg play(1) send va(1) vg2codebook(1) codebook2ras(1) showcodebook(1) showvgcode-
book(1) raw video(5) va(5)

BUGS

Does not have aspect_pad and aspect_crop options which will either pad the image with
black on the sides or crop off excessin order to make sure that the aspect ratio is correct.

If -adapt_framesis specified as more frames than there actually are, it will not transcode at
all.

Much better image quality could be achieved if the pad could receive codebook updates
in-line inbetween scenes and the -adapt_global _threshold could be used.

AUTHOR

Jeff Gilbert <gilbertj @eecs.berkeley.edu>

Based on UCB mpeg_play application for MPEG decoding.

202

A.5. netem (1)

NAME

netem - Flow-level network emulator

SYNOPSIS
netem [options] [proxy_port[u]=server_spec ...]

Server_spec is one of:

web Web proxy

<server_port> Fixed port on same host

<server_host>:<server_port> Fixed host on another host

Add u to proxy_port to use UDP instead of TCP (not implemented yet)
DESCRIPTION

netem is a multi-connection flow-level network emulator that can be used to emulate
bandlimited links with fixed individual or total link capacity and/or transport latency.
Netem can also print connection rate information as well as display the data being trans-
ferred on the emulated connections. The modeling is done at the connection level and not
the packet level with an emphasis on high throughput rather than packet-level modeling
accuracy. Thusthe intracacies of TCP/IP are not modeled but it will give agood idea of
how applications and algorithms will react to link limitations. Netem will forward arbi-
trary network connections as well as web proxy requests.

OPTIONS

-help
Show this message

Rate Limiting Options:

-rate_limit_bpsn

Limit rate to n bps
-limit_total

Limit total rate through gateway (default)
-limit_invidivual

Limit on a per-connection basis
-buffer_size msn

Amount of datato buffer if rate limiting

203

-min_buffer_sizen
-max_buffer_sizen

Minimum and maximum number of bytes to buffer
-buffer_sizen

Give exact buffer sizein bytes
-tcp_connect_time_msn

Wait n ms after TCP connection after TCP connection
-udp_packet_overhead msn

Add n ms delay to UDP packets delay to UDP packets (not implemented yet)
-latency_msn

Delay all packets at least this much

Packet Dropping Options (UDP only - not implemented yet):
-packet_drop_rate 0.X XXX

Drop this fraction of packets
-bit_drop_rate 0.XXXX

Drop packets containing any errant bits according to this fraction of bits

Other options:
-verbosity n
What to print. bit-OR these:

1=Show (dis)connections
2=Show xfer sizes
4=Show xfer data
8=Show errors

16=Show traffic rates
(default is 25)

-max_connections n

Maximum number of connections to support at once
-find_free _proxy_port

Try successive proxy portsif busy (default)
-no_find_free proxy_port

Don't find_free _proxy_port

204

SEE ALSO

SurfServ(1) Gilbert, Jeffrey M. and Robert W. Brodersen. “Globally Progressive Interac-
tive Web Delivery.” Proceedings 1999 |EEE Infocom. New Y ork. 21-25 Mar 1999.

BUGS

UDP forwarding / limiting not implemented yet

AUTHOR

Jeff Gilbert <gilbertj @eecs.berkeley.edu>

205

A.6. send_vq (1)

NAME

send vq-VQ Video Player and T/G, Audio, and Radio Tester for InfoPad

SYNOPSIS

send vq [input_fileg] [options...]

DESCRIPTION

send_vq s utility that allows direct interfacing to the InfoPad peripherals either viathe
InfoPad network or directly through the GPIB interface. It has two primary purposes.
Firt, it isused to test the network, pad hardware, and emulator. It is also used to play VQ
videos on the pad (as opposed to vg play(1) which plays them on aworkstation).

As atester, send_vq can write videos to the VQ video screen, sound files to the audio
downlink port, test graphics patterns to the text / graphics, and arbitrary data to the radio
transmitter. It can read and display or store data from the audio uplink port, pen port, and
radio receiver. It allows for fixed rate control over the GPIB and can route messages via
the ARM processor in a basestation board to a remote pad. It also has a bandwidth test
mode to determine the maximum bandwidth the the GPIB hardware can support on the
downlink side.

AsaVQ video player, send_vq parses the vq(5) format generated by mpeg2vq(1) allow-
ing both codebook and frame data to be sent. It can do rate control, including frame drop-
pingif it seesit is getting behind. Additionally, synchronized audio can be played
coordinated with the video. Send_vq can also be used to generate a C include file to be
linked in with the ARM code to specify a default VQ codebook on power-up.

GENERAL OPTIONS

-help
Print help message describing options.
-gpib_id <number>

Specifiesthat direct interface to the GPIB should be used. The <number> isthe GPIB
talker/listener address. (Hardware is currently set for 4). Setting the environment vari-
able GPIBID to a number makes the GPIB connection adefault if neither -gpib_id nor
-pad_id are specified. The command-line options always override the environment
variables. Both uplink and downlink tests are supported over the GPIB interface.

-pad_id <number>

Specifies that test should be performed over the InfoPad network. The <number>
specified isthe ID of the pad server to send data to. Setting the environment variable

206

PADID to anumber makes the network connection a default if neither -gpib_id nor -
pad_id are specified. The command-line options always override the environment
variables. Note that only downlink tests are available over the network connection.
Uplink tests must be performed using a direct GPIB connection.

-show_gpib_data
Show GPIB data packets being sent. For debugging purposes.
-loop

Repeat the specified test. Only valid for downlink tests (including VQ video playing).
Input must not come from standard in for video, audio, and radio downlink tests.

-quiet
Don't print quite so much diagnostic infomation to stderr. Thisisthe default - override
with -no_quiet.

-no_quiet
Print lots o' stuff to stderr. Information depends on the test.

-gpib_rate limit <kbps>

When sending over GPIB, set a cap on the rate of downlink data. The number is spec-
ified in kilo-bits per second and should be a multiple of 8. Note that for large packets,
this can become approximate and you should check the rate that it saysthat it is send-
ing at, shown at the end of the test. Thisisindependent from video rate control. (Video
rate control is more accurate as well)

-gpib_buffer_size <n>

Buffer size that the GPIB rate limiting uses for accounting purposes. It should larger
than the packets that will be transmitted but no larger than the buffering on the actual
pad.

-send via arm

Send GPIB packetsto the ARM (acting asthe TX chip) to send over theradio. Use to
send over GPIB to remote pad. Packets will still be tagged with correct destination (via
type field.) You amost definitely haveto use -gpib_rate limit (above) if you use -
send_via arm.

-single_byte packets

Use old single byte GPIB protocol. Used for testing along time ago. Probably of no
use to anyone now.

UPLINK TEST OPTIONS

These options are used for all (audio, pen, radio) uplink tests. Uplink tests may only be
performed directly over the GPIB.

-gpib_gcrl <hex_num>
Specifies the value, in hex, to be programmed into the GPIB Control Register 1 for

207

uplink tests. This controls several modes of operation of the GPIB interface. The
default is currently 88.

-gpib_gcr2 <hex_num>

Specifies the value, in hex, to be programmed into the GPIB Control Register 2 for
uplink tests. This controls several modes of operation of the GPIB interface. The
default is currently 84.

-gpib_base addr <hex_num>

|P Bus base address (in hex) for GPIB controller. Thisiswhere peripherals will be
instructed to send their data when it should go to the host. The default is 70.

VIDEO OPTIONS

-rate_control

Times when video frames are send and waits if it is ready too soon for the next frame
or drops framesiif it istoo late. The frame rate is specified in the vq(5) file but can be
overridden by the -frame_rate option.

-rate_limit

Will wait to play frames to make sure that it is not playing too fast but will not drop
any framesif it is playing too slow. This option is the default but can be overridden by
the -rate_control and -no_rate_limit options.
-no_rate limit
Disables frame rate control - i.e. plays the video at peak channel bandwidth.
-frame_rate <fps>
Override the frame rate specified in the VQ file. Affects -rate_control and -rate_limit.
-no_codebook _updates

Causes codebook updates found in vq(5) stream (including initial codebook informa-
tion) to be ignored. Typically used to play videos that have been coded with a code-
book that is known to the pad already (such as with the -fast_coding option of
mpeg2vg(1)). In thisway the codebook does not have to be sent and there are no
chances of codebook corruption.

-codebook_file <name>

Sends the specified codebook (even if -no_codebook updates is specified) before
sending the VQ file. Note that unless the -no_codebook _updates is specified and the
VQ file contains a codebook (as most do) then the initial codebook will immediately
be overwritten by the onesin the VQ file. Codebook files can be generated via
vg2codebook(1).

-no_resend_codebooks on_error

Usually, if sending over the GPIB and an error is encountered, the full codebook is
resent as the GPIB error could have been from a power-down or board reset. To pre-
vent this from happening, use this flag.

208

-video_sound file <file>

Specifies an audio file to play with video. The audio file isin Sun 8-bit u-law, 8 kHz
.auformat. Theaudio issend to the AF server specified by AUDIOFILE or DISPLAY .
This can be either an AF running on aworkstation, or the InfoPad Audio Server,
which isan AF server which sendsits audio to the pad. The audio is synchronized to
the video in that the au file is played at exactly 8000 samples per second so if the -
rate_control flag is specified, the video rate can be controlled exactly. The -

video_delay _sound option (below) can be used to adjust the relative starting points of
the audio and video for a perfect match.

-video_delay sound <ms>

This optionsis used to specify adelay between when the video and audio are sent.
This can be used to compensate for network, hardware, and recording latencies. The
number is specified as the number of milliseconds to delay the audio relative to the
video. Negative values cause the audio to be sent before the video.

