
Text / Graphics and Image Transmission over
Bandlimited Lossy Links

by

Jeffrey Michael Gilbert

B.A. (Harvard University) 1993
M.Phil. (Cambridge University) 1995

A thesis submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in

Engineering Electrical Engineering
and Computer Sciences

in the GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Robert W. Brodersen, Chair
Professor Eric A. Brewer
Professor Paul K. Wright

Spring 2000

Text / Graphics and Image Transmission over
Bandlimited Lossy Links

Copyright © 2000

by

Jeffrey Michael Gilbert

1

Abstract

Text / Graphics and Image Transmission
over Lossy Bandlimited Links

by Jeffrey Michael Gilbert

Doctor of Philosophy in Electrical Engineering
University of California at Berkeley

Professor Robert W. Brodersen, Chair

This thesis describes the application of image compression and networking techniques to

the transmission of text / graphics and image data over bandlimitted and lossy links. While much

research has focused on image and data compression, this thesis proposes that compression alone

is not sufficient, and that transformations into progressive formats and explicit link scheduling can

significantly improve performance over bandlimited and lossy links. Analyses and solutions are

proposed for both application-independent and application-specific scenarios. Techniques includ-

ing bitmap and drawing primitive-based approaches, as well as a novel hybrid scheme, are pre-

sented. Image compression techniques optimized for text / graphics bitmaps are presented. The

application-independent techniques are then applied to the acceleration of the delivery of World

Wide Web pages over modem and wireless links. Application-specific techniques are illustrated

using the example of a web-based VLSI layout viewer. Various design points trading off band-

width utilization, error tolerance, and client complexity and power consumption are presented.

Architectures, algorithms, as well as prototyping techniques and development frameworks are pre-

sented for many of the approaches. Lastly, unifying themes and requirements are synthesized and

their implications to network protocol design are discussed.

Robert W. Brodersen, Chairman of Committee

i

Table of Contents

PART I Introduction

CHAPTER 1 Introduction .. 1
1.1. Thesis Overview ... 3

1.2. Common Themes .. 3
1.2.1. Optimization from End-User Perspective... 4
1.2.2. Global Ordering / Reordering ... 4
1.2.3. Local Progressive Image Transformations ... 4

1.3. Existing Techniques .. 5
1.3.1. Problems of Stale Data... 5
1.3.2. Problems of Not Using User Intent to Govern Ordering .. 5
1.3.3. Problems of TCP/IP over Wireless.. 6

1.4. Thesis Organization .. 7

PART II Application-Independent Transmission

CHAPTER 2 Overview... 9
2.1. Overview ... 9
2.1.1. Remote Interactive Computation... 10
2.1.2. Multimedia Collaboration .. 13

2.2. Previous Work ... 13
2.2.1. X Window System .. 13
2.2.2. Xremote ... 15
2.2.3. Low-Bandwidth X (LBX) .. 16
2.2.4. Higher Bandwidth X (HBX)... 16
2.2.5. Microsoft Terminal Server... 17
2.2.6. GraphOn Bridges .. 17
2.2.7. Virtual Network Computing ... 18

ii

CHAPTER 3 Primitive-Based Approach... 19

3.1. Introduction ... 19

3.2. Bandwidth and Latency Characteristics of Primitive-Based Systems 21
3.2.1. Latency Due to Queuing Delays.. 21
3.2.2. Latency Penalty Due to Loss... 22

CHAPTER 4 Bitmap-Based Approaches... 25
4.1. Conventional Bitmap Approach .. 25
4.1.1. Assessment of Conventional Uncompressed Bitmap Approach .. 26

4.2. InfoPad B/W Bitmap System .. 27
4.2.1. Pros and Cons of Uncompressed Bitmap System .. 28
4.2.2. Asymtotic Reliability ... 29

4.3. Improved Bitmap using Virtual Framebuffer.. 30
4.3.1. Rate and Flow Control ... 33
4.3.2. Analysis of Virtual Framebuffer Performance .. 34
4.3.3. Integration of Virtual Framebuffer into Transport Control Protocol .. 37

CHAPTER 5 Color Text / Graphics, and Video Support 43
5.1. Bandwidth Requirements of Uncompressed Color ... 43

5.2. Full-Motion Color Video Support via a Separate Display .. 44
5.2.1. Lossy Vector Quantization for Image and Video Compression... 44
5.2.2. VQ Video Encoding... 47
5.2.3. Fast Fixed-Codebook VQ Transcoding .. 49
5.2.4. MPEG to VQ Video Transcoding .. 51
5.2.5. Live VQ Video Display of MBONE Transmissions .. 52

5.3. Motivation for Unified Text, Graphics, & Video Display .. 52

5.4. Uncompressed Framebuffer, Compressed Sends .. 53

CHAPTER 6 Compressed Framebuffer Approach.............................. 55
6.1. Minimizing Client Hardware and Power Consumption .. 55

6.2. Requirements ... 56
6.2.1. In-Place Modification of Compressed Data .. 56
6.2.2. Update-Independence for Error Tolerance .. 57
6.2.3. Must Work for Text / Graphics and Image / Video.. 57
6.2.4. Must Work for all Possible Screen Configurations .. 57
6.2.5. Must be Tailored to Typical Screen Contents ... 58
6.2.6. Decompression Must be Low Complexity / Cost .. 59

6.3. Pseudo-Color or Colormapped Display as Compressed Framebuffer 59

6.4. A Compressed Framebuffer Compression Method - TGVQ .. 60
6.4.1. Local vs. Global Color Diversity... 60
6.4.2. Micro-Colormaps .. 61
6.4.3. Vector Quantization of Micro-Colormaps and Patterns.. 61

iii

6.4.4. Determining Block Size ... 63
6.4.5. Requirement Satisfaction ... 64

CHAPTER 7 Hybrid Approach ..75
7.1. Motivation ... 75

7.2. Approach ... 76

7.3. Master Operation... 77
7.3.1. Primitive Squashing... 77
7.3.2. Dense Primitive Rendering... 79
7.3.3. Representing Region Copies... 79

7.4. Slave Operation ... 80
7.4.1. Progressive Image Transmission... 81
7.4.2. Primitive Reordering ... 82

7.5. Benefits / Conclusions .. 83

CHAPTER 8 Text / Graphics Image Compression85
8.1. Introduction ... 85

8.2. Image Coding Overview ... 86
8.2.1. Discrete-Tone Images .. 87

8.3. Previous Research / Existing Standards.. 87
8.3.1. One-Dimensional Dictionary-Based Techniques .. 88
8.3.2. Two-Dimensional Statistical Techniques ... 89

8.4. Flexible Automated Block Decomposition ... 91

8.5. Accelerating the Search .. 94
8.5.1. Big Fill, No Copy Search... 95
8.5.2. Fast Match Lists.. 95
8.5.3. Bounded Search Depth .. 97
8.5.4. Coarse / Fine Matching .. 99

8.6. Entropy Coding Techniques.. 100
8.6.1. What to Code.. 100
8.6.2. Transforming the Parameters.. 100
8.6.3. Huffman Coding ... 102

8.7. Results ... 102

8.8. Conclusion .. 110

CHAPTER 9 Development & Analysis Environment.........................111
9.1. Introduction ... 111

9.2. Networking Environment.. 112

9.3. Emulator .. 113
9.3.1. Operation ... 115
9.3.2. Text / Graphics Display Support ... 116
9.3.3. Audio and Video support ... 119
9.3.4. Traffic Monitoring and Control and Debugging Hooks ... 121

iv

9.4. Text / Graphics Server ...123

9.5. Video Support ..123

PART III Application-Specific Transmission

CHAPTER 10 Optimization of Web for Bandlimited Links 127
10.1. Introduction ...127

10.2. Motivation ...128

10.3. Background / Previous Work ..129
10.3.1. Previous Work in Web Acceleration..131

10.4. Quantifying Web Page Downloading..131
10.4.1. An Example of Concurrent HTTP/1.0-Style Loading ..132
10.4.2. An Example of Sequential HTTP/1.1-Style Loading ...134
10.4.3. HTML Compression ..134

10.5. Globally Progressive Interactive Web Delivery ..135
10.5.1. Globally Progressive Transmission..135
10.5.2. Locally Progressive Delivery ..137
10.5.3. Globally Progressive Delivery ..138
10.5.4. Interactive Operation..142

10.6. Transport Protocol Prototyping via Web Proxies and Java Applets143
10.6.1. Proxy Operation ..144
10.6.2. HTTP Proxy Design...145
10.6.3. Image Proxy Design...146
10.6.4. Image Applet Design ...148
10.6.5. Proxy / Applet Performance..149

10.7. Conclusions and Future Directions ...151
10.7.1. Integration with Existing Web Infrastructure ..152
10.7.2. Transparent Content Negotiation...152
10.7.3. Scalability through Server / Proxy Caching of Processed Data ...153

CHAPTER 11 Application-Level Link Management........................... 155
11.1. WebChip - An Interactive Java-based VLSI Layout Viewer ..155

11.2. Techniques to Increase Speed ...158
11.2.1. Display Techniques..158
11.2.2. Loading Techniques ...160

11.3. Techniques to Deal with Work In Progress...161
11.3.1. Hiding Slow Loading ...161
11.3.2. Hiding Slow Display..161

11.4. Conclusions and Future Work ...162

v

CHAPTER 12 Development Environment ...163

12.1. Netem - Network Emulator ... 163

12.2. SpeedSurfer - PC Client-Side Proxy ... 165
12.2.1. Client-Side Proxies.. 167
12.2.2. Link Management Using Client-Side and Server-Side Proxies ... 169

12.3. SurfServ - SpeedSurfer Server / Progressive Proxy .. 170

PART IV Conclusions

CHAPTER 13 Conclusions and Future Directions173
13.1. Network Requirements ... 173
13.1.1. Lightweight, Independent Streams .. 174
13.1.2. Explicit Message Interdependence .. 174
13.1.3. Dynamic Reprioritization of the Streams ... 175
13.1.4. Message Unqueing .. 175
13.1.5. Rate, Flow, and Congestion Control ... 176
13.1.6. Notification of Packet Arrival ... 176

13.2. Conclusions ... 176

13.3. Future Directions ... 177

Bibliography ...179
... 179

APPENDIX A Software Documentation ..187
A.1. Codebook2ras (1) .. 187

A.2. emu (1) .. 189

A.3. imgcomp2d (1) .. 194

A.4. mpeg2vq (1) .. 197

A.5. netem (1) ... 203

A.6. send_vq (1).. 206

A.7. show[vq]codebook[y] (1).. 215

A.8. SurfServ (1)... 216

A.9. vq_play (1) .. 219

A.10. vq2codebook (1) ... 224

A.11. XInfoPad (1) ... 225

A.12. raw_video (5) .. 227

A.13. vq (5) ... 230

vi

APPENDIX B The WebChip Applet .. 235

B.1. Motivation ...235

B.2. Operation Tutorial ...237
B.2.1. New Window / Close Window..237
B.2.2. Showing / Hiding Control Buttons and Labels ..237
B.2.3. The Selection Box ...238
B.2.4. Expand / Unexpand..238
B.2.5. Zooming and Panning ..238
B.2.6. Redisplay ..239
B.2.7. Status Panel...239
B.2.8. Design File Loading Status Indicator ...239
B.2.9. Display Mode Choice Button ..240

B.3. Configuration...240
B.3.1. Style Files ...240

APPENDIX C The SpeedSurfer Application 247
C.1. SpeedSurfer Operation ..247
C.1.1. Connection Page..248
C.1.2. Stats Page ...249
C.1.3. Loading Graph Page ..249
C.1.4. Ports Page ...252

C.2. Proxy-Proxy Link Protocol..253

vii

List of Figures

FIGURE 1.1. Browsing in a well-connected TCP-friendly environment...................................6
FIGURE 1.2. Browsing over a TCP-averse modem or wireless link ...6
FIGURE 2.1. Remote computation model.. 10
FIGURE 2.2. Challenges posed by text / graphics and image transmission problem 12
FIGURE 2.3. Xremote architecture .. 15
FIGURE 3.1. Conventional primitive approach ... 20
FIGURE 3.2. Latency due to queuing delays ... 22
FIGURE 3.3. Latency penalty due to loss .. 23
FIGURE 4.1. Conventional bitmap approach... 25
FIGURE 4.2. InfoPad text / graphics server context .. 27
FIGURE 4.3. Improved bitmap approach using virtual framebuffer architecture.................... 31
FIGURE 4.4. Virtual framebuffer... 32
FIGURE 4.5. Reduced latency due to adaptive bandwidth compression (ABC) 35
FIGURE 4.6. Reduced latency due to loss.. 36
FIGURE 5.1. InfoPad full-motion VQ video support. Detailed in [15] 44
FIGURE 5.2. Vector quantized (VQ) video encoding.. 47
FIGURE 5.3. Single frame from the video clip and luminance (Y) codebook adapted to it. ... 48
FIGURE 5.4. Gain / shape codebook used for fast VQ encoding. ... 49
FIGURE 5.5. Comparison of adaptive and fast codebooks. ... 50
FIGURE 5.6. MPEG to vector quantized (VQ) video transcoding .. 51
FIGURE 6.1. Typical screen image consisting of multiple graphical applications.................. 58
FIGURE 6.2. Block decomposition into pattern and micro-colormap (MCMap).................... 62
FIGURE 6.3. Compression rate dependence on block size. ... 63
FIGURE 6.4. Pattern code novelty and reuse versus block size. .. 64
FIGURE 6.5. Using local color diversity to make text / graphics vs. video decision. 67
FIGURE 6.6. Automatic text / graphics and image / video merging using color diversity...... 69
FIGURE 6.7. Two typical images compressed with TGVQ... 70
FIGURE 6.8. A typical screendump with and without some continuous-tone regions. 71
FIGURE 6.9. Rough architecture of compressed framebuffer TGVQ decoder........................ 72
FIGURE 7.1. The hybrid approach: pending primitive graph.. 77
FIGURE 7.2. Primitive squashing: removal of unneeded primitives. 78
FIGURE 8.1. Typical image and its redundancies.. 92

viii

FIGURE 8.2. Automatic block decomposition. .. 94
FIGURE 8.3. Match lists used for fast match. .. 96
FIGURE 8.4. Hashed match lists - the two pairs of patterns each hash to the same................. 97
FIGURE 8.5. Coarse / fine matching. ... 99
FIGURE 8.6. Discrete-tone pseudo-color test images ..103
FIGURE 8.7. Bi-level test images ...103
FIGURE 8.8. Hybrid discrete / continuous tone test images ..104
FIGURE 8.9. Graph of compression rates for various techniques. ...104
FIGURE 8.10. Bitplane decomposition of screendump image. ..108
FIGURE 8.11. Block decomposition of screendump2 image. ..109
FIGURE 8.12. Bitplane decomposition of screendump2 image. ..110
FIGURE 9.1. InfoPad development environment ...112
FIGURE 9.2. InfoPad terminal emulator ..114
FIGURE 9.3. InfoPad emulator text / graphics pop-up controls. ..117
FIGURE 9.4. InfoPad emulator audio / video pop-up dialog..120
FIGURE 9.5. Infopad emulator traffic and debug pop-up dialogs..122
FIGURE 10.1. Web-page loading graph using concurrent loading of up to 4 connections......133
FIGURE 10.2. Web-page loading graph of sequential loading protocol133
FIGURE 10.3. Concurrent loading and HTML compression ...135
FIGURE 10.4. Sequential loading and HTML compression ..135
FIGURE 10.5. Example of progressive images. ...137
FIGURE 10.6. Simul. loading w/ locally progressive images (w/ HTML compression)138
FIGURE 10.7. Sequential loading with locally progressive images (w/ HTML compression) 138
FIGURE 10.8. Globally byte-wise progressive loading (w/ HTML compression)139
FIGURE 10.9. Globally layer-wise progressive loading (w/HTML compression)139
FIGURE 10.10. Globally progressive loading with images scrolled to during loading..............141
FIGURE 10.11. Interactive loading with image interactively selected by user141
FIGURE 10.12. Web proxy / Java applet framework ...144
FIGURE 10.13. Example of HTML modification to embed image applets145
FIGURE 10.14. Image applet design ..148
FIGURE 10.15. Performance evaluation setup ...150
FIGURE 10.16. Trace of conventional HTTP/1.0 concurrent loading150
FIGURE 10.17. Collected trace of proxy / applet operation...150
FIGURE 11.1. Example layout viewed with WebChip ..156
FIGURE 12.1. Example diagnostic printouts. ...166
FIGURE 12.2. Two views of server-side proxies. ..167
FIGURE 12.3. Two views of client-side and server-side proxies for better link control..........167
FIGURE B.1. Effects of style files on layout presentation. ...241
FIGURE B.2. Style file used to produce image in Figure 11.1. ..242
FIGURE C.1. SpeedSurfer connection page..248
FIGURE C.2. SpeedSurfer stats page ..248
FIGURE C.3. Example SpeedSurfer log file ...250
FIGURE C.4. SpeedSurfer loading graph page. ..251
FIGURE C.5. SpeedSurfer ports page ...252

ix

List of Tables

TABLE 8.1. Effect of search depth limits on compression time and rate............................... 97
TABLE 8.3. Compression times for dictionary-based techniques on 168Mhz Sun Ultra 2. 106
TABLE 8.5. JBIG Bitplane decompression .. 107
TABLE 10.2. Summary of concurrent and sequential loading ... 134
TABLE 10.3. Summary of delivery methods and performances .. 140
TABLE 10.4. Performance of Java / proxy system on example CNN Interactive page 149
TABLE C.1. Proxy-proxy packet protocol .. 254

x

xi

Acknowledgments

Firstly, I would like to express my sincerest thanks to my thesis advisor, Prof. Bob Broder-

sen, for the direction, freedom, advice, and questioning that has helped to make the past six years a

remarkable learning and growing experience. It is safe to say that I have learned many things from

him that I could not have gleaned in a classroom or from a textbook. I would also like to thank

him for often having more confidence in my abilities than I myself had. (And this is no easy

task...) And finally thanks to him for objectively, and without compromise, wearing the many hats

that were required in the final months of my education.

Thanks to Prof. Jan Rabaey for being my secondary, non-thesis, pseudo-advisor and serving

as a role model for me to learn the art of teaching from. Being a Graduate Student Instructor (GSI)

for EE141 was definitely one of the most challenging and demanding experiences of my graduate

years, but receiving the Outstanding GSI award was one of my proudest achievements, and I don’t

think that it would have been possible without Jan. Most importantly I’d like to thank Jan (and

Marlene, the Jansgroup social coordinator - see below for more information), for letting me be an

honorary “Jan’s Group” member for his group’s recreational retreats! Some day I may take him up

xii

the challenge to telemark as he snowboards, though it may be at a time that we can reminisce about

the good old days of 0.001µm technology.

Thanks to Dr. Alice Chiang for her role as a mentor and for her support over the past 9 years

at MIT Lincoln Laboratory and the Teratech Corporation. Her combination of creativity and tech-

nical excellence, and confidence in me, has in no small way helped my intellectual growth and

curiosity. I have full confidence in the future of the Teratech corporation.

I would like to thank the other members of my thesis committee: Prof. Eric Brewer and

Prof. Paul Wright. I’d like to thank Eric for the insight into my research he has shared with me. In

particular I’d like to thank him for not letting me settle on the compressed framebuffer approach of

Chapter 6 and to instead seek a more challenging problem, resulting in the hybrid approach of

Chapter 7. I must thank Paul for the support and encouragement over the past years through Info-

Pad, quals, and the Management of Technology (MOT) program. I would also like to thank Prof.

Randy Katz for chairing my qualifying examination - I just wanted him to have a practice run for

his role as department chair!

Thanks to Prof. Nelson Morgan for his support of some of my earlier investigations into

speech recognition as well as during my GSI of EE225d. It was a great experience from which I

learned a lot. I would like to thank Prof. Anthony Joseph, Prof. Avideh Zakhor and Vivek Goyal

for their helpful comments and suggestions on two papers I wrote based on some of my thesis

research.

On the administrative side, I’d like to thank Ruth Gjerde, Heather Brown, Sheila Hum-

phreys, and Tom Boot for keeping the EECS system running smoothly and making great strides to

improve the quality of life for students. I have not met someone as willing to drop everything for a

student at any time as Tom.

xiii

Funding for this research was supplied in part by DARPA and BWRC members Cadence,

Ericsson, Hewlett Packard, Texas Instruments, ST Microelectronics, Lucent, and Intel. I was the

recipient of an NSF Graduate fellowship for Fall 1994 through Spring 1997. And I must thank

Herschel Smith again for funding my year at Cambridge just prior to Berkeley. That year has

made a change in my life that will be with me for many, many years to come.

I am thankful to have had the privilege of interacting with some truly interesting, motivated,

and bright students over my years at Berkeley. It would be impossible to name them all without

having to publish this thesis in at least two volumes, but some of the BWRC folk that I will not

soon forget follow. The dinner Analog RF crew: Dennis Yee, Chinh Doan, Brian Limketkai, and

Sayf Alalusi. Thanks Chinh for putting up with my constant quest for sushi - I will think of you

whenever I’m “not” having Mexican food! Thanks to Brian for making sure that someone out-ate

me! Thanks to Sayf for keep the gym momentum going just when we started slacking. I’d really

like to thank Dennis for the informal education in wireless communication at the RSF “class-

room”. Pumping iron while learning about out-of-band blockers and the benefits of DC notches in

wide-band CDMA systems - it just doesn’t get any better! Thanks for humoring my constant ques-

tioning and for some great advice over the years.

Thanks to the lunch / weekend crew: Marlene Wan, Josie Ammer, and Varghese “George”

George (or was it George Varghese George? - I never could get it straight...) Thanks George for

being a great friend and roommate. I can think of few people I would have rather lived with for the

past 4 years. Thanks to Marlene for being a constant source of entertainment - even if on a rare

occasion it was at her expense... :) I must thank Marlene and George for their undying encourage-

ment over the past years as I decided what I wanted to do when I grew up. Thanks to Josie for hav-

ing seen the error of her ways at MIT and becoming a bear! (Ok, I guess Misha had a small part in

xiv

this...) Thanks for teaching me wall climbing and the beginnings of hockey skating and just being

a “super nice” person.

Some other BWRC folk that have made my time here much more enjoyable are David

Sobel, Danny Patel, Johan Vanderhagen, Andy Klein, Vandana Prabhu, Chris Taylor, Trevor Per-

ing, Ian O’Donnell, Tom Burd, and Chris Rudell. I must thank Dave for making sure that there

was always someone more “Harvard” than me around. :) You’d better return to complete your

Ph.D.!

Preparation for my qualifying exam was perhaps one of the most educational aspects of the

past 6 years, and would not have been one tenth as meaningful if not for the active role that so

many of the elder grads played in it. In particular David Lidsky, Lisa Guerra, Ole Benz, and Karl

Petty jump to mind as having provided much time, guidance, and support.

Many thanks to Trina Chang for being a terrific friend and perhaps the most understanding

person I will ever meet. Her support over the past year has been unwavering and I am deeply

indebted to her for that. She will certainly make a fantastic M.D. (or travel agent / sushi chef if she

chooses to go with her true passions!)

Thanks to (Prof.) Harry Gakidis for providing me with a constant source of business-ven-

ture diversions. When this thesis is valuable some day solely for mentioning his name in the acks

because he becomes a multi-billionaire, he will have the last laugh! Seriously, prof, don’t give up

the dream. Thanks for dropping everything at any time to give me advice or just cheer me up and

prevent me from “digging my own grave” on many, many occasions.

Thanks to my brother Len and sister-in-law Tam for advice on many topics from work to

life. And thanks to mom and dad, without whom this would not be possible :) I finally made it!!!

1

PART I Introduction

CHAPTER 1 Introduction

The explosive growth of the Internet as well as the increasing proliferation of wireless and

broadband communication have caused significant shifts in the way people work, play, and com-

municate. Information access is the application of the new millennium. The days of computer

screens equated with chunky green letters on a black 8” screen are over; vibrant images, full-

motion video, and intuitive graphical user interfaces are a must for most applications. But support-

ing these rich multimedia displays remotely requires judicious selection of which information to

send as well as how to send it. Compression is not enough.

However, interactively accessing this multimedia information, by its very nature, requires

transmission of the text, graphics, images, and videos in real-time from a remote server to users’

machines. This transmission is often over modem or wireless links of limited bandwidth and reli-

ability. Transmission over the Internet introduces additional bandwidth constrictions and opportu-

nities for data loss. Thus it is crucial to efficiently code and schedule the transmission of the

multimedia data over the link. Compression is not enough.

2

Additionally, the push towards smaller, lighter, yet more powerful portable devices for

everything from web browsing to stock portfolio management and teleconferencing is necessitat-

ing some fundamental paradigm shifts. Conventionally, applications used on these portable

devices have to run locally on the devices. This constrains the size of the devices based on the

computational and storage requirements of the applications. However, the InfoPad project [14]

has shown that this constraint is not necessary if the applications are not run locally, but instead

run remotely on a well-connected compute-server with client-server communication achieved via

wireless links. This then shifts the burden to the design of networking and image compression

protocols and algorithms to interactively send the multimedia data from the server to the client.

Interactivity requires low latency, which in turn requires careful selection of the type of graphical

updates to send and when to send them. Compression is not enough.

While Internet access used to be confined to the world of academia, today, thanks to the

World Wide Web, it has become a significant consumer reality, and has tightly woven its way into

almost every aspect of life. HTML, HTTP, and TCP/IP provide a flexible method of delivering

multimedia content. However, many users connect to the Internet via slow modem links using

Internet Service Providers, and an increasing number are connecting via lossy wireless links.

Unfortunately, the original web protocols were designed for well-connected workstations and are

not particularly network friendly. This leaves home and untethered surfers with a suboptimal

setup. Yet, as shown in this thesis, if these protocols are designed to optimize interactive remote

operation, through a combination of compression and networking techniques, the situation for

surfers is greatly improved. Compression is not enough.

Most previous research attempts to improve upon text / graphics and image transmission

through either lossy or lossless compression techniques. As this thesis will show, in most cases,

simply compressing the information transmitted is not sufficient to obtain interactive operation

3

over bandlimited lossy links - link scheduling and image transformation are required to reduce

latencies and improve end-user experience. Compression is not enough.

1.1. Thesis Overview

This thesis examines text / graphics and image transmission techniques for scenarios rang-

ing from operating generic applications over wireless links to surfing the web over modems to

application-specific methods of improving interactivity over bandlimited and lossy links. The the-

sis examines each of the scenarios, presents an analysis of the challenges and difficulties, and pro-

poses and quantifies solutions combining image compression and networking techniques. Finally,

the commonalities of the text / graphics and image transmission tasks are discussed.

For many of the areas, various design points trading off bandwidth utilization, error toler-

ance, and client complexity and power consumption are presented. Architectures, algorithms, as

well as prototyping techniques and development frameworks are also presented.

This work found its origin in the InfoPad project [14] as an application-independent means

to deliver the text / graphics and video data to a remote wireless black and white terminal, as

described in Chapter 4. Its scope has grown to include more sophisticated, larger color image-

enabled remote terminals, as well as other areas, such as the acceleration of web transmission over

bandlimited lossy links and application-specific acceleration methods.

1.2. Common Themes

There are several themes that pervade the many variations of text / graphics and image

delivery discussed in this thesis:

4

• Optimization from end-user perspective
• Global ordering / reordering
• Local progressive image transformations

1.2.1. Optimization from End-User Perspective

Interactive transmission of text / graphics and image data is a user-based activity, i.e. the

text, graphics, and images are transmitted because the user wants to see them. It is critical to keep

the goal of the user in mind when analyzing and designing transmission systems. Too often total

transfer times are reduced through compression techniques alone while a far better user-experience

can be delivered by determining which limited information is of use to the end-user right away,

and which information is either not needed or is not needed initially.

Thus the key is to determine which information is critical, and this often requires determin-

ing user-intentions. Often only a small part of a large object is required since the amount of infor-

mation that a person can scrutinize at any given time is limited, despite the fact that the amount of

information that can be scanned is large.

1.2.2. Global Ordering / Reordering

The order of the data delivery can significantly effect the end-user experience. Often global

reordering techniques can quickly deliver the most time-critical information at the expense of

delaying non-critical information which may only affect final viewing.

1.2.3. Local Progressive Image Transformations

While reordering the delivery of the various text / graphics objects or images can yield sig-

nificant improvements, often finer granularity manipulation yields further improvements. Thus

parts of the objects need to be reordered or interleaved. However, it is required that the “more

important” parts are sent first, followed by the “less important” parts. Progressive codings can be

used to separate the more important from the less important parts. Conventional progressive cod-

5

ings are used on images to separate the components by spatial resolution or frequency. Applica-

tion-specific progressive coding can separate global properties from fine details.

1.3. Existing Techniques

There is almost always a trade-off between reduced time-to-market and optimized perfor-

mance. Reduced time-to-market favors modularity and optimized performance favors cross-

boundary application-specific optimization. However, it is arguable that current solutions favor

the former at the expense of the latter. One of the goals of this dissertation is to derive a new level

of modularity which could be reused to exploit commonalities across multimedia transmission

applications while obtaining the high performance required by these applications.

Current solutions to remote text / graphics and image transmission typically consist of deter-

mining all of the data that needs to be presented, and sending it through a reliable mechanism such

as TCP/IP. When the user generates more updates via interaction, the results of these are queued

up, never to be discarded until successfully received by the remote terminal. This results in a sub-

optimal solution for several reasons.

1.3.1. Problems of Stale Data

By using a reliable mechanism such as TCP/IP for transport and passing all data to be dis-

played through it, data that is not useful will still be transmitted, and thus consume valuable band-

width. While in a bulk file transfer, all data is useful, with text / graphics and image transmission,

often data becomes stale if new data to display in the same region is generated.

1.3.2. Problems of Not Using User Intent to Govern Ordering

Additionally, not all text / graphics and image data is created equally. Transmission of text

/ graphics and image data is typically in an interactive setting where the user has particular goals

6

and intentions. Using these intentions requires intelligent data reordering and often recoding.

Simply queuing all data in the order that it was generated by applications can cause undue delays.

1.3.3. Problems of TCP/IP over Wireless

The Internet Transmission Control Protocol (TCP/IP) is quite effective at sustaining multi-

ple connections across the heterogeneous and time-varying Internet, as well as across local area

networks. It is adaptive and scalable due to its congestion control mechanisms and end-to-end

implementation. It is designed for networks where loss is primarily due to congestion and central-

ized management is not possible or practical. While this describes the Internet and many LANs, it

does not aptly describe the situation presented by modem or wireless links at the last hop.

Figure 1.1 and Figure1.2 depict the difference.

Web
Server

Loss Due to Congestion
Delays < 100ms typ

Internet

Web
Client

Web
Server

Loss Due to Congestion
Delays < 100ms typ

Internet

Web
Client

Web
Server

Modem / Wireless Link

Web
Server

Loss Due to Corruption
Large Delays

FIGURE 1.1. Browsing in a well-connected
TCP-friendly environment

FIGURE 1.2. Browsing over a TCP-averse
modem or wireless link

ISP

7

This difference in topology has significant consequences in terms of TCP end-to-end perfor-

mance while web browsing or performing other operations using standard TCP/IP based connec-

tions. In the well-connected case, TCP/IP works as designed to allow hosts to establish links that

are as high capacity as is fair in some global sense. Connections quickly “learn” what their fair

share of bandwidth is. However, in the case of browsing over a modem or wireless link, many

problems occur due to the interaction of the last hop with TCP’s congestion and flow control

mechanisms.

While research has addressed some of the issues involved with using TCP/IP over wireless

links [8], substantial further benefits can be achieved in high-loss environments through optimiza-

tion at the application-level. For instances of text / graphics and video transmission, eliminating

false-dependencies in the data streams can significantly reduce latencies.

1.4. Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 introduces application-independent

text / graphics and image transmission, presenting uses and previous work. Chapter 3 describes

conventional primitive-based approaches which communicate graphical information using draw-

ing primitives. Chapter 4 then contrasts this with bitmap-based approaches which transmit the

screen updates using rendered bitmaps. Chapter 5 extends the bitmap-based approach from mono-

chrome implementations to color implementations including full-motion video support, consider-

ing bandwidth and reliability limitations. Chapter 6 then seeks to further reduce client power and

cost through a compressed framebuffer approach. Chapter 7 proposes a final approach to applica-

tion-independent text / graphics and image transmission which is a hybrid containing the best of

the primitive-based and bitmap-based approaches. Chapter 8 details the image compression

requirements for images of text / graphics and presents a novel compression technique designed

8

for that class of images. Chapter 9 gives a view of the development and analysis environment used

for the research described in the previous chapters. Chapter 10 begins the part of this thesis dedi-

cated to application-specific transmission by discussing optimization of web protocols for band-

limited links. Application-level link management is then discussed in Chapter 11 in the context of

an interactive Java-based VLSI layout viewer. Chapter 12 gives a view of the development envi-

ronment used to support the application-specific transmission research. Finally Chapter 13 con-

cludes the thesis by distilling the networking requirements of text / graphics and image

transmission, summarizing the findings of the thesis research, and presenting future directions.

9

PART II Application-Independent
Transmission

CHAPTER 2 Overview

2.1. Overview

Application independent text / graphics and image transmission is used for remote rendering

in a generic manner that is not tailored to a particular application. Text, graphics, and images are

specified in the most general terms such as “Draw the string ‘Hello’ at (100,230) in Helvetica

11pt. font.” Applications describe the graphics they desire to present in this generic manner, leav-

ing it to a centralized text / graphics system to effect the rendering. One advantage of this

approach is that its flexibility allows almost any application to be supported. Additionally, it is

highly modular in that applications need not know the details of how rendering occurs, or whether

the display is local or remote. Thus improvements to the rendering system will improve the per-

formance of all applications. However, due to this flexibility and modularity, application-indepen-

dent transmission is the most difficult to implement efficiently.

10

Two principal uses of application independent text / graphics and image transmission are

Remote Interactive Computation and Multimedia Collaboration.

2.1.1. Remote Interactive Computation

Remote interactive computation refers to the technique whereby an interactive application

runs on a remote server while its display information is sent to a local client and keyboard or pen

input is sent back from the client to the server as shown in Figure 2.1. Thus it extends the conven-

tional client-server model of only sharing applications and data one step further. To the end-user,

if the display data can be delivered rapidly enough, it appears as if the applications are running

locally. However, remote operation has several advantages:

1. Computational economies scale with bursty usage

2. Lightweight / inexpensive clients
3. Ubiquity of access
4. Facilitates portable operation (ala InfoPad)

5. Protects sensitive equipment and storage
6. Centralization of administration
7. Allows “leasing / renting” of computation

Remote computation allows computational support of many users to be centralized in a sin-

gle server or set of servers. In this way, the capabilities required to execute compute-intensive

application need not be replicated at each client. If the peak demands of the clients are high, yet

usage of resources is bursty and independent, centralization allows the resources to scale with the

Radio Wireless
Portable

Phone / ISDN

Cable / WAN

Ultra2Sun

Central
Resources

Network
Computer-Like

Unit
FIGURE 2.1. Remote computation model

11

average client demands, and not the peak client demands. Similar advantages of scale have been

obtained in UC Berkeley’s Network of Workstations (NOW) Project [2,21].

Remote computation allows complex tasks to be accomplished using only low-perfor-

mance, low-cost clients. This can result in a reduction in total system cost and size. Additionally,

this facilitates ubiquity of access since only simple clients need to be replicated. Client simplicity,

in turn, enables portable client operation.

By reducing the compute and storage requirements of the clients, portable operation is facil-

itated. The InfoPad project [14], as described below, extends the remote computation concept by

reducing the clients to little more than framebuffers with radios. In this way, ultra-low power,

lightweight operation is possible since component count and battery requirements are dramatically

reduced.

Remote computation also allows centralization of sensitive equipment to increase security

and robustness. Since execution is remote, all storage is also moved away from the clients. Thus

hard-disk failures, a constant threat to laptop computers, can be dramatically reduced since the

disks are no longer moved. Additionally, sensitive information can be more readily safeguarded if

it is kept in a single stationary location.

The inherent centralization of resources can greatly simplify system administration. No

longer do all changes need be propagated to all clients, but rather the servers can be updated. As

the complexity and capability of the clients is reduced, the configuration requirements are also

reduced. Thus the “total cost of ownership” decreases.

Remote computation enables new economic / pricing structures. Using the remote compu-

tation model, computation is transformed from a product into a service. In this way, users can pay

12

for computation on an as-needed basis and adaptation to varying needs is more agile. Addition-

ally, this could reduce the recurring need to upgrade user equipment.

2.1.1.1. Challenges Posed by Text / Graphics and Image Transmission Problem

Some of the challenges associated with text / graphics and image transmission are listed in

Figure 2.2. While the user requires fast drawing to display complex screens, this is difficult using

a limited bandwidth connection. Similarly, the user’s desire for rapid response to retain interactiv-

ity is thwarted by non-negligible link latencies.

The wireless environment presents additional challenges. While users demand reliable

operation, the wireless link is often not privy to these demands. Similarly, the desire to operate

portably for hours or days is often hindered by the limited capacity to weight ratio of existing bat-

teries.

2.1.1.2. Connectivity Requirements Changed, not Created

It is important to note that although remote computation does require connectivity to send

the display updates, many of today’s applications involve information access. Thus connectivity is

FIGURE 2.2. Challenges posed by text / graphics and image transmission problem

Challenges w/Desktop or Wireless Portable:

Desired Aspect Reality to Contend With

Fast Drawing Limited Bandwidth

Rapid Response Non-Zero Latency

Additional Challenges w/Wireless Portable only:

Reliability Lossy & Error-Prone

Long Usage Time Limited Battery Capacity

13

required at some level anyhow. Remote computation is simply moving the connectivity partition

but not adding new requirements per se. In many cases, using remote computation allows existing

applications to be reused in new and varying environments.

2.1.2. Multimedia Collaboration

Multimedia collaboration is the process whereby several geographically separated parties

can participate in electronic meetings sharing audio, video, and text / graphics information. While

the audio and video primarily communicate the images and sounds of the participants, the text /

graphics content can be shared whiteboards, pre-prepared slide presentations, or even shared

jointly-controlled application executions. This text / graphics content is similar in nature to the

text / graphics content produced by remote computation. In fact it can often be effected using the

remote computation model.

2.2. Previous Work

2.2.1. X Window System

The X Window system [62,63,64] was developed at MIT as part of project Athena begin-

ning in 1984, and gained significant popularity due to its free distribution. The X Window system

allows distributed graphical computing in UNIX environments. It has been ported to many variet-

ies of UNIX, including Linux and Solaris, and supports a range of graphics display hardware of

varying capability, bit-depth, and acceleration. The X Window System operates in a client-sever

model where the X server is run on a machine physically connected to a display monitor. Client

applications can be run either remotely via TCP/IP or on the same machine. Keyboard and mouse

input is sent to the clients from the server and text / graphics commands are sent back from the cli-

ents to the server.

14

The X Window system is designed with a highly layered architecture. The X protocol is at

the lowest layer and describes the actual primitive commands such as draw line, draw text, clear

area, etc. There are a set of toolkits that are layered on the basic X protocol to provide higher-level

abstractions such as menus and other look-and-feel widgets. Some programming languages such

as Tcl have been designed with toolkit extensions to X, such as Tk. Lastly, the basic X architec-

ture decouples the look-and-feel of the system from the base architecture by introducing window

managers whose sole purpose is to define the way that the user interacts with the system. These

window managers are separate processes which run independently from the main system and can

be freely interchanged.

The X protocol is drawing-primitive based which is described in the next chapter. This

helps bandwidth efficiency but the encodings used are not very compact since X is not designed

for bandwidth-limited environments. This typically leads to inadequate performance over band-

limited links such as modems. The encoding is also quite error-sensitive, requiring a reliable pro-

tocol such as TCP/IP for proper operation.

A couple of architectural features improve interactivity of the X protocol. The first is the

use of graphics contexts which store state which persists across multiple drawing primitives. The

graphics contexts include current foreground and background drawing colors, font information,

etc. This avoids respecifying the information in each drawing primitive request. Another feature

to improve interactivity over higher latency links is the use of asynchronous operations. Drawing

commands sent to the server are pipelined and identified using sequence numbers. Responses and

error codes are returned to the clients asynchronously and matched up using the sequence num-

bers. This reduces the total latency experienced by a sequence of commands to one round-trip

time.

15

2.2.2. Xremote

Xremote is transformation of the X protocol designed to efficiently send X over serial lines

[20,22]. The Xremote protocols works by running two proxies - one on each side of the slow

serial line as shown in Figure2.3. Clients then connect to the client proxy using individual TCP/IP

connections as they would connect to a conventional X server. The client proxy communicates

with the server proxy via a managed, compressed protocol over a single serial connection. The

server proxy then forms multiple connections to the X server just as the clients typically would.

The Xremote proxies are useful over serial lines because they both aggregate multiple X

connections into a single stream, and additionally perform compression over the link. The com-

pression entails several steps, the most important of which are delta-encoding and LZW compres-

sion. First, the X messages are delta-encoded whereby each message that is 64 bytes or shorter is

compared to the previous 16 messages which were also 64 bytes or shorter. If a new message can

be represented more compactly as a modification of a previous message, this representation is

used. This is useful as many messages, such as mouse movements, are used many times with very

similar contents. LZW dictionary compression[71] is then performed to exploit further redun-

dancy in the delta-compressed stream. LZW compression finds repeated byte patterns and repre-

sents them more compactly. Xremote uses a reliable datagram transport protocol for transmission

over the serial connection.

Display

Client 1

Client 2

Client 3

Client
Proxy

Server
Proxy X Server

Serial Link

FIGURE 2.3. Xremote architecture

16

Xremote’s overall compression is typically about 2.4:1 by typically achieving 3:1 compres-

sion on text-based messages and 1.6:1 on geometric messages [22].

2.2.3. Low-Bandwidth X (LBX)

Low-Bandwidth X [19,27,73] extends upon Xremote by using techniques to further com-

press some of the data stream, as well as techniques to avoid transmission of some data entirely.

Some of the compression techniques used by LBX include the use of CCITT Group 4 FAX

compression for monochrome bitmaps [61]. This lossless compression technique exploits 2-

dimensional redundancies in images to reduce the number of bits required to code them. Addition-

ally many graphics primitives are recoded using 1-byte operands instead of 2-byte operands when-

ever possible.

The amount of data sent from the X server back to the client is reduced by caching of large

data queries, such as keyboard maps, and just sending tags used to identify the data items. The

type and size of the caches are negotiated upon connection of the LBX client to the server. Addi-

tionally, some constants which are typically queried from the server are handled locally or cached

by the LBX proxy. Lastly, the number of motion events used to report mouse cursor movement

can be limited to prevent excessive latency and uplink bandwidth utilization.

Like Xremote, LBX uses delta encoding and stream compression, but LBX uses the Zlib

compression library [28] based on LZ77 coding instead of LZW compression [71]. The Zlib

library typically compresses more effectively than LZW and also has patent-free status.

2.2.4. Higher Bandwidth X (HBX)

Danskin [22] further analyzed the work of Xremote and proposed improvements using sta-

tistical compression techniques on the X traffic in his HBX (Higher Bandwidth X) protocol. This

17

protocol improves upon Xremote’s compression by about a factor of 3 to achieve roughly 7.5:1

overall compression relative to the standard X protocol on typical traces.

HBX uses arithmetic coding coupled with predictive models to compactly represent the X

traffic. Different models are used for the various drawing primitive parameters. For instance, a

polygon drawing primitive would be recoded by first converting all vertex coordinates to be rela-

tive and then statistically predicting later coordinates based on earlier ones. Text is predicted

using the PPMC’ method using hierarchical predictive models [47,10]. Bitmap images are com-

pressed using context pixels to determine statistical predictions for the current pixel, in a manner

similar to JBIG [4,43,61]. Small images, which are often reused, are cached at the server to avoid

retransmission whenever possible.

2.2.5. Microsoft Terminal Server

The Terminal Server edition of Microsoft Windows NT 4.0 Server supports application

independent text / graphics and image transmission, allowing multiple independent remote ses-

sions on a single server [46]. The client machines display the remote data using a thin-client appli-

cation. The protocol used for data communication is the Remote Desktop Protocol (RDP), also

used in the Microsoft NetMeeting multimedia conferencing tool [45].

The Citrix Corporation has developed some low-bandwidth extensions to the terminal

server protocol which are used in its Independent Computing Architecture (ICA). [16]

2.2.6. GraphOn Bridges

The Graphon corporation has developed a Bridges technology to replace its previous Go

Global offering [35]. Go Global losslessly compressed X traffic from Unix workstations to thin

PC clients.

18

2.2.7. Virtual Network Computing

AT&T’s Virtual Network Computing (VNC) is a freeware application that allows remote

operation of X Windows and Microsoft Windows [5]. VNC uses bitmap updates, as described in

Chapter 4, including a copy-block update to transmit the screen changes. VNC also uses various

image compression techniques to reduce the amount of data required for the bitmap updates.

19

CHAPTER 3 Primitive-Based Approach

3.1. Introduction

The primitive-based approach to remote text / graphics transmission involves sending draw-

ing primitives which describe symbolically what to draw. These primitives are often the same

drawing primitives used by the applications to describe their content.

Figure 3.1 depicts the operation of a typical primitive-based text / graphics system. Each

application connects to the text / graphics server individually and sends its content as graphics

primitives requests. The text / graphics server is responsible for combining these requests into a

single stream which is sent to the remote client. The text / graphics server is also responsible for

decoding user input, such as mouse or pen movements, and forwarding it to the correct applica-

tion, as well as providing session and access control.

The primitive approach places two important requirements on the transport system:

1. Lossless transmission
2. Order and integrity must be preserved

20

The transport system must be lossless because if any primitives are lost, this can have sig-

nificant ramifications for the entire image. For instance, if a “clear screen” is dropped, the

entire display would be incorrect. Typically, primitive-based systems also use notions of graphics

contexts comprised of “current pen” and “current font” information. If commands to change these

graphics contexts are dropped, then all subsequent primitives which use these contexts will be

effected.

The transport system must preserve order and integrity. If primitives are reordered then

their meanings can be dramatically altered. Often there are direct dependencies between two

primitives; for instance, if a “set current color red” and “draw line from 0,0

to 10,10” are swapped, the color of the line drawn would not necessarily be red. If a

“copy rectangle” is swapped with commands used to initialize the area being copied, this

too would yield an incorrect result.

/etc> ls -l
total 1
 1024 core

/etc> _

3.14159
7 8 9 X

/

-

+=

4 5 6

1 2 3

0 .

Fill Rectangle white
Draw Rectangle blue
Fill Rectangle red
Draw Text “/etc>”
 . . .
 . . .

Applications

Fill Oval gray
Draw Rect black
Fill Rect Stippled
Draw Text “3.14”
 . . .
 . . .

Text /
Graphics
Server

Fill Rectangle white
Draw Rectangle blue
Fill Oval gray
Draw Rect black
Fill Rectangle red
Fill Rect Stippled
Draw Text “/etc>”
Draw Text “3.14”
 . . .
 . . .

Remote
Primitives

Low-Bandwidth

FIGURE 3.1. Conventional primitive approach

Terminal

Primitives
Drawing

21

Thus transport-level protocols must ensure that the data stream is correct once it makes it to

the text / graphics subsystem. Standard protocols such as TCP/IP[42] can satisfy the above

requirements, even when using lossy links, and are thus typically used. However, this can result in

significant increases in latency as shown in the next section.

3.2. Bandwidth and Latency Characteristics of Primitive-Based
Systems

Primitive-based systems have the advantage that their bandwidth requirements are typically

low since primitives can usually be specified compactly. However, the use of primitive-based sys-

tems can result in significant latencies to the end-user when used over lossy and/or bandlimited

links.

3.2.1. Latency Due to Queuing Delays

In a primitive-based system, the applications specify the primitives used to render their

graphical display. The text / graphics server must send each of these primitives, in order, to the

remote terminal to assure proper display. Since all primitives must be sent, transmission over a

bandlimited link can result in queuing delays as shown in Figure 3.2. The figure depicts the result

of a remote user scrolling through a list of foods over a slow link which can only transmit two text

items per time step. The positions the user is scrolling to are shown on the left side of the figure

while the data received by the remote terminal are shown on the right side. At time T=0, the user

has selected the top of the list and thus desires for the first four entries, Apple, Banana, Chicken,

and Dessert, to be displayed. However, due to bandwidth limitations, only Apple and Banana can

be sent over and Chicken and Dessert are queued to be sent over. At time T=1, Chicken and Des-

sert are received by the remote terminal but now the user desires to see Fudge, Gum, Ham and Ice,

22

and thus they must be queued up. At time T=2, the user has selected the final position viewing

Pizza, Quiche, Rice, and Salt, but it is not until time T=5 that this appears. Thus queuing delays

result in significant latencies for the user.

3.2.2. Latency Penalty Due to Loss

In order to understand the effect of data loss on latency, it is necessary to first review the

operation of reliable protocols.

3.2.2.1. Reliable Protocols

As previously presented, the primitive-based system relies on an end-to-end guarantee that

order and integrity of data will be preserved. If the link is lossy, a reliable protocol can be used to

assure that data is not lost or reordered. These reliable protocols work by detecting packet losses

at the receiver and requesting retransmissions from the sender. If a given packet is detected as

Apple
Banana
Chicken
Dessert

Fudge
Gum
Ham
Ice

Pizza
Quiche
Rice
Salt

Apple
Banana

Apple
Banana
Chicken
Dessert

Fudge
Gum

Fudge
Gum
Ham
Ice

Pizza
Quiche

Pizza
Quiche
Rice
Salt

Actual DisplayDesired Display

T=0

T=1

T=2

T=3

T=4

T=5

Large
Latency

Reduced
Interactivity

FIGURE 3.2. Latency due to queuing delays

23

having been dropped, it is re-requested by the receiver. The reliable protocol then holds all data it

receives corresponding to packets which should follow the lost packet, until the lost packet is suc-

cessfully received. Thus the application receives all data in order and without loss, but with

increased latency if packets are lost.

3.2.2.2. Latency of Loss

The effect of reliable protocols on the transmission of text / graphics data is shown in Figure

3.3. The figure depicts the transmission of four drawing primitive packets - labeled A, B, C, and D

in response to a button push on the remote client. In the figure, the four packets are transmitted in

order, but packet B is lost in transmission, either due to signal degradation or congestion. The

drawing of packet A proceeds without delay, incurring only the single round-trip latency necessary

for the remote client to request an action, and the text / graphics server to effect that action. How-

RadioText /

Server
Graphics

B
RIP

B Lost

Draw B

Single
round-trip
latency (A)

Double
round-trip
latency for all

Reduced
Interactivity

Error-Free Case:

Lost Data Case:

A

A B
C D

A

dropped and
subsequent data
 (B C D)

Draw A,C,D

Button Hit

FIGURE 3.3. Latency penalty due to loss

24

ever, packets B, C, and D all incur at least a two-round trip delay since the loss of B needs to be

detected and sent to the text / graphics server for retransmission1. This results in reduced interac-

tivity.

1. Note that protocols such as SNOOP [8] can reduce this to a single traversal over the wired network, but an additional
round-trip up to the basestation is still required.

25

CHAPTER 4 Bitmap-Based Approaches

4.1. Conventional Bitmap Approach

The conventional bitmap-based approach is depicted in Figure 4.1. In the conventional bit-

map-based approach, drawing primitives from all applications are combined and rendered by the

text / graphics server. The communication between the applications and the text / graphics server

is performed using primitives as before, but the communication between the text / graphics server

and remote terminal uses rendered bitmaps.

Fill Rectangle white
Draw Rectangle blue
Fill Rectangle red
Draw Text “/etc>”
 . . .
 . . .

Fill Oval gray
Draw Rect black
Fill Rect Stippled
Draw Text “3.14”
 . . .
 . . .

Text /
Graphics
Server

Remote

/etc> ls -l
total 1
 1024 core

/etc> _

3.14159
7 8 9 X

/

-

+=

4 5 6

1 2 3

0 .

Applications

Bitmaps
High-Bandwidth

FIGURE 4.1. Conventional bitmap approach.

Terminal

26

The bitmap-based text / graphics server operates similarly to a conventional text / graphics

server attached to a framebuffer. The text / graphics server maintains its own framebuffer in mem-

ory since the information in a given primitive often does not contain enough information to deter-

mine all pixels in an update. For example, the “copy block” primitive requires the current

contents of the screen for proper operation. Additionally, since bitmap updates are typically sent

as rectangular blocks or unions of such blocks, primitives which would not completely modify all

pixels in a block - such as “draw circle” or “draw text” - require the old pixel values to be

known for use in the update packets. The connection between the text / graphics server and remote

terminal is established using either a reliable link or a reliable transfer protocol layered on top of

an unreliable link.

4.1.1. Assessment of Conventional Uncompressed Bitmap Approach

The conventional bitmap approach, as described, has one primary advantage, which is

reduced complexity requirements in the remote terminal. Since the text / graphics server performs

all rendering, the remote terminal needs only know how to display bitmap updates. Thus all draw-

ing algorithms, intermediate state, and font information is confined to the text / graphics server.

As described below, the InfoPad project exploited this to develop low-power, lightweight portable

clients.

However, the conventional bitmap approach suffers from lower bandwidth efficiency which

translate into greater latency using a given bandwidth link as compared to the primitive approach.

This is because typically the bitmaps are less compact than the primitives used to generate them.

Both the latency due to queueing delays and the latency due to loss previously described would

still apply to the conventional bitmap system as described.

27

4.2. InfoPad B/W Bitmap System

The InfoPad project [49] delivers ubiquitous portable computing using the remote interac-

tive computation model described in Section 2.1.1. All applications are executed on a central

compute cluster while display updates are sent to wireless portable “pads” as shown in Figure 4.2.

Pen and audio information is sent back to the compute servers to allow user interaction. In order to

obtain hours of operation using lightweight batteries, the InfoPad hardware is kept as simple and

efficient as possible. Through careful system design, the pad hardware is reduced to a multimedia

terminal with highly optimized data paths for heavily used functions such as the text / graphics and

video. The text / graphics server forms the bridge between the custom low-power terminal hard-

ware and the generic applications.

The text / graphics hardware subsystem is little more than a monochrome framebuffer that

also decodes data packets specifying bitmap screen updates. The screen updates are sent as data

packets with headers specifying the x, y, width, and height of a rectangular update region, as well

as a data portion specifying the uncompressed bitmap. One bit is required for each pixel of data.

The header and data are independently encoded, optionally using an error protection coding and

checksum mechanism to protect against and detect bit errors.

Radio

Application

Text /

Server
Graphics

Application

Application

TerminalServer
Side Side

X Protocol Custom
P rotocol(proxy)

FIGURE 4.2. InfoPad text / graphics server context

Remote
Terminal
“Pads”

28

Typically the graphics packet headers use error protection while the graphics packet data do

not. (The exception is the implementation of asymtotic reliability described below.) This means

that if the packet header is in error then the packet will not be processed. If the packet header is in

error, the location or size of the update will not be correct, and thus the data will not be useful.

However if a localized error occurs in the data, individual pixels might be incorrect but the bulk of

the data will be correct and thus useful.

4.2.1. Pros and Cons of Uncompressed Bitmap System

While this simple bitmap update scheme does require significant bandwidth to support

interactive applications, it offers some advantages in system performance and simplicity.

First, as previously stated, it allows for low-power hardware decoding. The entire datapath

for decoding the packets and placing them into the framebuffer is readily implemented in custom

logic resulting in very low power consumption. All protocol decoding consumed 1.9mW and the

text / graphics framebuffer consumed 0.5mW [15].

Secondly, it reduces channel robustness requirements since data can be corrupted or lost

without significant implications to system performance. The bitmap packets are independent, in

that the loss or corruption of a given packet will effect the region of the screen it is targeting, but

not subsequent updates. This means that if packets are dropped, it is not necessary to have them

retransmitted and received before processing subsequent update packets. Thus a reliable transport

protocol is not required and the latency due to loss of Section 3.2.2. is avoided. This is to be con-

trasted with the primitive approach of Chapter 3 where an error in one primitive might effect many

later primitives. Additionally, if individual data bits in the packet are incorrect, the display errors

will be small and localized. While the errors might be perceptible, they will rarely effect the over-

all intelligibility of the screen.

29

4.2.2. Asymtotic Reliability

Although it is acceptable for some temporary pixel errors to occur in order to greatly reduce

latency, it is desirable if the “long-term” display is correct. Long-term error-free transmission

must be designed not to prevent low-latency operation and should be possible if excess link band-

width is available. In this way the user obtains the best of both worlds - low-latency and error-free

display. The process by which slightly incorrect data will be displayed initially yet eventually the

display will be error-free is called asymtotic reliability [36].

Asymtotic reliability, as described in [36], is achieved by using a low-latency unreliably pri-

mary display of data as previously described, combined with a background higher-latency reliable

transport. In this way, a fast “best effort” is made which may result in some scattered bit-errors,

followed shortly by one or more “refresh” updates which will be higher latency but will not intro-

duce errors. The asymtotic reliability system reduces complexity requirements in the remote ter-

minal since no uplink acknowledgments are necessary. Additionally, it can be used as a scalable

information dissemination mechanism since only downlink traffic is used, any number of receivers

can participate.

The refresh packets are sent at a low rate, in the background, using a higher level of error

correction as well as error detection. The higher level of error correction reduces the probability

that an error will occur. Error detection is used to suppress the display of packets if any error does

occur. This error detection is critical to assure asymtotic reliability. Since only error-free packets

are processed, asymtotically all errors on the screen will be corrected. Smaller packet sizes are

used for the refresh packets since the packets must be error-free to be useful and the probability of

one or more errors in a packet is exponential in the packet size.

30

4.3. Improved Bitmap using Virtual Framebuffer

While the system previously described allows remote operation of a wide variety of applica-

tions on a lightweight portable terminal, it does require a high-bandwidth communications link for

interactive operation. Intuitively, since each drawing request results in the transmission of one or

more screen update packets, actions that cause many updates to the screen in a short period of time

can easily result in a backlog of the communications channel.

The key to efficient text / graphics transmission is to determine which information the user

wants to see and how to send this information. In the case of remote text / graphics rendering, the

user only wants to see current information. Thus if a user scrolls through a long list, they typi-

cally only want to see where they end up. If a user is viewing a progress bar, they only want to see

the current value of it. If the user is participating in a video conference, they typically only want to

see the most current image. The task is then to determine how to send only current information in

such a way that a limited bandwidth link does not cause backlogs, and errors do not result in

increased latency. Another way to view the problem is that the applications are typically designed

for a high-bandwidth environments but the communications link is low-bandwidth.

One critical observation is that transmission of text / graphics information over bandlimited,

lossy links is a form of remote-rendering just as transmission of video is. Two mechanisms which

facilitate operation over bandlimited lossy links are data compression and data reordering. While

video transmission techniques have used both of these aspects, text / graphics compression has so

far been typically restricted to data compression only1. Thus in order to provide better perfor-

mance, intelligent data reordering must occur.

1. One exception, in particular, is [37].

31

The virtual framebuffer architecture, shown in Figure 4.3 achieves this goal. In this archi-

tecture, the text / graphics server is split into two halves - the master and slave - which are coupled

through an auxiliary buffer called a virtual framebuffer. The master communicates at full speeds

with the applications and tracks the current contents of the screen on the virtual framebuffer. The

slave then watches the virtual framebuffer and sends on any changes to the remote terminal.

Text / Graphics Server

Master
Thread

Slave
Thread

Application

Application

Application
X Protocol

Master
• Writes to Virtual Framebuffer
• Operates at Workstation speed

• Generic

Slave
• Reads from Virtual Framebuffer
• Operates at Link speed

• Tailored to wireless environment

V
irtual F

ram
ebu

ffer
Always send most current information

Bitmap Updates

FIGURE 4.3. Improved bitmap approach using virtual framebuffer architecture

Remote
Terminal

32

The virtual framebuffer, shown in Figure 4.4, consists of two arrays whose size matches the

size of remote terminal’s display. The first array contains the actual pixel data being displayed and

is continually updated by the master and read by the slave. The screen is then divided into a set of

blocks with one flag in the second array assigned to each block. These flags are used to indicate if

the blocks have been updated by the master since the last read by the slave. The block size is cho-

sen to be small enough such that granularity of updates is not too coarse, and large enough such

that there are not so many blocks that the overhead of checking the blocks is noticeable. For effi-

ciency reasons, row update flags are used to indicate if any blocks in a given row have been

updated while a global update semaphore is used to block the slave until the master has updated

something.

The master communicates with the applications at full workstation speeds. It responds to

primitive drawing requests by rendering to the virtual framebuffer pixel buffer. When the master

draws on part of the virtual framebuffer, it also sets the updated regions’ “updated” flags. If the

flags were already set, they remain set. In this way multiple updates are combined, reducing the

amount of data sent to the remote terminal.

FIGURE 4.4. Virtual framebuffer

Global
Update

Semaphore

Row
Update
Flags

Block
Update
Flags

33

The slave runs in its own thread and asynchronously scans the virtual frame buffer from top

to bottom in raster scan order. When it encounters blocks on the screen whose updated flags are

set, it clears the flags and sends the data to the remote terminal. The slave uses region growing to

form larger rectangular blocks from sets of contiguous blocks. This reduces the per-block over-

head in transmission to the remote terminal.

The slave can also scan the virtual framebuffer in non-raster scan order to prioritize the dis-

play of certain parts of the screen. For instance it can scan the region surrounding the cursor more

often than the rest of the screen since that area is typically of greater interest to the user. The spa-

tial independence of the bitmap representation allows this.

4.3.1. Rate and Flow Control

The output of the slave can then be subjected to rate or flow control to match the link char-

acteristics. Since it is decoupled from the master and applications, the slave’s execution can be

blocked without impacting application performance. The initial implementation in the InfoPad

system used a rate-control system to limit the text / graphics traffic to be under a given rate. This

rate is less than the capacity of the radio channel and can be dynamically changed. It was then

expanded to include negative acknowledgments (NACK) described in Section 4.3.3.1., and can be

extended to acknowledgment (ACK) based flow control as described in Section 4.3.3.2. Initially

asymtotic reliability was used to reduce client complexity and protocol requirements.

Asymtotic reliability is readily integrated into the virtual framebuffer architecture by having

the slave send refresh packets at a given rate while also sending normal updates. Adaptive band-

width control is performed by setting the refresh rate as a number of bytes per complete slave pass

through the virtual framebuffer and setting a minimum interval between complete passes through

the framebuffer. Establishing the refresh rate in terms of bytes per complete slave pass causes the

34

amount of bandwidth dedicated to refresh to automatically reduce as the amount of foreground

traffic increases. It also scales with the size of the “updated” area such that if a small area of the

framebuffer is rapidly updated, refresh of the rest of the screen will still proceed rapidly, but if a

large area of the framebuffer is continually modified, more bandwidth will be dedicated to its dis-

play, at the expense of slower refresh. Setting a minimum interval between complete passes estab-

lishes a maximum frame rate and can be used to reduce bandwidth utilized if a small region of the

screen is updated very rapidly. At a minimum, it makes sense to set the transmitted frame rate to

be no higher than the frame rate / refresh rate supported by the remote display device.

4.3.2. Analysis of Virtual Framebuffer Performance

In this section, the benefits of the virtual framebuffer technique are explored by analyzing

the reduction in latencies due to queuing delays and loss.

4.3.2.1. Reduced Latency Due to Queuing Delays

Using the virtual framebuffer approach, latency due to queuing delays is bounded and dra-

matically reduced by the virtual framebuffer architecture through a process called adaptive band-

width compression (ABC). ABC is a direct result of the virtual framebuffer architecture’s ability

to combine multiple writes to the same region of the screen. Recall that if the master writes to the

same region of the virtual framebuffer before the slave has had a chance to send on the contents,

the earlier updates are overwritten by the latest update. Thus effectively the bandwidth going into

the virtual framebuffer is the high bandwidth of the application and coming out is the lower band-

width that the link can support.

The example depicting latency due to queuing delays is revisited in Figure 4.5. Again the

link capacity is set to two lines per time step. At time T=0, the user has selected the first four

entries in the list. The slave starts sending from the top, only having time to send the first two lines

35

- Apple and Banana. At time T=1 the user has selected to see Fudge through Ice. The slave is now

reading the bottom half of the screen and would send over Ham and Ice. Chicken and Dessert

would never be sent. At time T=2, the user has selected to see Pizza through Salt. The slave is

now at the top of the screen and Pizza and Quiche would be sent. Fudge and Gum were thus over-

written before they could be sent. Finally at T=3, the user has not caused any further updates and

the slave is at the second half of the screen and can send over Rice and Salt. At this point, all

regions of the screen have been communicated and all updated flags are cleared. Thus using the

virtual framebuffer technique, the user has a complete, correct picture of the screen only one time-

step after they cease input activity, while the conventional primitive and old bitmap techniques

require three additional time steps.

As a numerical example of the improved interactivity, consider user scrolling through a

document in a 500x500 pixel monochrome window over a 500 kbps link. Each frame would

require 250 kbits of data or about a half-second to send. Thus if the user scrolls five times in a sec-

• Lossy transmission due to ABC
 (Chicken, Dessert, Fudge, Gum not displayed)

• Reduced bandwidth ⇒/ increased latency

• Progressive and targeted transmission possible

Apple
Banana
Chicken
Dessert

Fudge
Gum
Ham
Ice

Pizza
Quiche
Rice
Salt

Apple
Banana

Apple
Banana
Chicken
Dessert

Fudge
Gum

Fudge
Gum
Ham
Ice

Pizza
Quiche

Pizza
Quiche
Rice
Salt

Apple
Banana

Apple
Banana
Ham
Ice

Pizza
Quiche
Ham
Ice

Pizza
Quiche
Rice
Salt

Primitive & Old Bitmap Input Virtual Framebuffer

T=0

T=1

T=2

T=3

T=4

T=5

Large
Latency

Small
Latency

FIGURE 4.5. Reduced latency due to adaptive bandwidth compression (ABC)

36

ond, it will take an additional 1.5 seconds for all of the data to be delivered. If they continue at this

rate for 5 seconds, it will take an additional 7.5 seconds for the final data to be delivered. Using

the virtual framebuffer system the lag would always be at most the time to update the screen or 0.5

seconds in this case.

4.3.2.2. Reduced Latency Due to Loss

Figure 4.6 shows how the virtual framebuffer approach using asymtotic reliability results in

reduced latencies due to packet loss. As in the example of Figure 3.3, the figure depicts what will

happen if the second (B) of four packets is lost. The three packets which were successfully com-

municated (A, C, D) are displayed with a single round-trip latency while only the dropped B

packet is delayed. Using asymtotic reliability, it would be delayed until a refresh packet could

deliver the data. Using more sophisticated methods described below, the latency can be further

reduced.

RadioText /

Server
Graphics

B
RIP

B Lost

Draw New B

Single round-trip
latency for all
undropped

Extra latency
for dropped
data only (B)

Improved
Interactivity

Error-Free Case:

Lost Data Case:

A

A B
C D

A

Draw A,C,D

Button Hit

data(A C D)

C D

C D

FIGURE 4.6. Reduced latency due to loss

37

4.3.3. Integration of Virtual Framebuffer into Transport Control Protocol

The virtual framebuffer can be integrated into the transport protocol for further increases in

throughput and reliability. Conventional transport protocols, such as TCP/IP, order individual

packets in a stream with a sequence number. They use these sequence numbers to assure that

every packet in the stream, and thus every byte in the stream, is successfully communicated in

order. Since conventional transport protocols have no knowledge of the underlying data, their goal

has to be to successfully transmit the entire stream of data. This leads to two problems:

1. Once data enters the transport layer, it will consume bandwidth.
2. Since no dependency information is known, it is assumed that all data

is dependent on all other data and thus all ordering must be preserved.

However, in the case of the virtual framebuffer, the location on the screen that an update

corresponds to contains valuable information that can be used to remedy the above problems. The

integration of the virtual framebuffer with the transport layer works as follows: Instead of having

a separate buffer to store data that has been committed but not yet acknowledged, the virtual

framebuffer serves as the holding buffer. The update flags indicate which data must be sent and

thus the actual data need not be copied. Thus actual packetization of the data does not occur until

just before the packet is going to be sent over the network. In this way, old data cannot be queued

up since old data is superseded as previously described. The virtual framebuffer can be used to

implement a negative acknowledgment (NACK) or positive acknowledgment (ACK) based sys-

tem as described next.

4.3.3.1. Negative Acknowledgments (NACK)

The InfoPad downlink traffic consists of text / graphics, video, and audio data. While the

total available bandwidth to the pads is fixed at approximately 500kbps, the portion dedicated to

each type of data varies based on the amount of traffic dedicated to the others. For instance, if no

38

other streams were present, text / graphics could use the full 500kbps link, but if a 300kbps VQ

video clip (see Section 5.2.) is playing, the amount available to text / graphics drops to 200kbps.

The separate multimedia streams are not combined until a gateway which follows the text /

graphics, audio, and video “type servers”. This makes it more difficult for the type servers to mea-

sure the amount of traffic generated by other sources. In addition to long-term rate adaptation,

short term management of the traffic is necessary. Since the gateway combines the various traffic

streams, it is able to determine when the net rate exceeds the link capacity. The gateway buffers

data, and thus if the total incoming traffic is greater than the outgoing rate limit, packets in the

buffer will be aged. These “old” packets can be dropped to assure that the backlog of data is

bounded. The gateway then sends negative acknowledgments (NACKs) back to the sender. These

NACKs can then be integrated quite easily into the virtual framebuffer architecture by simply hav-

ing the slave set the “updated” flags of the region corresponding to the packet that was NACKed.

Thus the NACK indicates that the data specified in the packets is still outstanding and thus must be

sent again. Note that if, in the interim, part or all of the region specified by the packet was modi-

fied again, the updated flag would already be set and thus no extra bandwidth will be consumed by

the retransmission.

Note that with the simple scheme above, superfluous retransmission could occasionally

occur that would waste bandwidth, but not produce an incorrect result. An example is as follows:

1. Region of screen is updated and transmitted as update A.

2. Same region is updated and transmitted as update B.
3. Update A is removed by gateway and NACK is returned.
4. Region is invalidated, thus causing resend of region.

5. Region is retransmitted as update C which is identical to update B.
6. Update B received correctly.
7. Update C received correctly.

39

Thus an additional update packet is sent because a region is updated between being sent and

NACK’ed. However, since current data is always sent, extra update packets will never cause the

incorrect results to be shown. An extension to the basic NACK algorithm could include keeping a

sequence number, as described below in the ACK scheme, to avoid extra retransmissions in the

above case: If a region is updated after a packet is sent, all retransmissions due to that packet are

aborted.

4.3.3.2. Positive Acknowledgments (ACK)

While negative acknowledgments allow for rapid notification of congestion, they are not

well suited for packet loss or error notification for the following three reasons:

1. It is often difficult to detect the absence of a packet.
2. NACKs can increase congestion if sent over the bandlimited medium.

3. If the NACKs are sent via a lossy medium, they too can be lost.

For these reasons, positive acknowledgments (ACK) are preferred. This was not imple-

mented in the InfoPad system but could be used in similar systems1.

The ACK-based system works by tracking the update packets sent to the remote terminal

and having the remote terminal send back acknowledgments of each graphical update packet or set

of such packets. In this way, the text / graphics server can track which updates have been success-

fully communicated to the remote terminal and retry any that have not. As before, no intermediate

storage buffers are used since the only data that is useful is the most current data, which can be

found in the virtual framebuffer. Also as before, multiple updates to the same region are combined

whenever possible, discarding old updates.

1. Note that the ideas in this section, unlike those in the previous section, have not been implemented but are provided
as an extension of implemented work.

40

In order to track the reception of each packet, a sequence ID is used. The sequence ID is

incremented for each transmitted packet such that it will be unique to all packets that could be in

flight. The virtual framebuffer includes a sequence ID and transmit time field for each block as

described below. Each block in the virtual framebuffer also has a status field that can indicate one

of three states:

1. Not updated
2. Update required

3. Update in flight

The “not updated” state is used when the contents on the remote terminal are current and

thus the local contents in the virtual framebuffer have not been updated recently. When an update

does occur, via the master, the status of the block is changed to “update required”. No sequence

ID is associated with the block in either the not updated or update required states. Once the slave

detects that the block has been updated, it generates a graphical update packet, assigns it a

sequence ID and transmits the packet. The sequence ID and time of transmission are recorded in

the virtual framebuffer and the block’s state is changed to “update in flight”. When an acknowl-

edgment of the update is received from the remote terminal, all blocks covered by the acknowledg-

ment whose sequence ID still matches the ID of the acknowledgment are changed to the “not

updated” state.

If any of the blocks are updated between the time that the update packet is sent and the time

that acknowledgment was received, the master will then revert their state back to the “update

required” state and their sequence ID field is no longer relevant. When the slave detects that they

have to be sent, it will generate a new update packet with a new sequence ID. All links to the old

update packet in flight will be forgotten since this would be stale data. Thus when the old

acknowledgment packet is received, its sequence ID will not match the sequence ID of the blocks

41

and their state will not be changed to “not updated” until an acknowledgment of the most recent

update is received.

If data is lost or corrupted, it must be resent. This can be detected by the absence of an

acknowledgment of the packet. The absence is detected with via a time-out - i.e. if the acknowl-

edgment is not received within a certain amount of time from the transmission of the packet, the

packet is assumed to have been lost. Additionally, if packets transmitted after the packet in ques-

tion are acknowledged, but the packet in question has not been, then it may be safe to assume that

the packet has been lost. If the network can cause out-of-order delivery to occur then this must be

considered before assuming that a packet has been lost. Much research based on TCP/IP has

addressed these issues.

The packet loss detection can be incorporated into the slave’s scanning process. As the

slave scans to see if any blocks have been updated, it can also check if any blocks are in the

“update in flight” state and should be treated as lost. In this case, they are implicitly switched to

the “update required” state and a new update packet is generated.

The acknowledgment protocol must differ from byte-stream reliable protocols such as TCP/

IP. TCP/IP uses cumulative acknowledgments; a TCP/IP receiver sends back the sequence ID of

the latest packet which has been successfully received and had all previous packets in the sequence

also successfully received. In this way, each acknowledgment of a given packet also acknowl-

edges all prior packets. This can be useful if an acknowledgment is dropped as later acknowledg-

ments may accomplish the acknowledgment. However, in our case, this would create false-

dependencies. Thus each packet must be individually acknowledged. A bit-vector representation

can be used to acknowledge multiple packets in a single acknowledgment. I.e. an acknowledgment

packet could contain the sequence ID of the first and last packet to be acknowledged and then a bit

vector specifying which of the intermediate packets should also be acknowledged. The acknowl-

42

edgment of a given packet could be contained in multiple acknowledgment packets to protect

against loss of acknowledgment packets.

Graphical updates whose data is partially corrupt but still usable could be displayed but not

acknowledged. In this way, the user could obtain a mostly-correct display very rapidly and the

fully correct display would follow as soon as the retransmission is successful.

43

CHAPTER 5 Color Text / Graphics, and
Video Support

5.1. Bandwidth Requirements of Uncompressed Color

The bitmap approach previously described, as demonstrated in the InfoPad project, yielded

an interactive display supporting an effective graphical user interface. However, the 640x480

monochrome display requires several hundred kilobits per second of bandwidth for interactive

operation. While a color display is preferable from user and application perspectives, it does sig-

nificantly increase the demands on the communications link. Without using compression, the

monochrome display requires one bit per updated pixel. Thus a 200x200 window, updated at 10

frames per second (fps), would require 400kbps - which is feasible using high bandwidth indoor

radios. However, using a true-color display, each pixel requires 24 bits - 8 for red, 8 for green, and

8 for blue. Thus the same 200x200 window updated at 10 fps would require almost 10Mbps, or

given the same 400kbps link, an update rate of less than one half of a frame per second would be

possible. Using a conventional 8-bit per pixel paletized display, about 3.2Mbps is required for a

10fps update rate and 400kbps will allow slightly more than one frame per second - neither of

which yields a good system solution.

44

5.2. Full-Motion Color Video Support via a Separate Display

One way to enable full-motion color video, while not impacting the display of text / graph-

ics used in applications, is to retain the monochrome display for text / graphics and use a separate

display for full-motion color video. The InfoPad project used this approach to allow independent

research into text / graphics and video delivery. From the perspective of wireless link research, the

text / graphics traffic necessitated low latency delivery of bursty traffic, while the video traffic

required high, but more or less uniform, bandwidth.

5.2.1. Lossy Vector Quantization for Image and Video Compression

The InfoPad project used lossy Vector Quantization (VQ) to deliver full-motion color video

with minimal power consumption and hardware costs1 [15]. Vector quantization entails repre-

FIGURE 5.1. InfoPad full-motion VQ video support. Detailed in [15]

128

240

32

 60 Y

16

 30 I

16

 30 Q

Code frames
8-bit codes per

4x4 block

Codebooks
256 entries
of 4x4 pix
6-bit pixels

Y
Codebook

I
Codebook

Q
Codebook

128

 240
Y

Luminance
6 bits/pix

64

 120
I

Chrom.
6 bits/pix

↑ 2x2

↑ 2x2

64

 120
Q

Chrom.
6 bits/pix

YIQ
to

RGB

Display
(note unusual
pixel aspect

ratio)

45

senting groups of pixels, such as 4x4 pixel blocks, within the image using a single index into a

“codebook”. The codebook contains sets of the groups of pixels. Since the number of bits

required to specify the codebook index is much smaller than the number of bits to specify the col-

ors of the pixels in the group, compression is achieved. However, since not all possible combina-

tions of pixels can be represented in the codebook, the compression is lossy. (If all combinations

were represented then the codebook index would have to be as large as all of the pixels in a group

combined.) Typically each group of pixels in the input image is assigned the index of the code-

book entry which has the group of pixels that is most similar to it, as determined by a minimum

mean squared coding error.

While vector quantization does not yield the highest quality video for a given bit rate, it

does perform significant compression with low-complexity decompression. The coding is asym-

metric in that compression is computationally intensive but decoding is not. Since the decoder is

typically a portable device, and coding of movies needs only be performed once, it is well suited

for a remote wireless portable device. Additionally, vector quantized video does not cause error

propagation within each frame or across frames. Bit errors are localized to a particular region and

will not persist into the next frame. However, bit errors in codebook updates will persist across all

frames that use the codebook entries that are in error.

Decoding of the vector quantized bit stream can be performed in hardware as a set of mem-

ory lookups and an optimized coordinate space transformation. The InfoPad low-power hardware

decoding operates with a power consumption of less than 2mW. VQ encoding can be computa-

tionally intensive since a codebook search has to be performed for each group of pixels in the

image. However, techniques described below show how trade-offs between coded image quality

1. While this section presents my work in real-time VQ video transcoding, it should be clear that the choice of VQ dis-
play, the hardware, coding, and format were determined by Chandrakasan and Brodersen before my joining the
group.