-al_y code <n>

The-al_y code option causes all Y codebook data to be changed to the specified
value before being sent off. Thus anormal codebook update would cause the entire Y
codebook to be changed to the value specified. <n> isin actual hardware format - i.e.
an integer between 0 and 63 with O representing black and 63 white. Setting the entire
Y codebook to one value causesit to ignorethe Y frame data, removing the Y frame
buffer from the test path.

-al_i_code <n>

The-all_i_code option causes all | codebook data to be changed to the specified value
before being sent off. Thus anormal codebook update would cause the entire | code-
book to be changed to the value specified. <n> isin actual hardware format - i.e. al
bit sign and 5 bit magnitude integer between 0 and 63 with 0 through 31 representing
+0 through +31 (tending towards more yellow) and 32 through 63 representing -0
through -31 (tending towards more cyan). Setting the entire | codebook to one value
causesit to ignore the | frame data, removing the | frame buffer from the test path. For
example, to see the video in black and white (Y only), specify -all i _codeO -

al_q codeO.

-al_qg _code <n>

The-al_g_code option causes all Q codebook data to be changed to the specified
value before being sent off. Thus anormal codebook update would cause the entire Q
codebook to be changed to the value specified. <n> isin actual hardwareformat - i.e. a
1 bit sign and 5 bit magnitude integer between 0 and 63 with 0 through 31 representing
+0 through +31 (tending towards more magenta) and 32 through 63 representing -0
through -31 (tending towards more lime-green). Setting the entire Q codebook to one
value causesiit to ignore the Q frame data, removing the Q frame buffer from the test
path.

-al_y data<n>
Setsall Y frame data sent to one value. <n> is the value (between 0 and 255) to set the

209

Y frame datato. All accessesto theY codebook should then be to the specified loca
tion and the screen (at least asfar asthe Y planeis concerned) should be the repeating
pattern of the selected entry.

-al_i_data<n>

Setsall | frame data sent to one value. <n> is the value (between 0 and 255) to set the
| frame datato. All accessesto the | codebook should then be to the specified location
and the screen (at least as far asthe | planeis concerned) should be the repeating pat-
tern of the selected entry.

-al_qg data<n>

Setsall Q frame data sent to one value. <n> isthe value (between 0 and 255) to set the
Q frame data to. All accesses to the Q codebook should then be to the specified loca-
tion and the screen (at least asfar asthe Q plane is concerned) should be the repeating
pattern of the selected entry.

-gen_codebook _prom_include

If thisflag is specified then a C include file containing the codebook datain aformat
suitable for the pad ARM code is written to the standard out. It contains the packetsto
be send to the Video chip to initialize the codebook.

-video base addr <hex_num>

For GPIB operation, send_vq hasto know how to address the video packets going over
the IP Bus. This corresponds to the address of the video chip. (The lower four bits are
aways0.) Thevaueis specified in hex and its default is 60. For InfoPad network
operation, thisis not used.

AUDIO TEST OPTIONS

-test_audio

Specifies that a downlink audio test is to be performed. The input file (or the standard
input if no input file is specified) isinterpreted as being a8kHz, 8-bit u-law audiofile.
It is sent out at arate-controlled 8kHz.

-record_audio <dest_file>

Does audio uplink test. The audio chip isinitialized to record and send data over the
GPIB to the host. The host then records the data (8 bit, 8kHz) in the specified
<dest_file>. If the file name starts with a"+" then the output is sent both to the file
(after removing the "+") aswell as the /dev/audio of the host. This uplink test, as well
as all uplink tests, can only be performed directly over the GPIB.

-record_audio_pen <dest_file>
Same as above by triesto interpret and display pen packetsif they are interleaved.
Probably will not work asit was a hack.

-test_audio_in

Test audio uplink printing status messages to the screen. Does not record data.

210

-record audio_send video <dest_file>

Tests simultaneous audio uplink with video downlink. The <dest_file> isagain thefile
to record the datain. The video is taken from the supplied file name or standard in oth-
erwise. May or may not work - it was a hack.

-audio_base addr <hex_num>

For GPIB operation, send_vq has to know how to address the audio chip over the IP
Bus for both data and control - i.e. the address of the audio chip. (The lower four bits
are always 0.) The valueis specified in hex and its default is 40. For InfoPad network
operation, thisis not used.

RADIO TEST OPTIONS

-test_xmit

Thisflag specifiestest transmitter mode. This can test the TX chip (or ARM) over the
radio or wired link. The input file (or standard input) describes the packets to be sent.
The packets are directed to the GPIB on the other end of the link so that the -test_recv
and -test_recv_timestamp options can be used at the other end to recover the data.
(Thistest cannot be run using the InfoPad network infrastructure.) The -loop option
(above) can be used to repeatedly send the packets. The -gpib_rate limit option
(above) should be used to limit the transmit rate as no flow control is employed. This
test can only be performed using the direct GPIB method. The fileisin ASCII with
each packet represented by a single line and numbers within the line to are 2 digit hex
(lower and upper case letter are ok) numbers. The following sample specifies four
packets to be sent for atotal of 15 bytes (plus IPN and radio headers):

01 02 03 04 05 06

07 08 09 OA

0B oC
12 34 56

-test_xmit_timestamp

Thistest is as above except that additionally the transmit time of each packet is
recorded and printing, along with the transmitted data, to standard out. Thetimeis
given both relative to the first packet as well asto the previous packet sent. The output
should be piped to afile or else the significant delays may occur while printing it to the
screen in real-time. The transmit timestamp is useful in conjuction with the receive
timestamp (see-test_recv_timestamp) to determinefifoing delays and mis-ordering. A
sample output from -test_xmit_timestamp looks like this:

00000000 ns (+0 ns) (6 bytes): 01 02 03 04 05 06
00000001 n® (+1 nms) (4 bytes): 07 08 09 0OA
00000003 s (+2 ms) (2 bytes): 0B 0C

00000004 ns (+1 nms) (3 bytes): 12 34 56

-test_recv
Thisisthereceiver end of theradio / wired link test. This can be run on the receiver

211

side any time before the transmit test (above) is run on the transmit side (in order not
to lose any packets.) Thistest must be run using a direct gpib connection - i.e. not be
using the InfoPad network. It will output to standard out in the same format that the -
test_xmit expects: ASCII with one packet per line and each byte represented asa 2
character hex number. In thisway, the file transmitted and the file received can be
compared using the diff command. The output should be piped to afile or else the sig-
nificant delays may occur while printing it to the screen in real-time.

-test_recv_timestamp

Same as above but the output file includes timestamps and message sizes as with the -
test_xmit_timestamp option. This can be used to quickly scan which packets are of
incorrect size and also what the relative timings are. To convert afile with timestamps
(generated by this command) to one without - such as generated by -test_recv and used
by -test xmit and -test_xmit_timestamp, the following sed command will work:

sed "s/.*: //g" 1 NPUT_FI LE_NAVE

BANDWIDTH, TEXT / GRAPHICS, and PEN TEST -
ING OPTIONS

-test_bandwidth

Runs atest of the GPIB downlink bandwidth. (This test cannot be run over InfoPad
Network.) Sends packets (all bytes 0) of varying size over GPIB link and measures
time it takes. It tests for packets of length 4 bytesto 1 megabyte. It automatically
determines how many packets to send to get accurate results. The progressis reported
asit goes along and then a summary, like the following, is printed (this was from a
slow machine):

Packet Size Packet s/ Sec KByt es/ Sec KBi t s/ Sec
4 679. 947 2.720 21.758

8 679. 496 5. 436 43. 488

16 386. 124 6.178 49. 424

32 376. 748 12. 056 96. 447

64 591. 566 37. 860 302. 882

128 521. 651 66. 771 534. 170

256 221. 645 56. 741 453. 929

512 306. 220 156. 785 1254. 278
1024 177. 285 181. 540 1452. 321
2048 115. 004 235.529 1884. 234
4096 59. 150 242.277 1938. 218
8192 15. 795 129. 390 1035. 119
16384 16. 649 272.783 2182. 260
32768 5.525 181. 039 1448. 309
65536 3. 086 202. 272 1618. 173
131072 1.528 200. 263 1602. 102
262144 0. 888 232.913 1863. 307
524288 0.431 226.084 1808. 669
1048576 0.242 253.708 2029. 666

-test_tg

212

Runs text / graphics downlink test. The test exercises all four graphics primatives of
the T/G chip. First an image of a prototype pad is displayed using the Block (B) mode.
Then the horizontal (H) mode is used to make alittle lined pattern in the center. Next,
another small section is drawn using the vertical (V) mode. Next areverse-video
image of the prototype is shown using the Protected Block (PB) mode. Then a small
areais scrolled around using the block mode again. Finally, the wholeimage is
scrolled around using the block mode. The downlink bandwidth used for thislast test
is printed out. Use -pause_time option (below) to have it pause between tests. Use -
no_quiet (above) to print info about tests being performed. The T/G tests can be run
over InfoPad Network or directly through GPIB.

-pause_time <secs>
This specifies the number of seconds to pause between graphics tests. Defaults to 1.
-tg_base addr <hex_num>

For GPIB operation, send_vq has to know how to address the t/g packets going over
the IP Bus. This corresponds to the address of the t/g chip. (The lower four bits are
aways0.) Thevaueis specified in hex and its default is 50. For InfoPad network

operation, thisis not used.
-test_pen

Used to test the pen uplink. The pen chip is configured and pen packets are printed to
the screen. Thistest, like all other uplink test, must be performed over the GPIB

directly.
-pen_base addr <hex_num>

For pen uplink tests, which must be over the GPIB, send_vq has to know how to
address the pen chip to configure it. The number here is the base address the lower
four bits are dways 0. The value is specified in hex and its default is 30. For InfoPad
network operation, thisis not used.