46

and encoding time can be achieved through the choice of the codebook and codebook search algo-

rithm. Both high complexity (low-speed), high-quality coding, as well as low-complexity (high-

speed), lower quality compression techniques are described.

The details of the InfoPad VQ video decoder implementation are shown in Figure 5.1. A

display of 128x240 pixels is generated from a modified luminance (Y) / chrominance (IQ) color

space where the I and Q have been decimated by 2 in both the horizontal and vertical directions.

The decimation is to exploit the reduced sensitivity to chrominance information of the human eye

to reduce system bandwidth requirements. The exact coefficients used to convert the YIQ into

RGB were determined as a compromise between hardware power savings and the benefits of

decoupling and subsampling the chrominance components with respect to the luminance compo-

nents. The 128x240 Y image and 64x120 I and Q images are each generated through vector quan-

tization decoding via a table lookup. All vectors in the system are 4x4 sample blocks where this

corresponds to 4x4 pixels in the case of the Y component or 8x8 pixels in the case of the I and Q

components, due to upsampling. The vectors for the Y, I, and Q images are selected from three

256-entry codebooks. Thus the images are specified by 32x60 8-bit Y codes and 16x30 8-bit I

and Q codes. Typically the codebooks are updated infrequently so that only the Y, I, and Q codes

are updated on a frame by frame basis. This requires 2880 bytes total, allowing 30 fps operation

given a 690kbps downlink. If the vector quantization is not used, and the video is specified by 24-

bit true-color pixels, each frame would consume 92160 bytes, requiring more than 22 Mbps for a

30 fps video stream. Since only the codebook and indices are retained in memory, and decompres-

sion is performed on the fly, memory requirements are significantly reduced1.

1. Note that this approach, while implemented in hardware as a compressed framebuffer, is treated in this chapter and
not Chapter 6 because the video is sent in complete frames, and thus none of the issues related to independent manip-
ulation of subregions of the display are relevant.

47

5.2.2. VQ Video Encoding

The steps required to encode a VQ video stream are shown in Figure 5.2. Since the VQ

video compression format does not use inter-frame compression, such as motion compensation,

the input frames are encoded independently. The input video frame is first resized to the size of

the VQ display, 128x240. For fast coding, described below, a half-sized image is produced. Next

the image is converted into the YIQ color space via matrix multiplication or a table-lookup equiv-

alent. Finally the image is quantized by considering each of the 4x4 sample blocks in the Y, I, and

Q image planes separately, and selecting the entry in the appropriate codebook that exhibits the

least mean-squared error. The codebook can be chosen adaptively from the video clip or statically,

yielding higher image quality and reduced coding time respectively.

5.2.2.1. Adaptive VQ Encoding

Adaptive VQ encoding entails generating the codebook based on the video sequence to be

coded. In this way the codebook will most effectively represent the images in the video. A single

FIGURE 5.2. Vector quantized (VQ) video encoding

Input Video Frame

Resize Image

Colorspace Conversion

Vector Quantization

VQ Video File

128x240 (64x120 for fast coding)

Optional Codebook
Adaptation

Codebook

Y=128x240 (64x120 for fast coding)
I, Q=64x120 (32x60 for fast coding)

48

codebook can be used for the entire video or else the codebook can be periodically updated on a

scene-by-scene basis, or whenever the coding error exceeds a given threshold. In either case, the

number of frames used to determine the codebook is typically limited to reduce the time to gener-

ate the codebook.

The K-means clustering algorithm is used to generate a representative codebook from a

sequence of input frames. All 4x4 blocks in the frames of the input video are considered as train-

ing vectors. The Y, I, and Q codebooks are generated separately.

The K-means clustering algorithm adapts the codebook as follows: An initial codebook is

used to code the input vectors. Then each codebook entry is recomputed as the average of all

image vectors for which it is the best match. Thus each codebook entry is modified to better repre-

sent the vectors that match it. All vectors are then recoded and the codebook is updated until the

total coding error stops decreasing. The initial “seed” codebook can be specified externally or

defaults to the static codebook used for the fast coding described in the next section.

Some extra steps are used to ensure that the codebook best represents the diversity in the

image. The 256 codebook entries are compared to each other, and if two are too similar then one is

FIGURE 5.3. Single frame from the video clip and luminance (Y) codebook adapted to it.

49

“freed” up for use by some other vector. The vectors which matched the freed codebook entry are

then assigned to the one that it was similar to. Next, the unused codebook entries are filled with the

input image vectors which had the greatest coding error, to ensure codebook diversity and reduce

the worst-case coding error. Figure 5.3 shows the luminance (Y) codebook adapted from a video

sequence.

5.2.3. Fast Fixed-Codebook VQ Transcoding

As presented, the VQ video encoding time is dominated by the time to search the codebook.

In excess of 10 million pixel differencing operations are required per frame for the 128x240 video

format. This results in a coding rate of only a few frames per second using optimized C code on a

Sun UltraSparc 2 workstation. However, the search can be accelerated by tailoring the codebook

design for fast search.

Gain / shape codebooks orthogonalize the “shape” of the codebook entries from the extent

or “gain” of the entries. In this way if there are a few basic shapes, and the best gain for each

FIGURE 5.4. Gain / shape codebook used for fast VQ encoding.
It consists of 56 solid gradients and 50 each of vertical, horizontal, and both diagonal
gradients.

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 vA vB

vC vD vE vF

v0145 v2367

v89CD vABEF

Solid index: (v0145 + v2367 + v89CD + vABEF) / 4
Horiz indices: (v0145 + v2367) / 2,

(v89CD + vABEF) / 2
Vert indices: (v0145 + v89CD) / 2,

(v2367 + vABEF) / 2
Diag1 Indices: (2*v0145 + v2367 + v89CD) / 4,

(2*vABEF + v2367 + v89CD) / 4
Diag2 Indices: (2*v2367 + v0145 + vABEF) / 4,

(2*v89CD + v0145 + vABEF) / 4

50

shape can be quickly determined, then matching can be greatly accelerated. The gain / shape code-

book used is shown in Figure 5.4. It consists of 56 solid gradients and 50 each of vertical, horizon-

tal, and both diagonal gradients. The best match is determined by subsampling the 4x4 pixel

blocks by two and using each of the four values to select the best gain for each of the five shapes in

a single lookup. The indices used for fast match lookup are shown in the figure. Tables map the

index value or indices values to the best codebook for each shape. The error is then computed for

the best candidates of each of the five shapes and the codebook entry giving the least error is cho-

sen. Because the gradients in the fixed codebook are smooth, half-resolution comparison is possi-

ble. The fast coding method can achieve 30fps coding for real-time compression

Figure 5.5 shows a comparison of the image quality delivered by coding frames from two

video clips using three methods: fast coding, coding to a codebook adapted to another video clip,

Fast Preset
CodebookCodebook

Adaptive
Codebook

FIGURE 5.5. Comparison of adaptive and fast codebooks.
Left uses fixed, fast codebook, while center uses another video’s codebook, and right
uses a codebook adapted for the video in question

51

and coding to a codebook adapted to the video clip in question. As can be seen, the fast coding

method yields a coarser looking video, coding to another video can result in some artifacts, while

adapting to a particular video results in the most aesthetically pleasing image.

5.2.4. MPEG to VQ Video Transcoding

Due to the abundance of MPEG video clips, an MPEG to VQ Video Transcoder was

designed both as a source of VQ videos to demonstrate the pad as well as to serve as a vehicle to

explore issues in VQ coding techniques. The data flow used to transcode MPEG to VQ videos is

shown in Figure 5.6. MPEG natively generates separate luminance and chrominance images

where the chrominance images have been subsampled by two in each direction. The MPEG and

VQ color spaces differ, however, as the MPEG color space was optimized solely for human visual

perception while the VQ color space also considers hardware color space conversion complexity.

The utilities used to generate VQ video clips are detailed in Section 9.3.3. and Appendix A.

FIGURE 5.6. MPEG to vector quantized (VQ) video transcoding

MPEG movie

Decode MPEG

Resize Image

Colorspace Conversion

Vector Quantization

VQ Video File

L=128x240 (64x120 for fast coding)
Cr, Cb=64x120 (32x60 for fast coding)

Optional
Codebook
Adaptation

Codebook

Y, I, Q

L, Cr, Cb Image
(Cr, Cb at half-resolution)

52

5.2.5. Live VQ Video Display of MBONE Transmissions

VQ video encoding was also integrated into the MBONE video gateway (VGW) [1] to

allow live viewing of MBONE transmissions. The fast coding method allows real-time display.

The GUI of the MBONE applications can be displayed in monochrome on the main text / graphics

screen.

5.3. Motivation for Unified Text, Graphics, & Video Display

In order to minimize power consumption and complexity while supporting both general pur-

pose user-interface based applications, as well as streaming video, the InfoPad system, as previ-

ously described, employs separate text / graphics and streaming video displays. The text / graphics

display is a 640x480 monochrome, conventional framebuffer-based display. This allows individ-

ual pixel addressability to enable most user-interface based tasks, such as a shared whiteboard,

handwriting recognition, and web browsing. The monochrome nature allows timely delivery of

even uncompressed bitmap updates given a moderately high bandwidth wireless link. The mono-

chrome display is not suitable for full-motion video, and thus an auxiliary display supporting color

and compression is required. For this purpose, a separate vector quantized full-motion color dis-

play was used.

While using separate displays is quite effective to demonstrate the individual components,

the low-power consumption achievable, as well as the capability of remote operation of both user-

interface and streaming video tasks, it requires special applications to display the streaming video,

only one video can be displayed at a given time, and the size and quality of the video is con-

strained. Additionally, the user-interface based applications cannot enjoy the benefits of color.

Thus it is advantageous to have a single display which can seamlessly display both user-interface

based graphics as well as full-motion video.

53

5.4. Uncompressed Framebuffer, Compressed Sends

One approach to improve this situation is to compress the bitmap updates before transmit-

ting them. Thus the same basic infrastructure is used, though the updates are compressed before

transmission and uncompressed at the receiver end. This can significantly reduce bandwidth

requirements. Though it should be noted that this often renders corrupt packets useless. Different

degrees of compression and channel coding allow a trade-off between bit rate requirements and

error tolerance. Much research has focused on compression of continuous-tone images such as

photographs. Some techniques include JPEG [40] and Wavelets [60]. Chapter 8 will present

background and a new technique for compression of discrete-tone images such graphs, text, and

most graphical user interfaces.

54

55

CHAPTER 6 Compressed Framebuffer
Approach

6.1. Minimizing Client Hardware and Power Consumption

While the compressing bitmaps for transmission reduces the bandwidth requirements

imposed on the communications link, it does not reduce the amount of storage required on the

remote client. This then impacts the power consumption and cost of the portable terminal. As pre-

sented previously, the storage requirements of a color screen are 8 to 24 times that of a mono-

chrome screen.

As Chandrakasan [15] demonstrated with the compressed VQ video display, further reduc-

tion in portable client power consumption and complexity can be achieved through the use of a

compressed framebuffer.

A compressed framebuffer stores the data to be displayed in compressed form, and decom-

presses the data “on the fly” during the monitor refresh readout. In this way, the storage require-

ments are reduced. Additionally, since the amount of memory per frame is reduced, the bandwidth

requirements from the memory can be reduced, and this can result in lower power consumption if

the decompression technique is also “low-power”.

56

However, retaining only a compressed framebuffer means that all possible display configu-

rations cannot be realized and thus the compression technique must be carefully designed to avoid

excessive visual distortion. This chapter discusses the application of the compressed framebuffer

approach to text / graphics display.

6.2. Requirements

A compressed framebuffer imposes constraints upon the choice of compression algorithm

that do not exist if the compression algorithm is used only for transmission of the images. This

section describes some of those additional constraints. (Note that additional transmission-only

compression can be applied beyond the compressed-framebuffer compression.)

6.2.1. In-Place Modification of Compressed Data

Compression algorithms, particularly lossless data compression algorithms, often yield

reductions in data requirements by exploiting inter-symbol correlation. Thus, the fact that one

symbol can be predicted, at least in part, from a previous symbol, means that it can be stored more

compactly if this prediction is incorporated into the coding. Only the information that cannot be

predicted needs to be stored. However, this means that the later symbols depend on the earlier

ones, and cannot be individually decoded.

However, the data in a framebuffer is modified in a random-access manner when a particu-

lar part of the screen is modified. It is typically not acceptable to send the entire contents of the

screen to update a small region. Additionally, since the uncompressed framebuffer is not present,

the modifications cannot be performed in the uncompressed domain.

57

The combination of these two factors requires that the modification of a region of the screen

does not result in the insertion or deletion of data in the framebuffer, but rather simply the modifi-

cation.

6.2.2. Update-Independence for Error Tolerance

In Section 3.2.2. it was demonstrated that a large latency penalty is incurred if the update of

one block is dependent on that of preceding blocks. While the updates of blocks in an uncom-

pressed framebuffer are independent, most compression algorithms exploit spatial redundancy

between regions of the image, and thus would be subject to the latency due to loss. Thus the com-

pression algorithm must be designed such that the interdependence between updates is minimized

or trade-offs between interdependence level and bandwidth utilization can be controlled.

6.2.3. Must Work for Text / Graphics and Image / Video

As previously noted, the unified framebuffer contains both discrete-tone text / graphics

regions as well as continuous-tone image / video regions. Thus either the same compression algo-

rithm must work for all regions of the screen or else several compression schemes must be imple-

mented with an automated way to select the best one for a given region.

6.2.4. Must Work for all Possible Screen Configurations

One of the advantages of the compressed framebuffer is reduced storage requirements. This

requires that all possible screen configurations, when compressed, will fit into the framebuffer

memory. Since no lossless compression will always result in data reduction, lossy compression or

a lossy mode must be used. Furthermore, the minimum worst-case compression ratio is dictated

by the ratio of the uncompressed framebuffer size to the compressed framebuffer size.

58

6.2.5. Must be Tailored to Typical Screen Contents

As with all image compression techniques, the compression algorithm must be tailored to

the types of updates encountered using remote rendering. While the VQ video coding used for the

full-motion video display allows for a significant reduction in framebuffer size and bandwidth

requirements, and does satisfy the above requirements, its lossy nature and design for continuous-

tone images would be inadequate for most applications, as most user-interface components would

be rendered unintelligible. A typical screen image is shown in Figure 6.1. This image contains

text and graphics as found in many GUI applications.

FIGURE 6.1. Typical screen image consisting of multiple graphical applications

59

6.2.6. Decompression Must be Low Complexity / Cost

The second advantage of the compressed framebuffer approach presented was a decrease in

power consumption and complexity. For this to be the case, the on-the-fly decompression method

must be low-power and low complexity, or else all gains achieved through the compression will be

negated.

6.3. Pseudo-Color or Colormapped Display as Compressed
Framebuffer

One type of compressed framebuffer that is often used in computer displays is called a

pseudo-color or colormapped framebuffer. The term “8-bit color” display typically refers to this.

Most personal computer or workstation framebuffers are either colormapped or support a color-

mapped display mode as it significantly reduces memory requirements as compared to uncom-

pressed or true-color modes.

Colormapped displays use both a framebuffer and a colormap (or color LookUp Table -

LUT). Instead of storing the red, green, and blue values for each pixel, the framebuffer stores an

index into the colormap. The colormap is a small (typically 256-entry) array of color descriptors

which contain the red, green, and blue value of the colors. In this way, each pixel in the frame-

buffer only requires 8 bits. Since the colormap contains only 256 entries, it is small as well. If 8

bits are required for the red, green, and blue intensity index then the colormap would be 256*3 =

768 bytes and the main framebuffer would be 1*Width*Height bytes. This is to be contrasted with

a display where each pixel has its red, green, and blue values specified, which would require

3*Width*Height bytes. Both storage and bandwidth requirements for the framebuffer are reduced.

Since graphics memory often does not reside directly on the processor bus, access to it can be quite

costly. The use of colormapped displays can reduce this cost.

60

The main drawback of the colormapped display method is that the number of colors that can

be displayed simultaneously is limited. Applications must then compete for allocation of the col-

ormap entries since it is a shared global resource. A centralized text / graphics server performs this

function. Applications must be able to operate even if they cannot reserve all colors that they

request, and thus operate with whichever colormap entries are active. Often image display appli-

cations dither between colors in the colormap to emulate colors that are not in the colormap.

Colormapped displays have another advantage in addition to reduced memory size and

bandwidth requirements. Using colormapped displays, a technique called palette animation can be

used to perform smooth animation without the use of auxiliary buffers. Palette animation exploits

the fact that multiple pixels on the screen can be changed simultaneously by simply changing one

or a few colormap entries. Thus new frames of an animation sequence are written to the screen in

such a way that they map to the same set of colors as the old frame until a rapid colormap update

occurs and the colors of the new frame are made visible.

6.4. A Compressed Framebuffer Compression Method - TGVQ

This section describes a compression technique which can be applied to text / graphics data,

typically yielding less than a bit per pixel storage requirement, and satisfies all of the requirements

outlined in Section 6.2. The text / graphics compression technique is also well suited for integra-

tion with a lossy continuous tone image compression technique as shown in Section 6.4.5.3. The

text / graphics compression algorithm is based on hierarchical vector quantization and is thus des-

ignated TGVQ.

6.4.1. Local vs. Global Color Diversity

Typical text / graphics images can contain high global color diversity but almost always

contain low local color diversity. Color diversity is the number of colors present in a region. Thus

61

global color diversity is the total number of colors present in the entire image while local color

diversity is the number of colors present in a small local region of the image. Globally an image

might use many colors, particularly if there are continuous-tone regions in the image. However, in

any small discrete-tone region in the image, only a few colors are used repeatedly.

The conventional colormapped framebuffer technique described in Section 6.3. relies on the

assumption that the global color diversity of an image can be limited to 256 colors without causing

significant visual degradation. However, limiting globally to 256 colors does impose restrictions

on the images - which can result in some degradation particularly for the display of continuous-

tone images. Additionally, limiting to 256 colors still results in 8 bits per pixel which is too high

for many applications as described in Section 5.1. Exploiting limited local diversity, however, can

result in even greater savings, as will be demonstrated.

6.4.2. Micro-Colormaps

A new technique called micro-colormaps exploits limited local diversity by assigning indi-

vidual colormaps to small blocks within the framebuffer as shown in Figure 6.2. In this way, since

the number of unique colors in each block is typically quite small, only a few bits per pixel are

required. For instance, if only four unique colors are used in an 8x8 block, only two bits per pixel

are required for the pixels in the block. The colors used in the block are listed in the block’s

micro-colormap while the arrangement of the colors, called the pattern, is stored in the main

framebuffer portion. Each block thus needs an indication of which micro-colormap it uses, as well

as the number of bits per pixel (though these two are related).

6.4.3. Vector Quantization of Micro-Colormaps and Patterns

While the above exploits limited local color diversity to effect some compression, by

exploiting spatial locality and redundancy via vector quantization, further coding gains can be

62

achieved. The key observation is that both the same micro-colormaps and patterns are typically

used across the image multiple times; the same sets of colors typically find themselves used

together in multiple blocks, and often in the same configuration.

Vector quantization entails storing micro-colormaps and pattern blocks in two tables or

codebooks, and having the blocks in the image contain indices that refer to the entries in the two

codebooks. In this way, multiple blocks which use the same micro-colormap can share the mem-

ory required to store the colors, and blocks which use the same pattern entry can share that mem-

ory. This vector quantization is a lossless process as the micro-colormap and patterns are stored

exactly. Thus conceptually, the framebuffer consists of an array of W/BlockSize by H/BlockSize

pattern and micro-colormap pointers as well as micro-colormap and pattern codebooks of fixed

total sizes. The amount of memory required for each entry will depend on the number of colors in

the micro-colormap the bit depth used in the pattern. The amount of memory dedicated for the

codebooks is determined by examining the amount of memory required to render typical images

and then adding some “slack” factor. In this way, typically some part of the codebook will be “in

0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 1 1 1 1 1 2
0 1 0 0 1 1 1 2
0 0 1 1 0 1 1 2
0 1 1 1 0 1 1 2
0 1 1 1 0 1 1 2
0 1 1 1 0 1 1 2

0
1
2

MICRO
COLORMAP

PATTERN

These use the
same MCMap
and Pattern

These use the
same MCMap

FIGURE 6.2. Block decomposition into pattern and micro-colormap (MCMap).
The two blocks on the right share the same micro-colormap and pattern while the two
on the left share only the same micro-colormap. The pattern and micro-colormap for
the lower left block is shown.

63

use” and the rest will be “free” - as is required for in-place modification as described next. The

micro-colormap and pattern codebooks can be kept in the same memory or different memory

banks. The former allows for reduced total memory requirements while the later can slightly

reduce the size of indexes required to specify codebook entries. The rest of this section assumes

that a single unified codebook is used.

6.4.4. Determining Block Size

The choice of block size will clearly effect the compression rate. The stacked chart in Fig-

ure 6.3 shows the effect of varying the block size on the compression rate for the sample image in

Figure 6.1. The chart shows the contributions of the four components: the pattern index, the

micro-colormap index, the pattern codes, and the micro-colormap codes. This assumes 16-bit

indices and 18-bit color. The pattern and micro-colormap indices each take 16 bits per block in

order to be able to address a large enough codebook. Thus with a block size of 1x1 pixel, the over-

head is 16 bits per pixel but as the block size increases, the contribution of the indices decreases

FIGURE 6.3. Compression rate dependence on block size.
This graph shows the dependence of the various components of the coding rate on the
chosen block size. 16-bit indices and 18-bit colors are assumed.

Compression rate dependancy on block size

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Block Size (n x n)

B
its

 /
P

ix
el

MCMap codes Pattern codes MCMap index Pattern index

Pattern index 16.00 4.00 1.78 1.00 0.64 0.44 0.33 0.25 0.20 0.16 0.13 0.11 0.09 0.08 0.07 0.06

MCMap index 16.00 4.00 1.78 1.00 0.64 0.44 0.33 0.25 0.20 0.16 0.13 0.11 0.09 0.08 0.07 0.06

Pattern codes 0.00 0.00 0.01 0.04 0.11 0.18 0.24 0.33 0.40 0.51 0.57 0.56 0.59 0.68 0.77 0.76

MCMap codes 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

64

until it is only 1/16 bit per pixel per index at a block size of 16x16 pixels. The micro-colormap

data requires very little storage since a few micro-colormaps are reused many times. The storage

requirements are typically less than 1/100 bit per pixel.

The storage requirements of the pattern bits increase with increased block size. This is

because as the blocks grow in size, the average number of times that a particular pattern is seen in

the image decreases since the block “uniqueness” increases. Thus the gains of the vector quantiza-

tion decrease. Figure 6.4 shows the reduction in pattern code reuse, or the increase in code novelty

as the block size is increased for the image in Figure 6.1. The net combination of the four compo-

nents levels off at a block size of about 7x7 or 8x8 and stays fairly constant at a rate of 0.8 to 0.9

bits per pixel for the sample image.

6.4.5. Requirement Satisfaction

This section describes how the requirements described in Section 6.2. are all satisfied by the

compression scheme described above.

P a t t e r n N o v e l t y

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

B l o c k S i z e (n x n)

P
er

ce
n

t U
n

iq
u

e
P

at
te

rn
s

FIGURE 6.4. Pattern code novelty and reuse versus block size.
The graph shows the ratio of unique patterns to total number of blocks.

65

6.4.5.1. In-Place Modification of Compressed Data

The compression system allows in-place modification as described in Section 6.2.1. In-

place modification works as follows: Local copies of the codebook and index framebuffers are

kept by the text / graphics server. While the index framebuffers are spatially mapped such that the

locations always correspond to a particular region on the screen, the codebook is only mapped

based on which indices point to it. Thus entries in the codebook are assigned dynamically in a

manner similar to dynamic heap memory allocation. Since multiple indices can point to the same

locations in the codebook, reference counts are required to determine when particular regions of

memory are no longer in use. The reference counts are incremented when an entry is referred to

by a new block, and decremented when that block no longer refers to it. Thus the sum of all refer-

ence counts is the number of blocks in the image.

When a section of the screen is modified, the colors in each block are examined to deter-

mine the unordered sets of colors constituting the micro-colormaps. If a micro-colormap with the

required colors for a given block is already present, it can be reused. In this case, the new block’s

micro-colormap index is set to the index of the existing micro-colormap. Otherwise, a new micro-

colormap entry is “allocated” in the codebook, its contents are sent to the remote terminal and then

the new block’s micro-colormap index is set to the index of the new micro-colormap entry. In

either case, the reference counts are updated as described above.

6.4.5.2. Update Independence for Error Tolerance

If a transport protocol incorporating explicit dependencies is used as described in Section

13.1.2., the dependencies between an index update and the preceding codebook update used to set

up the codebook entry should be noted. Thus an index update will not be effected by the terminal

until the codebook update it required has taken place. Additionally, a codebook update is depen-

dent upon the index that was pointing to it being updated. Thus if this is not explicitly coded, it is

66

advantageous to reuse codebook entries in a LRU (least recently used) manner. This also pro-

motes reuse of codebook entries if an entry is briefly not used but then later reused.

6.4.5.3. Must Work for Text / Graphics and Image / Video

While the algorithm, as described, is lossless, and thus could not result in guaranteed com-

pression rates, with the addition of a video coding, this can be achieved. The text / graphics vs.

image / video decision can be made in a manner closely related to the text / graphics coding

method in a way such that those regions that would not compress well with the text / graphics

method would be selected as image / video.

Each block can classified as text / graphics vs. image / video by using the local color diver-

sity used to determine the micro-colormaps. By simply counting the number of colors in a given

block, and applying some continuity constraints, an effective text / graphics vs. image / video deci-

sion can be made. Figure 6.5 plots the local color diversity of a typical image with both text /

graphics and image / video regions using 8x8 pixel blocks. Blocks with more than 4 colors are

classified as “image / video” while those with less than or equal to 4 unique colors are classified as

“text / graphics”. In this way, those blocks with high color diversity, which would require large

and often unique micro-colormaps and patterns, will be coded using a lossy coding. Continuity

constraints prevent small high-diversity patches from being interpreted as image / video and small

low-diversity patches from being interpreted as text / graphics.

Figure 6.6 shows an example of automatic text / graphics and image / video merging based

on color diversity. The top image is a section of the original image from Figure 6.5 while the bot-

tom image has the blocks with color diversity greater than 4 replaced with a crude image coded

version. The image coding entailed conversion to YUV space, decimating Y by 3x3 and U and V

by 6x6. The three intensities were then coded at 6 bits per sample for a net coding rate of 1 bit per

67

Two Tones
For Dither

1 Color Per
8x8 Block

2 Colors Per
8x8 Block

3 Colors Per
8x8 Block

4 Colors Per
8x8 Block

> 4 Colors Per
8x8 BlockLEGEND

FIGURE 6.5. Using local color diversity to make text / graphics vs. video decision.
The original image, shown above, is primarily text / graphics with three image/video
regions. The local color diversity using 8x8 pixel blocks is shown below. Blocks with
more than 4 colors would be classified as image while those with less than or equal to 4
colors would be classified as text / graphics. Continuity constraints would prevent
small high-diversity patches from being interpreted as image/video and small low-
diversity patches from being interpreted as text / graphics.

68

pixel. As can be seen, even this crude coding does not introduce excessive image degradation since

it is only occurring in continuous-tone regions. Note that continuity constraints are not imposed so

some isolated text / graphics regions, such as on the web browser buttons, are detected as being

image regions and are coded using the lossy coding. Using a more sophisticated coding such as a

DCT-based approach used in JPEG [40] would result in higher image quality and/or greater com-

pression rate.

6.4.5.4. Must Work for All Possible Screen Configurations

While the lossless text / graphics coding described above cannot bound compression, when

coupled with the lossy image / video coding, the overall system memory requirements can be

bounded. Thus if the memory usage of the lossless portions ever exceeds the allowable amounts,

blocks can be converted to the lossy format which will always fit. For example, using 8x8 blocks

on typical text / graphics screens as described next, the lossless coding codes at less than 1 bit per

pixel. The crude lossy image coding previously described codes at 1 bit per pixel. Thus if 2 bits

per pixel of memory were available then all possible screen configurations could be stored.

The flexibility of TGVQ method allows detail to particular regions to be tailored as desired.

In particular if small regions of the screen require high fidelity, they can be losslessly coded

regardless of whether they are text / graphics or image / video.

6.4.5.5. Must be Tailored to Typical Screen Contents

Figures 6.7 and 6.8 show typical images and their compression rates. In the case of both

screendumps in Figure 6.7 as well as the screendump without the continuous-tone images in Fig-

ure 6.8, the compression algorithm results in coding less than one bit per pixel. Even with some

continuous-tone regions, as in the top image of Figure 6.8. The compression rate is still under 2

bits per pixel. If a separate lossy coding for continuous-tone regions is used, as described in

69

FIGURE 6.6. Automatic text / graphics and image / video merging using color diversity.
The top image is a section of the original image from Figure 6.5. The bottom
image has the blocks with color diversity greater than 4 replaced with a crude
image coded version. The image coding entailed conversion to YUV space,
decimating Y by 3x3 and U and V by 6x6. The three intensities are then coded at 6
bits per sample for a net coding rate of 1 bit per pixel.

70

FIGURE 6.7. Two typical images compressed with TGVQ.
The top image requires 0.84 bits/pixel while the bottom requires 0.94 bits/pixel.

71

FIGURE 6.8. A typical screendump with and without some continuous-tone regions.
The screendump with continuous-tone regions (top) requires 1.7 bits / pixel while the
one without (bottom) requires only 0.93 bits/pixel. In a complete implementation, the
continuous-tone regions would be coded using a lossy method.

72

Section6.4.5.3., the compression rate would be further reduced and bounded. Thus if the frame-

buffer is allocated 2 bits/pixel then typical images can be fully losslessly encoded.

6.4.5.6. Decompression must be Low Complexity / Cost

The TGVQ method is readily implementable in hardware. Its implementation would bear

many similarities to the VQ Video described in [15] and referred to previously in Section 5.2.. Fig-

ure 6.9 shows a rough architecture of the compressed framebuffer system and some of the princi-

ples of operation are briefly described here. Also note that while multiple separate memories are

show, they could be combined into a single unified memory to promote reuse between the two

codebook arrays, but at the possible expense of power consumption due to tighter access time

requirements.

A counter cycles through the two index memories in order to retrieve the indices for the

blocks as the image is scanned. These indices are used to select codebook entries from the two

codebooks. The counter output is also distributed to the pattern codebook memory so that it can

produce the correct line within the pattern. A block combiner indexes the pixels from the pattern

memory into the MCMap to produce the rendered pixels. It could also incorporate a lossy image

FIGURE 6.9. Rough architecture of compressed framebuffer TGVQ decoder.
Note that any number of the memories shown could be combined into single unified
memory.

MCMap
Index

Memory

MCMap
Codebook
Memory

Pattern
Codebook
Memory

Pattern
Index

Memory

Counter Block
Combiner Output

73

coding technique for video as previously described. Since the system works “open-loop”, latency

is not problematic, and this can be used to reduce power consumption though pipelining.

74

75

CHAPTER 7 Hybrid Approach

7.1. Motivation

In Chapter 3, the primitive-based approach is presented which allows for good bandwidth

utilization, but can result in high latency due to loss or queuing delays. In Chapter 4, Chapter 5,

and Chapter 6, bitmap-based approaches are discussed which significantly reduce latencies, but at

the expense of less efficient bandwidth utilization. This then leads to the question of whether a

hybrid approach can yield the benefits of both the primitive and bitmap approaches as shown in the

table below:

This chapter presents some ideas and directions on the implementation of such a hybrid

approach.

Bandwidth
Utilization

Perceived
Latency

Client
Complexity

Conventional Primitive Good Bad Ok

Conventional Bitmap Bad Bad Good

Improved Bitmap Ok Good Good

Hybrid Approach ? Good ? ? Good ? ? Ok ?

76

7.2. Approach

In order to obtain the best of both the bitmap and primitive approaches, a hybrid scheme is

employed. The primitive approach obtains its bandwidth efficiency by retaining and transmitting

the drawing requests in the compact primitive form, while the bitmap approaches deliver reduced

latencies by reducing false-dependencies and eliminating updates that are superseded before they

can be transmitted. The two key concepts required to combine these are primitive dependency

tracking and primitive squashing.

The architecture proposed is the virtual framebuffer architecture presented in Section 4.3.

with the modification that the virtual framebuffer is not a bitmap-based buffer but rather a primi-

tive-based framebuffer. While the primitive approach simply queues the drawing requests in a sin-

gle linear list, the hybrid approach explicitly notes dependencies by arranging the queued

primitives in a set of directed acyclic graph (DAG) structures called the pending primitive graph.

The primitive framebuffer stores the primitives that have been requested by an application but

have not yet been sent and acknowledged from the remote terminal. Each primitive also has a flag

indicating whether it has been yet transmitted to, but not acknowledged by, the remote terminal.

Other information such as the time of transmission and graphics context information may be

recorded. A secondary bitmap-based buffer is used to satisfy application image queries. The bit-

map buffer contains the current rendered contents of the screen as with the bitmap-based virtual

framebuffer architecture.

77

7.3. Master Operation

When a new drawing primitive is received from an application, the master places it as a

child of all drawing primitives that must be rendered before it. This would include any previous

primitive which geometrically overlapped the primitive in question. Figure 7.1 shows an example

of a calculator image and its dependency graph. The calculator is comprised of a solid back-

ground, a surrounding border, a number area and a set of keys. Each key consists of a solid back-

ground, a border, and a label. The keys do not overlap with each other or with the number area.

The master also renders the primitives to the bitmap buffer so that later application queries

for the current contents of the screen can be satisfied locally. The existence of a fully rendered bit-

map buffer also allows sessions to be suspended and resumed.

7.3.1. Primitive Squashing

While the bitmap-based approach automatically replaces old updates with new ones via

Adaptive Bandwidth Compression as described in Section 4.3.2.1., the hybrid approach, via the

master, must do this manually. When a new primitive is added to the pending primitive graph, it is

placed as a child of all previous primitives which overlap it. Before placing the new primitive, the

3.14159
7 8 9 X

/

-

+=

4 5 6

1 2 3

0 .

3.14159
1 2 3 -

Dependency graph replaces

 conventional list

FIGURE 7.1. The hybrid approach: pending primitive graph.
Primitives that have been queued for transmission to the remote client, but not
transmitted and acknowledged, are arranged in a set of directed acyclic graphs with
links explicitly denoting dependencies and overlap.

78

graph is examined and if the new primitive completely obscures any existing primitives, they are

removed. If they have been sent already, but not acknowledged, they are forgotten. If they have

not been sent, they will not be sent. In this way, redundant primitives will not consume valuable

link bandwidth. The process of removing stale primitives is called primitive squashing.

Only primitives whose removal would not alter the final display rendering can be removed.

In particular, if a non-opaque primitive such as XOR area completely covers an earlier pending

primitive such as a line, box, or text, that earlier pending primitive cannot be removed as it would

change the final display. However, if this is then completely covered with a later opaque primi-

tive, the earlier opaque and non-opaque primitives can be removed since they will no longer effect

the final display.

3.14159
7 8 9 X

/

-

+=

4 5 6

1 2 3

0 .

3.14159
1 2 3 -

FIGURE 7.2. Primitive squashing: removal of unneeded primitives.
When a new primitive obscures previous primitives that have not been sent to the
client, the previous primitives are removed since their effect has been nullified. The
above shows what happens when a new object (the square/circle combo) is drawn,
obscuring some old primitives.

79

7.3.2. Dense Primitive Rendering

The virtual framebuffer architecture decouples the application from the remote terminal and

protocols used to communicate with the remote terminal. Thus both operations on single primi-

tives and multiple primitives can be effected. Since the primitives are queued in the pending prim-

itive graph until being sent, during heavy usage, the pending primitive graph could contain many

pending primitives.

While primitives are typically a more compact representation than bitmaps, if an application

draws very fine detail, or uses many spatially small primitives, a bitmap representation of a given

high-detail area may be more compact than the pending primitives specified by the application.

This is particularly possible if bitmap compression as previously described is used. To this end,

the hybrid approach can dynamically convert pending primitives to a pending bitmap update.

Since the master knows the exact screen contents, it can create a bitmap write primitive that speci-

fies the current contents of a particular region, and use it to squash all underlying primitive updates

specified by the application. If later primitives are queued before the bitmap update is delivered,

the new primitives are rendered into the virtual bitmap framebuffer and the updated image super-

sedes the previous one. This can be used to bound bandwidth requirements for high-detail images.

Furthermore, progressive image delivery techniques as described below can be used.

7.3.3. Representing Region Copies

Bit Block Transfers (called BitBlt or Bit Blits) which cause a source region of the screen to

be copied to a destination region of the screen, need to be noted both at their source and destina-

tion. For the destination region, they appear like any other primitive and can be opaque if they are

a direct copy, or non-opaque if they are to be combined with a logical operation such as AND or

XOR. BitBlts must also be noted at the source as a dependency since the block copy must be exe-

cuted after all queued primitives in the region it references but before any subsequent primitives

80

that may further modify the region. This is because the application issuing the copy request

assumes that its primitives will be executed in order and thus all primitives requested before the

copy will have completed but none of the primitives requested after the copy will have begun.

Thus a special copy link is needed which notes both source and destination.

BitBlts prevent squashing of the source region across the source reference in order to assure

that the copied state referenced is rendered. However, the destination region can cause the copy to

be squashed just as other primitives are squashed. If the destination region warrants squashing

then the BitBlt primitive is removed and its reference to the source is removed. This could then

allow further squashing if it was prevented by the existence of the source reference.

7.4. Slave Operation

The slave scans the primitive framebuffer as before, and sends any primitives that are not

children of (dependent on) any other queued, but not sent, primitives. The ordering of this scan is

flexible as will be discussed below. Once the primitives are sent, they are marked as such and then

any of their children can be sent. The dependencies are also transmitted with the primitives such

that if any primitive is lost, only those later primitives which depend on the lost primitive are not

rendered until the lost primitive is retransmitted successfully. However, the rendering of indepen-

dent primitives need not be delayed.

The primitives are coded in a format that is appropriate for transmission to the remote client.

Compression and error-corrective coding can be used to trade off error-tolerance, bandwidth

usage, and client computational requirements.

A particular primitive is removed as soon as it and all primitives it dependends on are

acknowledged. When an acknowledgment for a particular primitive is received from the remote

81

terminal, that primitive is marked as acknowledged, and if it is not the dependent of any unac-

knowledged primitives, it is removed from the pending primitive graph. Additionally, if it had any

dependents which were acknowledged but not removed because the parent was not yet acknowl-

edged, they are removed as well.

7.4.1. Progressive Image Transmission

While the image display requests issued by the application are queued as single primitives,

they do not have to be sent to the remote terminal as such. Multiple-pass hierarchical transmission

is often quite useful for bandlimited or lossy links since it allows the user to quickly get a coarse

idea of what is on the screen. If transcoding occurs in the text / graphics server, applications need

not be designed for operation over a slow link. Often applications, such as Adobe FrameMaker ®,

use image primitives for text rendering in order to retain full control over typesetting and font

style. These applications are difficult to operate remotely over bandlimited links if image trans-

mission is not efficiently handled. Additionally, standard video player or video conferencing

applications can be used remotely if the image transmission to the remote terminal is performed in

a bandwidth-conscious manner.

Progressive image transmission can be effected by having the slave, or some independent

lower-priority thread, transcode and compress pending images into progressive formats. For con-

tinuous-tone images, spatial-frequency decomposition such as that used in progressive JPEG and

wavelets could be used. For discrete-tone images, interlacing similar to interlaced GIF and PNG

would be more appropriate and yield superior image quality at a given bit-rate. The choice of

whether to use progressive images and which type to use could be made based on the server CPU

load, client capabilities, link bandwidth availability, and type of image.

82

Once the images have been transcoded, each pending primitive has associated with it a set

of flags indicating which layers have been sent. The layers are sent independently and the remote

terminal acknowledges the receipt of particular image layers, and not just the entire image primi-

tive. The images can be divided further spatially such that particular parts of particular layers

could be independently sent and acknowledged. This is particularly useful in conjunction with the

cursor-targeted updates via primitive reordering described in the next section.

The various layers are prioritized differently with respect to other images and other drawing

primitives. Typically higher detail-level layers would only be sent after all other primitives have

been transmitted, as they are only needed for final image quality. In this way, if an animation or

movie is playing, other regions of the screen such as the player’s GUI or other applications will not

experience excessive delay in updating. The high-detail layers typically consume the greatest

number of bytes yet deliver the smallest delta in image utility. Lottery scheduling [69] could be

used to assure that high resolution images are not delayed indefinitely in the presence of other con-

tinuous activity.

Care must be taken if other primitives depend on the transcoded image since the other prim-

itives cannot be rendered until all layers in the image are rendered. Alternatively, the dependent

primitives can be re-rendered after each successive layer of the image is rendered. Also, if the

image is later the source of a BitBlt, the image must be fully rendered before the BitBlt can pro-

ceed.

7.4.2. Primitive Reordering

As previously mentioned, using the virtual framebuffer architecture, the order in which

primitives are sent from the text / graphics server to the remote terminal is independent of the order

83

that the applications send the primitives to the text / graphics server. This can help to reduce the

net latency due to loss as well as the delay for the user to see the data they are interested in.

The latency due to loss can be reduced by sending primitives in an ordering that as few

primitives as possible are dependent on other in-flight primitives. If a long stream of dependent

primitives are transmitted and one of the earlier primitives is lost, the subsequent primitives must

be delayed until the lost primitive is successfully retransmitted. However, if multiple independent

streams are transmitted then losses will only delay the update of smaller regions of the screen.

While dependencies cannot be removed, by sending primitives in a “breadth-first” manner as

opposed to a “depth-first” manner, the number of outstanding dependencies can be reduced and

improved performance in a lossy environment will result.

Additionally, the updates can be targeted such that regions of user-interest receive greater

bandwidth. One way to infer user-interest is to assume that the cursor area is of higher priority and

prioritize updates to that region before updates to other regions. In this way, even a low-band-

width link supporting a complex display can retain interactive operation of a graphical user inter-

face since typically the most responsiveness is required around the location of the cursor. A

similar concept is applied to World Wide Web transmission described in Section 10.5.4.

7.5. Benefits / Conclusions

Thus it has been demonstrated that the hybrid approach combines the best of both the bit-

map and primitive approaches by simultaneously reducing bandwidth requirements as well as

reducing latency due to queuing and loss. By further separating the applications from the commu-

nications link, generic applications can be used in a bandwidth and loss aware manner. Progres-

sive image techniques and information reordering allow limited resources to be directed at the

goals of the user.

84

85

CHAPTER 8 Text / Graphics Image
Compression

8.1. Introduction

In the past chapters, application-independent text / graphics and image transmission archi-

tectures have been proposed. While these architectures varied in bandwidth, latency, and client

complexity requirements, all of the techniques transmitted images at least some of the time and

could thus benefit from image compression techniques. The primitive-based approach of Chapter

3 used image transmission whenever the application chose to send images. The bitmap-based

approaches of Chapter 4 and Chapter 5 transmitted images for all updates. The compressed-

framebuffer approach of Chapter 6 could use additional image compression to reduce bandwidth

requirements beyond the compression afforded by the compressed framebuffer algorithm. Finally,

the hybrid approach of Chapter 7 used image transmission whenever the application chose to send

images, as well as when many dense primitives were drawn.

This chapter gives some background on image compression techniques suited for transmis-

sion of text / graphics images and proposes a new algorithm specifically tailored to this class of

images. It will be shown that dictionary-based image compression techniques determine and

86

exploit redundancy in images by decomposing the input image into repeated sequences and coding

them as such. Conventional approaches such as Graphical Interchange Format (GIF) and Portable

Network Graphics (PNG) are restricted to 1-dimensional repeating patterns. The technique

described in this chapter, Flexible Automatic Block Decomposition (FABD), performs two-

dimensional block decomposition to exploit arbitrarily-sized rectangular repeating blocks. Several

optimizations are used to reduce the computation required for the block matching to approximately

the same as traditional one-dimensional techniques. Employing simple entropy coding techniques

to the compression of typical text / graphics images, a coding rate of 0.03 - 0.20 bpp can be

achieved. This is 1.5 to 5.5 times more compact than GIF and up to 3.8 times more compact than

PNG. Decompression is fast and simple, as is required in a web browsing or remote portable ter-

minal environment [32].

8.2. Image Coding Overview

The basis of all lossless image compression techniques is the detection and exploitation of

redundancy in the image to be compressed. The detection typically involves predicting parts of

the image yet to be coded from those that have been previously coded and general knowledge

about the class of images being compressed. The exploitation of the redundancy is effected by

sending only the novel aspects of the data so that the more “predictable” the image by a given

algorithm, the greater the achievable compression.

For instance, if it was known that a synthetic input image always consisted of a discrete set

of squares of varying size, location, and color, then this could be exploited by coding the image as

a few parameters, namely the number, size, location, and color of the squares and the color of

background. Thus the size of the compressed image would be independent of the number of pixels

in the image and the compression could be quite substantial.

87

However, if the image coder only expects the input images to consist of solid horizontal

lines, the “square” images would have to be coded as many horizontal lines. While this would typ-

ically be more efficient than coding each pixel individually, it would not be as efficient as coding

as squares since many horizontally lines would be required for each square. Thus as compression

algorithms contain more information about an image class, they can compress the images more

effectively.

8.2.1. Discrete-Tone Images

Discrete-tone images are those in which the pixel intensities do not vary smoothly, as in a

photograph, but rather assume a small discrete set of values. Discrete-tone color images are com-

puter generated and include screendumps, diagrams, and renderings of text - the types of images

used in the transmissions systems described in this thesis.1 These synthetic images typically

exhibit significant redundancy in that large areas of the image are solid or consist of lines or shapes

which can be predicted from other places in the image. Solid regions can be specified compactly

as in the square example above, and text and symbols from one area in the image can be predicted

from those in another area since identical patterns of pixels will appear for the same letters and

words.

8.3. Previous Research / Existing Standards

Two existing approaches to the image compression problem are one-dimensional dictio-

nary-based techniques (used in algorithms such as JBIG) and two-dimensional statistical tech-

niques (used in algorithms such as GIF and PNG). Each exploits certain aspects of the input

images and has strengths and weaknesses.

1. Continuous-tone images can be quantized or dithered to a discrete set of tones but will still exhibit characteristics of
continuous-tone images. Scanned bi-level images are similar to dithered continuous tone images in many ways.

88

8.3.1. One-Dimensional Dictionary-Based Techniques

Dictionary-based image compression techniques find repeating sequences in images by cre-

ating a “dictionary” of common strings and then coding the sequences by their index into the dic-

tionary. The image is considered a single, albeit long, sequence.

The Lempel Ziv Welch (LZW) data compression algorithm maintains an explicit dictionary

of recently used strings. The dictionary initially contains only the single symbol sequences for all

symbols. The coding proceeds by finding the longest sequence in the dictionary that matches the

next symbols to be coded. The dictionary is grown by adding a new sequence consisting of the old

sequence with the addition of the symbol that follows it (as determined by the decoder once the

next sequence is received). In this way, the dictionary has a 'prefix closed' property whereby the

prefix of every sequence in the dictionary is also in the dictionary. Thus the encoder and decoder

can both build the same dictionary automatically without it being explicitly sent. The dictionary

can be reset or frozen by the compressor. Compuserve’s Graphical Interchange Format (GIF) uses

the LZW compression algorithm on the pixel values in the image in standard left to right, top to

bottom raster-scan order.

Since GIF uses a 1-dimensional coding, horizontal patterns are effectively compressed but

vertical patterns are not; while horizontally adjacent pixels appear consecutively in the scan order,

vertically adjacent pixels are separated by large gaps consisting of the rest of the pixels in the line.

For instance, a solid blue horizontal line appears as several consecutive blue pixels while a solid

blue vertical line would cause several isolated instances of blue pixels, separated by the scan line

width. Additionally, a text character would have to represented as many horizontal patterns

instead of a single two-dimensional pattern. The method described in this chapter overcomes both

of these shortcomings.

89

The Lempel Ziv 77 (LZ77) data compression algorithm works by considering the data to be

encoded as the dictionary. Instead of specifying sequences as indexes into a dictionary, the

sequences are specified as parts of the data stream which have already been coded by sending their

“length” and “distance”. For example, a sequence could be specified as “17 symbols starting 34

symbols from the last symbol coded” where its length would be 17 and its distance would be 34.

Additionally, single symbols can be coded in case they are not present in the recent history. Porta-

ble Network Graphics (PNG) [59] combines LZ77 with Huffman coding [39] of the length and

distance parameters to more compactly code common values. Additionally PNG performs sub-

byte pixel packing so that for images with 1, 2, and 4-bit pixels, multiple pixels are joined into one

byte before compression. As with GIF / LZW, horizontal patterns are effectively compressed but

vertical patterns may not be and would thus suffer from the same problems. PNG performance

typically outperforms GIF by 10-30% and additionally has improved progressive display capabili-

ties and patent-free status.

8.3.2. Two-Dimensional Statistical Techniques

Statistical prediction has been effectively used to compress images by using a context

around a given pixel to predict its value. When the value is often the same as the predicted value,

little additional information must be sent and low coding rates can be achieved.

The Joint Bi-Level Image Processing Group’s JBIG codes pixels in a bi-level image using a

10 or 12 bit context and arithmetic coding [4,43,61]. The neighboring pixels are used to estimate a

probability distribution for the current pixel. This distribution dictates the codes to be used for 0

and 1 pixel values. Using arithmetic coding, codes can be fractions of a bit. If a particular pixel is

predicted as being more likely to be a 0, the 0 code will be shorter than one bit in length while the

1 code will, by necessity be greater than 1 bit. In this way, if the prediction comes true, only a

fraction of a bit will be required for the pixel. When the prediction is not correct, a pixel will

90

require more than one bit. The more skewed the probability, the shorter the “likely” code is and

the longer the “unlikely” code is. Additionally, the “likely” code will occur more often and the

“unlikely” code will occur less frequently. The combination of these two effects results in fewer

total bits being required for coding. JBIG can be applied to grayscale or pseudo-color images

using bit-plane decomposition. As will be shown in Section8.7. and Figure 8.12, this can lead to

redundancy and poor coding when a similar structure appears across several bit-planes. However,

despite this problem, JBIG performs well on both bi-level and color images. Its performance is

particularly impressive on scanned and dithered images.

While JBIG uses statistics adapted over the entire image, each pixel must be coded individ-

ually. This is to be contrasted with the dictionary based techniques which can code entire

sequences of pixels using a single code word. For instance, for a single character to be coded by

JBIG, a code for each pixel has to be specified. While each code could be a fraction of a bit in

size, this is to be contrasted to 1-dimensional dictionary-based techniques where roughly one code

would be required per scanline of the character or a 2-dimensional dictionary-based technique,

such as that in this chapter, where one code would be required per entire character or for several

characters.

The Piecewise-Constant (PWC) image model [6] extends statistical coding beyond bi-level

images. In this model, arithmetic coding is used to code the pixel colors of a palette image by pre-

diction based on neighboring pixel colors. It assumes a model that images consist of small regions

of pixels of the same color. The statistical framework is constructed through the use of four per-

pixel questions:

• Q1: Is the current pixel’s color identical to that of a specified rectilinear connected neighbor?

• Q2: Is the current pixel’s color identical to that of a specified diagonally connected neighbor?
• Q3: Is the current pixel’s color identical to a guessed value?
• Q4: What is the current pixel’s color?

91

Using context-based arithmetic coding, the answers to these questions can be coded effi-

ciently. As soon as one question is answered affirmatively for a given pixel, the other questions

need not be answered. Q1 and Q2 exploit the fact that pixels are often the same color as neighbor-

ing pixels while Q3 exploits the fact that often in a region a small set of pixels are used. In this

way a “guess” pool is kept of recently seen pixel colors1. Finally if Q1 through Q3 are all

answered negatively, another method, such as linear prediction, must be used to answer Q4. Since

statistical methods are employed, dithered images can be coded efficiently. However, as with

JBIG, global statistics are used but each pixel must be coded individually.

Other approaches to bi-level image coding have focused on the subset of images consisting

of primarily typed or printed text [18,38]. Image segmentation into “marks” is used to locate and

individually code the characters. The residual is then coded in a lossy or lossless manner. While

this allows full two-dimensional matching, this explicit segmentation limits the class of applicable

images to those similar printed text. (Non-segmentable regions can be coded using other tech-

niques.) Additionally the size of the segments is typically limited to single characters, reducing

potential coding gains compared to using larger regions. The segmentation is required to make the

matching computationally feasible by restricting the pattern matching to occur at fixed “mark”

boundaries.

8.4. Flexible Automated Block Decomposition

In order to obtain high lossless compression rates, it is necessary to determine and exploit

the redundancy found in the input image. While GIF and PNG implicitly assume that the redun-

dancy is one-dimensional, and JBIG and PWC code pixel-by-pixel, assuming some local two-

dimensional redundancy as well as global statistical redundancy, it is apparent from looking at

1. This is similar but developed independently from the color age notion introduced in Section8.6.2.1..

92

synthetic images that much block-level global two-dimensional redundancy is present - whole

blocks are repeated throughout the image. These blocks may be in the form of text or shapes.

Additionally, large solid blocks are a form of redundancy and their efficient coding can aid com-

pression.

The FABD algorithm, described in this chapter, decomposes an input image into two-

dimensional blocks by scanning the image from left to right, top to bottom and dividing the image

into a set of three types of blocks:

1. Copied blocks
2. Solid fill blocks
3. Punts

Figure 8.1 shows a typical image with the three types of blocks. Copied blocks (shown in

with vertical lines) are regions of the image which appear verbatim before the current location. No

restrictions are placed on the size or location of the source and destination blocks except that the

start of the source block must appear before (above or on the same line and to the left of) the start

FIGURE 8.1. Typical image and its redundancies.
The vertical lined blocks are copy blocks, the horizontal lined blocks are fill blocks,
and the hashed block is a punt.

93

of the destination block. Solid blocks (shown with horizontal lines) are regions in the image which

consist of a single color. Finally, punts (show with hashed box) are the areas in the image which

do not fall into either of the first two categories. This decomposition can lead to efficient coding if

the blocks are large such that a small number of blocks are required to represent an image. By

parameterizing the image in terms of these three types of blocks, efficient entropy coding is possi-

ble.

Decomposition proceeds in a greedy manner from the top-left of the image to the bottom-

right until all pixels have been accounted for. The area currently being classified is called the des-

tination region . For copies, the location being copied from is called the source region . The desti-

nation region is increased in size until it no longer is consistent with a solid fill or block copy. All

width and height combinations are tried to maximize the number of uncoded pixels covered by the

block. Since the regions are arbitrarily sized rectangles, overlap is possible. Once a pixel has been

covered by one block, it is neither advantageous nor detrimental to recode it.

Figure 8.2 shows the result of automatic block decomposition. Pixels in a block denote pix-

els from the same copy or fill block though the particular colors are not important. For copies, the

source of the copies is not shown and for fills, the color is not shown. Punted pixels are shown in

white. The decomposition leads to average block sizes of 200-400 pixels so that a compression

rate of 0.1 bpp can be achieved if the blocks can be coded at 20-40 bits per block. Typical images

result in only about 1% pixels punted which, even at a coding of 3 bits/pixel, only accounts for

0.03 bits/pixel.

94

8.5. Accelerating the Search

While it may be evident that the previously described decomposition could lead to effective

compression, it is not immediately clear that it can be done in a timely manner. As stated, the

algorithm requires a full block search over the entire image for each pixel coded, requiring

W2*H2*BlockSize comparisons and supporting instructions. For a 1000x1000 pixel image with

an average block size of 200 pixels, 2*1014 comparisons would be required, which on a 100MIPS

machine would take several weeks. However, the BlockSize factor drops out since search is only

performed on pixels not yet coded, reducing the time to several hours. This is still not acceptable

for many applications. The optimizations described in this section reduce the time to a matter of

seconds.

Typically implementations of a GIF encoder [57] compress at rates of approximately 200-

400 kilo-pixels per second (kps) on a Sun UltraSparc 2 . For the 1000x1000 pixel image, this results

in compression in 2.5 to 5.0 seconds. Without optimization, the FABD algorithm would code at

FIGURE 8.2. Automatic block decomposition.
Solids blocks denote regions of same copy or fill. White pixels are punts.

95

approximately 0.1kps. However, using the four optimizations presented here, the rate can be

increased to that of GIF, 200-400kps.

8.5.1. Big Fill, No Copy Search

For large solid regions, the search for a copy match is not necessary since the solid regions

can be coded quite efficiently as fills, and thus coding them as copies yields little benefit. Addi-

tionally, the search is likely to be lengthy since the solid regions are likely to match a large portion

of the destination region. In regions covered by fill blocks of at least 20 pixels in width or height

or 50 pixels in area, the copy search can be suppressed with negligible loss in compression. This

typically increases the compression speed by a factor of 5 to a rate of 0.5kps.

8.5.2. Fast Match Lists

Although blocks can be any size, most useful blocks are larger than some minimum size

such as 4x4. Otherwise stated, a source location is only worth investigating if a 4x4 region

anchored by the source matches a 4x4 region surrounding the destination location. A minimum

size of 4x4 was empirically determined to have a negligible effect on compression performance

while increasing speed. Larger minimum sizes can result in faster compression, but lower effi-

ciency.

To exploit this observation, the following optimization is performed: First, all overlapping

4x4 blocks in the image are categorized by pattern by placing all 4x4 blocks of the same pattern in

fast match lists. The lists are sorted in reverse raster-scan order (bottom to top, right to left). Next,

block decomposition is performed. However, to perform the copy search for each destination, it is

no longer necessary to search over all possible source locations. Instead it is sufficient to search

96

over those with the same initial 4x4 block, saving much time1. Using the fast search lists reduces

the search time from 30 minutes to between 10 seconds and 10 minutes depending on the image.

The fast match lists must be generated quickly. An efficient way to represent the match lists

is to create a list of all used 4x4 patterns and associate with each member of this list another list of

pointers to where the patterns are used in the image. (See Figure 8.3.) The list of patterns is called

a head list while the patterns themselves are called heads. These heads form the beginning of

match lists which link the destination locations together.

To generate the list of lists, the image is scanned from left to right, top to bottom. The 4x4

pattern at each pixel is compared to each of the heads, and if it matches, the pixel’s location is

prepended to the beginning of the head’s match list. If it does not match any, a new head is created

with the pattern.

The heads are kept sorted in order of last match so that if a pattern repeats, it will be found

quickly. Hashing functions allow the head list to be split into multiple shorter head lists using a

14-bit hash on the value of the 4x4 pixel patterns (see Figure 8.4). These optimizations allow the

fast match list to be generated in a second or two for typical images.

1. Note that the degenerate case of large solid regions is handled by the optimization of Section8.5.1.

Heads

Top of screen = bottom of lists

(Pattern Info)

Match Lists
(list matching dest blocks)

(7, 42)

(23, 34)

(0, 0)

(17, 72)

(1, 0)

(65, 52)

(2, 0)

(3, 0)

FIGURE 8.3. Match lists used for fast match.
Four patterns are shown horizontally and the locations they are found in the image are
shown vertically.

97

The net result of the fast-match lists is a speedup of 3-200x to yield a typical coding rate of

1.5 kps to 100 kps. The wide variation is due to the dependence of the search time on the input

image. In particular, if there are many blocks with the same 4x4 patterns, the block matching can

take significantly longer.

8.5.3. Bounded Search Depth

Every candidate location in the list has a high probability of yielding a block copy match.

Since the fast match lists are ordered from bottom to top, physically closer candidates will be

Top of screen = bottom of lists

Match Lists
(list matching dest blocks)(7, 42)

(23, 34)

(0, 0)

(17, 72)

(1, 0)

(65, 52)

(2, 0)

(3, 0)

Hash0 Hash1 HashN

Hash Table

FIGURE 8.4. Hashed match lists - the two pairs of patterns each hash to the same

Max Search
Depth

Screendump
bits/pixel

Screendump
compress

time

Paper5
bits/pixel

Paper5
compress

time

10 0.144 bpp 2.6 sec 0.108 bpp 3.9 sec

50 0.128 bpp 2.9 sec 0.086 bpp 4.6 sec

100 0.126 bpp 3.2 sec 0.083 bpp 5.4 sec

200 0.125 bpp 3.6 sec 0.080 bpp 6.2 sec

500 0.124 bpp 4.4 sec 0.078 bpp 7.9 sec

1000 0.124 bpp 5.2 sec 0.078 bpp 9.4 sec

100000 0.123 bpp 34.4 sec 0.077 bpp 82.6 sec
TABLE 8.1. Effect of search depth limits on compression time and rate

98

searched first. As the compression time is largely determined by copy block search time, it allows

a trade-off between compression time and resultant bit rate. Limiting search depth proves to be

very effective in reducing the compression time while not noticeably impacting the compression

rate. Limiting also prevents troublesome regions in the image from taking too long. A limit of

1000 does not sacrifice compression while keeping the compression time usually well under a

minute. Limits as low as 50 dramatically reduce the compression time while only minimally

impacting the compression rate. Table8.1 shows the effect in terms of compression rate and time

of different limits on two typical images. The results in Section8.7. are given for limits of 100 and

1000. As compressed data is generated on the fly, the limit could be dynamically varied to match

compute time and compressed data rate on an outgoing channel for interactive applications. The

bounded search depth results in a speedup by a factor of 1.5 to 50 yielding a coding rate of 75kps

to 150 kps. Thus the coding rate becomes much less image dependent.

99

8.5.4. Coarse / Fine Matching

The time to perform the block search can be further reduced by using fast-match lists of

Section8.5.2. to perform the actual block comparisons (as well as specifying which blocks should

be compared as just described.) Recall that the fast-match list membership of a given block

uniquely determines the colors of the 4x4 pixels at a given area. Thus a comparison of the per-

block fast-match list pointer can be used to quickly compare the entire 4x4 blocks. A two-stage

process is used whereby a first coarse pass grows all candidate regions 4x4 pixels at a time in order

to get the best match size (modulo 4) in a fraction of the time. (See Figure 8.5.) Then once the

best coarse match is found, a refinement pass determines the exact size of the largest match. In

this way the pixel-level comparison needs only be performed for one block instead of many,

resulting in a speed increase by a factor of 1.5 to 3 to yield a net coding rate of 200-400kps, which

is similar to one-dimensional decompositions such as LZW and LZ77 used in GIF and PNG.

Although the final block size accuracy is not compromised due to the refinement pass, the best

match determined by the coarse phase could in some cases not be the true best match which would

FIGURE 8.5. Coarse / fine matching.
The solid boxes represent 4x4 tiles that match exactly via coarse match while the
striped boxes represent regions of partial matches which would only be found through
refinement. The coarse match reveals 16x8 pixel match while refinement grows it to
18x11 pixels

100

result in a non-optimal choice of blocks. However, results show that the impact on compression

performance is typically less than 1%.

8.6. Entropy Coding Techniques

The block decomposition stage generates a parameterization of the input image in terms of

block copy, fill, and punt primitives. Although there are many fewer blocks than pixels, these

parameters still have to be coded efficiently. This is the job of the entropy coder. A simple

entropy coder based on Huffman codes was used to verify the potential utility of the two-dimen-

sional flexible block decomposition. More sophisticated entropy coders could result in further cod-

ing gains.

8.6.1. What to Code

The block decomposition generates the following three types of primitives:

 CopyBlock(dest_x, dest_y , width, height, src_x, src_y)
 SolidBlock(dest_x, dest_y, width, height, color)
 PuntBlock(dest_x , dest_y , numPixels, pixel1, pixel2, ..., pixelN)

The dest_x and dest_y fields are not transmitted as they are implicit in the order that the data

is transmitted. For copy blocks, the dimensions and source location have to be transmitted, for fill

blocks the dimensions and color have to be transmitted, and for punt blocks the punted pixel val-

ues have to be sent.

8.6.2. Transforming the Parameters

While the block decomposition is a transformation of the pixel data into a new parameter

space, which results in more efficient coding, additional transformations of the parameters aid in

entropy reduction. A few transformations will be discussed here.

101

8.6.2.1. Color Age

The input images consist of 8-bit pseudo-color pixels. The colors of punted pixels, and to

some extent filled blocks, exhibit a large degree of spatial locality. It is common for only a few

unique colors to be used in a given region. Text regions typically use only two colors. However,

throughout the image, different sets of colors might be used. Thus it is beneficial to code a relative

property of the colors instead of the colors themselves. Given a stream of pixel colors:

 red, blue, brown, brown, brown, red, brown

the color age is the number of unique colors present between a given instance of a particular

color and the previous instance of that same color. In the above case the color ages are:

 red=?, blue=?, brown=?, brown=0, brown=0, red=2, brown=1

It is not possible to determine the color age of the first three colors since they depend on the

previous colors encountered. To initialize the system, the color history is set such that the initial

color age of each color is its pixel color.

As evidence of the utility of the color age technique, using adaptive Huffman coding, the

average number of bits to encode the fill and punt colors in the screendump image drops from 3.63

and 3.05 using the actual colors to 2.03 and 1.62 using color age1.

8.6.2.2. Relative Copy Source

Spatial locality suggests that blocks will often be copied from nearby regions. Thus, the rel-

ative sources will be small and non-uniformly distributed, and hence have lower entropy. Addi-

tionally, many images, particularly ones with text, have significant spatial structure that can be

modeled by coding the source location relatively. For the screendump image, coding the source x

1. Lempel-Ziv compression of punted pixels did not appear to yield better compression.

102

coordinate relatively reduces its entropy from 7.58 bits/pixel to 7.26 bits/pixel and coding the

source y coordinate relatively reduces its entropy from 7.41 bits/pixel to 5.56 bits/pixel.

8.6.3. Huffman Coding

After the parameters are transformed, conventional entropy coding techniques are used to

exploit the skewed probability distributions present. Adaptive Huffman codes are used since the

alphabet sizes are large enough not to require arithmetic coding. The various parameters are coded

independently. Joint coding of height and width did not perform as well due to undersampling

effects: when pairs of parameters, such as block width and height, are considered jointly, there are

more unique symbols, and thus the overhead of introducing new symbols is greater. Using joint

coding, the number of symbols is proportional to the product of number values of each parameter

while using independent coding, the number of symbols is proportional to the sum. Joint coding

might be more advantageous for large sample sets (i.e. large images) and if there was a strong cor-

relation between two parameters.

8.7. Results

The FABD algorithm was evaluated on several images which typify the class of images

described in Section8.2.1. Calculator , textedit, paper, and screendump, shown in Figure 8.6, are

discrete-tone snapshots of the type used in remote computation. The first three show single appli-

cations while screendump shows a number of applications running. These images stress the com-

pression algorithm on both simple and complex images. Paper5, paper5_big , and paper9, shown

in Figure 8.7, are bi-level images generated from PostScript files, differing in density and con-

tent which will allow performance variations over varying image detail to be analyzed. Paper5

contains a typical page of text in a proportional font at 130dpi while Paper5_big contains the same

103

text rendered at 200dpi. Paper9 is a simple circuit schematic rendered at 150dpi. Finally,

screendump2 and netscape , shown in Figure 8.8, are primarily discrete-tone images that have

Textedit

Calculator

Screendump Paper

FIGURE 8.6. Discrete-tone pseudo-color test images

Paper5 / Paper5_big Paper9
FIGURE 8.7. Bi-level test images

104

some sizable continuous-tone regions. These are useful to analyze performance of the algorithm

on images not completely in the anticipated domain.

The compression levels obtained by FABD, GIF, PNG, JBIG, and PWC are shown in Fig-

ure 8.9 and Table8.2. The ratios indicate FABD’s compression advantage over the other tech-

niques. The top and bottom FABD results for images correspond to maximum search depths of

FIGURE 8.8. Hybrid discrete / continuous tone test images

Screendump2 Netscape

Compression Rate Comparison

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

Calc

ne
tsc

ap
e

pa
pe

r

pa
pe

r5

pa
pe

r5_
big

pa
pe

r9

scr
ee

nd
um

p

scr
een

dum
p2 tex

ted
it

Image

C
o

m
p

re
ss

io
n

 R
at

e
(B

it
s

/ P
ix

el
)

GIF

PNG

JBIG

PWC

FABD100

FABD1000

FIGURE 8.9. Graph of compression rates for various techniques.
FABD100 and FABD1000 refer to FABD using maximum search depths of 100 and
1000 respectively.

105

100 and 1000 respectively. A depth of 100 typically sacrifices at most 10% of the compression

obtained using a depth of 1000. Table8.3 shows the time required by the techniques to compress

the images. The breakdown of the bit usage for FABD coding of each image is shown in

Table8.4.

Since FABD is non-progressive, the JBIG compression was also performed in the non-pro-

gressive mode which delivers better compression than the default progressive mode. The JBIG

bitplane decomposition is shown in Table8.5.

FABD GIF PNG JBIG PWC

Bpp Bpp Ratio Bpp Ratio Bpp Ratio Bpp Ratio

calculator
(456x298)

0.176
0.446

2.540
0.177

1.010
0.228

1.298
???

???
0.177 2.525 1.004 1.290 ???

paper
(836x993)

0.091
0.283

3.127
0.242

2.673
0.102

1.128
0.115

1.272

0.091 3.104 2.653 1.119 1.263

screendump
(1152x900)

0.124
0.467

3.767
0.309

2.497
0.177

1.430
0.146

1.181
0.126 3.711 2.460 1.408 1.163

textedit
(593x646)

0.064
0.238

3.720
0.168

2.629
0.080

1.246
0.081

1.271
0.064 3.705 2.618 1.241 1.266

paper5
(1132x1465)

0.078
0.310

3.966
0.241

3.082 0.125 1.599
0.251

1.607

0.083 3.733 2.901 1.506 1.513

paper5_big
(1675x2168)

0.044
0.248

5.675
0.182

4.162
0.086

1.970
0.087

1.987
0.048 5.169 3.791 1.794 1.810

paper9
(1245x1611)

0.029
0.154

5.323
0.056

1.951 0.026 0.888
0.025

0.869
0.031 4.926 1.806 0.822 0.804

netscape
(741x938)

0.426
0.717

1.684
0.537

1.263
0.651

1.529
0.352

0.827

0.427 1.680 1.260 1.525 0.825

screendump2
(1152x900)

0.650
1.166

1.794
0.794

1.221 1.252 1.925
0.526

0.809
0.652 1.789 1.218 1.921 0.807

TABLE 8.2. Compression rates for various techniques.
The top numbers in each pair correspond to FABD max depth of 1000 while the
bottom correspond to a FABD max depth of 100. The ratio is the other method’s
coding rate divided by FABD’s.

106

It is readily apparent that the algorithm outperforms the one-dimensional dictionary-based

techniques GIF and PNG on all images, dramatically so on most images. FABD outperforms the

two-dimensional statistical JBIG on all but one image and PWC on all but three images. It is

worthwhile to discuss the performance on the images grouped by type of image.

FABD outperforms GIF on the discrete-tone images calculator , paper, screendump, and

textedit by a factor of 2.5 to 3.8 due to its ability to exploit the two-dimensional redundancy. It

similarly out compresses PNG by a factor of about 2.5 on three of the four images. However, its

compression is similar to PNG on the small calculator image as it cannot find many large two-

dimensional regions. It compresses 12% - 43% more efficiently than JBIG and 16% - 27% more

FABD 100 FABD 1000 GIF PNG

Time
(Sec)

Rate
(Pix/Sec)

Time
(Sec)

Rate
(Pix/Sec)

Time
(Sec)

Rate
(Pix/Sec)

Time
(Sec)

Rate
(Pix/Sec)

calculator
(456x298)

0.4 340,000 0.8 170,000 0.3 450,000 0.4 340,000

paper
(836x993)

2.5 33,0000 4.6 180,000 2.3 360,000 2.1 400,000

screendump
(1152x900) 3.2 320,000 5.2 200,000 2.9 360,000 3.2 320,000

textedit
(593x646)

1.1 350,000 1.6 240,000 1.1 350,000 1.1 350,000

paper5
(1132x1465)

5.4 310,000 9.4 180,000 4.3 390,000 7.4 220,000

paper5_big
(1675x2168) 10.4 350,000 18.0 200,000 9.8 370,000 18.4 200,000

paper9
(1245x1611)

4.8 420,000 7.2 280,000 5.5 370,000 10.1 200,000

netscape
(741x938)

2.3 300,000 3.9 180,000 1.9 370,000 2.1 330,000

screendump
2

(1152x900)
4.4 240,000 6.4 160,000 2.9 360,000 3.2 320,000

TABLE 8.3. Compression times for dictionary-based techniques on 168Mhz Sun Ultra 2.

107

Total
Rate
(bpp)

Copy Blocks Fill Blocks Punt Pixels

Blocks
Ave
Size
(bits)

Net
Effect
(bpp)

Blocks
Ave
Size

(bits)

Net
Effect
(bpp)

Pixels
(% of
total)

Ave
Size

(bits)

Net
Effect
(bpp)

calculator
(456x298)

0.176 357 22.67 0.060
(34%)

398 12.30 0.036
(20%)

3439
(2.5%)

2.36 0.060
(34%)

paper
(836x993)

0.091 1652 27.73
0.055
(60%)

899 13.51
0.015
(16%)

4897
(0.6%)

2.29
0.014
(15%)

screendump
(1152x900) 0.124 2233 25.97

0.056
(45%) 1818 13.83

0.024
(19%)

15591
(1.5%) 2.21

0.033
(27%)

textedit
(593x646)

0.064 429 27.22 0.030
(47%)

349 14.91 0.014
(22%)

2077
(0.5%)

2.56 0.014
(22%)

paper5
(1132x1465)

0.078 3283 28.48
0.056
(72%)

1563 12.22
0.012
(15%)

4822
(0.3%)

1.75
0.005
(6%)

paper5_big
(1675x2168) 0.044 3900 29.88

0.032
(73%) 1787 13.17

0.006
(14%)

4972
(0.1%) 1.78

0.002
(5%)

paper9
(1245x1611)

0.029 1237 28.92 0.018
(62%)

855 14.81 0.006
(21%)

2619
(0.1%)

1.91 0.002
(7%)

netscape
(741x938)

0.426 1352 25.25
0.049
(12%)

1701 14.17
0.035
(8%)

48636
(7.0%)

4.57
0.320
(75%)

screendump2
(1152x900) 0.650 2544 25.64

0.063
(10%) 2769 15.14

0.040
(6%)

128113
(12.4%) 4.26

0.527
(82%)

TABLE 8.4. Bit breakdown for FABD 1000.
Note that the results relating to copy and fill are per block while the punt is per pixel.
Fraction of contribution that is not copy, fill, block is overhead associated with block
type, colormap, etc.

Total
Rate

K bytes in
Bitplanes

Total
Rate

K bytes in
Bitplanes

calculator
(456x298)

0.228 bpp
1.3 / 1.1
1.1 / 0.2

paper9
(1245x1611)

0.026 bpp 6

netscape
(741x938) 0.651 bpp

11 / 7 / 6 / 6
7 / 6 / 6 / 7

screendump
(1152x900) 0.177 bpp

12.8 / 3.8 / 3.1
 1.8 / 1.5

paper
(836x993)

0.102 bpp 0.5 / 0.5 / 9.5 screendump2
(1152x900)

1.252 bpp 22 / 19 / 20 / 19
21 / 21 / 22 / 19

paper5
(1132x1465)

0.125 bpp 26
textedit

(593x646)
0.080 bpp 3.3 / 0.2 / 0.3

paper5_big
(1675x2168) 0.086 bpp 39

TABLE 8.5. JBIG Bitplane decompression

108

efficiently than PWC on these images based on JBIG and PWC’s inability to code multiple pixels

at once. The JBIG bit-plane decomposition of screendump is shown in Figure 8.10. As can be

seen from the figure as well as Table8.5 , most of the information is, by chance, in bitplane 0 so

there is not too much redundancy across bit planes and JBIG has a chance at efficient coding.

However, quite often text and other structures will be striped over multiple planes if its foreground

and background colors differ in more than one bit. In these cases, JBIG will be less efficient.

FABD allows 3.7 to 5.6 times more compact coding than GIF and 1.8 to 4.2 times more

compact coding that PNG on the bi-level images paper5, paper5_big , and paper9. PNG’s superior

bit-packing compared to GIF is probably responsible for much of the difference in the results of

the two techniques. However, since there is a significant amount of two-dimensional repetition,

FABD outperforms both. FABD outperforms JBIG on paper5 and paper5_big due to its ability to

exploit the repetitive patterns in the image at a high level. While JBIG efficiently models each

pixel, FABD spots letters, words and sometimes phrases that are used more than once. As the res-

olution is increased, the compressed file size does not increase dramatically since the number of

blocks remains roughly constant. The number of pixels more than doubled but only 15% more

blocks are required. JBIG very slightly outperforms FABD on paper9 because paper9 is so sim-

ple, consisting of mostly horizontal and vertical lines, which JBIG can very accurately model at

FIGURE 8.10. Bitplane decomposition of screendump image.
Original is on far left while the monochrome images formed from each of the 5 bit-
planes are shown to its right. The bit planes account for 12.8k, 3.8k, 3.1k, 1.8k, and
1.5k bytes of the JBIG image respectively.

109

the pixel level. PWC performs similarly to JBIG since in the case of bi-level images, the two tech-

niques are roughly equivalent.

JBIG is tailored to bi-level images so it is notable that FABD can achieve better compres-

sion on this class of images. However, JBIG is well suited for scanned and/or half-toned images as

well, which FABD will not compress as compactly. These types of images have a probabilistic

regularity but low deterministic regularity. Most of the pixels can be predicted correctly but, many

cannot. Thus JBIG will incur a coding penalty for the wrong pixels but FABD will have to reduce

the size of the entire blocks, effectively incurring a penalty on all of the pixels in the block.

Lastly, netscape and screendump2 are primarily discrete-tone color images with some siz-

able continuous-tone regions. FABD is still able to outcompress GIF and PNG on these images

due to its improved performance in the discrete-tone parts of the image. As seen in Table8.4,

approximately 80% of the FABD bits are used for the 10% of the pixels which are punted. The

continuous regions of the images do not lend well to block matching and are thus punted. Figure

8.11 shows the block decomposition of screendump2 with punted pixels shown in white. In

screendump2, each punted pixel requires more than 4 bits to code. Since typically punts are rare, a

FIGURE 8.11. Block decomposition of screendump2 image.
The white regions represent punted pixels.

110

simple coder was used but for improved coding of hybrid images, a more sophisticated technique

could be used such as lossless JPEG, or possibly even a lossy coding. FABD still outperforms

JBIG by a factor of 1.5 to 2 on these images due to the fact that the images do not split well across

bit-planes, as seen in Figure 8.12. Additionally, the continuous regions are not well suited to JBIG

compression. However, the continuous regions are exactly what PWC is designed for and thus it

can code in 20% fewer bits than FABD.