If an input file is not specified but the particular test (or VQ send) requiresit then the stan-
dard input is assumed.

FILES

[tools/ui/movies/adapt_vq and /tools/ui/movies/fast_vq

Contains sample VQ files that were converted using mpeg2vq(1). The MPEG source
files are in /tool s/ui/movies/mpeg.

ENVIRONMENT

The GPIBID and PADID environment variables are used if either -gpib_id nor -pad_id are
specified. If they are not and GPIBID is set to a number then testing is performed over the
GPIB to a board whose talker/listener address is the number. If PADID is set to a number
then the tests are run through the InfoPad network through the specified pad server.

213

If syncronized video and audio are requested viathe -video_sound file flag, the audio
goes through AudioFile (AF). The AF libraries ook use AUDIOFILE to determine where
to send the audio. It should be set the same way you would set your DISPLAY variable. If
AUDIOFILE isnot set then DISPLAY is used.

SEE ALSO

emu(1) mpeg2vq(1) vg play(1)

BUGS

None, of course.

AUTHOR

Jeff Gilbert <gilbertj @eecs.berkeley.edu>

214

A.7. show[vqg] codebook]y] (1)

NAME

showcodebook, showcodebooky, showvqgcodebook, showvg-
codebooky - VQ Video Codebook Display Utilities

SYNOPSIS as

showcodebook codebook_filename 1

showcodebooky codebook_filename
showvqcodebook vq_video_filename

showvqcodebooky vq_video_filename

DESCRIPTION

These tiny scripts just pipe the output of codebook2ras(1) into the xloadimage viewer for
X, optionally zooming in onthe Y part of the codebook and optionally stripping the code-
book out of avq(5) video file. (vg2codebook(1) can also do this).

OPTIONS

Showcodebook and showcodebooky must be supplied the name of a codebook file (one
that could be fed into mpeg2vg(1)). showvqgcodebook and showvgcodebooky must be sup-

plied the name of aVQ video file (one that could be played with vq _play(1) or
send vq(1)).
OPERATION

Since codebook?2ras generates a SUN rasterfile which xloadimage can display, it is basi-
cally ano-brainer. It does specify -gamma 2.25 to xloadimage to gamma correct and make
the image more readable. Showvgcodebook and showvqgcodebooky first pass the vq file
through vg2codebook to extract the codebook. Showcodebooky and showvgcodebooky
pass options to xloadimage to make it only show the Y part of the codebook.

SEE ALSO

codebook2ras(1) mpeg2va(l) send va(l) vg play(1) va(b)

AUTHOR

Jeff Gilbert <gil bertj @eecs.berkeley.edu>

215

A.8. SurfServ (1)

NAME

SurfServ - Server for SpeedSurfer connection proxy as well as server for Globally Pro-
gressive Interative Web Delivery transformational proxy.

SYNOPSIS
SurfServ [options]|

DESCRIPTION

SurfServ is both aserver for the SpeedSurfer proxy application aswell asfor the Globally
Progressive Interative Web Delivery transformational proxy. Most of the options are
related to the Globally Progressive Interative Web Delivery transformational proxy since
the client-side SpeedSurfer application provides controls most of the operation of the
server. Connection of either type are accepted on the same port and the type of connection
is determined by initial handshaking sequence.

Asaserver for the SpeedSurfer proxy, SurfServ accepts connections from one or more
SpeedSurfer clients and will make connections on behalf of them. The SpeedSurfer /
SurfServ pair can be used to force al connections through asingle TCP/IP host. The pair
can also perform detailed link traffic analysis for web data and display aggregate flow
information for all types of data.

Asatransformational proxy for the Globally Progressive Interative Web Delivery, Surf-
Serv appears like a standard web proxy, accepting HTTP/1.0 or HTTP/1.1 connections
from web browsers. For HTML connections, it transforms image tags into Java applet
tags. It then also supports connections back from the Java applets and will manage a sin-
gle explicitly multiplexed link to deliver the images to the applets as defined by the Glo-
bally Progressive Interative Web Delivery algorithm.

OPTIONS

-help
Show this message
-port n
Port to listen on
-webProxy host:port
Forward all proxy requests here
-no_image_applets
Don't use applets for images

216

-no_include image size
Don't add size to unsize images
-no_compress_html
Don't compressHTML (HTTF/1.1)
-no_html_priority
Don't give priority to HTML
-force_image_applets
Use applets whenever possible
-max_html_for_non_html n
Max # bytes of html that can be queued to queue non-html
-max_html_in_flight n
Max # bytes of html buffered
-max_image_in_flight n
Max # bytes of images buffered
-max_speedimg_in_flight n
Max # bytes of custom buffered. Further limited via down link window
-browser_port_offset
Amount to add to proxy port
-applet_dir_url

Where to get speedimage applet. Default is
http://badlands.EECS.Berkeley. EDU:8090/~qilbertj/ttt

-scans scan_file

Progressive scan file to use otherwise use default
-verbosity n
What to print. bit-OR these:
1=Show proxy connections
2=Show errors
4=Show connects/disconnects
64=Some debugging
128=More debugging
(default is 71)
-max_sessions n
Maximum number of connections & sessions to support at once
-find_free_proxy_port

217

Try successive proxy portsif busy (default)
-send_timing_packets

Send timing packets that SpeedSurfer will log
-dont_send_timing_packets

Don't send timing packets that SpeedSurfer will log

SEE ALSO

netem(1) Gilbert, Jeffrey M. and Robert W. Brodersen. “ Globally Progressive Interactive
Web Delivery.” Proceedings 1999 |EEE Infocom. New Y ork. 21-25 Mar 1999.

BUGS

Nonethat I’d care to discuss

AUTHOR

Jeff Gilbert <qilbertj @eecs.berkel ey.edu>

218

A.9. vg_play (1)

. NAME i
© | v play- VQand RAW Video Player \
g for X Windows
L . o SYNOPSIS
. - | va_play [va_or_raw_file] [options...]
DESCRIPTION

vq_play isused to display VQ video (seevq(5)) or RAW video (seeraw_video(5)) format
filesunder X Windows on a standard workstation. It is based on mpeg_play and can also
handle MPEG files if passed a command-line switch. All of the display modes of
mpeg_play are supported (i.e. dithering, shared-memory etc) for playback of VQ, RAW,
and MPEG files. Gamma correction and zooming are additionally supported for all three
typesaswell. For VQ and RAW file playback, it additionally supports frame rate control.

NOTE: The parts of this man page which describe mpeg_play features are taken from the
mpeg_play man page. See authors section for list of those responsible for mpeg_play.

GENERIC OPTIONS

-help
Print help message describing options.
-dither dither_option
Selects from avariety of dither options. The possible values are:
ordered - ordered dither.
ordered? - afaster ordered dither. Thisisthe default.

mbordered - ordered dithering at the macroblock level. Although there is a noticeable
decrease in dither quality, thisis the fastest dither available.

fs4 - Floyd-Steinberg dithering with 4 error values propogated.
fs2 - Floyd-Steinberg dithering with 2 error values propogated.
fs2fast - Fast Floyd-Steinberg dithering with 2 error values propogated.

hybrid - Hybrid dithering, a combination of ordered dithering for the luminance chan-
nel and Floyd Steinberg 2 error dithering for the chrominance channels. Errors are
NOT propogated properly and are dropped all togethor every two pixelsin either
direction.

hybrid2 - Hybrid dithering as above, but with error propogation among pixels. 2x2 - A

219

dithering technique using a 2x2 pixel areafor each pixel. The image displayed is 4
times larger than the original image encoded. Random error terms are added to each
pixel to break up contours and gradients.

gray - Grayscale dithering. The image is dithered into 128 grayscales. Chrominance
information is thrown away.

color - Full color display (only available on 24 bit color displays).
none - no dithering is done, no image is displayed. Used to time decoding process.
mono - Floyd-Steinberg dithering for monochrome displays.
threshold - Floyd-simple dithering for monochrome displays.
-|_range num_colors

sets the number of colors assigned to the luminance component when dithering the
image. The product of |_range, cr_range and cb_range should be less than the number
of colors on the display.

-Cr_range num_colors

sets the number of colors assigned to the red component of the chrominace range when
dither ing the image. The product of |_range, cr_range and cb_range should be less
than the number of colors on the display.

-cb_range num_colors

sets the number of colors assigned to the blue component of the chrominace range
when dither ing the image. The product of |_range, cr_range and cb_range should be
less than the number of colors on the display.

-loop

makes the player loop back to the beginning after reaching the end.
-no_display

dithers, but does not display, usually used for testing and timing purposes.
-quiet

Suppresses diagnostic messages
-shmem_off

Don't use X shared memory for image buffer. Using shared memory is faster but can
sometimes cause problems.

-gamma correction_val

Specify the amount to gamma correct the images. Gamma correction warps (bright-
ens) the image to compensate for the non-linear effects of monitors. Sun monitors
require about a 2.25 gamma correction while other displays, such as LCD or Live-
Board may require more or less. If this option is not specified then the

VQ PLAY_ GAMMA environment is checked for and used. If it does not exist then a
default gamma correction of 2.25 is used. Note that this gamma correction is applied
to mpeg videos played with the -mpeg option so aliasing mpeg_play to "vq_play -

220

mpeg' can be used to gamma correct when you mpeg_play. A gamma correction value
of 1.0 implies no correction.

-zoom percentage

Display the the image percentage/100.0 times wider and taller than it actualy is. Per-
centages below 100 cause the image to appear smaller on the screen while percentages
above 100 cause theimage to appear larger. The default is 100 which causes the image
to appear exactly the same size. NOTE: resizing is not available for MPEG images. To
zoom an MPEG image, pass it through mpeg2vq(1) with the -raw_out flag and pipeto
vq_play with the -raw flag. Then zooming and rate control will be available.