8.8. Conclusion

This chapter describes how two-dimensional global structure can be effectively exploited to

achieve efficient coding of discrete-tone images. While GIF and PNG are limited to one-dimen-

sional global structure and JBIG and PWC only use a local context, FABD is able to obtain the

best of both. Due to FABD’s lossless nature, efficient matching is possible. The two-dimensional

flexible automatic block decomposition provides a different method of compressing images which

outperforms one-dimensional dictionary and two-dimensional statistical techniques on many

images, and could be combined with more sophisticated entropy coding techniques to achieve

even greater performance.

FIGURE 8.12. Bitplane decomposition of screendump2 image.
Original is in center while bitplane images surround it.

111

CHAPTER 9 Development & Analysis
Environment

9.1. Introduction

Many of application-independent compression techniques described in this part of the thesis

were prototyped in the context of the InfoPad project, previously described. This chapter

describes the development and analysis environment created during the InfoPad project which was

used to develop, debug, analyze, and improve the algorithms previously presented, as well as fur-

ther the research of others in the InfoPad research group working on topics ranging from wireless

networking protocols to CMOS high-bandwidth radio design.

The design environment allowed full development of the software infrastructure and appli-

cations before the actual InfoPad hardware was deployed. In this way, the hardware and software

development could proceed concurrently. Additionally, debugging hooks in the system allow

emulation and analysis in the software domain that would be more difficult or impossible using the

actual hardware system.

112

9.2. Networking Environment

Figure 9.1 shows the InfoPad development environment. Standard Unix / X applications

shown on the far left communicate with InfoPad-specific type-servers which translate the standard

protocols into InfoPad-specific protocols. The type-servers operate on different types of data: pen,

audio, video, and text / graphics, and are described in sections that follow. The type-servers com-

municate the InfoPad-specific data over the InfoNet networking infrastructure. InfoNet manages

tasks such as routing and hand-off of networking data as well as overall pad state maintenance,

tracking and control. A nameserver database manager is used to keep track of the state of various

components in the system, including versioning information as well as operational status. The

InfoNet networking layer is typically overlaid on top of standard TCP/IP to allow the InfoPad net-

work to run on multiple machines.

Remote terminals or “pads” can connect in one of two ways as shown on the right side of

the figure. Hardware pads connect wirelessly through hardware / software basestations. The base

stations connect to the rest of the network via standard IP protocols and to the wireless pads

through custom or commercial radios[49]. Each basestation is responsible for a particular cell and

Base
Station

InfoPad
Video
Server

Application
Audio
Server

InfoPad
XEmulator

Ultra2Sun

X

Network
(InfoNet)

Application

T
cl/T

k

InfoPad-
Specific
Protocols

FIGURE 9.1. InfoPad development environment

Text /
Graphics
Server

Pen
Server

113

as hardware pads migrate between cells, their connections are handed off via InfoPad-specific cell-

servers and gateways.

Alternatively, an all-software environment can be used by connecting to InfoNet with a

software InfoPad Terminal Emulator described below. The emulator uses the same protocols as

the hardware pads, allowing the type-servers and InfoNet to operate exactly as if a hardware pad is

in use. However, the emulator displays its data on any X Window terminal, allowing greater avail-

ability. Debugging and analysis hooks allow performance characterization and emulation control.

9.3. Emulator

The InfoPad terminal emulator, shown in Figure 9.2, allows emulation of the InfoPad hard-

ware terminals, debugging of the InfoPad software components, and analysis of protocol and sys-

tem performance1. The emulator connects to the InfoPad network just as hardware terminals via

basestations do, but instead presents its user interface to any X Window terminal. The emulator

supports text / graphics, video, audio, and pen traffic as well as control messages. Several pop-up

windows described below control detailed aspects of the emulator operation.

The emulator is written as a hybrid C / Tcl/Tk application where Tcl/Tk code controls the

user interface and high-level control, and underlying C code is used to interface to InfoNet and

perform per-packet time-critical processing. This allows the flexibility and rapid prototyping

capabilities of Tcl/Tk with the low-level processing power of C.

1. The emulator was originally developed by Brian Richards.

114

FIGURE 9.2. InfoPad terminal emulator

115

9.3.1. Operation

The main window shown in Figure 9.2 emulates the text / graphics display as will be

described below in the next section. Below that are controls which give the user control beyond

that which the pad hardware supports.

On the right, the user can select which gateway and pad server number they want to connect

to. The “GATEWAY:” pull-down menu queries the name server to see which gateways are cur-

rently running and displays their numbers and the version of the gateway code that they are run-

ning. If the gateway or cellserver are down, this is indicated. The “PAD SERVER:” pull-down

menu queries the nameserver to display which pad servers are operational and their versions.

Finally the “TABLET DEVICE:” pull-down allows the user to enter which port the pen tablet is con-

nected to. The “Type:” pull-down menu allows selection of the tablet type and the “TABLET” tog-

gle button controls whether a connection to the tablet is attempted.

The bottom row of indictors show further status information from the nameserver. Its loca-

tion and time it was started are displayed. Below, the status of the currently selected pad, X (text /

graphics), pen, and audio server are displayed. It is retrieved from the Name Server periodically.

When any critical event occurs, such as selecting a new pad server or gateway, the emulator polls

for status more often for a while. The “UPDATE” button forces the status to be reread. The pull-

down menus for “PS VERSION”, “X VERSION”, “PEN VERSION”, and “AUDIO VERSION” control

the version of the respective servers which is used if they are auto-started by connecting to a pad

cluster which is not running. The “KILLPAD” button kills the currently selected pad server, causing

termination of all associated type servers as well.

The user can connect to and disconnect from a pad cluster using the “CONNECT” button.

The “REMOTE REFRESH” button causes the display to be updated. The “MOVE” button forces a

hand-off to a new gateway while the “POLL” button indicates that the emulated receive signal

116

strength has been queried by a cell server. The “OPTIONS”, “TEXT/GRAPHICS”, “TRAFFIC”, “BER”,

“A/V”, “STATS”, “DEBUG”, and “T /G STATS” buttons invoke pop-up display presented below.

9.3.2. Text / Graphics Display Support

The text / graphics data is displayed in the main emulator window. The 640x480 mono-

chrome mode used by the pad hardware is supported. Additionally, color modes of varying size

which support some of the techniques outlined in Chapter 4, Chapter 5, and Chapter 6 are sup-

ported to allow research into future protocols.

The pop-up dialogs shown in Figure 9.3 control various aspects of the operation of the text /

graphics subsystem. The Start-up Options dialog is used to set configuration options which are

sent to the nameserver and passed to the text / graphics servers when they are auto-started. The “X

CONFIG” field is used to set the X configuration file that is used to control pad user and session

preferences. It is used instead of login authentication. The “MODE” controls if the X server is

started in monochrome or a color mode while the “SCREEN SIZE” is used to select the size of the

emulated screen when a color mode is used. When the text / graphics server is running, it periodi-

cally transmits the screen size and mode parameter to the emulator so that the emulated screen size

is adjusted properly. The “RATE LIMIT” and “MAX REFRESH” sliders are used to adjust the initial

rate limiting and refresh rates. These can be adjusted during operation using the traffic control and

monitoring popup described below. The “MAX PACKET SIZE” and “BUFFERED WRITES” boxes are

used to control the packet size and whether the network interface is buffered. The “ INTER-PACKET

DELAY:” slider is used to limit the rate that packets are generated. Finally the “CURRENTLY RUN-

NING:” line indicates the results from querying the name server as to the configuration of the cur-

rently running text / graphics server.

117

FIGURE 9.3. InfoPad emulator text / graphics pop-up controls.
Top-left is the text / graphics start-up options dialog, top-right is the text / graphics
statistics dialog, and bottom center is the text / graphics control dialog.

118

The text / graphics control dialog controls the current emulated display mode. The emulator

will emulate “MONOCHROME”, “COLORMAPPED 8-BIT”, or “JEFFCOLOR DELUXE” (TGVQ) dis-

plays. The “AUTO DETECT MODE” enables decoding of packets from the text / graphics server

indicating which type of display is being used. The “GAMMA:” box allows the gamma correction

factor to be applied to the of the emulated screen data to be entered. Gamma correction is applied

on-the-fly. The “INVERT PROTECTED PKTS” and “INVERT REGULAR PKTS” buttons allow regular

or protected packets to be inverted on the screen for easier identification. Recall that the protected

packets are those which are used for asymtotic reliability refresh, have higher forward error cor-

rection applied, and are dropped if an error is detected in their data.

Emulation of a terminal window which could potentially contain any configuration of colors

on an X Window display possibly with limited 8-bit colormapped display requires on-the fly map-

ping of colors. The Local Color Visual section allows the user to select the mode that the emulator

text / graphics X Window is displayed. The basic problem is that the emulated terminal screen can

potentially contain any color. However, since the emulator runs as a standard X Window applica-

tion, it cannot be guaranteed to be able to render all colors. The Local Color Visual box allows the

user to select the mode that the screen should be emulated. The emulator can run on 8-bit color-

mapped or 24-bit true-color displays. On 24-bit true-color displays, there is not a problem since

any possible color configuration can be rendered since each pixel’s red, green, and blue values can

be individually set. In 8-bit colormapped displays, the emulator can choose to co-exist with other

applications’ colormap requests, in which case it can only use some fraction of the 256 physical

colormap entries, otherwise it can use its own colormap, so it can control all 256 colormap entries,

but the screen will flash when the mouse enters and exits the application since the emulator color-

map is only active when the cursor is in the emulator window. The former is chosen by deselect-

ing the “PRIVATE COLORMAP” box while the latter is chosen by selecting it. If in 8-bit mode, the

“8-BIT STATIC” mode refers to a mode that a static color-cube of specified dimensions is allocated

119

and colors to be displayed are chosen from this color cube. “8-BIT DYNAMIC” mode entails allo-

cating colors as the emulated display needs them, and any colors that cannot be allocated are repre-

sented by the closest color that can be allocated. “8-BIT DYNASTAT” is a hybrid of the two

techniques that first allocates a static color-cube and then allocates additional requested colors

dynamically. In this way, a fixed base set of colors will always be present, but often exact matches

will be possible. Finally the “X SHARED MEMORY” button indicates if the X Window shared

memory image transfer protocol should be used. If the emulator is running on the same machine

as the X server it is being displayed on (not to be confused with the text / graphics server servicing

the pad), the X shared memory protocol allows image data to be transferred in shared memory,

avoiding copying throughout the networking subsystem. This reduces the computation load of

rendering, thus allowing higher frame rates.

The “Text / Graphics Statistics” pop-up displays statistics of the text / graphics data

received. The “8-BIT PUTS”, “4-BIT PUTS”, “2-BIT PUTS”, “1-BIT PUTS”, and “BLOCK FILLS”, and

“AVERAGE BITS PER PIXEL” are used for analysis of a compressed bitmap transmission algorithm.

They display the percentage of pixels and blocks that are sent using 8, 4, 2, 1, and 0 bits per pixel

as well as the average bits per pixel. The “UPDATE RATE” indicates the net pixel display rate aver-

aged over the last second, and the “FRAME RATE” indicates the frame update rate achieved calcu-

lated from new-frame packets received from the text / graphics server. The “REGULAR”,

“PROTECTED”, “BOTH” selection indicates which types of update packets the above measurements

apply to.

9.3.3. Audio and Video support

The emulator supports emulation of pad audio input and output as well as VQ-video output

through the Audio / Video pop-up shown in Figure 9.4.. The audio is coded as 8 kHz, 8-bit µ-law

120

PCM coded samples, and is accessed directly through the Sun Workstation’s /dev/audio

device. The uplink and downlink can be individually enabled through the “AUDIO PLAY” and

“AUDIO REC” buttons and an automatic mode is enabled through the “AUDIO AUTO” button,

whereby the audio is enabled as soon as the first downlink audio packet is received. Diagnostic

data is displayed if the “VERBOSE” button is checked.

Low latency audio data, required for synchronized audio and video as well as effective

video conferencing, requires that the number of samples of buffered audio is kept low. The

“DOWNLINK BUFFER S IZE:” box allows the amount of data that is buffered in the emulator and the

/dev/audio device buffer to be limited. If more data than is allowed is queued, the extra data is

dropped, emulating a limited size downlink buffer. By varying the size of this buffer, the effects

of network jitter and packetization can be explored and the requirements of the hardware downlink

audio buffer size can be determined.

The Audio / Video popup also controls the real-time color 128x240 VQ video display. The

actual display of the VQ data is performed by the video utility vq_play described below, but the

emulator is responsible for controlling when vq_play is opened and closed as well as combining

video packets into complete VQ video frames and sending them to vq_play. Thus the use of a

separate stand-alone application for video display is hidden from the user but allows greater mod-

FIGURE 9.4. InfoPad emulator audio / video pop-up dialog

121

ularity and code reuse. The VQ video window is opened and closed via the “VIDEO PLAY” button.

If “VIDEO AUTO” is enabled then the VQ video window is opened whenever VQ video arrives.

The frame rate can be manually limited for performance reasons by entering the maximum desired

frame rate in the “MAXIMUM DISPLAY RATE” box and selecting “VIDEO DROP”. This can be used

to assure that emulation of the video screen does not impact the performance of the other sub-

systems. Frames are dropped to assure that the aggregate rate does not exceed the specified limit.

9.3.4. Traffic Monitoring and Control and Debugging Hooks

Figure 9.5 shows the emulator traffic and debug dialogs which are used to monitor down-

link traffic rates and latencies, optionally limit downlink traffic rates, and monitor uplink traffic

rates. At the top, the rate in packets per second, kilobits per second, and average bytes per packet

are shown for each of the individual uplink and downlink data types as well as the aggregate

uplink and downlink traffic. The text / graphics data is further subdivided into regular and pro-

tected traffic where as previously described, the protected traffic is used for asymtotic reliability

and is dropped if in error.

Below the traffic rate display, a measurement of the latencies of the downlink traffic is pre-

sented. Minimum, average, and maximum latencies over the past second are displayed. This

information is obtained by comparing time-stamps placed in the packets by their senders with the

time that the packets are processed by the emulator. Clock skew, which could occur if the packets

are sent by a different Unix host than the emulator is running on, is removed by assuming that the

lowest-latency packet ever received during the lifetime of the emulator-pad connection will be 0

ms. This is based on the assumption that most delays are due to queuing and not transport delays.

The latency measurements are particularly useful when combined with the downlink rate limiting.

122

The “DOWNLINK RATE LIMIT”, “T/G RATE LIMIT”, and “VIDEO RATE LIMIT” sliders are used

to control the downlink sender rates by sending messages to the gateway, text / graphics server,

and video server (send_vq described below) requesting rate limiting. The sliders are logarithmic

to allow fine control over a large range of rates. The far right position is “unlimited” whereby the

senders are instructed not to limit their data generation.

The Debug Hooks popup is used to expose various debugging hooks in the emulator. In

particular text / graphics packet statistics can be gathered and information about incoming T/G

FIGURE 9.5. Infopad emulator traffic and debug pop-up dialogs

123

packets can be displayed. The Flow Control options allows the user to select if late packets are

dropped as the gateway would drop them for flow control. The “RETRANSMIT SKIPPED PACKETS”

controls if NACK packets are sent back to the sender. Finally “PRINT TIMESTAMP ADJS” displays

the timestamp offsets used to cancel out clock skew. The BER Injection is used in conjunction

with the BER popup window (not shown) which can be used to automatically corrupt the data

stream at a specified Bit Error Rate to observe the effects on protocol reliability.

9.4. Text / Graphics Server

The Text / Graphics algorithms were developed by augmenting an X Window server to sup-

port the Split X design1. The X Windows server was amenable to modification due to its modular

architecture and freely available source code. The X Windows server is designed to be ported to

different display adapters, and thus the InfoPad port is implemented as a new display adapter.

Upon initialization, a new slave thread is spawned which communicates via InfoNet to the pad.

The virtual framebuffer is placed in shared global memory and semaphores and mutexes are used

for synchronization. The manual page for XInfoPad can be found in Appendix A.11..

9.5. Video Support

The VQ video subsystem of the InfoPad system was developed using a set of utilities which

generate VQ video clips, play the clips on standard workstations, play the clips through the Info-

Pad network to an emulator or hardware pad, and manipulate and display the clips. The manual

pages of the applications to perform these tasks are listed in Appendix A and the applications are

described below.

1. Note that Richard Han and/or Brian Richards did the original work on the integration of InfoPad hooks into the X
server although I expanded upon it significantly through the implementation of the virtual framebuffer algorithms,
color support, as well as support of transmission of block, instead of just line, packets.

124

VQ video files used to save and exchange the VQ video clips are stored in a custom file for-

mat detailed in Appendix A.13. (vq (5)). The video format allows arbitrary dimension video clips

with codebook updates both at the beginning and throughout the video clip. The latter would

allow for new VQ codebooks to be sent between major scenes for improved image quality. Video

files can also be exchanged in a RAW format, described in Appendix A.12. (raw_video (5)), which

allows for arbitrary dimensions of the Y, I, and Q components. These RAW videos can then be

transcoded into VQ videos as described below. Thus they are a useful interchange format which

allows non-InfoPad applications to generate VQ videos.

VQ videos can be generated from MPEG and RAW clips using mpeg2vq as detailed in

Appendix A.4. (mpeg2vq (1)). mpeg2vq allows resizing of video clips and transcoding from par-

ticular subregions of the source clip. It allows the video frame rate to be specified as well as frame

dropping to obtain a desired frame rate. mpeg2vq can generate adaptively-coded or fast-coded

video clips as discussed in Section5.2.. Additionally, video clips can be coded to an existing arbi-

trary codebook.

VQ and RAW videos can be played on standard X workstations using vq_play as detailed in

Appendix A.9. (vq_play (1)).

VQ clips coded for a 128x240 display can be sent to an InfoPad terminal or emulator using

the send_vq utility as described in Appendix A.6. (send_vq (1)). send_vq can be used to inject

text / graphics, audio, and other types of data into the InfoPad network for general purpose debug-

ging. Rate limiting options can be specified to prevent overflow on bandlimited links and code-

book information can be included or overridden. send_vq will also deliver synchronized audio

and video if an audio file is specified.

125

VQ codebooks can be displayed and extracted using the Codebook2ras ,

show[vq]codebook[y], and vq2codebook utilities as described in Appendix A.1., Appen-

dix A.7., and Appendix A.10.. Codebook2ras converts a codebook into a Sun Rasterfile which

can then be viewed. The codebook images in this thesis were generated with that utility.

show[vq]codebook[y] is a shortcut to extract and display the codebooks. Finally

vq2codebook extracts a codebook from a VQ video clip. This codebook can then be sent man-

ually using send_vq or another video can be coded to this codebook using mpeg2vq as previ-

ously described.

126

127

PART III Application-Specific
Transmission

CHAPTER 10 Optimization of Web for
Bandlimited Links

10.1. Introduction

This chapter applies the techniques and methodology developed for application-indepen-

dent text / graphics and image transmission to the web. Since web browsing is an interactive pro-

cess and downloading a web page can take several seconds to several minutes over slow links, the

information presented to the user during this time is important. New metrics and visualization

techniques to illustrate and quantify web page loading are presented. Given the insight afforded

by the metrics, a methodology to improve web access using a new technique, globally progressive

interactive web delivery, is proposed. This technique views the web delivery process as the

remote display of a web page, similar to application-independent transmission previously

described, and entails applying progressive coding to the document transmission process in its

entirety. It also allows the user to explicitly direct link bandwidth to images of interest. This glo-

128

bally progressive interactive framework has been prototyped without modifying either existing

web browsers or servers through the use of a web proxy and browser-side Java applets. The

framework allows for both protocol and image compression research in a platform-independent

manner. Methods for integrating the architecture into existing web infrastructure for greater per-

formance and ability to scale are discussed [31].

10.2. Motivation

Delivery is everything. “The web experience” is much more than the web pages visited - it

also encompasses the speed of access and the quality of information delivered. While browsing

over a T3 line can be highly productive, web access over dial-up or wireless modems often leads to

the phenomenon known as the “World Wide Wait”. Network congestion and bottlenecks within

the Internet can also limit the gains of a high-speed last link. However, as will be shown, web per-

formance over these slow links can be dramatically improved through efficient link scheduling and

data compression tailored to web transmission. Although some previous work has accelerated

web access through lossy image compression [25][41][65], this, by necessity, results in a reduction

in image quality. Transport protocol modifications designed to reduce the total web page delivery

time [52][9][54] also improve web performance, but further gains can be achieved by combining

image coding and networking techniques as described in this chapter.

It is important to view web browsing as a form of remote display, similar to the application-

independent transmission described previously in this dissertation. Browsing is not the bulk trans-

fer of information for off-line storage, but rather the “real-time” rendering of a web page on a

remote client. Thus the speeds at which various parts are rendered are useful metrics to gauge the

browsing experience.

129

Web browsing is an interactive process where the user often has specific goals when brows-

ing. The goals may be to read the text, glance at all of the pictures, or closely examine a single pic-

ture. In order to maximize the utility to the user, it is important to incorporate these goals as best

as possible. Currently the level of interaction is limited to aborting the downloading of a page or

suppressing all image downloads until they are explicitly requested. Thus, the user is at the mercy

of the delivery system and must wait for the image or images of interested to be delivered. A

method is proposed for incorporating feedback to allow the user to guide the bandwidth utilization

throughout the downloading process: by simply moving the mouse cursor into an image’s window,

the image will gain full use of link bandwidth.

Incremental deployment is essential in global Internet applications such as the web. It is

infeasible to expect all existing web browsers and servers to be converted. Two levels of incre-

mental deployment of the protocols are proposed. Firstly, by deploying intermediate proxies to

perform image and protocol conversion, the improved delivery system can be used on slow links

with modified web browsers to view content on conventional web servers. Secondly, a web proxy

/ Java applet prototyping framework is used which does not require the web browsers or servers to

be modified. The proposed system is benchmarked and a discussion of the strengths and weak-

nesses of the framework is presented.

10.3. Background / Previous Work

Web pages are multi-object documents. They consist of a main HTML object, which con-

tains the text and formatting information, and zero or more additional objects such as inline images

and Java applets. The main HTML object contains references to other objects by specifying their

uniform resource locator (URL). These objects are retrieved individually by the web browser

from the web server using the HyperText Transfer Protocol (HTTP).

130

HTTP/1.0 [11] uses a separate TCP connection to retrieve each object. Several concurrent

connections are maintained between the browser and server to load multiple objects at once in

order to hide TCP connection establishment and slow-start [42] delays. However, this increases

overhead and network congestion, thus impacting scalebility [66]. Typically the number of open

connections is limited to about 4.

HTTP/1.1 [23] improves upon the delivery protocol through support of persistent connec-

tions [54] between the servers and browsers. By using a single connection to sequentially deliver

all of the HTML and images in a web page, the connection establishment and slow-start delays can

be amortized over the cost of the entire page, the connection packet overhead can be reduced, and

better responsiveness to network congestion is achieved. HTTP/1.1 also supports compression of

the HTML objects via the deflate coding of the public domain zlib compression library [28]. (This

is a hybrid LZ77 [72] / Huffman coding [39]). When applied to HTML data, it can typically result

in a greater than 3x reduction in the size of the HTML file [52].

TCP sessions [9][53] have been proposed to allow sharing of state between related TCP

connections, such as those connecting the same host pair, at the transport layer. If any connection

in the session experiences congestion, all connections can reduce their windows. In this way the

network-friendly behavior of HTTP/1.1 can be obtained while decoupling sensitivity to losses

between different image transfers. Additionally, only the server-side TCP stack needs to be modi-

fied - no browser or server modifications are necessary.

The MUX protocol [51], a work in progress which is part of the next generation HTTP

effort (HTTP-ng) [50], provides a method to layer lightweight multi-session delivery on top of a

reliable stream-oriented transport such as TCP. The MUX protocol can be used by multiple appli-

cations to share the same transport stream as the main HTTP connection in an application indepen-

dent manner.

131

The WebTP project [70] is addressing transport requirements of the World Wide Web

through their “User-Centric Web Transport Protocol”. This is a receiver-driven architecture to

improve upon scaling of web-servers while retaining TCP-friendliness. It uses rate-based flow

control and does not require hard state at the sender.

10.3.1. Previous Work in Web Acceleration

UC Berkeley’s Transend [25][26], Intel’s QuickWeb [41], and Spectrum’s FastLane [65]

improve upon web access over slow links by reducing image size via lossy compression1. Web

proxies are used to transform the images through resolution and color reduction. Users of Quick-

Web have noted that it can cause significant degradation of image quality [44] and the service has

been discontinued. Use of FastLane also results in image quality degradation [7]. The three sys-

tems allow the user to explicitly load the original undegraded images, but no further user interac-

tion is supported. In contrast, the globally progressive interactive system described here does not

cause reduction of the final quality of the images delivered, and allows greater user interaction.

10.4. Quantifying Web Page Downloading

Since downloading web pages can take from several seconds to several minutes using

modem links, the information presented to the user during this period is critical. For instance, if it

requires one minute to download a page, it is clearly better to have most of the text and images

present after 10 seconds with the remaining filling in over the minute, than to have nothing until

the whole page appears at the one minute mark. Yet in both cases the total time to load the page is

the same. Thus the total time to load a given page is often not an accurate measurement of the

utility of the loading process.

1. Transend is also designed to operate with clients of varying computational and display capabilities and perform other
types of manipulations.

132

In order to fully encapsulate the loading process as viewed by the user, it is necessary to

visualize and quantify the loading of the constituent parts of the page, and not just the time to load

everything. A web-page loading graph can be used to more precisely illustrate and quantify the

effects of different transfer protocols on a typical web document. The CNN Interactive (tm) home

page (http://www.cnn.com/) will be used as an example. The constituent objects are listed in

Table10.1 in order of their appearance and the shaded entries correspond to images that the user

would have to scroll to see when using a 1024x768 pixel web browser window because they are

not initially visible.

10.4.1. An Example of Concurrent HTTP/1.0-Style Loading

Figure 10.1 shows a web page loading graph of the document loaded using the conventional

HTTP/1.0-style concurrent loading protocol. The graphs in this section display timings using a

simulated constant 3KB/sec link similar to a 28.8kbps modem, in order to best illustrate the perfor-

Object Name Bytes Object Name Bytes

HTML index.html 41,261 Image1 horoscopes120.gif 4,313

Image2 ad_info.gif 92 Image3 still_468x60.gif 9,374

Image4 cnnin_logo.gif 2,225 Image5 icon_arrow_left.gif 261

Image6 white.gif 35 Image7 roof_top.gif 1,205

Image8 search_infose.gif 441 Image9 right_corner.gif 102

Image10 top_ruins_ap.jpg 17,774 Imaeg11 custom_clint.jpg 6,112

Image12 video_transp.gif 170 Image13 cnn_website.gif 2,980

Image14 web_services.gif 11,623 Image15 custom_arrow.gif 137

Image16 tv_generic.gif 1,291 Image17 health2.gif 2,124

Image18 thumbnail.jpg 2,580 Image19 week_in_review.gif 986

Imge20 diana.jpg 2,507 Image21 infoseek_logo.gif 555

Image22 pointcast.gif 6,983 Image23 red_468.gif 10,486
TABLE 10.1. Contents of typical web page (CNN Interactive - www.cnn.com).

Shading denotes images not initial visible when viewed on a 1024x768 screen.

133

mance of the different loading styles apart from implementation specifics. The results shown in

Section 10.6.5. are based on actual data collected from our prototype proxy / applet system. The

objects in the page are listed on the vertical axis while time traverses the horizontal axis, with the

lighter gray used for images outside of the viewable window. The bars indicate the time during

which a particular object is being delivered.

In order to quantify the loading process, it is useful to define the following metrics: the time

that the HTML is loaded, the time that initially visible images are loaded, and the time to load the

entire page. The time to load the HTML determines how long it will take to view the text on the

page, and the time to load the initially visible images determines when the user thinks that the page

has loaded. In the example we can see that the HTML is loaded within 30.6 seconds, all visible

FIGURE 10.1. Web-page loading graph using concurrent loading of up to 4 connections

FIGURE 10.2. Web-page loading graph of sequential loading protocol

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

Time (seconds)
0 10 20 30 40

HTML
loaded

All images
loaded

All on-screen
images loadedInitially

on-screen

Initially
off-screen

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

Time (seconds)
0 10 20 30 40

134

images are loaded within 36.9 seconds, and the entire page is not loaded until 42.4 seconds have

elapsed.

10.4.2. An Example of Sequential HTTP/1.1-Style Loading

The web-page loading graph for the same web document loaded using the conventional

HTTP/1.1-style sequential loading protocol is shown in Figure 10.2. Using the sequential loading,

the total time to load the entire web document remains 42.4 seconds but the time to see the visible

images has dropped to 28.2 seconds, simply by reordering the data being sent. Additionally, the

time to see the text is reduced to 14.3 seconds - less than half of the time required using concurrent

loading. Thus, despite the fact that the total loading time is the same as the previous case, the

delivery orders have very different consequences for the user.

10.4.3. HTML Compression

If HTML compression is used, the size of the HTML object in our example is reduced by

about a factor of 4, from 41261 to 9950. The corresponding web-page loading graphs are shown in

Figure 10.3 and Figure 10.4. While the total time to load the document is only reduced by about

25% from 42.4 seconds to 31.8 seconds, the time to see the text is reduced by a factor of 4 and the

time to see the entire visible part of the document is reduced by about 20% and 40% for the con-

current and sequential modes respectively. However, the delivered document is identical to the

original. These results are summarized in Table10.2.

Time to text
Time to visible

document
Time to entire

document

Concurrent 30.6 sec 36.9 sec 42.4 sec

Sequential 14.3 sec 28.2 sec 42.4 sec

Conc. w/comp. 6.6 sec 29.4 sec 31.8 sec

Seq. w/comp. 3.7 sec 17.7 sec 31.8 sec
TABLE 10.2. Summary of concurrent and sequential loading

135

10.5. Globally Progressive Interactive Web Delivery

Once metrics and methodology are in place to examine web document delivery, it is possi-

ble to investigate alternatives. Although sequential transmission is an improvement over concur-

rent delivery, using progressive and interactive techniques, significant improvements can be

realized.

10.5.1. Globally Progressive Transmission

Progressive image transmission entails sending a layered coding consisting of a low quality

version initially, followed by refinements. Thus, after the initial bytes are received, a complete,

albeit non-aesthetically pleasing, version can be displayed, and as time progresses, the image qual-

FIGURE 10.3. Concurrent loading and HTML compression

FIGURE 10.4. Sequential loading and HTML compression

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

Time (seconds)
0 10 20 30

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

Time (seconds)
0 10 20 30

136

ity improves. Progressive techniques are ideally suited for transmission of human-viewed data

over band-limited links since they allow the user to quickly deduce the salient features and only

require the user to wait for the full load times to see full detail.

10.5.1.1. Existing Progressive Image Formats

Progressive image formats are already common on the web. CompuServe’s lossless Graph-

ical Interchange Format (GIF) [17] has an “interlaced” mode in which rows are sent in a progres-

sive manner. Portable Network Graphics (PNG) [59], a graphics format which has been formally

accepted as a standard MIME type by the World Wide Web Consortium, has a mode that is pro-

gressive in both rows and columns to achieve better subjective quality after a smaller amount of

data has been received. Both GIF’s and PNG’s progressive modes result in some reduction in

compression rate due to the increase in local entropy. PNG also enjoys a patent-free status and

typically achieves 5%-25% better compression than GIF [56] by using zlib’s LZ77 / Huffman

compression instead of GIF’s Lempel Ziv Welch (LZW) [72][71] compression and packing sub-

byte pixels.

The Joint Picture Expert Group’s JPEG includes a lossy DCT-based coding technique

which has a progressive mode that divides layers by spatial frequency and quantization level [56].

The number of layers and their composition can be varied, and are specified in the image header.

Figure 10.5 shows an example comparing JPEG’s non-progressive and progressive (PJPEG)

modes. The baseline JPEG quantization levels are used, resulting in a coding rate of 1.84 bits/

pixel which, from an informal survey, is typical of JPEG images on the web. As can be seen from

the lower set of images, a very crude version of the image is available after receiving only 8% of

the progressive data. After 19%, enough detail is available to easily discern the contents of the

image. Subsequent data provides further detail, with the later layers only becoming noticeable

137

under closer inspection. It is important to note that this is exactly what lossy image compression

proxies such as QuickWeb, TranSend, and Fastlane rely upon - by performing lossy image com-

pression they are removing some of the fine detail, similar to that in the final layers of PJPEG.

While the degradation is not severe to cursory inspection, it does reduce the final image quality.

However, by using progressive techniques, the end quality need not be sacrificed at all.

10.5.2. Locally Progressive Delivery

Progressive image formats are of limited benefit when using standard loading protocols

since they are locally progressive - each image is progressively coded but the document as a whole

is not. Otherwise stated, the loading process itself is not progressive. Figure 10.6 and Figure 10.7

show web page loading graphs of locally progressive images loaded concurrently and sequentially.

The lighter parts to the left correspond to coarser layers while the darker parts to the right corre-

spond to refinements. For illustrative purposes, the layers have been divided according to the divi-

sion of the lower images in Figure 10.5.

1055 bytes
8%

2522 bytes
19%

13095 bytes
100%

4228 bytes
32%

7441 bytes
57%

FIGURE 10.5. Example of progressive images.
JPEG (top) and PJPEG (bottom) showing display of incomplete data. Image was
quantized to JPEG default level yielding 1.84 bits/pixel coding.

138

The amount of time to deliver enough of all of the images to see a certain number of layers

in each image can be used to quantify the progressive delivery. As can be seen from Figure 10.6,

the time to concurrently load at least the first layer of each of the images is 10.1 seconds, to load

the first two layers is about 12.7 seconds, three layers is 15.3 seconds, four layers is 20.5 seconds,

and the time to load all layers for all visible images is still 29.4 seconds. Figure 10.7 shows that

the layers in each image for the sequential case are loaded in rapid succession since the images

have access to the full link bandwidth.

10.5.3. Globally Progressive Delivery

However, by using globally progressive loading, further benefits can be achieved. Globally

progressive loading considers the whole document as a progressive object and displays a coarse

FIGURE 10.6. Simul. loading w/ locally progressive images (w/ HTML compression)

FIGURE 10.7. Sequential loading with locally progressive images (w/ HTML compression)

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

Time (seconds)
0 10 20 30

Layer 1 loaded
for all on-screen

Layer 3 loaded for all
on-screen images

Layer 5 loaded
for all on-screenimages

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

Time (seconds)
0 10 20 30

139

version followed by more refined versions. In the case of a web document, the HTML might be

considered the coarsest layer since it is required to decode the rest of the document and conveys

the bulk of the information. The next layer of the document would include the first layer of all

images and subsequent layers of the document would include subsequent layers of each image. By

using globally progressive loading, the user is very quickly presented the text and coarse versions

of all visible images and can rapidly proceed to analyze the page’s contents. This is particularly

useful when combined with interactive loading described in the next section.

Figure 10.8 shows globally progressive loading using a byte-wise equality metric such that

the scheduling attempts to keep the number of transmitted bytes of each visible image similar, and

Figure 10.9 shows globally progressive loading using a layer-wise equality metric dictating that a

FIGURE 10.8. Globally byte-wise progressive loading (w/ HTML compression)

FIGURE 10.9. Globally layer-wise progressive loading (w/HTML compression)

Time (seconds)
0 10 20 30

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

Time (seconds)
0 10 20 30

140

given layer in one visible image should not be loaded until the previous layers are loaded in all

other visible images. While the layer-wise metric allows earlier layers to be loaded for all images

sooner, the byte-wise metric is typically preferable since it allows link scheduling to be indepen-

dent of image coding and also prevents large images from severely delaying smaller images. For

these reasons, the byte-wise metric is used in our prototype system described in Section10.6..

Table10.3 shows a summary of the comparison between locally and globally progressive

loading. As can be seen, the time to load all visible layers is the same for the sequentially loaded

locally progressive case as the globally progressive cases, but in the locally progressive case, the

benefits of progressive loading are minimal. In the simultaneously loaded, locally progressive

case, there is a delay until the base layers of some of the later images are loaded, as well as a delay

in finishing the visible images due to competition with images that are not visible. However, in

the globally progressive cases, the text is shown very quickly, followed immediately by coarse

versions of all images and then refinements.

Protocol Timings

HTML
Compr

Concur /
Sequen Progressive Text Visible

Layer 1
Visible
Layer 2

Visible
Layer 3

Visible
Layer 4

Visible
All Layers

Complete
Document

No Conc No 30.6 sec n/a n/a n/a n/a 36.9 sec 42.4 sec

No Sequen No 14.3 sec n/a n/a n/a n/a 28.2 sec 42.4 sec

Yes Conc No 6.6 sec n/a n/a n/a n/a 29.4 sec 31.8 sec

Yes Sequen No 3.7 sec n/a n/a n/a n/a 17.7 sec 31.8 sec

Yes Conc
Locally

Progressive
6.6 sec 10.1 sec 12.7 sec 15.3 sec 20.5 sec 29.4 sec 31.8 sec

Yes Sequen
Locally

Progressive
3.7 sec 15.8 sec 16.0 sec 16.3 sec 16.8 sec 17.7 sec 31.8 sec

Yes Both
Bytewise
Globally

Progressive
3.7 sec 6.8 sec 9.6 sec 12.3 sec 15.1 sec 17.7 sec 31.8 sec

Yes Both
Layerwise
Globally

Progressive
3.7 sec 4.8 sec 6.3 sec 8.2 sec 11.7 sec 17.7 sec 31.8 sec

TABLE 10.3. Summary of delivery methods and performances

141

If an image that is not initially displayed is made visible during the loading process, it is

boosted to the same priority as the other visible images so that bandwidth is initially dedicated to

only that image until it has loaded to the same degree as the other images. Then all visible images

resume loading in unison. An example is shown in Figure 10.10. In this example, images 12, 13

and 14 were previously off screen but then scrolled into view after about 12 seconds. Similarly,

the priority of images that are scrolled off screen can be reduced1.

1. However, detecting images scrolling off-screen is not possible using the Java prototype.

FIGURE 10.10. Globally progressive loading with images scrolled to during loading

FIGURE 10.11. Interactive loading with image interactively selected by user

Images 12, 13 and 14
displayed here

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

Time (seconds)
0 10 20 30

Image3 given
priority here

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

Time (seconds)
0 10 20 30

142

While the above assumed strict priority scheduling, a stochastic algorithm such as Lottery

Scheduling [69] could be used to assure progress of all images. Additionally, techniques such as

Class Based Queuing (CBQ) [24] could be used to increase flexibility and allow more complex

policies. Web page designers could also incorporate delivery and image transcoding hints into

image tags to assert more control over the delivery process.

Globally progressive delivery is also well suited to take advantage of networks with variable

Quality of Service (QoS). There is an implicit ordering of the importance of the data with text

being most important, initial bytes or layers of images being a little less important, later bytes or

layers being still less important, and off-screen images being even less important. While it is cur-

rently used to prioritize data within the web connection, it could also be used to prioritize data

transmission across multiple connections, web or otherwise. For instance, if text over any web

connection is given higher priority than images over any web connection, then even as the network

becomes congested, the text delivery performance will not suffer as much. Likewise, if off-screen

images are given lower priorities, the downloading of long pages by some users will not hamper

the interactive operation of other users. The prioritization could be used within a web server to

ensure timely servicing of text and coarse image requests.

10.5.4. Interactive Operation

While globally progressive loading rapidly delivers coarse versions of all visible images,

the user must still wait for all refinements, even if they are only interested in a single image in

detail. However, by allowing the user to easily instruct the system as to which image they are

interested in, this image can be loaded more quickly by dedicating all available link bandwidth to

it. Since the layers are loaded in synchrony, the user is able to quickly determine which image or

images are most interesting. One method for incorporating user image preference is to detect

when the mouse cursor is inside a particular image, and give that image priority. Figure 10.11

143

shows the effect of selecting image 3 after its two first layers have been displayed. As can be seen,

in this way, the entire refined image can be loaded by the 10 second mark, a little more than half of

the time required in the absence of user intervention. Further interactivity could include targeting

exactly which parts of the image are transmitted first. Explicit targeting may be useful in cases of

large images where semantic quality requires high fidelity, such as maps.

When interaction is allowed, the amount of data buffered in the connection between the web

server and web browser must be limited in order to allow rapid response. Once the user preference

is detected and transmitted to the web server (or proxy), the high-priority image can be queued, but

this data will not reach the browser until all other data queued in that connection has been deliv-

ered (unless out-of-band signalling or more sophisticated transport protocols are used). For

instance, using a 28.8k baud modem connection, in order to obtain a one-second response time, at

most 3.6K bytes can be buffered even in the absence of network congestion. The buffered data

consists of the data queued in the kernel buffers as well as the packets queued in the network rout-

ers. Kernel-level scheduling of the images can be used to eliminate delay due to the former[55]

while TCP window-size limiting would have to be used to reduce the latter. Severely limiting the

amount of queued data can reduce link utilization, particularly for high-bandwidth, high-latency

links such as satellite links.

10.6. Transport Protocol Prototyping via Web Proxies and Java
Applets

In order to prototype the globally progressive interactive delivery scheme, a proxy-based

architecture allowing full control over image delivery and display was designed. This architecture

can be used as a test-bed to develop and experimentally deploy a range of network protocols not

restricted to HTTP or even TCP. Additionally, non-standard image compression techniques can

be used over the link.

144

10.6.1. Proxy Operation

While conventional web proxies can transform the content of the web pages, they must

work within the confines of the HTTP protocol specifications. For instance, they cannot alter the

number of connections that the browser opens, change the ordering of the requests, or respond to

fine-grained user interactivity - thus precluding implementation of a protocol similar to the one

just described. However, through the use of Java applets to load and display the images on the

page, much greater control is possible. A block diagram of the framework is shown in Figure

10.12.

The globally progressive interactive delivery is best implemented by using a single multi-

plexed, prioritized connection between the web browser and web server or proxy. However, in the

case of the proxy / applet system described here, separate HTML and image connections are

required to allow the HTML to go directly to the browser core while the images are sent to the

Java applets over a single multiplexed connection.

Web Proxy

HTTP
Proxy

Image
Proxy

Web
Server

Web
Server

Web
Server

Fast
Internet

Connection
Browser

Core

Image
AppletsHTTP/1.x

Slow
Link

Web Browser

Web Browser

Custom Protocol

Web Browser
Native

FIGURE 10.12. Web proxy / Java applet framework

145

10.6.2. HTTP Proxy Design

The HTTP Proxy substitutes Java applet tags for image tags, as shown in Figure 10.13, as it

sends pages to the browser, causing applets to appear where the images were. The applets are sup-

plied the URL of the image to display as well the host name and port of the Image Proxy. If the

width and height are not specified in the IMG tag, they are determined by prefetching the image

and decoding its header since the applet dimensions must be specified in the APPLET tag (unlike

IMG tags where the dimensions should be specified.) HTML compression is achieved via HTTP/

1.1 transport encoding.

10.6.2.1. Streaming HTML Conversion

One important technique used in both the HTTP Proxy and the Image Proxy is that of

streaming conversion . Streaming conversion entails converting both images and HTML text “on-

FIGURE 10.13. Example of HTML modification to embed image applets

Original HTML:

For my homepage, click here <IMG
SRC=home.gif>

Modified HTML:

For my homepage click here

<APPLET CODE=”SpeedImage.class”
 WIDTH=54 HEIGHT=39
 ARCHIVE=”http://proxy.com/SpeedImage.jar”
 CODEBASE=”http://proxy.com/”>
 <PARAM NAME=imageHostPort VALUE=9999>
 <PARAM NAME=src
 VALUE=”http://home.com/~me/home.gif”>
 <PARAM NAME=href
 VALUE=”http://home.com/~me”>
</APPLET>

146

the-fly” whenever possible, instead of first retrieving the entire objects before processing them.

This is critical if the response from the web server is slow due to network congestion or server

loading. If the proxy waits for the entire object to be received before sending any part of it out, the

time for the user to receive any part of it will be substantially increased, and the total time to

retrieve the object can be doubled. For the HTTP Proxy, streaming conversion means that the

HTML is transformed and compressed on the fly. While compression and simple textual substitu-

tion would not be problematic, incorporating image size information in applet tags requires asyn-

chronous retrieval and parsing of image headers to determine their sizes.

10.6.2.2. Link Scheduling

The HTTP Proxy performs limited link scheduling by tracking the amount of data outstand-

ing in HTML and non-HTML (typically image) links. It does not send data on non-HTML links

until the amount of HTML data outstanding is below a given threshold. The image proxy also sup-

presses custom image data until the amount of HTML data outstanding is below a given threshold

in order to effect the text prioritization needed for globally progressive transmission as described

in Section10.5. The fine-grain inter-image scheduling takes place in the Image Proxy.

10.6.3. Image Proxy Design

The Image Proxy is responsible for retrieving images from the web servers, transforming

them, and sending them over the custom managed link to the Image Applets. A strict priority

round-robin system is used with priorities dynamically specified by the Image Applets depending

on whether they are on-screen and where the cursor is.

10.6.3.1. Image Conversion

As the images are retrieved, their type is determined from the HTTP meta-data. Type-spe-

cific conversion is performed to generate progressive versions. JPEG images are converted to Pro-

147

gressive JPEG (PJPEG) using the Independent JPEG Group’s JPEG library [40]. This conversion

is lossless and does not significantly effect compression rate. GIF images are converted to a loss-

less format similar to interlaced PNG.

Additionally, conversion from GIF to PJPEG is attempted and the PJPEG image is used

whenever a high-quality lossy JPEG conversion results in a reduction in size compared to the

PNG-like coding. By keeping the JPEG quality setting high, discrete-tone images not well suited

to lossy compression will compress less compactly with JPEG than with a lossless coding such as

GIF or PNG, and thus the lossless coding will be used. However, photographic images are often

stored on web sites in lossless GIF while lossy JPEG coding dramatically reduces the size of the

image while not resulting in any perceptible degradation. Since progressive coding is used, a high

quality setting can be used while still allowing quick delivery of a coarse version of images.

10.6.3.2. Streaming Image Conversion

As described previously, an important aspect of effective proxy operation is forwarding data

as soon as possible to reduce user-perceived delay. However, conversion to progressive formats

requires the entire image to be present. In order to minimize delay, the original data is streamed to

the browser until the entire image is loaded and converted. A switch to the progressive coding is

done when advantageous. For the case of JPEG to PJPEG conversion, a heuristic of requiring less

than half of the data being sent is used. For the case of GIF to PJPEG conversion, the size of the

PJPEG data has to be less than the number of bytes of the GIF image remaining. Typically the

total increase in the amount of data sent due to streaming image conversion is not large, yet it can

substantially improve perceived latency.

148

10.6.3.3. Link Scheduling

The Image Proxy explicitly manages the link to the Image Applets. The image priorities are

determined by the Image Applets (described next) as dictated by the globally progressive interac-

tive delivery scheme, and communicated to the Image Proxy. Within a priority class, images send-

ing processed data (progressively coded images) are given priority to those sending unprocessed

data since the unprocessed data may have to be flushed, as previously described, if the processing

proves to be advantageous.

10.6.4. Image Applet Design

Image Applets request the data for their images from the proxy and display it. They are

nearly indistinguishable from images they replace, responding to mouse clicks to follow web links

as standard images do. The Image Applets also respond to keyboard commands to create new

windows which are copies of the images as well as zoom and pan within the images. Thus the

document is an active entity that can be manipulated.

Figure 10.14 shows the internal architecture of the Image Applets. There is one applet per

image on the page, though the images communicate through shared static objects. Static Java

objects are shared among all applets running in the same Virtual Machine - i.e. all applets running

in the same browser. In particular, a shared image database is used to track which images have

Image Data

Im
ag

e
Pr

ox
y

Image
Applet

Image
Applet

Image / Priority Requests

Global
Image

Database

Static

FIGURE 10.14. Image applet design

149

been loaded already and allows the same image to be shown in multiple applets without requiring

the image to be loaded more than once. The loading of the images is centralized via a single Java

thread which contacts the Image Proxy and manages all browser-proxy communication.

10.6.5. Proxy / Applet Performance

In order to evaluate both conventional and proposed globally progressive interactive loading

protocols, the SpeedSurfer client-side proxy described in is used as shown in Figure 10.15. The

client PC was a Pentium II/266 PC running Microsoft Internet Explorer 4.0 web browser under

Windows NT 4.0 and connected to the Internet via a 28.8k baud modem. The web proxy and local

web server ran on a Sun UltraSparc 2 workstation.

The web page loading graph depicting loading the example page from a local server using

conventional HTTP/1.0 is shown in Figure 10.16. The initial vertical line in each object’s row

indicates when the HTTP request is issued while the bars indicate response timing. The loading

pattern has similarities to both Figure 10.1 and Figure 10.2 due to the interaction of the multiple

simultaneous TCP/IP connections. Although up to four requests are open simultaneously, due to

TCP/IP’s adaptive congestion control, new flows receive less bandwidth than existing connections

until equilibrium is reached.

The graph of loading the page using the globally progressive interactive technique via the

proxy / applet prototype is shown in Figure 10.17 and summarized in Table10.4. The perfor-

Text 5.1 sec Visible Layer 4 16.9 sec

Visible Layer 1 10.1 sec Visible All Layers 20.0 sec

Visible Layer 2 12.3 sec Complete Document 33.3 sec

Visible Layer 3 14.4 sec
TABLE 10.4. Performance of Java / proxy system on example CNN Interactive

page

150

FIGURE 10.15. Performance evaluation setup

FIGURE 10.16. Trace of conventional HTTP/1.0 concurrent loading

FIGURE 10.17. Collected trace of proxy / applet operation

Web Proxy

HTTP
Proxy
Image
Proxy

Local
Web

Fast
Internet

Connection

Browser
Core

Image
Applets

HTTP

28.8k
Modem

Custom

Web Browser
Native

Protocol

Server

Other
Web

Servers
GPI

Speed-
Surfer
Proxy

Link
Client PC

ConventionalLoading

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

Time (seconds)
0 10 20 30 40 50

HTML
Image3
Image6
Image9

Image12
Image15
Image18
Image21

Time (seconds)
0 10 20 30

Image15

151

mance is improved significantly over conventional loading but is slightly slower than predicted.

Comparing Figure 10.17 to Figure 10.8 illustrates a few notable differences. The increased time to

text can be seen in the segmentation of the HTML object bar indicating unsteady flow of data due

to TCP/IP slow-start. The TCP/IP data reception timing shown in Table10.5 further verifies this.

The increased time to the first layer of images is an artifact of the Java implementation: the web

browser does not start the Image Applets until the entire web page has been loaded and thus their

requests are delayed.

The time to perform on-the-fly compression and image conversion did not contribute signif-

icant overhead. Gzip compression of the 41261 byte HTML object to 9950 bytes required only

0.10 seconds while conversion of the 17774 byte / 47600 pixel top_ruins_ap.jpg image from JPEG

to PJPEG required 0.12 seconds. Conversion of the same image from GIF to PJPEG would

require 0.16 seconds. These all result in converted data rates of approximately 1 Mbit/second and

thus a high performance workstation can support the compression and conversion for roughly

thirty 28.8k baud modems. Caching and distributed computing could further increase scalability.

10.7. Conclusions and Future Directions

With the explosive growth of the Internet and increasing proliferation of low-bandwidth

wireless access, efficient and expedient delivery of web content has become more important than

ever. This optimized delivery is only possible through carefully analysis of the factors affecting

loading speed. As has been shown, by viewing web delivery as a form of remote display, and

Time
(sec)

Amount
(bytes)

Time
(sec)

Amount
(bytes)

Time
(sec)

Amount
(bytes)

1.543 1460 3.956 1460 5.098 1960
2.855 2540 4.857 2540

TABLE 10.5. Data Reception of HTML Object of Figure 10.17.
Packet times are in seconds since request.

152

combining networking and image compression techniques, significant gains have been demon-

strated. Additionally, this point of view yields opportunities for further developments as described

below.

10.7.1. Integration with Existing Web Infrastructure

While the Web Proxy / Java Applet architecture described in the previous section is useful

to evaluate and optimize the globally progressive interactive web delivery, further gains can be

achieved by incorporating the methodology into existing web servers, proxies, and browsers and

by building upon current HTTP protocols and related work described in Section10.3.. Public-

domain open-source browsers and servers / proxies provide a state-of-the-art starting point [3],

[48], [72]. The functionality of the Image Applets can be directly incorporated into the browser

while the functionality of the web proxy can be integrated into the web server / proxy.

Interoperability is achieved through protocol negotiation on connection. A mechanism such

as MUX can be used to support transmission of multiple images over a single link. One disadvan-

tage of MUX using TCP is its use of a single buffered connection, which forces multiplexing to

occur before buffering. This can result in additional buffering delay, impacting interactive switch-

ing of image priorities as described previously. Alternatively, TCP sessions could be employed if

explicitly prioritized queuing is added [55]. TCP sessions have the advantages of application inde-

pendence and removing false-dependencies across images. However, the use of TCP sessions

requires server kernel modifications and may result in greater kernel overhead and resource utili-

zation since a new TCP connection is required for each image.

10.7.2. Transparent Content Negotiation

The globally progressive interactive web delivery requires the ability to access both

transcoded versions of images as well as the original. The underlying protocol must be able to

153

specify which image conversions should occur. While HTTP/1.0 provides very crude content

negotiation via “accept” headers, it lacks sufficient expressive capabilities, which can lead to

name-space conflicts. Transparent Content Negotiation, however, as described in [23] allows for a

more flexible, powerful mechanism which allows “variants” of an object to be described and

named differently than the original object.

Integration of an automatic content conversion mechanisms into a web proxy or server also

allows delivery of improved formats, such as PNG, JBIG [4], [61], or wavelets [60], while retain-

ing originals in the highly compatible legacy formats - GIF and JPEG. The web servers or proxies

can automatically negotiate with the browser to determine the best mutually supported format, and

perform conversion. In this way, the latest image coding techniques can be used without sacrific-

ing compatibility.

10.7.3. Scalability through Server / Proxy Caching of Processed Data

Since the same progressive image codings are used for both high-bandwidth and low-band-

width links, transcoded images can be cached and reused. When coupled with streaming conver-

sion, this allows conversions to be delayed when the load on the server gets high, and yet assure

that performance is never worse than without the conversions. However, if several users access a

given web site via different web proxies, the objects on the site must be converted by each of the

proxies. By integrating the functionality of the proxy into the server, the server / proxy can pro-

cess the objects on the site only once per creation or update, regardless of how many geographi-

cally separated users access the objects. By transmitting the converted objects over the Internet,

the delay of the wide-area access is mitigated by the globally progressive interactive delivery. The

same scalability for dynamically created objects cannot be obtained but most images are not

dynamically created, even at sites that use dynamically created content.

154

155

CHAPTER 11 Application-Level Link
Management

In this chapter, techniques for optimizing the transmission of text / graphics information for

a specific application are presented and compared to the application-independent methods previ-

ously described. While the application-independent techniques of Part II allow any application to

be used remotely, further gains are often achievable by optimizing for the particular application.

The specific application that is used as a case study in this chapter is a Java-based VLSI layout

viewer called “WebChip”. This application is chosen because it is both information- and display-

intensive and requires interactive operation.

11.1. WebChip - An Interactive Java-based VLSI Layout Viewer

WebChip is Java-based VLSI layout viewer that allows users to embed active layouts in

their web pages instead of only using static images. It is information-based as it is designed to

view a large layout database remotely. It is also display-intensive, particularly considering it is

designed to operate on a relatively restricted Java virtual machine. While the implications of Web-

Chip in terms of application-specific text / graphics and image transmission are described in this

156

chapter, further details about its use and operation can be found in Appendix B (The WebChip

Applet).

WebChip, like other instances of application-specific text / graphics and image transmis-

sion, could be designed as a local client that did not know about remote transmission and instead

relied upon a text / graphics server to perform application-independent transmission as described

in earlier chapters. While this would allow full functionality, typically with reduced design time, it

would also result in severely degraded interactivity, increased bandwidth utilization, and increased

latency over low-bandwidth links.

Using application-independent transmission would require all layout data to be fully ren-

dered before transmission and thus whenever the particular desired view changed, the image

would have to be re-transmitted. Application-specific transmission allows client-side caching of

view-invariant data, such as layout cells. Also, rendered data in the form of primitive draw com-

FIGURE 11.1. Example layout viewed with WebChip

157

mands or bitmaps, is typically less compact then the source data it came from, since it has greater

expressive capability.

The WebChip application is used to present application-level techniques to hide the effects

of slow networking and image rendering. Many of the issues in application-independent text /

graphics and image transmission as well as web-specific delivery find parallels in application-spe-

cific domain as described below.

There is a need to combine compression and link scheduling to most effectively utilize the

limited bandwidth link. Compression alone will yield some benefit, but only in conjunction with

link scheduling can very low-bandwidth links be managed.

Progressive techniques can be used, as before, to assure that the user is delivered the coars-

est information first, so that in a very short amount of time a crude version of the entire layout can

be seen. While in the case of web delivery, a crude version refers to reduced spatial resolution, in

the case of a layout viewer, this refers to seeing only higher-level cells. The data within the cells

could also be arranged progressively.

As with the application-independent and web-specific cases, it is critical to infer user intent

to guide the use of the limited bandwidth link. In the case of the layout viewer, the intent is mani-

fest in the choice of cells to layout cells to expand. This information is then provided to the net-

working layer so that the expanded cells are given higher loading priority and their data is

transferred sooner.

In order to retain interactivity during the loading process, the user interface, networking,

and rendering layers of the application must be decoupled. In this way, the user interface will not

block because the application is waiting on data from the network, or because the application is in

the middle of a compute-intensive drawing operation. Once this decoupling has occurred then the

158

constraints on the networking and rendering layers can be relaxed while still achieving interactiv-

ity.

Even large, highly detailed VLSI layouts can be viewed interactively over a slow link. The

key is that at any given time the user’s immediate requirements of data are typically modest,

although they do need the ability to view the entire layout when desired.

11.2. Techniques to Increase Speed

11.2.1. Display Techniques

The simplest way to produce stipples is using the AWT drawimage to copy pre-determined

swaths of semi-transparent stipples. The swaths are basically sets of IndexedColorMap images.

Rendering is limited to within the window and clip rect to avoid unnecessary computations. Sub-

cells are only recursed into if they contain some part in the current clip rect or window. This has

the advantage of relative simplicity although the swaths have to be generated and determining

where on the screen to draw layers is non-trivial given a hierarchical design with transformations.

This method is too slow, particularly under Unix. Unix currently uses interpreted Java

while the PC implementations use just-in-time compilation. More importantly in Unix, the display

is handled by another process - the X server, and each drawing request is very costly. Under Win-

dows 95/NT on a PC, the drawing can be performed by the Java application directly using Direct-

Draw, and thus the overhead is substantially less. By running the “top” utility in Unix, it is clear

that in AWT mode, the X server is indeed consuming the bulk of the cycles.

11.2.1.1. Image Blocks

Performance can be improved upon by performing the rendering to a byte array in Java on a

cell by cell basis. Once a cells has been rendered into a byte array, it is displayed using a single

159

drawimage request. In this way, far fewer drawing requests are made. Instead of using the AWT's

semi-transparent copy, the block mode routines that generate the byte data use something more

akin to stippled rectangle drawing. The code has been unrolled and optimized to achieve respect-

able performance, even under interpreted Java.

11.2.1.2. Cell Image Caching

A more architecturally significant improvement comes by a technique dubbed cell image

caching. Most designs are hierarchical while currently most display programs display “flattened”.

If many copies of a given cell are displayed, the cells are rendered one at a time. This can lead to

very slow rendering of large expanded layouts.

Instead, it is beneficial to save the image of a cell once it is rendered at a given magnifica-

tion, and then upon having to render it again later, the image can be retrieved instead of having to

redraw the layers from scratch. Since hierarchical designs include rotated and flipped subcells,

either the cell image rendering has to be able to rotate and flip the images, or else an image has to

be cached for each rotation. WebChip uses the latter option due to Java's lack of support for rota-

tion. Not all browsers supported the 10 argument drawimage which allows flipping. There can be

up to 8 different combinations of rotations and flips. The transform matrix is examined to deter-

mine the orientation.

In the case of stippled drawing, the stipple patterns must always align or else different layers

in different cells can obscure each other. It suffices to round out the box sizes to the basic granu-

larity of the stipple which is two. I.e. in the 8x8 stipples, most transparent patterns, except nwell,

repeat on a 2x2 basis.

A cell image caching system must be able to revert back to either non-cached blocks or

primitive AWT in case there is insufficient memory for the images, or the cell image rendering

will be more costly than the primitives. WebChip has both modes of fall-back.

160

 While cell image caching is very useful for WebChip, allowing it in some cases to render

more rapidly than Magic or Cadence, it could also be extended to those tools. It is a generic tech-

nique useful for dealing with hierarchy.

11.2.2. Loading Techniques

Since the time to load layout over slow links is an important factor in interactivity, ways to

improve it were investigated.

11.2.2.1. Compression

The first way to reduce load-time is to compress the data being loaded. Magic files are plain

ASCII text which has the advantage of being human-readable, but not particularly compact. Con-

verting the layout into a binary form and doing application-specific compression would yield very

good compression at the expense of reduced portability. An alternative is to use Java's GZIP com-

pression support on the ASCII cells1.

WebChip supports reading both compressed and uncompressed layout files. If it does not

find one type then it looks for the other. It assumes that most of the cells in a particular design will

be compressed, or most will not. If it finds one compressed file, it checked for the next one being

compressed before reverting to searching for the uncompressed version.

11.2.2.2. Concurrent Loading

Additional reductions in loading time can be obtained by issuing multiple layout cell

requests simultaneously. This technique is commonly performed by web browsers when retriev-

ing the images associated with a particular page. It amortizes the TCP/IP connect time cost. How-

ever, opening too many connections simultaneously can result in a loss in performance particularly

over a modem link as the connections are never able to stabilize. For these reasons WebChip is

1. This was suggested by Michael Shilman.

161

currently set up to handle 3 concurrent loads. Additionally, by allowing the layout editor to issue

the requests in the order it sees fit, it can request the top cells that the user is trying to view.

11.3. Techniques to Deal with Work In Progress

As mentioned, even once all efforts have been made to accelerate loading and display, addi-

tional mechanisms should be put in place to make the best of the speed that can be obtained. This

section describes ways to operate effectively with non-negligible load and display times.

11.3.1. Hiding Slow Loading

Conventional CAD systems load the design database and then use it. Web-based agents,

however should consider the loading process a significant part of their operation and thus allow the

user to interact and perform useful work during this time. WebChip does just this.

Typically cells are created when they are loaded. Instead, WebChip creates cells the first

time they are referenced. Then they are scheduled to be loaded as soon as possible. In the mean-

time, however, the database is still consistent and can be manipulated. The display subsystem

knows how to render a cell that has not been loaded. (Typically their bounding box is drawn in

gray.) Additionally, the loading subsystem places a call-back to the rendering subsystem as the

cell is loaded so the user can get an up-to-date view.

11.3.2. Hiding Slow Display

Existing systems typically also consider the rendering process as something that starts and is

then completed before further interaction can occur. In very fast systems operating on small

designs, this is not a problem. However, on slower systems or very large designs, the user often

has to interrupt the display process. WebChip allows interaction even during display by maintain-

162

ing a separate display thread for each active view window. The GUI interaction occurs in yet

another thread so that it is not blocked.

Proper accounting keeps the display thread focused on the correct task. This is how, for

instance, the selection box can be manipulated while redraw is in progress. (The actual mecha-

nism for maintaining the selection box is to actually create 4 Canvas objects for each of the 4 sides

and these are mapped over the view window.)

11.4. Conclusions and Future Work

This chapter has presented a method for interactive display of large VLSI layouts over the

web. The WebChip applet achieves this through a number of optimizations focused on reducing

and managing load and display time. Although the viewer is written in Java, similar techniques

could be used on any platform.

163

CHAPTER 12 Development Environment

In this chapter, the development environment for the application-specific techniques is pre-

sented. First presented is netem , a network emulator which is used to model bandlimited channels.

Next presented is the SpeedSurfer client-side proxy which is used to perform client-side link mon-

itoring and analysis. Last described is SurfServ, the SpeedSurfer server-side proxy, which is also

used to prototype the globally progressive interactive web delivery as described in Section 10.6..

12.1. Netem - Network Emulator

netem , detailed in Appendix A.5. (netem (1)), is a network emulator that can be used to

emulate bandlimited links in real-time in order to study the effects of bandwidth limitations on sys-

tem performance and user interaction. netem was used extensively in the development of the

Globally Progressive Interactive web delivery protocol described in Chapter 10, as well as the

WebChip VLSI layout viewer described in Chapter 11.

netem allows multiple simultaneous connections to be emulated, and operates at the

stream level. Currently only TCP/IP connections are supported and emulation occurs at the TCP/

IP connection level. netem emulates bandlimited links with fixed individual or total link capac-

164

ity. It can also emulate transport latency. The modeling is performed with an emphasis on high

throughput rather than IP packet-level modeling accuracy. Thus to obtain highly accurate models

of the interaction of multiple TCP/IP streams, or their reactions to packet loss or congestion, a tool

such as the Network Simulator - ns [68] should be used.

netem is configured by specifying a set of connections that it should forward and emulate

from the local machine to some remote host. For instance, consider that netem is running on a

machine called emhost.eecs.berkeley.edu. It could be configured to forward connections from

port 1234 to port 23 on otherhost.eecs.berkeley.edu via the command:

netem 1234=otherhost.eecs.berkeley.edu:23

This would allow emulation of telnet connections, which by default use port 23. If a user

now telnets to port 1234 of emhost.eecs.berkeley.edu, a telnet session to otherhost, through netem

is established. This would operate the same as a direct telnet connection to otherhost. However, a

slow modem link can be emulated if rate limiting is specified via:

netem -rate_limit_bps 25000
 1234=otherhost.eecs.berkeley.edu:23

Now connections to port 1234 of emhost are still forwarded to otherhost, but only at a max-

imum data rate of 25Kbps. Note that a typical 28.8kbps modem connection will result in through-

put closer to 20-25Kbps due to byte-level and packet-level synchronization and overhead and

prevailing phone line and Internet conditions. If multiple connections to port 1234 of emhost are

established then the total rate of all connections are limited to 25Kbps in order to simulate a shared

link. The -rate_limit_individual option can be used to allocate 25Kbps for each con-

nection to emulate independent links.

Fixed latency can be specified via the -latency_ms option as in:

165

netem -rate_limit_bps 25000 -latency_ms 200
 1234=otherhost.eecs.berkeley.edu:23

This adds the addition restriction that data incurs a delay of 200ms while being forwarded.

This can emulate latency due to network queues and packetization delays.

In addition to forwarding connections to fixed addresses, netem can act as a web proxy and

determine which host to connect to via the data stream. The following command demonstrates

this:

netem -rate_limit_bps 25000 1234=web

Now if a web browser is used with its HTTP proxy set to emhost port 1234 then all web

pages viewed with the web browser are directed through the proxy and will consequently be sub-

jected to rate limiting. In this way, the performance of a slow link can be experienced on a net-

work without such slow links, and the effects of different networking protocols can be explored.

Netem can also print connection rate information as well as log the data being transferred on

the emulated connections by varying the -verbosity level. One such example is shown in Fig-

ure 12.1. Other features and options are described in Appendix A.5. (netem (1)).

12.2. SpeedSurfer - PC Client-Side Proxy

The SpeedSurfer client-side proxy is a Windows 95/NT application that acts as a local cli-

ent-side proxy as well as arbitrary TCP/IP connection forwarder. It can be used in conjunction

with SurfServ, described in the next section, to encapsulate multiple TCP/IP connections across a

lossy bandlimited link in an explicitly managed manner. Additionally, it can perform real-time

data flow analysis and generate real-time web-page loading graphs described in Section 10.4..

166

Using buffer of size 128
Port mappings:
 Port 1234 -> Web
Accepted client from 128.32.62.75 port 1794 as connection 0
Got (128) “GET http://Badlands.EECS.Berkeley.EDU:8090/~gilbertj/
HTTP/1.0\r\n
Proxy-Connection: Keep-Havering
User-Agent: Mozilla/4.5 [en] (WinN" from client 0
Http server Badlands.EECS.Berkeley.EDU:8090 is 128.32.139.53 port
8090
Connection 0 is to Badlands.EECS.Berkeley.EDU:8090 to perform:
 GET /~gilbertj/ HTTP/1.0
Sending to server 0 "GET /~gilbertj/ HTTP/1.0\r\n
Proxy-Connection: Keep-Alive\r\n
User-Agent: Mozilla/4.5 [en] (WinN"
Finished writing 90 to server
Got (128) "T; I)\r\n
Pragma: no-cache\r\n
Host: Badlands.EECS.Berkeley.EDU:8090\r\n
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, ima"
from client 0
Finished writing 128 to server
Got (95) "ge/png, */*\r\n
Accept-Encoding: gzip\r\n
Accept-Language: en\r\n
Accept-Charset: iso-8859-1,*,utf-8\r\n
\r\n" from client 0
Finished writing 95 to server
Got (128) "HTTP/1.0 200 Document follows\r\n
Server: CERN/3.0A\r\n
Date: Mon, 20 Mar 2000 18:44:42 GMT\r\n
Content-Type: text/html\r\n
Content-Length: " from server 0
Finished writing 128 to client
Got (128) "4108\r\n
Last-Modified: Mon, 07 Jun 1999 00:24:28 GMT\r\n
\r\n
<!doctype html public "-//w3c//dtd html 4.0 transitional//en">\r\n
<html>\r\n
<h" from server 0
Finished writing 128 to client
Got (128) "ead>\r\n
 <meta http-equiv="Content-Type" content="text/html; char-
set=iso-8859-1">\r\n
 <meta name="Author" content="Jeff Gilbert"" from server 0
Finished writing 128 to client
Got (128) ">\r\n
 <meta name="GENERATOR" content="Mozilla/4.5 [en] (WinNT; U)
[Netscape]">\r\n
 <title>Jeff Gilbert's Home Page</title>\r\n

FIGURE 12.1. Example diagnostic printouts.
Generated by netem 1234=web -verbosity 31 -rate_limit_bps 20000

167

While a summary of the SpeedSurfer application is presented here, details of its operation can be

found in Appendix C (The SpeedSurfer Application).

12.2.1. Client-Side Proxies

Conventional (server-side) web proxies only reside on the web-server side of slow links as

shown in Figure12.2. In order to use these proxies, the address of the web proxy is specified to a

Web
Server

Internet

Web
Client

Web
Server

Modem / Wireless Link

Proxy Server

ISP

Proxy
Server

Web
Server

Internet

Web
Client

Web
Server

Modem /
Wireless Link

ISP

FIGURE 12.2. Two views of server-side proxies.
The view on the left is semantic while the view on the right is closer to actual
implementation.

Web
Server

Internet

Web
Server

Modem / Wireless Link

Proxy Server

Proxy Client

ISP

Web
Client

Proxy Client

Proxy
Server

Web
Server

Internet

Web
Client

Web
Server

Modem /
Wireless Link

ISP

FIGURE 12.3. Two views of client-side and server-side proxies for better link control.
Again the view on the left is semantic while the view on the right is closer to actual
implementations. Note that the proxy server should be placed near the ISP for optimal
performance if it cannot be replicated at each ISP.

168

web browser. The browser then sends all requests to the proxy instead of the address of the

requested web page. While this setup means that the client does not have to run any special soft-

ware, it also means that the protocol going over the slow or lossy link must be the protocol that the

web browser understands. This can significantly limit the flexibility and power of the system. The

Java applets described in Section 10.6. are one way to obtain greater flexibility without browser

modification but are limited to web delivery, and have limited interface capability and perfor-

mance constraints.

However, if a web proxy is run on the client’s side of the link as well, as shown in

Figure 12.3, then the data travelling over the modem or wireless link can be fully controlled to best

exploit the characteristics of the link. In this scenario, the web browser is told that there is a proxy

located on the client’s machine. Thus all requests are routed through the client-side proxy. The

client-side proxy, in turn, knows how to contact the server-side proxy. Although the user has to

run a proxy on the same side of the slow link as the browser, the actual web browser need not be

modified. Additionally, the client and server proxies are standard applications and the network

infrastructure need not be modified.

The same proxy architecture can be used for non-web connections. Most applications such

as telnet, ftp, and X Windows can be instructed to connect to a different location - one of the client

proxy’s ports, to effect the connection. A single client proxy can accept connections on multiple

ports to handle multiple services. Since all (or most) connections over the constrained link go

through the client and server proxies, centralized link management is possible, leading to more

efficient link utilization.

169

12.2.2. Link Management Using Client-Side and Server-Side Proxies

The client-side proxy architecture can be used to investigate link management from a net-

working perspective since all outgoing network connections are passed through the client / server

proxy pair. Thus all traffic over the limited bandwidth links can be centrally controlled. In partic-

ular, link aggregation was explored where all incoming TCP/IP connections are combined into one

persistent connection with the server-side proxy.

Multiplexing the multiple transient streams through one persistent TCP/IP connection has

several benefits in terms of increasing performance. It eliminates the per-connection TCP/IP con-

nection establishment overhead and slow-start delays. It also reduces contention between the mul-

tiple connections. Additionally, the combination and prioritization of the links can be controlled

by the two proxy servers. In the case of web access, it can be used to experiment with coercing

HTTP/1.0 connections into an HTTP/1.1-like stream.

Furthermore, some of the overhead of TCP and IP headers of small packets can be amor-

tized over multiple connections since the information needed to demarcate the various streams in

the single TCP connection is much less than the overhead if each was its own TCP connection.

Additionally, since there is a single dominant stream, it is safe to disable the Nagle algorithm

which can delay packetization.

Finally, since the TCP/IP connections between the web server and browser have been

divided into two parts on the server side, buffering can occur at the server-side proxy. The server-

side proxy smooths out the bursty traffic that comes from the remote web servers over the Internet.

When a direct connection is made from the web browser to the servers, this kind of buffering can-

not occur effectively as losses due to congestion in the Internet will cause degradation in link per-

170

formance. The client / server proxy pair could be used to perform lossy or lossless source coding

or encryption without modifying either the end-server or end-client.

The SpeedSurfer and SurfServ proxies are used to analyze a performance limitation in the

Berkeley dial-in modem pool. By multiplexing multiple independent web connections and limit-

ing the amount of data queued for transit over the modem link to 2000 bytes, extraneous TCP/IP

errors and time-outs are eliminated, allowing transmission at about 90% of the link capacity com-

pared to only about 50% link capacity without the proxies. [30]

In addition to adding more flow control to the TCP/IP connection, UDP packets could be

used instead to allow full redesign of the reliable protocol. This would likely be necessary for ade-

quate performance over a wireless link. Alternatively other flavors of TCP/IP such as Vegas could

be investigated. Based on the previous observations, it seems that Vegas would be much better

suited since it avoids forced congestion and packet loss.

12.3. SurfServ - SpeedSurfer Server / Progressive Proxy

SurfServ, detailed in Appendix A.8. (SurfServ (1)), is a unix-based application that per-

forms the necessary connection establishment, multiplexing, and demultiplexing to support the

SpeedSurfer client-side proxy. The SurferServ is optimized to handle multiple SpeedSurfer ses-

sions efficiently. Simple techniques such as minimizing data copying and efficient use of select()

make it possible for the SurferServ to have a minimal load on the CPU. Each session with a dis-

tinct SpeedSurfer client is forked into a new process so that the connections will not adversely

affect each other, and also to get around the per-process limitation of 64 open files. The Speed-

Surfer sessions are long-lived so that the impact of the new process creation is minimal.

171

SurfServ also acts as the server-side proxy for the Globally Progressive Interactive Delivery

prototype described in Section 10.6. It performs the HTML image to applet tag translation as well

as managing the image delivery links from the Java applets. The connection to the web servers is

made using HTTP/1.1 with persistent connections whenever possible, reducing the number of new

web browser connections. Thus a new process can be used for each new connection and a new

process is used for connection to the Java applets. This reduces open-file limitations. Individual

light-weight threads are used to perform the progressive image transcoding so that the transcoding

of one image does not impact that of another.

172

173

PART IV Conclusions

CHAPTER 13 Conclusions and
Future Directions

13.1. Network Requirements

There are many common themes which pervade the various types of text / graphics and

image transmission described in this thesis. This section distills the common networking require-

ments in effort to propose new services which will allow modular reuse of these capabilities. By

coupling the applications more closely with the network protocols, but keeping the packet-level

scheduling in the operating system, the necessary agility can be retained while not sacrificing effi-

ciency.

In this section, messages refer to the atomic unit of communication where a part of a mes-

sage is of no value until the whole message is received. (Others have referred to this as an atomic

data unit.) A stream refers to one ordered set of messages where in-order delivery of the messages

174

is required. A packet is the unit of data physically transferred over the network and a connection

subsumes the entire set of data transferred for the application.

13.1.1. Lightweight, Independent Streams

One recurring theme seen throughout this thesis is that text, graphics, and image data trans-

mission involves multiple lightweight streams. The granularity and size depend on the particular

application. For the case of the web, the streams are simply the objects in the web page. Applica-

tion-specific instances define their own granularities - the WebChip application uses independent

streams for each VLSI layout cell. For the case of the bitmap-based approaches, the ultra-light

streams correspond to the individual blocks in the image. The conventional primitive approach

allows one stream per application. The hybrid approach uncovers much more packet indepen-

dence allowing disjoint sets of primitives to occupy separate streams.

Uncovering parallelism and removing false dependencies is almost always beneficial. Par-

allel computer architectures require this for efficiency, multiple-issue microprocessors can exploit

it, networking can exploit it to better cope with packet loss. By exposing the true dependencies to

the networking layer, the application need not individually manage the sub-streams but can enjoy

the benefits of their management.

The MUX protocol [51] described in Section10.3.1. implements lightweight streams over

TCP/IP which does expose the interface to applications, but layering upon TCP/IP introduces

false-dependencies in that the use of a single TCP/IP stream will cause losses in one sub-stream to

delay data in another sub-stream.

13.1.2. Explicit Message Interdependence

In the case of the hybrid approach, simple streams do not suffice to expose all dependencies.

More complicated directed acyclic graphs are required to express the fact that some primitives can

175

be dependent on multiple other streams. Thus more complex message interdependence exists.

Streams are a special case where there are linear dependency graphs, and thus general purpose

interdependencies can be used to describe streams as long as efficiency is not compromised.

Explicit packet interdependence can also be used to improve sending of individual images

in web transmission if the independent regions in the data are noted. This can expose further par-

allelism and further reduce latency due to loss (see Section3.2.2.) in highly lossy environments.