-XZoom percentage
Set only the width zoom factor.

-yzoom percentage
Set only the height zoom factor.

-rate_limit
Limit playback speed to the frame rate specified in the vq(5) file or by the-frame_rate
option. The playback speed may be slower as frames are not dropped with this mode.
Does not work with MPEG playback. Convert to raw first via mpeg2vq(1) -raw_out
and pipeto vq_play with the raw flag.

-rate_control

Constrain the playback speed to the exact frame rate specified in the VQ file or by the
-frame_rate option. If the playback is going too slow then frames are dropped to keep
on schedule. Does not work with MPEG playback. Will usually not work unless the
source isafile and not a pipe.

-frame raten

Override the VQ file's specified frame rate. Only meaningful with -rate_limit or -
rate_control. Does not work with MPEG playback.

VQ OPTIONS

_Vq
Specifiesthat fileisaVQ file. (I.e. negates -mpeg and -raw). Since thisis the default,
this option will probably not be needed.

-V QCodebook filename

Initial VQ codebook to usefor lookup. Mostly for usewith VVQ fileswhich do not have
codebook information (i.e. generated with mpeg2vq(1)'s-no_dump_codebook option.
VQ fileswith codebooks at the beginning will override this option. Not valid if -mpeg
is specified.

221

RAW OPTIONS

-raw
Specifies that the input file follows theraw_video(5) file format.

MPEG OPTIONS

-mpeg
Specifiesthat file isan MPEG file. All of the MPEG decoding capabilities of
mpeg_play are built into vq_play as well as gamma correction.

-eachstat

Shows MPEG statistics. Requires -mpeg.
-nob

Skips over MPEG type B frames in source. Requires -mpeg.
-nop

Skips over MPEG type P frames in source. Requires -mpeg.

If an input fileis not specified then the standard input is assumed.

NOTES

The display is automatically stretched vertically to account for the unusual aspect ratio of
the InfoPad display (128x240.)

FILES

ltools/ui/movies/fast_vq

Contains sample VQ files that were converted using the fast coding method of
mpeg2vg(1). These all use the same codebook but can be generated in realtime.

[tools/ui/movies/adapt_vq

Contains sample VQ files that were adaptively coded using mpeg2vqg. These haveto
be generated off-line but of course can be played in real-time.

/tools/ui/movies/mpeg
The mpeg files from which the VQ files were converted.

ENVIRONMENT

If -gammais not specified then the environment variable VQ _PLAY_GAMMA isused as
the gamma correct value. If it is not does not exist then a default value of 2.25 is used.
Thisis pretty good for Sun monitors.

222

SEE ALSO

mpeg2va(1l) send va(l) vg2codebook(1) codebook2ras(1) showcodebook(1) showvag-
codebook(1) va(5)

BUGS

None.

It might be nice to be able to show the image larger (enlarge before dither) but thisis not
high priority.

AUTHORS

Addition of VQ and RAW support as well as gamma correction and zooming to
mpeg_play (yielding vq_play) by Jeff Gilbert <gilbertj @eecs.berkeley.edu>.

----> mpeg_play written by:

Ketan Patel - University of California, Berkeley, kpatel @cs.berkeley.edu
Brian Smith - University of California, Berkeley, bsmith@cs.berkeley.edu
Henry Chi-To Ma- University of California, Berkeley, cma@cs.berkeley.edu
Kim Man Liu - University of California, Berkeley, kliu@cs.berkeley.edu
Steve Smoot - University of California, Berkeley, smoot@cs.berkeley.edu
Eugene Hung - University of California, Berkeley, eyhung@cs.berkeley.edu

223

NAME

vg2codebook - VQ Video file Codebook Extractor

SYNOPSIS
vg2codebook [vq file] [options...]

DESCRIPTION

Thistiny script just extracts the codebook from the specified vq(5) file and writesit to the
standard out. This can then be fed back into the mpeg2vg(1) program to transcode new
videosto an existing video's codebook. Alternatively it can be fed into codebook2ras(1) to
generate a SUN rasterfiles for use in documentation. (Use showvqgcodebook(1) to just
view the codebook being used inaVQfile)

OPTIONS

If avq file nameis not specified, standard in is assumed.

OPERATION

The script assumes that the codebook follows directly after the VQ header (asit will if itis
generated with mpeg2vq) so it simply extracts the 12288 bytes following the 44 byte
header.

SEE ALSO

codebook2ras(1) mpeg2vaq(1) send vg(1l) showcodebook(1) showvgcodebook(1)
vq play(1) va(5)

AUTHOR

Jeff Gilbert <gilbertj @eecs.berkeley.edu>

224

A.11. XinfoPad (1)

NAME

XInfoPad - Modified X server used as InfoPad Text / Graphics server

DESCRIPTION

XInfoPad is the modified X server used as InfoPad Text / Graphics server. It connectsto
applications as a standard X server but sends display to the specified PadServer using the
virtual framebuffer approach for adaptive bandwidth control. Packets are formated
according to InfoPad specifications and communicated using InfoNet networking rou-
tines.

SYNOPSIS

XInfoPad [:<display>] [options]

NON X-STANDARD OPTIONS:

(The standard optionsto X servers are not presented here - see X (1) man page)
-pad_id N

InfoPad emulation, on Pad N
-ipn_rate_limit kbps

Rate-limit the downlink traffic. 0 means unlimited. Default is 200.
-ipn_unbuffered_write

Use IPNWrite instead of IPNWriteBuffered
-ipn_interpacket_delay us

Wait this many us after an IPN send
-max_packet_sizen

Maximum number of bytesin IPN packet. Default is 512.
-refresh_rate kbps

Maximum background refresh rate. Default 10kbps.
-invert_video

Invert video. Default no.
-send_everything

Constantly send whole framebuffer - not just updates
-alow_mark_filename XXXX.c

225

Only allow mark requests from these mfb/cfb files
-deny_mark_filename XXXX.c

Don't allow mark requests from these mfb/cfb files
-dont_grow_marks

Don't grow marks to cover whole 32x1 or region before merging. Useful debugging
-show_mark_requests

Show mfb/cfb mark requests
-show_mark_flushes

Show mfb/cfb mark flushes
-show_merged marks

Show mfb/cfb merged marks
-show_offscreens

Show also mfb/cfb mark/flushed offscreen
-show_sent_blocks

Show blocks sent by InfoSlave
-show_only_filename XXXX.c

Show only requests from these mfb/cfb files
-show_skip_filename XXXX.c

Don't show requests from these mfb/cfb files

SEE ALSO

codebook?2ras(1) mpeg2vq(1) send vg(1l) showcodebook(1) showvgcodebook(1)
vq play(1) va(5)

AUTHOR

The Split X topology was originally developed by Richard Han, Brian Richards, and
Trevor B. The XInfoPad server using the virtual framebuffer architecture was devel oped
by Jeff Gilbert <gilbert] @eecs.berkeley.edu> since ~1995.

226

A.12. raw_video (5)

' NAME |

raw_video - InfoPad file format for
RAW (non-VQ, non-
MPEG) Video files pe

SYNOPSIS

#include <raw_vid_file_fmt.h>

OVERVIEW

The RAW Video file format is used primarily as a means of using non-MPEG video
sources in the InfoPad environment. The RAW file format allows images specified in raw
luminance and chrominance pixelsto be used by the transcoder (mpeg2vq(l)) and video
player (v play(1)). (Luminance pixels are aso know asL or Y while the chrominanceis
know as| and Q, Cr and Cb, or U and V. MPEG's definition of Cr Cb is used.) The size of
the three image planesis arbitrary. I.e. MPEG/VQ type 4:1:1 ratios where the Cr (1) and
Cb (Q) are sampled only a quarter as densly can be specified aswell as 4:2:2 or any other
combination. Additionally, grayscale movies can be specified by setting the Cr and Cb
frame dimensionsto 0. A frame rate can also be specified to allow vqg_play to rate control
and mpeg2vq to put thisinto the vq(5) file.

The RAW Video file has two parts: a header containing frame size and rate information
(aswell as additional optional header information) followed by the frame data. All frames
contain full updates of any of the planes (L, Cr, Cb) that are non-zero sized. Thusthefile
looks like:

HEADER

EXTRA HEADER DATA
L DATA FRAME O

Cr DATA FRAME O
Cb DATA FRAME O

L DATA FRAME 1

Cr DATA FRAME 1
Cb DATA FRAME 1

or in the case of grayscale:

HEADER
EXTRA HEADER DATA
L DATA FRAME O

227

L DATA FRAME 1
L DATA FRAME 2
L DATA FRAME 3

HEADER

The header is defined by the following structure:

/* Al'l nunbers should be in net order */
typedef struct _Raw video_file_header {

u_long magi c_nunber ;
u_short maj or _version;
u_short nm nor _version;
u_long wi dth_L;

u_long hei ght _L;
u_long wi dth_Cr;
u_long hei ght _Cr;
u_long wi dt h_Cb;
u_long hei ght _Cb;
u_long i mge_type;
u_long frames_per_sec;
u_long extra_data_l en;

} Raw_vi deo_fil e_header;
The magic_number field always contains the following constant:
#def i ne RAW VI DEO MAG C_NUM 0x52415756 /* ~RAW' */

The major_version and minor_version fields contain major and minor version that thefile
conformsto. Currently 1 and O respectively.

Next the L, Cr, and Cb dimensions are specified viawidth L, height L, width_Cr,
height_Cr, width_Cb, and height_Cb, fields. These are specified in pixels and can be arbi-
trarily sized with respect to each other. Additionally setting any of the widths and heights
to O denotes that that planeis not present in the data. Any of the three planes may be omit-
ted, although most commonly either all three will be present for full color, or else just the
luminance (L) plane will be present and the chrominance (Cr and Cb) planes will be
absent.

image_type currently must be 0 but may at some time be used to support other image for-
mats or colorspaces.

frames _per_sec isthe number of frames per second that the video was recorded at. Itisa
32 bit integer but is stored * 65536 so it can be as high as 65536 frames per second and has
the accuracy of 1/65536th of aframe per second. The last field in the header is
extra_data len which is used to specify the size of additional header information which
followes the header. This could be used to add a frame offset table or other information to
the VQfile.

After the header isthe optional header data. This dataisignored by vq_play and send_vq.

228

FRAME DATA

The frame data consists the pixelsfrom the L, Cr, and Cb frames in standard raster order.
The header dimensions determine the number of bytes expected. All data are single
unsigned bytes. The L data ranges from 0 being darkest to 255 being white while the Cr
and Cb data are biased around 128. If Cr or Cb datais not present (i.e. Cr_width==0 or
Cb_width==0), it isassumed to be all 128'swhileif L datais not present it is assumed to

beall O's.

SEE ALSO

va play(1) mpeg2vag(l) va(5)

AUTHOR

Jeff Gilbert <gilbertj @eecs.berkeley.edu>

229

A13. vq (5)

NAME

" | vg - InfoPad file format for VQ Video
i files

| SYNOPSIS .

| #indlude <vq_file_fmt.n> I

OVERVIEW

The VQ fileformat is used by the InfoPad VQ Video programs as a means of specifying
video streams. The file format is rich enough to be used for other types of VQ filesor to
add extensions to the existing video. The video transcoder (mpeg2vg(1)) and VQ video
player (vg_play(1)) both can operate on VQ files of any frame size. The video send utility
(send vq(1)), however, requires a fixed size due to hardware constraints.

First the general format will be described, followed by how it should befilled in for Info-
Pad hardware compatible files.

The vq file has three parts. a header containing frame size and rate information (as well as
additional optional header information) followed by codebook update sections interleaved
between video data sections. The codebook update sections can specify that no entries are
to be updated. Thus the file looks like:

HEADER

EXTRA HEADER DATA
CODEBOCK UPDATE SECTI ON
VI DEO FRAME DATA
CODEBOCK UPDATE SECTI ON
VI DEO FRAME DATA
CODEBOCK UPDATE SECTI ON
VI DEO FRAME DATA

HEADER

The header is defined by the following structure:

/* Al nunbers should be in net order */
typedef struct _VQ file_header {

u_l ong megi ¢_nunber ;
u_short mej or _version;
u_short nm nor _version;
u_l ong wi dt h;

u_l ong hei ght ;

230

u_l ong frane_si ze;

u_l ong codebook_entri es;
u_l ong codebook_entry_si ze;
u_l ong frames_per_sec;

u_l ong extra_data_l| en;

} VQ_file_header,;
The magic_number field always contains the following constant:
#define VQ MAG C_NUM 0x49505651 /* “I1PVQ */

The major_version and minor_version fields contain major and minor version that thefile
conformsto. Currently 1 and O respectively. The width and height fields are measured in |
and Q entrieswhich are one eighth the number of uncompressed pixels. So for the InfoPad
hardware resolution of 128x240 this would be width=128/8=16 and height=240/8=30.
framesize is the size of aframein byteswhich for InfoPad VQ iswidth * height * 6.
(SinceY isat double the resolution in both directions, thereare4 'Y bytesper 11 and 1 Q).
codebook_entriesis the number of entriesin all codebooks. For InfoPad, thisis

256* 3=768. codebook_entry sizeisthe size in bytes of each entry. For InfoPad, thisis 16
bytes. (One byte for each pixel in the 8x8 block.) frames _per_sec isthe number of frames
per second that the video was recorded at. It isa 32 bit integer but is stored * 65536 so it
can be as high as 65536 frames per second and has the accuracy of 1/65536th of aframe
per second. Thelast field in the header is extra_data |en which is used to specify the size
of additional header information which followes the header. This could be used to add a
frame offset table or other information to the VQ file.

After the header is the optional header data. Thisdataisignored by vq _play and send vq.

CODEBOOK UPDATES

The header and optional header data are followed by pairs of codebook update and frame
data sections. The codebook update sections may contain as little as a single integer speci-
fying that no codebook updates happen before the next frame. Alternatively any number
of section in the codebook may be updated. The format of the codebook update sectionsis
asfollows:

ENTRI ES_TO_UPDATE
| f ENTRI ES_TO UPDATE != 0

FI RST_ENTRY_NUM

CODEBOOK DATA

ENTRI ES_TO_UPDATE

| f ENTRI ES_TO UPDATE != 0
FI RST_ENTRY_NUM
CODEBOOK DATA

ENTRI ES_TO_UPDATE = 0

ENTRIES TO UPDATE and FIRST_ENTRY_NUM are both 32-bit integers (in net byte

231

order). ENTRIES _TO_UPDATE indicates how many entries in the codebook are to be
updated. It must not be negative or exceed the codebook _entries (768 for InfoPad) value
specified in the VQ file header. A 0 value indicates that the codebook update section is
done and the frame data will follow.

Note that any program that reads VQ files (such as vq_play(1) and send vq(1)) should
check to seeif ENTRIES TO_UPDATE isthe magic number #defined as
VQ_MAGIC_NUM (0x49505651 = "IPVQ'") expected for the magic_number field in the
header. If thisisthe case, it should assume that two (or more) VQ files have been concati-
nated together. It should parse the new header, possibly making sure that it is consistent
with the old one or making many necessary modifications (like resizing the play window),
and procede. In thisway, larger VQ files can be created by simple concatination of a num-
ber of smaller clips.

FIRST_ENTRY_NUM specifiesthe first codebook entry to be updated (in this block) and
should be between 0 and codebook_entries- ENTRIES TO_UPDATE to specify avalid
region. For the InfoPad hardware, entries O through 255 specify the Y codebook, entries
256 through 511 specify the | codebook, and entries 512 through 767 specify the Q code-
book.

CODEBOOK DATA iscodebook_entry size (16 for InfoPad) *
ENTRIES TO_UPDATE bytes of codebook data. For InfoPad, the codebook datais orga-
nized in 16 byte blocksin A to P order in thefile:

ABCD
EFGH
I J KL
MNOP

TheY Codebook values are 0..255 unsigned binary - O=black, 255=white. The | and Q
Codebook values are 0..255 offset binary: 128 means 0, 127 is-1, 129 is 1 etc. Note that
thisis dightly different from the InfoPad hardware: it uses 6 bit sign-magnitude format
aligned to 6 bits. The send vq(1) program will, however, correct the format in order to
keep the VQ file format as simple and flexible as possible.

FRAME DATA

The frame data consists of the new frame of Y datafollowed by the new frame of IQ data.
(Thel and Q datais interleaved due to hardware design.) The Y frame data consists of
width * height (from header) * 4 bytesof Y frame data (one byte per 4x4 block) present in
normal scan order - top left to top right down to bottom right. The 1Q frame data consists
of width * height (from header) * 2 bytes of 1Q frame data. The reason that thisis half as
many bytesasthe Y frame dataisthat the | and Q are subsambled by 2 in each direction
(for areduction by 4 in data) but both the | and Q are present, making the reduction only
by afactor of 2. The | and Q data are interleaved in foursomes of 2 apiece- i.e

I I Q Q I I Q Q I I Q Q
0 1 0 1 2 3 2 3 4 5 4 5

232

where the 0,1,2,3,... again correspond to the normal scan order.

SEE ALSO

vg play(1) send va(1) mpeg2vq(1l) vg2codebook(1) codebook2ras(1) showcodebook(1)
showvgcodebook(1) raw video(5)

AUTHOR

Jeff Gilbert <gilbertj @eecs.berkeley.edu>

233

234

aprenDix B The WebChip Applet

This appendix describes the details of the WebChip applet, used to illustrate concepts in

application-level link management described in Chapter 11.

B.1. Motivation

The web has proven to be an effective medium for exchanging information and documenta-
tion. It has been an invaluable aid in enabling researchers and industry to share information. Its

use in Electronic Design Automation (EDA) is also expanding rapidly.

However, currently it does not provide an adequate solution to the problem of displaying
integrated circuit layout in a manner that is readily accessible to a large number of people with
varying compute and network resources. Integrated circuit designers wishing to document layout
on the web are limited to placing static GIF images of their design in the pages. Alternatively they
can leave alink to the actual layout files for others to download and run with their particular layout
editor. Thisis, of course, contingent upon the user having access to a compatible viewer or editor.

Even if so, it can be atime consuming process at best.

235

With the WebChip Interactive Java VLS| Layout Viewer, the designer can now embed the
actual layout in the web pages and remote users are able to actively navigate the layout by zoom-
ing, panning, and expanding and unexpanding subcells. WebChip accepts standard Magic layout
files and does rapid rendering of hierarchical designs including the sub-cell transformations,
arrays, label justification, and layer display. WebChip is tailored to the task of remote access and

customizable to work with any fabrication process.

Interactive viewing of large layouts over the web brings up a number of interesting chal-
lenges which WebChip addresses. One set of challenges relates to obtaining the greatest viewing
speed and lowest latency possible. One factor which impedes this is the bandwidth limitation of
the link connecting the user to the remote web server. Often thisisaslow modem or wireless link
which would not seem congenial to large layout databases. Another problem isthat even when the
local host receives the data, it has to be able to render it quickly to obtain interactive navigation.
However, the local machine may not have sufficient compute power, or in case of the web, the
local machine may be using interpreted Java which further hampers performance. In order to
address these issues, a display optimization called cell image caching was developed, which
greatly accelerates the display of hierarchical layouts. In many cases, WebChip, written in Java,
can display fully expanded layout faster than Magic’'s or Cadence’s layout editor! The technique
of cell image caching, however, could be applied to existing commercial tools as well to yield even
faster display. In order to address the issue of loading speed, compression and link scheduling are

used to deliver the layout datato the local host.