13.1.3. Dynamic Reprioritization of the Streams

Interactive text / graphics and image transmission requires dynamic reprioritization of the

data streams to obtain low latency over bandlimited and/or lossy links. Explicit prioritization

allows better link management to assure that the data that needs to arrive quickly is delivered first.

In the case of application-independent transmission, it allows low-bandwidth, high-impact data

such as text and non-image graphics primitives to be delivered quickly. It also allows regions of

interest, such as where the cursor is, to be delivered more quickly than other areas. For web trans-

mission, it allows on-screen images, to be delivered before off-screen images and images where

the cursor is to be delivered before other on-screen images. Application-specific instances such as

WebChip use prioritization to assure that base cells are transferred before underlying cells.

13.1.4. Message Unqueing

In addition to reprioritizing messages, some cases, such as the application-independent

transmission, benefit from being able to unqueue messages that have been enqueued earlier. This

is primarily used for removal of redundant messages when one text / graphics primitive or bitmap

update is superseded by a later one. In these cases, correctness still is maintained if the earlier,

stale packet is delivered, though it will consume additional bandwidth. Thus as soon as the text /

graphics server knows that the message is no longer useful, it will unqueue it. In this way, if the

176

message is queued in the network buffers, it can be removed before it is sent, and if it has already

been sent, no bandwidth will be wasted attempting retransmissions if it is not delivered. This was

also proposed as implicit annihilation in [37].

13.1.5. Rate, Flow, and Congestion Control

While applications desire tight control over how their share of available bandwidth is used,

they still need to coexist in a global Internet with other traffic streams. Thus the sum of their traf-

fic must behave like one or multiple TCP/IP streams to promote fair resource utilization. This also

allows applications which run over varying networks to adapt to the network and conditions. Care

must be taken to prevent loss due to wireless link corruption from being confused with packet loss.

Techniques to adapt TCP/IP to wireless links, such as SNOOP, can be used while retaining the

multi-stream architecture [8].

13.1.6. Notification of Packet Arrival

As we have seen in the bitmapped and hybrid approaches, the applications often keep addi-

tional state associated with data in flight, and must be notified of the delivery of the data in order to

free the state. Thus they often need feedback from the transport system when successful data

delivery occurs. Additionally, if reliable transmission at the network level is not used then a time-

out notification back to the application is useful.

13.2. Conclusions

Compression is not enough.

This thesis has shown that image and data compression alone are not sufficient to obtain

interactive performance over many bandlimited and lossy links. Link scheduling, progressive

techniques, and suppression of stale data in conjunction with image and data compression yield a

177

far more effective strategy for compensating for bandwidth limitations and data loss. It is critical

to view interactive text / graphics and image transmission as a user-based activity and optimize the

results as experienced by the user. This entails determining which information the user is most

interested in and sending it first, and realizing that this interest can change dynamically over time.

Increased concurrency of delivery of data on various parts of the image is required to allowed con-

tinued interactivity in the face of reduced connectivity. When these steps are taken, interactive

operation using a large screen or of a large design significantly improves over low bandwidth, high

error-rate links.

13.3. Future Directions

While Section 13.1. defines some criteria for a network protocol that would be useful to a

wide range of text / graphics and image applications, there are still many details to be resolved and

an implementation has yet to be developed and deployed.

Similarly, Chapter 7 describes a hybrid approach to text / graphics and image transmission

with many ideas and motivations grounded in previous completed work, but the hybrid approach

itself has not been implemented. It would be useful to implement the hybrid approach into a thin

client and either a modified X server, as used in the InfoPad system, or Windows Terminal Server,

to allow bandwidth-efficient remote access to windows applications over wireless lossy links.

Chapter 10 describes how web access over slow and/or lossy links can be improved by

using globally progressive interactive web delivery. Analysis and a Java / proxy prototype are pre-

sented, as are the drawbacks of the prototyping method. More seamless deployment on a large

scale can be achieved by integrating the client-side functionality into a popular web browser and

integrating the server-side functionality into a popular web server and proxy. Several of the

178

advantages are described in that chapter. Additionally, by using the improved networking services

previously described, improved performance, particularly over wireless links, can be achieved.

This future research could further confirm that although compression is an important ingre-

dient in efficient text / graphics and image transmission over bandlimited lossy links, compression

is not enough .

179

Bibliography

[1] Elan Amir, Steve McCanne, and Hui Zhang, “An Application Level Video Gateway,”

Proc. ACM Multimedia '95, San Francisco, CA, November 1995.

[2] Thomas E. Anderson, David E. Culler, David A. Patterson, and the NOW Team, “A Case

for Networks of Workstations: NOW.” IEEE Micro, Feb 1995.

[3] The Apache Group, “The Apache Web Server Project.” http://www.apache.org.

[4] Arps, R.B. and T.K. Truong, Comparison of International Standards for Lossless Still

Image Compression. Proceedings of the IEEE: 82:889-899, June 1994.

[5] AT&T. Virtual Network Computing homepage. http://www.uk.research.att.com/vnc

[6] P. Ausbeck, Jr., “Context Models for Palette Images”, in Proc. of the 1998 Data

Compression Conference, (Snowbird, Utah), pp. 309-318, April 1998.

[7] Backman, Dan, “Spectrum Lets You Dial In On The FastLane,” Network Computing

Online, http://techweb.cmp.com/nc/907/907sp4.html.

[8] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz, “Improving TCP/IP Performance in

Wireless Networks,” Proc 1st ACM Conference on Mobile Computing and Networking

(MOBICOM), Berkeley, CA, November 1995.

180

[9] Balakrishnan, Hari, and Venkat Padmanabhan, Srinivasan Seshan, Mark Stemm, and

Randy H. Katz, “TCP Behavior of a Busy Internet Server: Analysis and Improvements.”

Proceedings of IEEE Infocom ‘98. March 1998.

[10] Bell, Timothy C., John G. Cleary, and Ian H. Witten, Text Compression, Prentice Hall,

Englewood Cliffs, NJ, 1990.

[11] Berners-Lee, Tim, R. Fielding, H. Frystyk., “Informational RFC 1945 - Hypertext

Transfer Protocol -- HTTP/1.0,” MIT/LCS, UC Irvine, May 1996.

http://www.w3c.org/Protocols/rfc1945/rfc1945

[12] Boutell, T., T. Lane et al. “PNG (Portable Network Graphics) Specification,” W3C

Recommendation, October 1996, RFC 2083, Boutell.Com Inc., January 1997.

http://www.w3c.org/Graphics/PNG.

[13] A. Broder and M. Mitzenmacher. “Pattern-based compression of text images,” in Proc.

of the 1996 Data Compression Conference, (Snowbird, Utah), pp. 171-180, March 1996.

[14] R.W. Brodersen, A.P. Chandrakasan, S. Sheng, “Design Considerations for Portable

Systems”, IEEE International Solid-state Circuits Conference, pp. 168-169, February

1993.

[15] Chandrakasan, Anantha, “Low Power Digital CMOS Design,” Ph.D. Dissertation,

University of California, Berkeley. Berkeley, California, 30 August 1994.

[16] Citrix Corporation. “ICA Technology.” http://www.citrix.com/products/ica.asp

[17] CompuServe Incorporated, “Graphics Interchange Format - Version 89a,” 1987-1990.

http://www.w3c.org/Graphics/GIF/spec-gif89a.txt

181

[18] C. Constantinescu and R. Arps, “Fast Residue Coding for Lossless Textual Image

Compression” in Proc. of the 1997 Data Compression Conference, (Snowbird, Utah),

pp. 397-406, March 1997.

[19] Converse, D et al. - X Consortium, “Low Bandwidth X Extension.”

ftp://ftp.x.org/pub/R6.4/xc/doc/specs/Xext/lbx.mif

[20] Cornelius, David, “XRemote: a serial line protocol for X,” 6th Annual X Technical

Conference, Boston, MA 1992.

[21] David E. Culler, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Brent Chun, Steven

Lumetta, Alan Mainwaring, Richard Martin, Chad Yoshikawa, Frederick Wong,

“Parallel Computing on the Berkeley NOW”. JSPP'97 (9th Joint Symposium on Parallel

Processing), Kobe, Japan .

[22] Danskin, John, “Compressing the X Graphics Protocol,” Ph.D. Dissertation, Princeton

University. Princeton, New Jersey, January 1995.

[23] Fielding, R., J. Gettys, J.C. Mogul, H. Frystyk, T. Berners-Lee, “RFC 2068 - Hypertext

Transfer Protocol -- HTTP/1.1,” UC Irvine, Digital Equipment Corporation, MIT.

http://www.w3c.org/Protocols/rfc2068/rfc2068

[24] Floyd, Sally and Van Jacobson. Link-sharing and resource management models for

packet networks. IEEE/ACM Transactions on Networking, 3(4):365-386, August 1995.

[25] Fox, Armando, Steve Gribble, Yatin Chawathe, and Eric Brewer, “The Transend

Service,” http://transend.cs.berkeley.edu/about

182

[26] Fox, Armando, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Elan Amir,

“Adapting to Network and Client Variability via On-Demand Dynamic Distillation,”

Proceedings Seventh International Conference on Architectural Support for Programing

Languages and Operating Systems (ASPLOS-VII), October 1997, Cambridge, MA.

[27] Fulton, Jim, and Chris Keat Kaatarjiev, “An update on low bandwidth X (LBX),”

Proceegins of the 7th Annual X Technical Conference, January 1993, O’Reilly and

Associates.

[28] Gailly, J. and M. Adler, “ZLIB documentation and sources,” available at

ftp://ftp.uu.net/pub/archiving/zip/doc

[29] Gettys, James, and Philip L. Karlton, and Scott Mcgregor, “The X Window System,

Version 11,” Software Practice and Experience vol. 20(S2), S2/35-S2/67. October

1991.

[30] Gilbert, Jeff. “Optimizing Web Access Over Modem (and Wireless) Links Using Client-

Side Proxies.” EE228a Project Report. December 4, 1997.

[31] Gilbert, Jeffrey M. and Robert W. Brodersen. “Globally Progressive Interactive Web

Delivery.” Proceedings 1999 IEEE Infocom. New York. 21-25 Mar 1999.

[32] Gilbert, Jeffrey M. and Robert W. Brodersen. “A Lossless 2-D Image Compression

Technique for Synthetic Discrete Tone Images.” 1998 IEEE Data Compression

Conference. Snowbird, Utah. 28 Mar - 1 Apr 1998. p.359-368.

[33] Gilbert, J.M. and Yang, W. “A Real-time Face Recognition System using Custom VLSI

Hardware.” Proceedings 1993 Computer Architectures for Machine Perception . New

Orleans, LA. 15-17 Dec 1993. p.58-66.

183

[34] Gilbert, Jeffrey M. “A Real-time Face Recognition System using Custom VLSI

Hardware.” Undergraduate honors thesis, Harvard College. Cambridge, MA. May 1993.

[35] Graphon Corporation, “Graphon Corporation Homepage,” http://www.graphon.com

[36] Richard Han and David G. Messerschmitt, “A Progressively Reliable Transport Protocol

for Interactive Wireless Multimedia.” Multimedia Systems vol 7(2): pp. 141-156, 1999.

[37] Richard Y. Han and David G. Messerschmitt, “Asymtotically Reliable Transport of

Multimedia / Graphics over Wireless Channels.” Proceedings Multimedia Compution

and Networking, San Jose, CA, Jan 29-31, 1996.

[38] P. G. Howard, “Lossless and Lossy Compression of Text Images by Soft Pattern

Matching” in Proc. of the 1996 Data Compression Conference, (Snowbird, Utah), pp.

210-219, March 1996.

[39] Huffman, D.A., “A Method for the Construction of Minimum Redundancy Codes,”

Proceedings of the Institute of Radio Engineers, September 1952, Volume 40, Number

9, pp. 1098-1101.

[40] Independent JPEG Group’s JPEG library. ftp://ftp.uu.net/graphics/jpeg.

[41] Intel Corporation, “QuickWeb homepage”. http://www.intel.com/quickweb

[42] Jacobson, Van, “Congestion Avoidance and Control,” Proceedings of ACM SIGCOMM

‘88, p. 314-329. Stanford, CA, August 1988.

[43] M. Kuhn. Software kit for jbigkit. Available via anonymous ftp from ftp.unierlangen.de

as /pub/doc/ISO/JBIG/jbigkit-0.7.tar.gz.

[44] McWilliams, Brian, “Intel Announces Server-Side Browser Accelerator,” PC World

Online, January 20, 1998. http://www.pcworld.com/news/daily/data/0198/

980120192859.html

184

[45] Microsoft Corporation. NetMeeting Home. http://www.microsoft.com/netmeeting.

[46] Microsoft Corporation. “Windows NT Terminal Server Edition.”

http://www.microsoft.com/ntserver/terminalserver/default.asp

[47] Moffatt, A., “A note on the PPM data compression algorithm,” Research Report 88/7,

Department of Computer Science, University of Melbourne, Parkville, Victoria,

Australia.

[48] Mozilla Home Page, http://www.mozilla.org

[49] S. Narayanaswamy, S. Seshan, E. Brewer, R. Brodersen, F. Burghardt, A. Burstein, Y.-

C. Chang, A. Fox, J. Gilbert, R. Han, R. H. Katz, A.. Long, D. Messerschmitt, J. Rabaey;

“Application and Network Support for InfoPad” IEEE Personal Communications

Magazine, Mar 1996.

[50] Nielsen, Henrik Frystky, “Hypertext Transfer Protocol - Next Generation” homepage.

http://www.w3c.org/Protocols/HTTP-NG/

[51] Nielsen, Henrik Frystky, “MUX Overview” W3C Architecture Domain.

 http://www.w3c.org/Protocols/MUX

[52] Nielsen, Henrik Frystky, et al., “Network Performance Effects of HTTP/1.1, CSS1, and

PNG.” W3C NOTE-pipelining-970624. June 24, 1997.

http://www.w3c.org/Protocols/HTTP/Performance/Pipeline.html.

[53] Padmanabhan, Venkat and Randy H. Katz, “Addressing the Challenges of Web Data

Transport,” unpublished.

[54] Padmanabhan, V.N. and J. Mogul, “Improving HTTP Latency,” Computer Networks and

ISDN Systems, v.28, pp.25-35, Dec. 1995.

[55] Padmanabhan, Venkat - personal correspondence.

185

[56] Pennebaker, William B. and Joan L. Mitchel, JPEG Still Image Data Compression

Standard, New York: Van Nostrand Reinhold, 1993.

[57] J. Poskanzer. Pbmplus - image file format conversion package:

http://www.acme.com/software/pbmplus

[58] T. Richardson, Q. Stafford-Fraser, J. Weatherall, K.Wood, A. Harter, C. McLachlan, P.

Webster. AT&T Virtual Network Computing homepage. http://

www.uk.research.att.com/vnc.

[59] Roelofs, Greg., “PNG (Portable Network Graphics) Home Page” http://

www.cdrom.com/pub/png

[60] Said, Amir, and William A. Pearlman, “An Image Multiresolution Representation for

Lossless and Lossy Compression,” SPIE Symposium on Visual Communications and

Image Processing, Cambridge, MA, Nov. 1993.

[61] Sayood, K., Introduction to Data Compression . San Francisco, CA: Morgan Kaufmann

Publishers, Inc., 1996.

[62] Scheifler, Robert W., “The X Window System Protocol.” M.I.T. Laboratory for

Computer Science. 1988.

[63] Scheifler, Robert and James Gettys. X Window System. Digital Press, Burlington, MA,

1992.

[64] Scheifler, Robert W. and Jim Gettys, “The X Window System.” Transactions on

Graphics 5(2), 79-109, April 1986, and Software Practice and Experience vol 20(S2),

S2/5-S2/34, October 1991.

[65] Spectrum Information Technologies homepage, http://www.spectruminfo.com

186

[66] Spero, Simon E, “Analysis of HTTP Performance Problems,” July, 1994.

http://www.w3c.org/Protocols/HTTP/Performance/Pipeline.html

[67] J. A. Storer and J. Reif, “Low-Cost Prevention of Error-Propagation for Data

Compression with Dynamic Dictionaries” in Proc. of the 1997 Data Compression

Conference, (Snowbird, Utah), pp. 171-180, March 1997.

[68] “UCB / LBNL / VINT Network Simulator - ns (version 2)”

http://www-mash.cs.berkeley.edu/ns

[69] Waldspurger, Carl A. Lottery and Stride Scheduling: Flexible Proportional-Share

Resource Management, Ph.D. dissertation, Massachusetts Institute of Technology,

September 1995.

[70] “WebTP Home Page, EECS, UC Berkeley”. http://webtp.eecs.berkeley.edu

[71] Welch, T., “A Technique for High-Performance Data Compression,” Computer, June

1984.

[72] Wessels, Duane, “Squid Internet Object Cache.” http://squid.nlanr.net/

Ziv J. and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” IEEE

Transactions on Information Theory, Vol. 23, No. 3, pp. 337-343.

[73] X Consortium, “LBX X Consortium Algorithms.”

ftp://ftp.x.org/pub/R6.4/xc/doc/specs/Xext/lbxalg.mif

187

APPENDIX A Software Documentation

A.1. Codebook2ras (1)

NAME
codebook2ras - VQ Video Codebook to Sun Rasterfile Converter

SYNOPSIS
codebook2ras < codebook_file > codebook_picture.rs

DESCRIPTION
This short program converts VQ Video codebooks into a form suitable for viewing or fur-
ther manipulation. (For manipulation, rasttopnm followed by any of the pnm* tools works
well.) The codebook files can be generated from vq(5) files via vq2codebook(1) and
viewed via many views, particularly xloadimage and xv.

OPTIONS
It does not take any command line arguments. Input must come from the standard input
and the output goes to standard output.

OPERATION
Codebook2ras arranges the data in the codebook so that it is easier to interpret (i.e. in 4x4
block, etc) with the Y codebook on top of the I codebook, which is on top of the Q code-
book. The whole resultant image is 324x1004.

188

SEE ALSO
showcodebook(1) mpeg2vq(1) send_vq(1) vq_play(1) vq(5)

AUTHOR

Jeff Gilbert <gilbertj@eecs.berkeley.edu>

189

A.2. emu (1)

NAME
emu - InfoPad Emulator

SYNOPSIS
emu [- GatewayId] [- PadId] options...

DESCRIPTION
The InfoPad emulator is a Tcl/Tk application which emulates the pad at the protocol level.
Messages as they would appear over the radio link are interpreted and generated. The
emulator connects to a gateway which independently connects to the various servers. The
emulator displays both text / graphics output as well as VQ video on a separate popup
window. (See also vq_play man page). Pad audio input and output are also emulated using
the workstation's microphone and speaker ports. (Currently only Sun SparcStations are
supported.) Pen input can be generate either by using the mouse or an external tablet.
(Many brands of tablet are supported.) Keyboard input is also available to aid in develop-
ment.

Additional debugging aids include a display of the radio traffic statistics into and out of
the emulator (or pad). This can be used to analyze bandwidth requirements. The effective
downlink audio buffer size can be varies to determine the buffering necessary compensate
network jitter.

The emulator is tightly coupled with The Name Server to allow the auto-start version of
the various servers (pad, t/g, pen, and audio) to be selected during operation. The status of
the servers and gateway is continually displayed to quickly identify which are running.
Pull-down menus locate running gateways and available pad servers.

OPTIONS
-show_traffic

Causes the traffic window to be displayed initially. Otherwise the TRAFFIC button
has to be hit to display it. This can be useful for automated demos.

-show_av

Causes the A/W window to be displayed initially. Otherwise the A/V button has to be
hit to display it. This can also be useful for automated demos.

-tablet <tablet type> <tablet device>

Enables tablet support for the pen emulator. <tablet type> must be: scriptel, gazelle0,
gazelle1, wacom_old, or wacom_ud. <tablet device> must be the UNIX file name of
the tablet device - for example /dev/ttya.

190

-helpp

Lists the above options. Note that -help will not work as Tcl/Tk intercepts it before the
emu application can get at it. Any invalid command-line option will work.

OPERATION
When emu is started, it displays the main window which consists of the emulated black
and white text / graphics display with various widgets below it which control the operation
of the emulator. If a GatewayId and PadId are both specified on the command line then
the emulator connects to the specified pad server through the specified gateway at start-
up. Otherwise the emulator comes up in an unconnected mode.

The following buttons, menus, and text entry widgets at the bottom of the window control
the emulator operation:

QUIT

Quits the emulator. Will disconnect first if necessary.

CONNECT

The indicator in the connect button is on if the emulator is currently connected to a pad
server through a gateway. If there is no current connection, (i.e. the indicator is off)
pressing CONNECT button attempts to connect to the pad server and gateway speci-
fied in the text entry boxes. If there is already a current connection (i.e. the indicator is
on) then the connection is broken.

REMOTE REFRESH

Causes an xrefresh to be sent to the text / graphics server to force a full refresh of the
display.

STATS

Displays a pop-up with neat BER and CELL POWER bars which can be manipulated
but actually do nothing as of yet. They were put in by original author for functionality
not yet fully implemented. It did not hurt anything and may well prove useful soon so
I did not remove it.

TRAFFIC

Displays the traffic pop-up which shows packets/sec, kilobits/sec, and average bytes
per packet for each of the uplink and downlink data types as well as the overall down-
link and uplink statistics. The display is updated every second.

AUTO REMAP

Selects automatic remapping, which like the STATS box has all of the hooks neces-
sary to allow handoff (??) but is not supported by the rest of the system. Currently if
AUTO REMAP is on then when it get polling packets the cell power bars in the
STATs window are randomly varied.

POLLED

191

This button is actually just used as an indicator of the reception of polling packets.
These are generated automatically by the pad server. When received, the POLLING
button is flashed. They are received periodically whenever there is an active connec-
tion.

MOVE

Causes the current connection to be broken and a connection to the new padserver and
gateway specified in their text entry boxes to be established.

A V

Displays the A/V (audio and video) pop-up window which allows control of the audio
and video emulation. The window has the following controls:

Audio Play - If on then downlink audio is sent to workstation /dev/audio.

Audio Rec - If on then uplink audio is read from workstation /dev/audio.

Audio Auto - If on, the audio play and rec are turned on upon reception of downlink audio
data and turned off upon disconnection. By default, this is selected. Note that only one
program can be connected to a Sparc's /dev/audio at a time so if AF is running, the emu
cannot connect to the speaker and microphone. A message will be displayed and audio-
less operation can continue.

Verbose (audio) - Logs audio downlink buffer information to the console if selected.

Downlink Buffer Size - Selects the amount of audio data that can be buffered in the emu-
lator. This should be set to the amount of buffering which would occur between the gate-
way and the pad Codec (thus it includes Tx chip fifo and audio chip fifo.) Altering this
allows determination of the proper buffer size required to tolerate network jitter but also
not delay the audio too much.

Video Play - Displays the VQ Video window for downlink VQ video. The vq_play(1) pro-
gram is used for this. Clicking on it again closes the window.

Video Auto - If on, the video window is opened upon reception of any VQ Video data and
closed upon disconnection. By default, this is selected.

Video Drop - When selected, the Maximum Display Rate value is used to make sure that
only that many frames per second are sent to the vq_play program. Additional frames are
discarded in the emulator. It is necessary to use frame dropping to prevent the vq_play
program and X Windows server from consuming too much CPU time making the emula-
tion unrepresentative. Setting it to about 15 frames per second still gives reasonable per-
formance without causing a bottleneck.

If Video Drop is not selected then all video data received is sent to the vq_play program
and the emulator can block waiting to write into its pipe to vq_play. By default, it is
selected.

TABLET

192

Enables and controls tablet support. If tablet is selected then the TYPE menu must be
set to the tablet type and InfoPad pen emulation using the tablet occurs. The Tablet
Device text entry box should be set to the device (for example /dev/ttya) that the tablet
is connected to.

GATEWAY

This pull-down menu and text entry box allow selection of the gateway to connect
through. A number can be entered directly into the text box or else the current running
gateways (from the name server) are listed in the pull-down if the left mouse button is
clicked on the Gateway button.

The status of the currently selected gateway and cell server are displayed to the left of
the word “Gateway”. The status is either “not running” if neither are running, “run-
ning” if both are running, “CS down” if the gateway is up but the cell server is down,
or “GW down” if the opposite is true.

PAD SERVER

This pull-down menu and text entry box allow selection of the pad server to connect
to. A number can be entered directly into the text box or else all registered pad servers
are listed in the pull-down menu if the left mouse button is clicked on the Pad Server
button. Their status is also shown in the menu (unless it is onDemand.)

TABLET DEVICE

Selects the unix device to connect to for the tablet. The pull-down menu has a few
common choices.

SERVER STATUS AREA

The status of the currently selected pad, X (text / graphics), Pen, and audio server are
displayed at the bottom of the main emulator window. It is retreived from the Name
Server periodically. When any critical event occurs, such as selecting a new pad server
or gateway, the emulator polls for status more often for a while. Additionally, the
UPDATE button forces the status to be reread.

The Pulldown menus for "PS Version", "X Version", "Pen Version", and "Audio Ver-
sion" control the version of the respective servers which is used if they are autostarted
by connecting to a pad which is not running.

KILLPAD

This button kills the currently selected pad server. This causes (or should cause) the x,
pen, and audio servers to go down as well.

ENVIRONMENT
The environment variable EMUVERSION controls which version of the emulator is
started. If this is not set then it will default to vcurrent, which is the most current stable
version.

The DISPLAY environment variable should be set to where the emulator window should
go.

193

SEE ALSO
vq_play(1)

BUGS
Uplink audio can stop unexpectedly under high downlink video traffic. If this happens,
simply go to A/V window and stop and restart the AUDIO REC.

The vq_play program blocks on input if no video data is sent to it so it will not redraw
itself in response to an X paint request. Need to send stay alive packets out to VQ play.

AUTHOR
Currently maintained and improved by Jeff Gilbert <gilbertj@eecs.berkeley.edu>

Initial work and developement until about October 1994 by
Brian Richards <richards@eecs.berkeley.edu>

194

A.3. imgcomp2d (1)

NAME
imgcomp2d - Two-dimensional fast automatic block decomposition compressor /

decompressor

SYNOPSIS
imgcomp2d [options] filename

DESCRIPTION
imgcomp2d is the compression program used to perform research into the Flexible Auto-
matic Block Decomposition (FABD) algorithm. The application performs compression,
decompression and also generates diagnostic images which depict the size and location of
copy and fill blocks. The application allows many parameters of the compression to be
tailored to investigate tradeoffs between compression time and efficiency.

OPTIONS
-help

Show this message

-compress

Compress ras->FABD

-uncompress

Uncompress FABD->ras

-compress_test

Compress, uncompress & verify

-write_in_ras

Write input ras file to stdout

-no_write_out

Don't write any output file

-test_bit_pack

Test bit packing code

-make_diag_image

Make diagnostic image

-make_diag_image_slow

Slower method

195

-make_diag_image_really_slow

You guessed it...

-save_distribs

Used with -make_diag_image to save param distributions to files

-min_fill_wid_no_search n

Minimum fill width,

-min_fill_hei_no_search n
-min_fill_area_no_search n

height and area to avoid copy search

-min_copy_block_width n
-min_copy_block_height n
-min_copy_block_size n

Minumum copy block width, height, and unmarked pixels to consider.

-max_copy_block_width n
-max_copy_block_height n

Maximum copy block width and height to consider

-min_fill_block_area n
-min_fill_block_size n

Minimum width*height and unmarked pixels for a fill

-max_fill_block_width n
-max_fill_block_height n

Maximum fill block width and height to consider

-max_matches_to_try n

This is the maximum number of matches for each block to try

-one_pass_mode n]

Single more accurate pass

-two_pass_mode n

Coarse size mod 4x4 pass followed by mode accurate pass on winner (default)

-verbosity n

0=quiet, higher=noisier
1=Just summary info
2=Also show progress
3=Also save stats to stat.doc
4=Also print as go along
5=Print too much stuff

196

SEE ALSO
“Gilbert, Jeffrey M. and Robert W. Brodersen. “A lossless 2-D image compression tech-
nique for synthetic discrete tone images.” 1998 IEEE Data Compression Conference.
Snowbird, Utah. 28 Mar - 1 Apr 1998. p.359-368.

BUGS
What’s a bug?

AUTHOR
Jeff Gilbert <gilbertj@eecs.berkeley.edu>

197

A.4. mpeg2vq (1)

NAME
mpeg2vq - MPEG and RAW to InfoPad VQ and RAW Video Transcoder

SYNOPSIS
mpeg2vq [mpeg_file] [options...]

DESCRIPTION
The MPEG and RAW to VQ and RAW Video transcoder converts MPEG or RAW files
into VQ or RAW video format files (see vq(5) and raw_video(5)). The mpeg decoding
capabilites of the transcoder are taken from mpeg_play. MPEG files can be converted
directly to VQ or else the RAW format can be use as an intermediary. This could be for
further processing or inspection and additionally the RAW file format can be generated by
external sources which would like to be shown on InfoPad. A RAW-to-RAW conversion
is possible but would only be useful for resizing or resampling in L, Cr, Cb space.

Many different modes of operation are supported, allowing coding speed and accuracy to
be traded off. A fast coding technique can be used to code at frame rate while adaptive
codebook methods allow higher quality for off-line VQ file generation. Frames can also
be dropped to code a 30 fps movie at 15 fps to reduce network and bandwidth require-
ments at playback.

GENERIC OPTIONS
-help

Print help message describing options.

-raw_in

Read in a RAW video file (raw_video(5)) instead MPEG.

-nob

Skips over MPEG type B frames in source if reading MPEG.

-nop

Skips over MPEG type P frames in source if reading MPEG.

-eachstat

Shows MPEG statistics if reading MPEG.

-quiet

Suppresses diagnostic messages.

-max_frames <number>

198

Convert only <number> frames. The rest are discarded.

-frames_per_sec <number>

This value is placed in the VQ or RAW file as the desired frame rate. If this is not
specified then the value is taken from the source file. If the source file also does not
contain frame rate information then a default of 30 frames per second is used.

-skip_every <number>

Causes the specified number of frames to be skipped for every frame that is
transcoded. Thus -skip_every 9 causes only 1 out of 10 frames to be transcoded result-
ing in a reduction in bandwidth requirements of 10. To halve the frame rate, use -
skip_every one. The frame rate recorded in the file is automatically corrected. Defaults
to 0.

-src_geometry <w>x<h>+<x>+<y>

Describes the rectangle within the MPEG or RAW source movie from which the
image should be taken. This can be used to zoom into a particular part of the source
image. Defaults to the full size of the source. If the source contains luminance and
chrominance planes at different resolutions then the largest dimensions are used as a
reference and the others are scaled accordingly.

-dest_geometry <w>x<h>

Specifies the dimensions of the target VQ screen or RAW file. For VQ, this is mea-
sured in descompressed pixels - i.e. the number of Y pixels - and defaults to the Info-
Pad video screen dimensions of 128x240. For RAW outputs, this is with respect to the
largest plane (usually the luminance plane) and defaults to the source dimensions. The
relative sizes of the luminance and chrominance planes in a RAW output file can be
set using the -raw_ratios option below.

VQ OPTIONS
-dump_codebook

For VQ, specifies that the codebook should be placed at the beginning of the VQ file.
This is on by default.

-no_dump_codebook

For Vq, specifies that the codebook should not be placed in the VQ file.

-codebook_file <filename>

Code to an existing codebook file. A full codebook search method is used which is
slower (a few frames per second on a Sparc10) than the fast coding method (20-25 fps
on a Sparc10, over 25-40 fps on a sparc 10) but obtains better results if the codebook is
good. Codebooks can be extracted from vq(5) files using vq2codebook(1). The vq files
(and hence codebooks) can be generated with this program using codebook adaptation
(see -adapt_frames below).

-fast_coding

199

Uses a fast codebook hand-constructed out of different shapes and intensity variations.
It conists of solid blocks, horizontal, vertical, and diagonal gradations. Since mpeg2vq
knows the exact hierarchical nature of the codebook, it is able to quickly determine
which entry is best matched. Most of the transcoding time is spent decoding the
MPEG. This option is on by default. If it is on, it implies -halfres_coding unless -
fullres_coding is specified.

-uniform_coding

Uses a codebook consisting of solid entries - i.e. each of the 4x4 pixels has the same
value. This results in a very blocky VQ picture and is mostly only good for debugging
purposes. It is also very fast.

-halfres_coding

Causes image to be coded at half-resolution. Thus if the destination format is 128x240
(i.e. InfoPad) - a 64x120 image is computed and broken into 2x2 blocks. This results
in an increase in coding speed but should not be used except for with fast and uniform
coding as it will introduce errors unless the 4x4 codebook blocks are smooth. This is
on by default with fast and uniform coding but can be overridden with -fullres_coding.

-fullres_coding

Opposite of -halfres_coding. Causes images to be coded at their full resolution. Should
be used with any full codebook search as implied with -codebook_file or -
adapt_frames.

-no_VQconv

Suppresses the VQ conversion step. Only the MPEG decoding is performed. Can be
used to tell how much time is going into the MPEG decoding and how much is going
into image resizing and VQ coding.

-adapt_frames number

Enables codebook adaptation. The codebook is determined by running a K-means type
adaptive algorithm to generate a representative set of vectors for the codebook. The
first number of frames are used for adaptation. The adapted codebook is then saved in
the VQ file and also used for coding. The -adapt_global_threshold option below can
be used to for the codebook to be recomputed in the middle of the movie.

-adapt_global_threshold <number>

Causes codebook (re)adaptation to occur if the coding error ever exceeds the specified
threshold. The codebook is re-adapted and placed in the vq file so the the player or
hardware decoder knows that is has changed. This could be used for scene-level code-
book adaptation. Currenly not supported well by hardware due to flashes on the screen
that happen during codebook updates. adapt_frames must also be specified.

-error_tolerance <number>

This is used with full-codebook search methods (either via -adapt_frames or -
codebook_file. It causes the search for the best codebook entry to stop when the error
drops below the specified limit. Since the codebook entry that was used in the previous
frame is used as the initial guess for the current frame, this allows quicker coding espe-

200

cially for movies where some parts of the image are stationary. Setting this too high
can result in a reduction in coding quality. coding

-print_vq_error

Causes the VQ coding error for each frame (for each of Y, I, and Q) to be displayed.

RAW OPTIONS
-raw_out

Specifies to write raw video instead of VQ. Identical to -raw_ratios 2 2 1 1 1 1. (see
below).

-raw_ratio <L_h> <L_v> <Cr_h> <Cr_v> <Cb_h> <Cb_v>

Specifies to write raw video instead of VQ but using a particular ratio of L (lumi-
nance), Cr (red chrominance), and Cb (blue chrominance) frame sizes. The exact value
of the numbers does not matter, only their ratio. The ratios of L_h : Cr_h : Cb_h gives
the ratio of the widths of the L, Cr, and Cb frames in the raw output frame. Similarly,
the ratios of L_v : Cr_v : Cb_v gives the ratio of the heights of the L, Cr, and Cb
frames in the raw output frame. Specifying a zero height or width for a particular plane
causes it not to be present in the out. A standard 4:1:1 encoding (which is default) is
specified via 2 2 1 1 1 1. A 4:2:2 encoding would be 2 1 1 1 1 1. A grayscale image
(luminance only) can be produced using 1 1 0 0 0 0.

If a filename is not specified then the standard input is assumed.

OPERATION
The operation of the transcoder can be broken down into five distinct pieces: MPEG or
RAW decoding, Image resizing, colorspace conversion, Vector Quantization, and Code-
book Adaptation (optional). If RAW video is generated instead of VQ, the last three
pieces are not used.

-> 1) MPEG or RAW decoding

Mpeg2vq starts by decoding the MPEG or RAW file into a virtual frame buffer. For
MPEG, this part was taken directly from mpeg_play. The frame buffer is in lumi-
nance-chrominance format with separate buffers for L (luminance), Cr (red chromi-
nance), and Cb (blue chrominance). The L buffer is at twice the resolution of the Cr
and Cb buffers in both dimensions. (Just as the VQ's Y is at twice the resolution in
both dimensions of the I and Q buffers.) The image frame buffers are sized according
to the source MPEG's dimensions.

For RAW video file decoding (or really just reading), the L, Cr, and Cb buffers are
sized in accordance with the size of the image planes in the file. If image planes are not
present in the file, they are simply not read.

-> 2) Image resizing

The next step is to resize the images into the size needed for the VQ coding or RAW

201

file output. For VQ, if -fullres_coding is in effect then the L buffer is resized to the -
dest_geometry size, and the Cr and Cb buffers are resized to half of this size (although
they start out half as large in each direction anyhow so the rescaling is by the same
amount.) If -halfres_coding is in effect then all image buffers are reduced further by a
factor of two in each direction.

For RAW output, the images are resized to the size specified by dest_geometry and the
raw_ratios. The dest_geometry defaults to the source geometry and the raw_ratios
default to 4:1:1. For RAW output, the process is complete and the resized image buff-
ers are written out.

-> 3) Colorspace Conversion (VQ only)

For VQ, next the Cr and Cb image buffers are converted into I and Q space using a lin-
ear combination. Cr/Cb space differs slightly from I/Q space.

-> 4) Vector Quantization (VQ only)

Finally for VQ, the resized, colorspace-converted Y, I, and Q frame buffers are passed
to the vector quantization module which attepts to fit the 4x4 pixel blocks (or 2x2 for
half-res coding) to the current codebook. This can be with the fast, uniform, or full
search methods. This generates a set of codes which are written into the VQ file.

-> 5) Codebook Adaptation (VQ only - optional)

If selected via the -adapt_frames option (and possibly -adapt_global_threshold as
well), the codebook is adapted to the set of pixel vectors to derive a codebook well
suited for the particular images present. This is done by considering all 4x4 pixel clus-
ters of a given type (Y, I, or Q) over all frames to be adapted as a set of regular 16 ele-
ment vectors.

The codebook adaptation requires an initial estimate of the codebook. This is the code-
book that would be used if -adapt_frames was not specified: the fast (deterministic)
codebook if -fast_coding, or an existing codebook if -codebook_file was specified.

The K-means clustering algorithm adapts the codebook as follows: The codebook is
used to code the vectors. Then each codebook entry is recomputed as the average of all
image vectors for which it is the best match. Thus the codebook entries are modified to
better represent the vectors that it is representing. Then the vectors are recoded and the
codebook recomputed until the total coding error stop decreasing.

A couple of extra steps are used to ensure that the codebook represents the diversity in
the image. Firstly, the 256 codebook entries are compared to each other and if two are
too similar then one is "freed" up for use by some other vector. The vectors which
matched to the freed codebook entry are then assigned to the one that it was similar to.
Next, the unused codebook entries are filled with the input image vectors which had
the greatest coding error. This is done to ensure codebook diversity.

ENVIRONMENT
None.

202

SEE ALSO
vq_play(1) send_vq(1) vq2codebook(1) codebook2ras(1) showcodebook(1) showvqcode-
book(1) raw_video(5) vq(5)

BUGS
Does not have aspect_pad and aspect_crop options which will either pad the image with
black on the sides or crop off excess in order to make sure that the aspect ratio is correct.

If -adapt_frames is specified as more frames than there actually are, it will not transcode at
all.

Much better image quality could be achieved if the pad could receive codebook updates
in-line inbetween scenes and the -adapt_global_threshold could be used.

AUTHOR
Jeff Gilbert <gilbertj@eecs.berkeley.edu>

Based on UCB mpeg_play application for MPEG decoding.