No matter how well datais transferred and the display is optimized, it will inevitably still be
too slow in some circumstances. However, this problem can be masked by allowing the user to
deal with “work in progress”. They should be able to effectively navigate all portions of the layout

that they have received even during the loading process. Additionally, to mitigate slow redrawing,

236

the user must be able to interact with the system even while it is still busy displaying something

elsel.

B.2. Operation Tutorial
Although no Magic code is used in WebChip, the GUI was modeled in some ways after

Magic, as Magic is the best layout editor! The WebChip viewer uses Magic files for input. It can
used gzipped magic files to reduce load time. (Described in Section 11.2.2.1..) It could be modi-
fied to also accept CIF or other formats but Magic delivered all of the necessary functionality.
Many of the issues in interactive web-based operation, of course, do not have a parallel in the stan-

dard Magic implementation.

B.2.1. New Window / Close Window

To start our tutorial, open another view of the sample layout. This can be done in a multi-
tude of way: Either click on the New Window button on the applet at the top of this page, type an

“0" anywhere in the same applet or type an “0” in the following copy of the same applet:

The window can be resized and the layout will grow or shrink to keep the same amount in
view while maintaining a 1:1 aspect ratio. Windows can be closed either by using the standard

window manager hooks or else by clicking on the Close Window button or typing “O” in them.

B.2.2. Showing/ Hiding Control Buttons and L abels

If you opened a new window from the applet directly, you will notice that the control but-
tons are not present. Typing space in the applet toggles the display of the control buttons and

labels. (Thisworks both on the embedded version as well as stand-alone copies.)

1. | believe that neither Magic nor Cadence do this.

237

B.2.3. The Selection Box

To effect many of the WebChip commands, a region has to be selected. This is done by
dragging the mouse with the left mouse button pressed. A white selection rubber band box will
appear. Clicking in the window will makeit go away. (Thisdiffersslightly from Magic as Magic

does not allow a drag but rather clicks to set box corners.)

B.2.4. Expand / Unexpand

The layout viewer is a hierarchical viewer. It only shows the layout and subcellsin a given
cell if they are “expanded.” Initially all subcells are “unexpanded” so that a box with this top cell
and instance name appears, indicating the layout bounds. Drag a box in the layout window that
crosses some unexpanded subcell. Now press “x” or click on the Expand button. The cells under
it are expanded. If you drag a box around the whole layout and press “x”, al subcells are
expanded. (This can be specified as the default by setting the applet parameter defaultExpand to

anything.)

To unexpand a region, drag the box so it crosses or contains the cell to be unexpanded and
press “X” or click on the Unexpand button. (The expand / unexpand semantics are exactly as in

Magic.)

B.2.5. Zooming and Panning

Zooming into a specified area can be performed by dragging a box around the area and typ-
ing “z” or clicking on Zoom Area. To magnify the current region of interest, type “f” or click on
Zoom In. Similarly, to zoom out, the “Z” key or Zoom Out button can be used. Zoom Full or the
“F” key sets the zoom to see the full layout. Lastly, the arrow keys can be used to pan left, right,
up and down. |f the shift key isused, it movesin bigger jumps while the control key causes move-

ment in smaller jumps.

238

B.2.6. Redisplay

Finally, control-L can be used to refresh the screen if ever necessary (or just to investigate

the drawing speed)

B.2.7. Status Panel

Below the buttons is displayed the name of the top cell in the design followed by a dash and
the location of the design. In our case, the name of the design is http://Infopad. EECS.Berke-
ley.EDU/~gilbertj/Coursework/ee244/project/cor_at4 and the top cell is correlat. (Thisis a dual
64x64 image correlator that | built as part of a PC-based real-time face recognition system for my

undergraduate honors thesis. See the thesis [34] or conference paper [33] if you are interested!)

B.2.8. Design File Loading Status I ndicator

Asthefiles are loading, the status is shown below the design name. Note that it loads up to

3 design cell files concurrently.

Loading multiple cells concurrently can help amortize TCP connection times as is com-
monly done by web browsers. Using a single managed stream would have all of the benefits that it
has for the web as outlined in Chapter 10. Also note that as the design is loading, the cells that are
visible (i.e. all of their ancestors have been expanded) will be displayed in gray until they are
loaded. Once they are loaded, the outlines turn yellow if they are unexpanded or the layout is

shown if they are expanded. Meanwhile, feel free to navigate the design asiit is loading!

All design cell information is managed centrally such that if multiple instances of the Web-
Chip applet reference the same design, they will share the same database. Thus the multiple
instances do not use more memory or incur the load-time penalty multiple times. By specifying a
different initial zoom region to different WebChip applet instances, multiple views of the same

layout can be included at low computational cost and without additional bandwidth utilization.

239

B.2.9. Display Mode Choice Button

Lastly, the mode choice button which now indicates “ Cached Block Mode” allows the user

to change the display method being used. Thisis described in Section 11.2.1.

B.3. Configuration

Several applet parameters control WebChip. The file parameter is used to specify the top-
level URL of the file to load. Thisis aso the design name. (The design name without the top-
level cell name is shown in the control panel.) The URL can specify a .mag magic file or a

.mag.gz gzipped magic file or not have any extension as described in Section 11.2.2.1.

The style parameter is used to specify a URL for the display style. See below for more on

stylefiles.

The noControlButtons and noControl L abels options are used to specify whether the control
buttons and labels should initially appear. The space bar will always toggle this. It isuseful when
embedding many layouts or small ones to not have the control buttons and labels as they consume

space.

The defaultExpand controls the initial state of subcells. If it is not set to anything then sub-
cells are initialized as unexpanded until explicitly expanded. If it is set to anything then they are

expanded by default. This allows theinitial view to appear similar to a die photo.

B.3.1. StyleFiles
The style files control all display aspects of WebChip, including layer colors, stipple pat-
terns, crossing, and outlining. The style files also allow background color, sub-cell color, and

unloaded cell colorsto be specified. Thefilesare standard ASCI| and can be customized to viewer

240

'u'(|(|2

_ i

DOWN2 GHD2 GHD % DOWH2 - GHD?
down down

FIGUREB.1. Effects of stylefileson layout presentation.
Thetwo figures are of the same layout but different stylefiles.

preference as well as different technologies. Figure B.1 shows an example of two different style

files used on the same design.

The stylefileissimilar in format to Magic technology files. The file must start with the lit-
eral LayoutStyleFile. This is followed by two numbers specifying the stipple height and width
which should be 2, 4, or 8. This is followed by a set of color and layer definitions. WebChip
draws layers as some combination of a stipple pattern, an optional solid outline, and an optional
solid cross. The layer stippling is specified in terms of a swath the size of the stipple. Each pixel
in the swath can be some opaque color or transparent. While the style file could be specified in
terms of RGB or transparent for each pixel in each stipple, an extralevel of indirection was intro-
duced to aid in style file design. The indirection is accomplished by having a set of user-named
colors and then specifying the stipple and layer information in terms of the named colors. Thefile
issimilar to amagic tech file in that sections are demarcated with << section >>. Here section can
be “layer LayerName” or << colors>> corresponding to layer and color definitions. C++ style //

comments can be included (thanks to the Java tokenizer) and sections and colors can be redefined.

241

Layout Styl eFil e
8 8 /'l Stipple size

<< colors >>
trans

<< | ayer nRcontact

outline via2
color_stipple

>>

background

0

transparent
0

0

| abel 255 255 0
subcel | 255 255 0
m ssingCel | 128 128 128
red 255 0 0
green 0 255 0
bl ue 0 0 255
purple 255 0 255
bl ack 0 0 0
whi te 255 255 255
pol yRed 255 0 0
mLBl ue 60 101 185
mLBl ue 100 120 255
n2Pur pl e 125 88 157
n2Pur pl e 255 128 255
m2Pur pl e 230 120 255
ndi ffGeen 0 255 0
pdi ffBrown 200 150 75
ndcDr kG n 30 110 110
ndcCross 30 120 120
pdcGray 100 110 120
pdcCross 110 120 130
nwel | Gray 128 128 128
pcPurp 200 100 200
pcQut 100 100 100
vi al 175 124 255
vial 230 120 255
vi a2 0 0 0
nscl 30 110 110
nsc2 100 120 255
pscl 200 150 75
psc2 100 120 255
<< layer metall >>
nono_sti ppl e nilBl ue
0000O0OO0O0O
10101010
00000000
10101010
00000000
10101010
00000O0O0O
10101010
nmono_sti ppl e miBl ue
10101010
10101010
10101010
10101010
10101010
10101010
10101010
10101010
<< layer netal 2 >>
nmono_sti ppl e m2Pur pl e
01010101
00000000
01010101
00000O0O0O
01010101
00000000
01010101
0000O0O0O0O
nono_sti ppl e nm2Pur pl e
01010101
01010101
01010101
01010101
01010101
01010101
01010101
01010101

trans vial trans vial
vial trans vial trans
trans vial trans via2
vial trans via2 trans
trans vial trans vial
vial trans vial trans
trans via2 trans vial
via2 trans vial trans
<< layer polysilicon >>
mono_sti ppl e pol yRed
10101010
0101010
10101010
01010101
10101010
01010101
10101010
01010101
<< layer polycontact >>
cross pcQut
nmono_sti ppl e pcPurp
10101010
01010101
10101010
01010101
10101010
01010101
10101010
01010101
<< layer ndiffusion >>
nono_stippl e ndiffGreen
10101010
01010101
10101010
01010101
10101010
01010101
10101010
01010101
<< layer pdiffusion >>
nono_sti ppl e pdiffBrown
10101010
01010101
10101010
01010101
10101010
01010101
10101010
01010101
<< layer nwell >>
nmono_sti ppl e nwel | Gray
10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000O0O01
<< layer ndcontact >>

cross ndcCross

nono_st

PRPRPRRE PR
PORFRPORORO
RPRRRRPE e

ppl e ndcDrkGrn
1 0

RrORrORrRORO
RPRRRRRRR
RrOR ORrRORO
RPRRRRR PR
RPOR OROR

FIGUREB.2. Stylefile used to produceimagein Figure 11.1.

Continued on next page.

trans
vial
trans
vial
trans
vial
trans
vi a2

vi al
trans
vial
trans
vial
trans
vi a2
trans

trans vial
vial trans
trans via2
via2 trans
trans vial
vial trans
trans vial
vial trans

242

<< layer pdcontact >>

outline pdcCross

cross pdcCross

nmono_sti ppl e pdcGray
10

RPRRRRERRE
RrORrRORORO
RPRRRRERR

RO ROR OR

RPRRRRPRRE
RORrRORrRORO
RPRRRRPRRE
RrORrORrRORO

<< |l ayer ntransistor >>
color_stipple

ndi ff Green trans pol yRed trans pol yRed trans pol yRed trans
trans ndi ffGreen trans pol yRed trans pol yRed trans pol yRed
pol yRed trans ndi ff Green trans pol yRed trans pol yRed trans
trans pol yRed trans ndi ff Green trans pol yRed trans pol yRed
pol yRed trans pol yRed trans ndiffGreen trans pol yRed trans
trans pol yRed trans pol yRed trans ndi ff Green trans pol yRed
pol yRed trans pol yRed trans pol yRed trans ndi ffGreen trans
trans pol yRed trans pol yRed trans pol yRed trans ndi f f Green

<< |l ayer ptransistor >>
color_stipple

pdi ff Brown trans pol yRed trans pol yRed trans pol yRed trans
trans pdi ffBrown trans pol yRed trans pol yRed trans pol yRed
pol yRed trans pdi ff Brown trans pol yRed trans pol yRed trans
trans pol yRed trans pdi ff Brown trans pol yRed trans pol yRed
pol yRed trans pol yRed trans pdi ffBrown trans pol yRed trans
trans pol yRed trans pol yRed trans pdi ff Brown trans pol yRed
pol yRed trans pol yRed trans pol yRed trans pdi ff Brown trans
trans pol yRed trans pol yRed trans pol yRed trans pdi f f Br own

<< | ayer nsubstratencontact >>
outline nsc2
col or_stipple

nscl trans nscl trans nscl trans nscl trans
trans nscl trans nsc2 trans nscl trans nsc2
nscl trans nsc2 trans nscl trans nsc2 trans
trans nscl trans nscl trans nscl trans nscl
nscl trans nscl trans nscl trans nscl trans
trans nsc2 trans nscl trans nsc2 trans nscl
nsc2 trans nscl trans nsc2 trans nscl trans
trans nscl trans nscl trans nscl trans nscl

<< |l ayer psubstratepcontact >>
outline psc2
col or_stipple

pscl trans pscl trans pscl trans pscl trans
trans pscl trans psc2 trans pscl trans psc2
pscl trans psc2 trans pscl trans psc2 trans
trans pscl trans pscl trans pscl trans pscl
pscl trans pscl trans pscl trans pscl trans
trans psc2 trans pscl trans psc2 trans pscl
psc2 trans pscl trans psc2 trans pscl trans
trans pscl trans pscl trans pscl trans pscl
<< layer error_p >>
mono_stipple white
0000O0OO0O0O
01100110
01100110
00000O0O0O
00000000
01100110
01100110
0000O0O0O0O

FIGUREB.2. Stylefile used to produceimagein Figure 11.1. Continued from previous page.

243

The colors can be specified in terms of red, green, and blue triples or the literal transparent.

For example:

<< colors >>

green 0 255 0
trans t ranspar ent
pol yCol or 255 0 0

would define the color green as expected, define a color named trans to be transparent and

define polyColor to be red.

The colors are used in subsequent layer sections as well as to control certain global defaults
and colors. The background color is used to set the background color of the layout. (It isimpor-
tant that this is in the style file since the background has to go with the other colors.) The label
color is used as a default color for labels. This can be overridden on a per-layer basis as well as
shown below. The subcell color is used to determine what color to draw unexpanded subcell
boxes and labels in. Finally, the missingCell color is used to determine in which color to draw
cells that could not be found or have not been loaded yet. Note that all of these colors can be an
RGB triple or the literal transparent. For instance, to not show missing cells, the following line

should be placed in a colors section:

nm ssi ngCel | t ranspar ent

Once the colors are defined, the layers can be defined. Each layer has 4 attributes: label
color, outline color, cross color, and fill stipple. Thefirst three are defined by single lines specify-
ing the literal and a predefined color while the fill stipple can be defined in one of three ways. If
no stipple information is included then it is transparent. Otherwise it can be defined as a
color_stipple in which each pixel in the stipple is defined as a color (which can be transparent.)

Lastly, mono_stipple is an abbreviation used for the common case where a stipple is just one color

244

and transparent. Here the color is specified followed by a series of 1's and O's of the size of the

stipple.

The following illustrates part of atypical stylefile:

Layout Styl eFil e

4 4 /'l This is the stipple size
<< colors >>

trans transpar ent

red 255 0 0

green 0 13 34

white 255 255 255

pdcG ay 100 110 120

pdcCross 110 120 130

br own 200 150 75

<< |l ayer ptransistor >>

outline green

col or _stipple br own trans red trans
trans brown trans red
red trans trans br own
red trans trans br own

<< layer pdcontact >>
outline pdcCross
cross pdcCross
nmono_sti ppl e pdcG ay

If WebChip encounters layout data on a layer not included in the style file, a warning is

printed and layout on that layer isignored.

The order of the layersin the style file determines the order that they are drawn and thus the
order of precedence. The stipples should be carefully arranged such that all likely combinations of
layer overlaps produces viable results. For instance if metall and metal2 have the same stipple
patterns but different colors, when they overlapped, whichever one was drawn last would be hid-

den. Thus the stipple patterns should be at |east partially offset.

245

246

appENDIX ¢ The Speedurfer Application

This appendix describes the operation of the SpeedSurfer client-side proxy application and
the format used to communicate with the SurfServ server-side proxy. These are both presented in

Chapter 12.

C.1. SpeedSurfer Operation

SpeedSurfer isa Windows NT-based client-side proxy as described in Section 12.2., written
using Microsoft’s Visual C++ development environment and Microsoft Foundation Classes
(MFC). SpeedSurfer is a standard user-mode application and does not require special installation.
The only step needed to browse through the SpeedSurfer is to set the web browser’s Proxy setting

to localhost port 2000. (The port 2000 is user-selectable as shown in SectionC.1.4.).

SpeedSurfer manages the GUI as well as the client proxy interface. It is readily config-
urable and can automatically initiate contact with the server-side proxy. SpeedSurfer allowsfor up
to 5 user-configurable tunnels in addition to the web proxy. It allows web proxy chaining whereby
the connections are forwarded to another proxy rather than going to the web server specified by the

web address. SpeedSurfer also analyzes the traffic rates delivered to the web browser facilitating

247

£z Speed Surfer £z Speed Surfer EHE

Cannection I Stats I Ative | Laading Graph I Partz | Connection Stats I Active I Loading Graph | Parts I
i Link.
€ Digable Speed Surf Managed UDP ‘e ransfer completed
o] " Managed TCP
Current uplink: 0 bpz
Soed i & Current downlink: 0 bps
P H'::ter;ame LA 45 viers tack 74172 s
18087 bytes uplink -.1 980 bps
|E adlards. EECS Berkelew EDU [15300) [0 167659 bytes dawnlink - 18083 bps
in Response Latency: 375 ms
L Awe Response Latency: 2002 ms
i~ Rate Limiting Max Response Latency: 2766 ms
1 | 1 Aictiviby [0):
- L s 0 bps Min Response Size: 102 bytes
: : Lwe Response Size: 3725 bytes
00 s £2d6ikps. Tl Eps < e Mar Responge Size: 54097 bytes

Lag ta file: | Mot currently logging

Ok | Cancel | Sl | Cluat | LCancel | Lpply | Cluat |

FIGURE C.1. SpeedSurfer connection page FIGURE C.2. SpeedSurfer stats page

evaluation. It can be run in “enabled” mode which implements the full proxy-proxy system or
“disabled” mode where the SpeedSurfer routes HTTP traffic directly through it, maintaining mul-

tiple transient conventional TCP connections for analysis purposes only.

C.1.1. Connection Page

The connection page (see FigureC.1) is used to control the SpeedSurfer’s basic mode of
operation. At the top the user can select whether to disable the SpeedSurfer (but still enable statis-
tics gathering), or if it is enabled what mode to run the proxy-proxy link in. Currently only the two
TCP options are implemented. The managed / conventional TCP refers to whether the additional
flow control is used. The user can also specify where the SurferServ can be found. When the
mode is changed from Disable SpeedSurfer to one of the other modes and the Apply button is

pressed, the SpeedSurfer initiates contact with the SurferServ.

248

Rate limiting may be implemented at a later time. The number of active links and current

uplink and downlink rates are displayed.

C.1.2. StatsPage

The stats page, shown in FigureC.2 displays network traffic statistics in real-time. It dis-
plays the current uplink and downlink traffic rates and number of active links as well as informa-
tion about the current web page load. This information includes the duration of the load, the
number of transfers (data items) thus far encountered, the number of uplink and downlink bytes
transferred, and average uplink and downlink traffic rates over the load. Lastly, it displays the
minimum, average, and maximum response latency and size. The response latency is defined as
the duration between the web browser delivering a request and getting the first byte of response
data. A new web page download is detected whenever there are no connections through the web

proxy port for more than 1 second.

The “Log to File" button can be used to send collected datainto alog file for later post pro-
cessing. The graphs in Chapter 10 are generated off-line using such alog file. The logs contain
time-stamped itemization of when connections are established, what items are requested, detailed
timing of data transfer, as well as when the connections are closed. A sample log file is shown in

Figure C.3.

C.1.3. Loading Graph Page
The loading graph page, shown in Figure C.4., shows real-time presentations of the loading
graphs used to quantify web page loading time in Section 10.4. Three views of the loading graph

are supported - “TOTAL BYTES", “TOTAL RATE”, and “LOADING GRAPH" as depicted in the figure.

249

startAt O

request GET /~gilbertj/ HITP/ 1.1

host badl ands. eecs. ber kel ey. edu: 8090

recv 182 at 841

recv 2920 at 2043

start At 2083

start At 2103

recv 4096 at 2994

recv 1176 at 3214

request GET /~gilbertj/me_harry jimsmall.jpg HTTP/ 1.1
host badl ands. eecs. ber kel ey. edu: 8090

request GET /~gil bertj/eegsa small.gif HITP/ 1.1

host badl ands. eecs. ber kel ey. edu: 8090

recv 184 at 3655

recv 1257 at 3965

doneAt 3965

total 9631

GET / ~gil bertj/ HTTP/ 1.1 size 9631

2 recv 181 at 3985

1 recv 1460 at 5047

1 recv 1460 at 5127

2 recv 542 at 5367
2
2

OQOOFRL NNFPPFPOONPFPOOOOO

doneAt 5367
total 723
GET /~gilbertj/eegsa_small.gif HITTP/1.1 size 723
recv 1176 at 6249
recv 1460 at 6749
recv 1460 at 7250
recv 1176 at 7260
recv 1460 at 8252
recv 1460 at 8752
recv 1176 at 9253
recv 1864 at 9443
doneAt 9483
total 14336
GET /~gilbertj/me_harry_jimsmall.jpg HTTP/1.1 size 14336

PRRRPRRRPERRERE

startAt O

request GET /~gil bertj/cnn2/ HTTP/ 1.1
host badl ands. eecs. ber kel ey. edu: 8090
recv 183 at 851

recv 2920 at 1983

start At 2003

request GET /~gilbertj/cnn2/cnn.js HITP/ 1.1
host badl ands. eecs. ber kel ey. edu: 8090
recv 4096 at 2684

recv 1176 at 2864

recv 4096 at 3595

recv 183 at 3675

POOORRFRPFPOOOOO

FIGURE C.3. Example SpeedSurfer log file

250

£z Speed Surfer £z Speed Surfer EHE

Connectionl Stats I Active Loading Graph |F'0lts | Eonnectionl Stats | Active Loading Graph I Parts I
Iwww.cnn.com.-’ j IWWW.Cnn.CDI‘m" j
[T T B T T
150000 i 20000
. t
:’ 100000+ 5
F { 10000
€ sonoof 5
s
F [+
u_ 1 1 c n 1 1
1] 50000 0 50000
Time [ms] Time [ms]
&Speed Surfer EHE | _
ntgglahon |_2DDD
Connection | Stats | Active Loading Graph I Parts | Time (ms)
Wiew | lmage...l Load... | K mage...l Load... I Save.. | Clear... |
= Iwww.cnn.comx’ j
Ok I Cancel | Spp LCancel | Lpply | Cluat |
0 -
P 5 .: " m
] '
e .= .
¢ 10 L
t ' .
15)
0 20000
Time [ms]
- = Line Rate
ILoadmg Graph I [bps) IAuto
1rnage...| Load... I Save.. | Clear... |
Ok | LCancel | Ll | Cluit |

FIGURE C.4. SpeedSurfer loading graph page.
Three views shown: total bytes (top left), total rate (top right) and loading graph
(bottom center)

Each figure has time across the X axis. The three types of graphs can be zoomed using the mouse

to view particular regions in greater detail.

The TOTAL BYTES option graphs the total number of bytes of web traffic received since the
beginning of the web transfer. Thisis, by definition, is a monotonic non-decreasing function. The

instantaneous rate of data delivery isthe slope of theline. Thusflat portions indicate stalls.

The TOTAL RATE option graphs the short-term averaged rate of data transfer across all con-

nections. Thusit is the derivative of the TOTAL BYTES graph. The size of the sampling window is

251

g':.; Speed Surfer

Connectionl Stats I Activel Loading Graph ~ Parts !

Erabl Local Remate Remate
nabiE pogt Host Fort

I~ |2UDD Weh Progy

I J2001 | [Badiands EECS BerkelewEDU | [22
I [2002 | [Badlands EECS Berkelew EDU | [23
I [ie200 [Badiand:EECS BerkelewEDL [12200
I~ [z |Badlands EECS, Berkelew EDL [7002
I [fo03" [eadandsEECS BerkelewEDU | [7003

ax Connections !99

— Remote Web Proxy
Host Mame Part
v [Transend CS Berkelzy EDU 4444

Ok | Cancel | Apply | Cluit |

FIGURE C.5. SpeedSurfer portspage

controlled by the INTEGRATION TIME (MS) field. This allows the trade-off of graph detail and

amount of sampling noise to be adjusted.

The LOADING GRAPH option shows the web page loading graph of Section 10.4. in real time.
TheLINE RATE (BPS) field is used to input the line rate to adjust the length of the barsin the graph.
Thisis required since the bars represent the amount of time a transfer corresponds to but in reality
all that is known is the number of bytes that are transferred. The line rate is the constant for this

conversion.

C.1.4. PortsPage

The ports page, shown in FigureC.5, allows the user to select incoming and outgoing ports.

In the example, if a connection is made to localhost:2001 then a connection will be made to Bad-
lands.EECS.Berkeley.EDU:23. If the mode set in the connection page is not “Disabled” then this

connection will be set up through the proxy-proxy link and the connection will originate from the

252

server proxy. Thus, to hold a telnet session to Badlands through the proxy mechanism, the user
would just run telnet, setting the host to localhost and port to 2001. The maximum number of
simultaneous connections can also be set. If this many links are already in progress then no new
ones will be accepted. Finally, aremote web proxy can be specified to allow the web proxy chain-

ing.

C.2. Proxy-Proxy Link Protocol

As previously mentioned, the client proxy and server proxy communicate via a custom pro-
tocol that allows embedding of multiple connections in the link, as well as maintaining flow con-
trol. Additionally, an echo packet facility allows the client proxy to determine the round-trip time
as well as the number of bytesin transit by measuring the differences between packet transmission
and reception times. The protocol used between the two proxies will be briefly described here for

the purpose of better illustrating their operation.

The protocoal is design to push as much of the complexity as possible into the client proxy
to keep the server proxy scalable since multiple simultaneous sessions may be running on a given
server. Additionally, this eases design since all GUI interaction occurs in the client proxy. The
CPU burden presented by both proxies is minimal though the addition of compression would

increase the necessary computation.

The proxy-proxy link is a single TCP/IP connection with the stream consisting of control
and data packets of a form understood by the two proxies. The packet formats are shown in
TableC.1. The server proxy is ageneral purpose multiplexor / demultiplexor that does not under-

stand HTML or HTTP at all. All data parsing is performed by the client proxy. Currently link-

253

Field Size M eaning

Packet header present at beginning of all packets

SYNC 2 bytes | Must be 0x24CE. Used to assure synchronization
MsG 2 bytes | Control packet type or datalink 1D
LEN 2 bytes | Length of remaining bytes in message

ClientInit message is sent from client->server on connection. Could contain setup info.

HEADER | 6 bytes | See above. Msg=CLIENT_INIT, Len=0

Serverlnit message is sent from server->client in response to Clientinit. Could have moreinfo.

HEADER | 6 bytes | See above. Msg=SERVER_INIT, Len=0

NewLink message sent from client->server to establish new link.

HEADER 6 bytes | See above. Msg=NEW_LINK, Len=6 + hostNameL en
ID 2 bytes | ID for new connection.

PORTNUM 2 bytes | TCP Port Number of new connection

PRIORITY 1 byte Priority - not currently used

WINDOWSIZE256 | 1byte Used for link flow control - not currently used
HosTNAME N bytes | Name of host to connect to

CloseLink message sent in either direction to signal link closure

HEADER 6 bytes | See above. Msg=CLOSE_LINK, Len=2 + errorStrLen
ID 2bytes | ID of link to close
ERRORSTR N bytes | For server->client gives reason for closure. Empty for no error.

CloseAck message sent server->client to allow ID reuse

HEADER 6 bytes | See above. Msg=CLOSE_ACK, Len=2

ID 2 bytes | ID of link closed

EchoM sg message echoed by server and used by client for diagnostics - like ping packet.

HEADER 6 bytes | See above. Msg=ECHO_MSG, Len=N

DATA N bytes | Generic data. Client uses timestamp and downlinkBytesRcvd.

Window message used to impose additional flow control (currently downlink only)

HEADER 6 bytes | See above. Msg=ECHO_MSG, Len=4

NEWTOTAL 4 bytes | Allowabletotal bytes sent this session. -1 for no flow control

TABLE C.1. Proxy-proxy packet protocol

254

level flow control is not used but is provisioned. This is not a problem unless applications on

either end of the link are slower than the link, which is typically not the case.

255

256