203

A.5. netem (1)

NAME
netem - Flow-level network emulator

SYNOPSIS
netem [options] [proxy_port[u]=server_spec ...]

 Server_spec is one of:

web Web proxy
<server_port> Fixed port on same host
<server_host>:<server_port> Fixed host on another host
Add u to proxy_port to use UDP instead of TCP (not implemented yet)

DESCRIPTION
netem is a multi-connection flow-level network emulator that can be used to emulate
bandlimited links with fixed individual or total link capacity and/or transport latency.
Netem can also print connection rate information as well as display the data being trans-
ferred on the emulated connections. The modeling is done at the connection level and not
the packet level with an emphasis on high throughput rather than packet-level modeling
accuracy. Thus the intracacies of TCP/IP are not modeled but it will give a good idea of
how applications and algorithms will react to link limitations. Netem will forward arbi-
trary network connections as well as web proxy requests.

OPTIONS
-help

Show this message

Rate Limiting Options:

-rate_limit_bps n

Limit rate to n bps

-limit_total

Limit total rate through gateway (default)

-limit_invidivual

Limit on a per-connection basis

-buffer_size_ms n

Amount of data to buffer if rate limiting

204

-min_buffer_size n
-max_buffer_size n

Minimum and maximum number of bytes to buffer

-buffer_size n

Give exact buffer size in bytes

-tcp_connect_time_ms n

Wait n ms after TCP connection after TCP connection

-udp_packet_overhead_ms n

Add n ms delay to UDP packets delay to UDP packets (not implemented yet)

-latency_ms n

Delay all packets at least this much

Packet Dropping Options (UDP only - not implemented yet):
-packet_drop_rate 0.XXXX

Drop this fraction of packets

-bit_drop_rate 0.XXXX

Drop packets containing any errant bits according to this fraction of bits

Other options:
-verbosity n

What to print. bit-OR these:

1=Show (dis)connections
2=Show xfer sizes
4=Show xfer data
8=Show errors
16=Show traffic rates
(default is 25)

-max_connections n

Maximum number of connections to support at once

-find_free_proxy_port

Try successive proxy ports if busy (default)

-no_find_free_proxy_port

Don't find_free_proxy_port

205

SEE ALSO
SurfServ(1) Gilbert, Jeffrey M. and Robert W. Brodersen. “Globally Progressive Interac-
tive Web Delivery.” Proceedings 1999 IEEE Infocom. New York. 21-25 Mar 1999.

BUGS
UDP forwarding / limiting not implemented yet

AUTHOR
Jeff Gilbert <gilbertj@eecs.berkeley.edu>

206

A.6. send_vq (1)

NAME
send_vq - VQ Video Player and T/G, Audio, and Radio Tester for InfoPad

SYNOPSIS
send_vq [input_file] [options...]

DESCRIPTION
send_vq is utility that allows direct interfacing to the InfoPad peripherals either via the
InfoPad network or directly through the GPIB interface. It has two primary purposes.
First, it is used to test the network, pad hardware, and emulator. It is also used to play VQ
videos on the pad (as opposed to vq_play(1) which plays them on a workstation).

As a tester, send_vq can write videos to the VQ video screen, sound files to the audio
downlink port, test graphics patterns to the text / graphics, and arbitrary data to the radio
transmitter. It can read and display or store data from the audio uplink port, pen port, and
radio receiver. It allows for fixed rate control over the GPIB and can route messages via
the ARM processor in a basestation board to a remote pad. It also has a bandwidth test
mode to determine the maximum bandwidth the the GPIB hardware can support on the
downlink side.

As a VQ video player, send_vq parses the vq(5) format generated by mpeg2vq(1) allow-
ing both codebook and frame data to be sent. It can do rate control, including frame drop-
ping if it sees it is getting behind. Additionally, synchronized audio can be played
coordinated with the video. Send_vq can also be used to generate a C include file to be
linked in with the ARM code to specify a default VQ codebook on power-up.

GENERAL OPTIONS
-help

Print help message describing options.

-gpib_id <number>

Specifies that direct interface to the GPIB should be used. The <number> is the GPIB
talker/listener address. (Hardware is currently set for 4). Setting the environment vari-
able GPIBID to a number makes the GPIB connection a default if neither -gpib_id nor
-pad_id are specified. The command-line options always override the environment
variables. Both uplink and downlink tests are supported over the GPIB interface.

-pad_id <number>

Specifies that test should be performed over the InfoPad network. The <number>
specified is the ID of the pad server to send data to. Setting the environment variable

207

PADID to a number makes the network connection a default if neither -gpib_id nor -
pad_id are specified. The command-line options always override the environment
variables. Note that only downlink tests are available over the network connection.
Uplink tests must be performed using a direct GPIB connection.

-show_gpib_data

Show GPIB data packets being sent. For debugging purposes.

-loop

Repeat the specified test. Only valid for downlink tests (including VQ video playing).
Input must not come from standard in for video, audio, and radio downlink tests.

-quiet

Don't print quite so much diagnostic infomation to stderr. This is the default - override
with -no_quiet.

-no_quiet

Print lots o' stuff to stderr. Information depends on the test.

-gpib_rate_limit <kbps>

When sending over GPIB, set a cap on the rate of downlink data. The number is spec-
ified in kilo-bits per second and should be a multiple of 8. Note that for large packets,
this can become approximate and you should check the rate that it says that it is send-
ing at, shown at the end of the test. This is independent from video rate control. (Video
rate control is more accurate as well)

-gpib_buffer_size <n>

Buffer size that the GPIB rate limiting uses for accounting purposes. It should larger
than the packets that will be transmitted but no larger than the buffering on the actual
pad.

-send_via_arm

Send GPIB packets to the ARM (acting as the TX chip) to send over the radio. Use to
send over GPIB to remote pad. Packets will still be tagged with correct destination (via
type field.) You almost definitely have to use -gpib_rate_limit (above) if you use -
send_via_arm.

-single_byte_packets

Use old single byte GPIB protocol. Used for testing a long time ago. Probably of no
use to anyone now.

UPLINK TEST OPTIONS
These options are used for all (audio, pen, radio) uplink tests. Uplink tests may only be
performed directly over the GPIB.

-gpib_gcr1 <hex_num>

Specifies the value, in hex, to be programmed into the GPIB Control Register 1 for

208

uplink tests. This controls several modes of operation of the GPIB interface. The
default is currently 88.

-gpib_gcr2 <hex_num>

Specifies the value, in hex, to be programmed into the GPIB Control Register 2 for
uplink tests. This controls several modes of operation of the GPIB interface. The
default is currently 84.

-gpib_base_addr <hex_num>

IP Bus base address (in hex) for GPIB controller. This is where peripherals will be
instructed to send their data when it should go to the host. The default is 70.

VIDEO OPTIONS
-rate_control

Times when video frames are send and waits if it is ready too soon for the next frame
or drops frames if it is too late. The frame rate is specified in the vq(5) file but can be
overridden by the -frame_rate option.

-rate_limit

Will wait to play frames to make sure that it is not playing too fast but will not drop
any frames if it is playing too slow. This option is the default but can be overridden by
the -rate_control and -no_rate_limit options.

-no_rate_limit

Disables frame rate control - i.e. plays the video at peak channel bandwidth.

-frame_rate <fps>

Override the frame rate specified in the VQ file. Affects -rate_control and -rate_limit.

-no_codebook_updates

Causes codebook updates found in vq(5) stream (including initial codebook informa-
tion) to be ignored. Typically used to play videos that have been coded with a code-
book that is known to the pad already (such as with the -fast_coding option of
mpeg2vq(1)). In this way the codebook does not have to be sent and there are no
chances of codebook corruption.

-codebook_file <name>

Sends the specified codebook (even if -no_codebook_updates is specified) before
sending the VQ file. Note that unless the -no_codebook_updates is specified and the
VQ file contains a codebook (as most do) then the initial codebook will immediately
be overwritten by the ones in the VQ file. Codebook files can be generated via
vq2codebook(1).

-no_resend_codebooks_on_error

Usually, if sending over the GPIB and an error is encountered, the full codebook is
resent as the GPIB error could have been from a power-down or board reset. To pre-
vent this from happening, use this flag.

209

-video_sound_file <file>

Specifies an audio file to play with video. The audio file is in Sun 8-bit u-law, 8 kHz
.au format. The audio is send to the AF server specified by AUDIOFILE or DISPLAY.
This can be either an AF running on a workstation, or the InfoPad Audio Server,
which is an AF server which sends its audio to the pad. The audio is synchronized to
the video in that the au file is played at exactly 8000 samples per second so if the -
rate_control flag is specified, the video rate can be controlled exactly. The -
video_delay_sound option (below) can be used to adjust the relative starting points of
the audio and video for a perfect match.

-video_delay_sound <ms>

This options is used to specify a delay between when the video and audio are sent.
This can be used to compensate for network, hardware, and recording latencies. The
number is specified as the number of milliseconds to delay the audio relative to the
video. Negative values cause the audio to be sent before the video.

-all_y_code <n>

The -all_y_code option causes all Y codebook data to be changed to the specified
value before being sent off. Thus a normal codebook update would cause the entire Y
codebook to be changed to the value specified. <n> is in actual hardware format - i.e.
an integer between 0 and 63 with 0 representing black and 63 white. Setting the entire
Y codebook to one value causes it to ignore the Y frame data, removing the Y frame
buffer from the test path.

-all_i_code <n>

The -all_i_code option causes all I codebook data to be changed to the specified value
before being sent off. Thus a normal codebook update would cause the entire I code-
book to be changed to the value specified. <n> is in actual hardware format - i.e. a 1
bit sign and 5 bit magnitude integer between 0 and 63 with 0 through 31 representing
+0 through +31 (tending towards more yellow) and 32 through 63 representing -0
through -31 (tending towards more cyan). Setting the entire I codebook to one value
causes it to ignore the I frame data, removing the I frame buffer from the test path. For
example, to see the video in black and white (Y only), specify -all_i_code 0 -
all_q_code 0.

-all_q_code <n>

The -all_q_code option causes all Q codebook data to be changed to the specified
value before being sent off. Thus a normal codebook update would cause the entire Q
codebook to be changed to the value specified. <n> is in actual hardware format - i.e. a
1 bit sign and 5 bit magnitude integer between 0 and 63 with 0 through 31 representing
+0 through +31 (tending towards more magenta) and 32 through 63 representing -0
through -31 (tending towards more lime-green). Setting the entire Q codebook to one
value causes it to ignore the Q frame data, removing the Q frame buffer from the test
path.

-all_y_data <n>

Sets all Y frame data sent to one value. <n> is the value (between 0 and 255) to set the

210

Y frame data to. All accesses to the Y codebook should then be to the specified loca-
tion and the screen (at least as far as the Y plane is concerned) should be the repeating
pattern of the selected entry.

-all_i_data <n>

Sets all I frame data sent to one value. <n> is the value (between 0 and 255) to set the
I frame data to. All accesses to the I codebook should then be to the specified location
and the screen (at least as far as the I plane is concerned) should be the repeating pat-
tern of the selected entry.

-all_q_data <n>

Sets all Q frame data sent to one value. <n> is the value (between 0 and 255) to set the
Q frame data to. All accesses to the Q codebook should then be to the specified loca-
tion and the screen (at least as far as the Q plane is concerned) should be the repeating
pattern of the selected entry.

-gen_codebook_prom_include

If this flag is specified then a C include file containing the codebook data in a format
suitable for the pad ARM code is written to the standard out. It contains the packets to
be send to the Video chip to initialize the codebook.

-video_base_addr <hex_num>

For GPIB operation, send_vq has to know how to address the video packets going over
the IP Bus. This corresponds to the address of the video chip. (The lower four bits are
always 0.) The value is specified in hex and its default is 60. For InfoPad network
operation, this is not used.

AUDIO TEST OPTIONS
-test_audio

Specifies that a downlink audio test is to be performed. The input file (or the standard
input if no input file is specified) is interpreted as being a 8kHz, 8-bit u-law audio file.
It is sent out at a rate-controlled 8kHz.

-record_audio <dest_file>

Does audio uplink test. The audio chip is initialized to record and send data over the
GPIB to the host. The host then records the data (8 bit, 8kHz) in the specified
<dest_file>. If the file name starts with a "+" then the output is sent both to the file
(after removing the "+") as well as the /dev/audio of the host. This uplink test, as well
as all uplink tests, can only be performed directly over the GPIB.

-record_audio_pen <dest_file>

Same as above by tries to interpret and display pen packets if they are interleaved.
Probably will not work as it was a hack.

-test_audio_in

Test audio uplink printing status messages to the screen. Does not record data.

211

-record_audio_send_video <dest_file>

Tests simultaneous audio uplink with video downlink. The <dest_file> is again the file
to record the data in. The video is taken from the supplied file name or standard in oth-
erwise. May or may not work - it was a hack.

-audio_base_addr <hex_num>

For GPIB operation, send_vq has to know how to address the audio chip over the IP
Bus for both data and control - i.e. the address of the audio chip. (The lower four bits
are always 0.) The value is specified in hex and its default is 40. For InfoPad network
operation, this is not used.

RADIO TEST OPTIONS
-test_xmit

This flag specifies test transmitter mode. This can test the TX chip (or ARM) over the
radio or wired link. The input file (or standard input) describes the packets to be sent.
The packets are directed to the GPIB on the other end of the link so that the -test_recv
and -test_recv_timestamp options can be used at the other end to recover the data.
(This test cannot be run using the InfoPad network infrastructure.) The -loop option
(above) can be used to repeatedly send the packets. The -gpib_rate_limit option
(above) should be used to limit the transmit rate as no flow control is employed. This
test can only be performed using the direct GPIB method. The file is in ASCII with
each packet represented by a single line and numbers within the line to are 2 digit hex
(lower and upper case letter are ok) numbers. The following sample specifies four
packets to be sent for a total of 15 bytes (plus IPN and radio headers):

01 02 03 04 05 06
07 08 09 0A
0B 0C
12 34 56

-test_xmit_timestamp

This test is as above except that additionally the transmit time of each packet is
recorded and printing, along with the transmitted data, to standard out. The time is
given both relative to the first packet as well as to the previous packet sent. The output
should be piped to a file or else the significant delays may occur while printing it to the
screen in real-time. The transmit timestamp is useful in conjuction with the receive
timestamp (see -test_recv_timestamp) to determine fifoing delays and mis-ordering. A
sample output from -test_xmit_timestamp looks like this:

00000000 ms (+0 ms) (6 bytes): 01 02 03 04 05 06
00000001 ms (+1 ms) (4 bytes): 07 08 09 0A
00000003 ms (+2 ms) (2 bytes): 0B 0C
00000004 ms (+1 ms) (3 bytes): 12 34 56

-test_recv

This is the receiver end of the radio / wired link test. This can be run on the receiver

212

side any time before the transmit test (above) is run on the transmit side (in order not
to lose any packets.) This test must be run using a direct gpib connection - i.e. not be
using the InfoPad network. It will output to standard out in the same format that the -
test_xmit expects: ASCII with one packet per line and each byte represented as a 2
character hex number. In this way, the file transmitted and the file received can be
compared using the diff command. The output should be piped to a file or else the sig-
nificant delays may occur while printing it to the screen in real-time.

-test_recv_timestamp

Same as above but the output file includes timestamps and message sizes as with the -
test_xmit_timestamp option. This can be used to quickly scan which packets are of
incorrect size and also what the relative timings are. To convert a file with timestamps
(generated by this command) to one without - such as generated by -test_recv and used
by -test_xmit and -test_xmit_timestamp, the following sed command will work:

sed "s/.*: //g" INPUT_FILE_NAME

BANDWIDTH, TEXT / GRAPHICS, and PEN TEST-
ING OPTIONS
-test_bandwidth

Runs a test of the GPIB downlink bandwidth. (This test cannot be run over InfoPad
Network.) Sends packets (all bytes 0) of varying size over GPIB link and measures
time it takes. It tests for packets of length 4 bytes to 1 megabyte. It automatically
determines how many packets to send to get accurate results. The progress is reported
as it goes along and then a summary, like the following, is printed (this was from a
slow machine):

Packet Size Packets/Sec KBytes/Sec KBits/Sec
 4 679.947 2.720 21.758
 8 679.496 5.436 43.488
 16 386.124 6.178 49.424
 32 376.748 12.056 96.447
 64 591.566 37.860 302.882
 128 521.651 66.771 534.170
 256 221.645 56.741 453.929
 512 306.220 156.785 1254.278
 1024 177.285 181.540 1452.321
 2048 115.004 235.529 1884.234
 4096 59.150 242.277 1938.218
 8192 15.795 129.390 1035.119
 16384 16.649 272.783 2182.260
 32768 5.525 181.039 1448.309
 65536 3.086 202.272 1618.173
 131072 1.528 200.263 1602.102
 262144 0.888 232.913 1863.307
 524288 0.431 226.084 1808.669
 1048576 0.242 253.708 2029.666

-test_tg

213

Runs text / graphics downlink test. The test exercises all four graphics primatives of
the T/G chip. First an image of a prototype pad is displayed using the Block (B) mode.
Then the horizontal (H) mode is used to make a little lined pattern in the center. Next,
another small section is drawn using the vertical (V) mode. Next a reverse-video
image of the prototype is shown using the Protected Block (PB) mode. Then a small
area is scrolled around using the block mode again. Finally, the whole image is
scrolled around using the block mode. The downlink bandwidth used for this last test
is printed out. Use -pause_time option (below) to have it pause between tests. Use -
no_quiet (above) to print info about tests being performed. The T/G tests can be run
over InfoPad Network or directly through GPIB.

-pause_time <secs>

This specifies the number of seconds to pause between graphics tests. Defaults to 1.

-tg_base_addr <hex_num>

For GPIB operation, send_vq has to know how to address the t/g packets going over
the IP Bus. This corresponds to the address of the t/g chip. (The lower four bits are
always 0.) The value is specified in hex and its default is 50. For InfoPad network
operation, this is not used.

-test_pen

Used to test the pen uplink. The pen chip is configured and pen packets are printed to
the screen. This test, like all other uplink test, must be performed over the GPIB
directly.

-pen_base_addr <hex_num>

For pen uplink tests, which must be over the GPIB, send_vq has to know how to
address the pen chip to configure it. The number here is the base address the lower
four bits are always 0. The value is specified in hex and its default is 30. For InfoPad
network operation, this is not used.

If an input file is not specified but the particular test (or VQ send) requires it then the stan-
dard input is assumed.

FILES
/tools/ui/movies/adapt_vq and /tools/ui/movies/fast_vq

Contains sample VQ files that were converted using mpeg2vq(1). The MPEG source
files are in /tools/ui/movies/mpeg.

ENVIRONMENT
The GPIBID and PADID environment variables are used if either -gpib_id nor -pad_id are
specified. If they are not and GPIBID is set to a number then testing is performed over the
GPIB to a board whose talker/listener address is the number. If PADID is set to a number
then the tests are run through the InfoPad network through the specified pad server.

214

If syncronized video and audio are requested via the -video_sound_file flag, the audio
goes through AudioFile (AF). The AF libraries look use AUDIOFILE to determine where
to send the audio. It should be set the same way you would set your DISPLAY variable. If
AUDIOFILE is not set then DISPLAY is used.

SEE ALSO
emu(1) mpeg2vq(1) vq_play(1)

BUGS
None, of course.

AUTHOR
Jeff Gilbert <gilbertj@eecs.berkeley.edu>

215

A.7. show[vq]codebook[y] (1)

NAME
showcodebook, showcodebooky, showvqcodebook, showvq-

codebooky - VQ Video Codebook Display Utilities

SYNOPSIS
showcodebook codebook_filename

showcodebooky codebook_filename

showvqcodebook vq_video_filename

showvqcodebooky vq_video_filename

DESCRIPTION
These tiny scripts just pipe the output of codebook2ras(1) into the xloadimage viewer for
X, optionally zooming in on the Y part of the codebook and optionally stripping the code-
book out of a vq(5) video file. (vq2codebook(1) can also do this).

OPTIONS
Showcodebook and showcodebooky must be supplied the name of a codebook file (one
that could be fed into mpeg2vq(1)). showvqcodebook and showvqcodebooky must be sup-
plied the name of a VQ video file (one that could be played with vq_play(1) or
send_vq(1)).

OPERATION
Since codebook2ras generates a SUN rasterfile which xloadimage can display, it is basi-
cally a no-brainer. It does specify -gamma 2.25 to xloadimage to gamma correct and make
the image more readable. Showvqcodebook and showvqcodebooky first pass the vq file
through vq2codebook to extract the codebook. Showcodebooky and showvqcodebooky
pass options to xloadimage to make it only show the Y part of the codebook.

SEE ALSO
codebook2ras(1) mpeg2vq(1) send_vq(1) vq_play(1) vq(5)

AUTHOR

Jeff Gilbert <gilbertj@eecs.berkeley.edu>

216

A.8. SurfServ (1)

NAME
SurfServ - Server for SpeedSurfer connection proxy as well as server for Globally Pro-
gressive Interative Web Delivery transformational proxy.

SYNOPSIS
SurfServ [options]

DESCRIPTION
SurfServ is both a server for the SpeedSurfer proxy application as well as for the Globally
Progressive Interative Web Delivery transformational proxy. Most of the options are
related to the Globally Progressive Interative Web Delivery transformational proxy since
the client-side SpeedSurfer application provides controls most of the operation of the
server. Connection of either type are accepted on the same port and the type of connection
is determined by initial handshaking sequence.

As a server for the SpeedSurfer proxy, SurfServ accepts connections from one or more
SpeedSurfer clients and will make connections on behalf of them. The SpeedSurfer /
SurfServ pair can be used to force all connections through a single TCP/IP host. The pair
can also perform detailed link traffic analysis for web data and display aggregate flow
information for all types of data.

As a transformational proxy for the Globally Progressive Interative Web Delivery, Surf-
Serv appears like a standard web proxy, accepting HTTP/1.0 or HTTP/1.1 connections
from web browsers. For HTML connections, it transforms image tags into Java applet
tags. It then also supports connections back from the Java applets and will manage a sin-
gle explicitly multiplexed link to deliver the images to the applets as defined by the Glo-
bally Progressive Interative Web Delivery algorithm.

OPTIONS
-help

Show this message

-port n

Port to listen on

-webProxy host:port

Forward all proxy requests here

-no_image_applets

Don't use applets for images

217

-no_include_image_size

Don't add size to unsize images

-no_compress_html

Don't compress HTML (HTTP/1.1)

-no_html_priority

Don't give priority to HTML

-force_image_applets

Use applets whenever possible

-max_html_for_non_html n

Max # bytes of html that can be queued to queue non-html

-max_html_in_flight n

Max # bytes of html buffered

-max_image_in_flight n

Max # bytes of images buffered

-max_speedimg_in_flight n

Max # bytes of custom buffered. Further limited via down link window

-browser_port_offset

Amount to add to proxy port

-applet_dir_url

Where to get speedImage applet. Default is
http://badlands.EECS.Berkeley.EDU:8090/~gilbertj/ttt

-scans scan_file

Progressive scan file to use otherwise use default

-verbosity n

What to print. bit-OR these:

1=Show proxy connections

2=Show errors

4=Show connects/disconnects

64=Some debugging

128=More debugging

(default is 71)

-max_sessions n

Maximum number of connections & sessions to support at once

-find_free_proxy_port

218

Try successive proxy ports if busy (default)

-send_timing_packets

Send timing packets that SpeedSurfer will log

-dont_send_timing_packets

Don't send timing packets that SpeedSurfer will log

SEE ALSO
netem(1) Gilbert, Jeffrey M. and Robert W. Brodersen. “Globally Progressive Interactive
Web Delivery.” Proceedings 1999 IEEE Infocom. New York. 21-25 Mar 1999.

BUGS
None that I’d care to discuss

AUTHOR
Jeff Gilbert <gilbertj@eecs.berkeley.edu>

219

A.9. vq_play (1)

NAME
vq_play - VQ and RAW Video Player

for X Windows

SYNOPSIS
vq_play [vq_or_raw_file] [options...]

DESCRIPTION
vq_play is used to display VQ video (see vq(5)) or RAW video (see raw_video(5)) format
files under X Windows on a standard workstation. It is based on mpeg_play and can also
handle MPEG files if passed a command-line switch. All of the display modes of
mpeg_play are supported (i.e. dithering, shared-memory etc) for playback of VQ, RAW,
and MPEG files. Gamma correction and zooming are additionally supported for all three
types as well. For VQ and RAW file playback, it additionally supports frame rate control.

NOTE: The parts of this man page which describe mpeg_play features are taken from the
mpeg_play man page. See authors section for list of those responsible for mpeg_play.

GENERIC OPTIONS
-help

Print help message describing options.

-dither dither_option

Selects from a variety of dither options. The possible values are:

ordered - ordered dither.

ordered2 - a faster ordered dither. This is the default.

mbordered - ordered dithering at the macroblock level. Although there is a noticeable
decrease in dither quality, this is the fastest dither available.

fs4 - Floyd-Steinberg dithering with 4 error values propogated.

fs2 - Floyd-Steinberg dithering with 2 error values propogated.

fs2fast - Fast Floyd-Steinberg dithering with 2 error values propogated.

hybrid - Hybrid dithering, a combination of ordered dithering for the luminance chan-
nel and Floyd Steinberg 2 error dithering for the chrominance channels. Errors are
NOT propogated properly and are dropped all togethor every two pixels in either
direction.

hybrid2 - Hybrid dithering as above, but with error propogation among pixels. 2x2 - A

220

dithering technique using a 2x2 pixel area for each pixel. The image displayed is 4
times larger than the original image encoded. Random error terms are added to each
pixel to break up contours and gradients.

gray - Grayscale dithering. The image is dithered into 128 grayscales. Chrominance
information is thrown away.

color - Full color display (only available on 24 bit color displays).

none - no dithering is done, no image is displayed. Used to time decoding process.

mono - Floyd-Steinberg dithering for monochrome displays.

threshold - Floyd-simple dithering for monochrome displays.

-l_range num_colors

sets the number of colors assigned to the luminance component when dithering the
image. The product of l_range, cr_range and cb_range should be less than the number
of colors on the display.

-cr_range num_colors

sets the number of colors assigned to the red component of the chrominace range when
dither ing the image. The product of l_range, cr_range and cb_range should be less
than the number of colors on the display.

-cb_range num_colors

sets the number of colors assigned to the blue component of the chrominace range
when dither ing the image. The product of l_range, cr_range and cb_range should be
less than the number of colors on the display.

-loop

makes the player loop back to the beginning after reaching the end.

-no_display

dithers, but does not display, usually used for testing and timing purposes.

-quiet

Suppresses diagnostic messages

-shmem_off

Don't use X shared memory for image buffer. Using shared memory is faster but can
sometimes cause problems.

-gamma correction_val

Specify the amount to gamma correct the images. Gamma correction warps (bright-
ens) the image to compensate for the non-linear effects of monitors. Sun monitors
require about a 2.25 gamma correction while other displays, such as LCD or Live-
Board may require more or less. If this option is not specified then the
VQ_PLAY_GAMMA environment is checked for and used. If it does not exist then a
default gamma correction of 2.25 is used. Note that this gamma correction is applied
to mpeg videos played with the -mpeg option so aliasing mpeg_play to `vq_play -

221

mpeg' can be used to gamma correct when you mpeg_play. A gamma correction value
of 1.0 implies no correction.

-zoom percentage

Display the the image percentage/100.0 times wider and taller than it actually is. Per-
centages below 100 cause the image to appear smaller on the screen while percentages
above 100 cause the image to appear larger. The default is 100 which causes the image
to appear exactly the same size. NOTE: resizing is not available for MPEG images. To
zoom an MPEG image, pass it through mpeg2vq(1) with the -raw_out flag and pipe to
vq_play with the -raw flag. Then zooming and rate control will be available.

-xzoom percentage

Set only the width zoom factor.

-yzoom percentage

Set only the height zoom factor.

-rate_limit

Limit playback speed to the frame rate specified in the vq(5) file or by the -frame_rate
option. The playback speed may be slower as frames are not dropped with this mode.
Does not work with MPEG playback. Convert to raw first via mpeg2vq(1) -raw_out
and pipe to vq_play with the raw flag.

-rate_control

Constrain the playback speed to the exact frame rate specified in the VQ file or by the
-frame_rate option. If the playback is going too slow then frames are dropped to keep
on schedule. Does not work with MPEG playback. Will usually not work unless the
source is a file and not a pipe.

-frame_rate n

Override the VQ file's specified frame rate. Only meaningful with -rate_limit or -
rate_control. Does not work with MPEG playback.

VQ OPTIONS
-vq

Specifies that file is a VQ file. (I.e. negates -mpeg and -raw). Since this is the default,
this option will probably not be needed.

-VQCodebook filename

Initial VQ codebook to use for lookup. Mostly for use with VQ files which do not have
codebook information (i.e. generated with mpeg2vq(1)'s -no_dump_codebook option.
VQ files with codebooks at the beginning will override this option. Not valid if -mpeg
is specified.

222

RAW OPTIONS
-raw

Specifies that the input file follows the raw_video(5) file format.

MPEG OPTIONS
-mpeg

Specifies that file is an MPEG file. All of the MPEG decoding capabilities of
mpeg_play are built in to vq_play as well as gamma correction.

-eachstat

Shows MPEG statistics. Requires -mpeg.

-nob

Skips over MPEG type B frames in source. Requires -mpeg.

-nop

Skips over MPEG type P frames in source. Requires -mpeg.

If an input file is not specified then the standard input is assumed.

NOTES
The display is automatically stretched vertically to account for the unusual aspect ratio of
the InfoPad display (128x240.)

FILES
/tools/ui/movies/fast_vq

Contains sample VQ files that were converted using the fast coding method of
mpeg2vq(1). These all use the same codebook but can be generated in realtime.

/tools/ui/movies/adapt_vq

Contains sample VQ files that were adaptively coded using mpeg2vq. These have to
be generated off-line but of course can be played in real-time.

/tools/ui/movies/mpeg

The mpeg files from which the VQ files were converted.

ENVIRONMENT
If -gamma is not specified then the environment variable VQ_PLAY_GAMMA is used as
the gamma correct value. If it is not does not exist then a default value of 2.25 is used.
This is pretty good for Sun monitors.

223

SEE ALSO
mpeg2vq(1) send_vq(1) vq2codebook(1) codebook2ras(1) showcodebook(1) showvq-
codebook(1) vq(5)

BUGS
None.

It might be nice to be able to show the image larger (enlarge before dither) but this is not
high priority.

AUTHORS
Addition of VQ and RAW support as well as gamma correction and zooming to
mpeg_play (yielding vq_play) by Jeff Gilbert <gilbertj@eecs.berkeley.edu>.

----> mpeg_play written by:

Ketan Patel - University of California, Berkeley, kpatel@cs.berkeley.edu

Brian Smith - University of California, Berkeley, bsmith@cs.berkeley.edu

Henry Chi-To Ma - University of California, Berkeley, cma@cs.berkeley.edu

Kim Man Liu - University of California, Berkeley, kliu@cs.berkeley.edu

Steve Smoot - University of California, Berkeley, smoot@cs.berkeley.edu

Eugene Hung - University of California, Berkeley, eyhung@cs.berkeley.edu

224

A.10. vq2codebook (1)

NAME
vq2codebook - VQ Video file Codebook Extractor

SYNOPSIS
vq2codebook [vq_file] [options...]

DESCRIPTION
This tiny script just extracts the codebook from the specified vq(5) file and writes it to the
standard out. This can then be fed back into the mpeg2vq(1) program to transcode new
videos to an existing video's codebook. Alternatively it can be fed into codebook2ras(1) to
generate a SUN rasterfiles for use in documentation. (Use showvqcodebook(1) to just
view the codebook being used in a VQ file.)

OPTIONS
If a vq file name is not specified, standard in is assumed.

OPERATION
The script assumes that the codebook follows directly after the VQ header (as it will if it is
generated with mpeg2vq) so it simply extracts the 12288 bytes following the 44 byte
header.

SEE ALSO
codebook2ras(1) mpeg2vq(1) send_vq(1) showcodebook(1) showvqcodebook(1)
vq_play(1) vq(5)

AUTHOR
Jeff Gilbert <gilbertj@eecs.berkeley.edu>

225

A.11. XInfoPad (1)

NAME
XInfoPad - Modified X server used as InfoPad Text / Graphics server

DESCRIPTION
XInfoPad is the modified X server used as InfoPad Text / Graphics server. It connects to
applications as a standard X server but sends display to the specified PadServer using the
virtual framebuffer approach for adaptive bandwidth control. Packets are formated
according to InfoPad specifications and communicated using InfoNet networking rou-
tines.

SYNOPSIS
XInfoPad [:<display>] [options]

NON X-STANDARD OPTIONS:
(The standard options to X servers are not presented here - see X (1) man page)

-pad_id N

InfoPad emulation, on Pad N

-ipn_rate_limit kbps

Rate-limit the downlink traffic. 0 means unlimited. Default is 200.

-ipn_unbuffered_write

Use IPNWrite instead of IPNWriteBuffered

-ipn_interpacket_delay us

Wait this many us after an IPN send

-max_packet_size n

Maximum number of bytes in IPN packet. Default is 512.

-refresh_rate kbps

Maximum background refresh rate. Default 10kbps.

-invert_video

Invert video. Default no.

-send_everything

Constantly send whole framebuffer - not just updates

-allow_mark_filename XXXX.c

226

Only allow mark requests from these mfb/cfb files

-deny_mark_filename XXXX.c

Don't allow mark requests from these mfb/cfb files

-dont_grow_marks

Don't grow marks to cover whole 32x1 or region before merging. Useful debugging

-show_mark_requests

Show mfb/cfb mark requests

-show_mark_flushes

Show mfb/cfb mark flushes

-show_merged_marks

Show mfb/cfb merged marks

-show_offscreens

Show also mfb/cfb mark/flushed offscreen

-show_sent_blocks

Show blocks sent by InfoSlave

-show_only_filename XXXX.c

Show only requests from these mfb/cfb files

-show_skip_filename XXXX.c

Don't show requests from these mfb/cfb files

SEE ALSO
codebook2ras(1) mpeg2vq(1) send_vq(1) showcodebook(1) showvqcodebook(1)
vq_play(1) vq(5)

AUTHOR
The Split X topology was originally developed by Richard Han, Brian Richards, and
Trevor B. The XInfoPad server using the virtual framebuffer architecture was developed
by Jeff Gilbert <gilbertj@eecs.berkeley.edu> since ~1995.

227

A.12. raw_video (5)

NAME
raw_video - InfoPad file format for

RAW (non-VQ, non-
MPEG) Video files

SYNOPSIS
#include <raw_vid_file_fmt.h>

OVERVIEW
The RAW Video file format is used primarily as a means of using non-MPEG video
sources in the InfoPad environment. The RAW file format allows images specified in raw
luminance and chrominance pixels to be used by the transcoder (mpeg2vq(1)) and video
player (vq_play(1)). (Luminance pixels are also know as L or Y while the chrominance is
know as I and Q, Cr and Cb, or U and V. MPEG's definition of Cr Cb is used.) The size of
the three image planes is arbitrary. I.e. MPEG/VQ type 4:1:1 ratios where the Cr (I) and
Cb (Q) are sampled only a quarter as densly can be specified as well as 4:2:2 or any other
combination. Additionally, grayscale movies can be specified by setting the Cr and Cb
frame dimensions to 0. A frame rate can also be specified to allow vq_play to rate control
and mpeg2vq to put this into the vq(5) file.

The RAW Video file has two parts: a header containing frame size and rate information
(as well as additional optional header information) followed by the frame data. All frames
contain full updates of any of the planes (L, Cr, Cb) that are non-zero sized. Thus the file
looks like:

HEADER
EXTRA HEADER DATA
L DATA FRAME 0
Cr DATA FRAME 0
Cb DATA FRAME 0
L DATA FRAME 1
Cr DATA FRAME 1
Cb DATA FRAME 1
 ...

or in the case of grayscale:

HEADER
EXTRA HEADER DATA
L DATA FRAME 0

228

L DATA FRAME 1
L DATA FRAME 2
L DATA FRAME 3
 ...

HEADER
The header is defined by the following structure:

/* All numbers should be in net order */
typedef struct _Raw_video_file_header {

u_long magic_number;
u_short major_version;
u_short minor_version;
u_long width_L;
u_long height_L;
u_long width_Cr;
u_long height_Cr;
u_long width_Cb;
u_long height_Cb;
u_long image_type;
u_long frames_per_sec;
u_long extra_data_len;

} Raw_video_file_header;

The magic_number field always contains the following constant:

#define RAW_VIDEO_MAGIC_NUM 0x52415756 /* `RAWV' */

The major_version and minor_version fields contain major and minor version that the file
conforms to. Currently 1 and 0 respectively.

Next the L, Cr, and Cb dimensions are specified via width_L, height_L, width_Cr,
height_Cr, width_Cb, and height_Cb, fields. These are specified in pixels and can be arbi-
trarily sized with respect to each other. Additionally setting any of the widths and heights
to 0 denotes that that plane is not present in the data. Any of the three planes may be omit-
ted, although most commonly either all three will be present for full color, or else just the
luminance (L) plane will be present and the chrominance (Cr and Cb) planes will be
absent.

image_type currently must be 0 but may at some time be used to support other image for-
mats or colorspaces.

frames_per_sec is the number of frames per second that the video was recorded at. It is a
32 bit integer but is stored * 65536 so it can be as high as 65536 frames per second and has
the accuracy of 1/65536th of a frame per second. The last field in the header is
extra_data_len which is used to specify the size of additional header information which
followes the header. This could be used to add a frame offset table or other information to
the VQ file.

After the header is the optional header data. This data is ignored by vq_play and send_vq.

229

FRAME DATA
The frame data consists the pixels from the L, Cr, and Cb frames in standard raster order.
The header dimensions determine the number of bytes expected. All data are single
unsigned bytes. The L data ranges from 0 being darkest to 255 being white while the Cr
and Cb data are biased around 128. If Cr or Cb data is not present (i.e. Cr_width==0 or
Cb_width==0), it is assumed to be all 128's while if L data is not present it is assumed to
be all 0's.

SEE ALSO
vq_play(1) mpeg2vq(1) vq(5)

AUTHOR
Jeff Gilbert <gilbertj@eecs.berkeley.edu>

230

A.13. vq (5)

NAME
vq - InfoPad file format for VQ Video

files

SYNOPSIS
#include <vq_file_fmt.h>

OVERVIEW
The VQ file format is used by the InfoPad VQ Video programs as a means of specifying
video streams. The file format is rich enough to be used for other types of VQ files or to
add extensions to the existing video. The video transcoder (mpeg2vq(1)) and VQ video
player (vq_play(1)) both can operate on VQ files of any frame size. The video send utility
(send_vq(1)), however, requires a fixed size due to hardware constraints.

First the general format will be described, followed by how it should be filled in for Info-
Pad hardware compatible files.

The vq file has three parts: a header containing frame size and rate information (as well as
additional optional header information) followed by codebook update sections interleaved
between video data sections. The codebook update sections can specify that no entries are
to be updated. Thus the file looks like:

HEADER
EXTRA HEADER DATA
CODEBOOK UPDATE SECTION
VIDEO FRAME DATA
CODEBOOK UPDATE SECTION
VIDEO FRAME DATA
CODEBOOK UPDATE SECTION
VIDEO FRAME DATA
 ...

HEADER
The header is defined by the following structure:

/* All numbers should be in net order */
typedef struct _VQ_file_header {

u_long magic_number;
u_short major_version;
u_short minor_version;
u_long width;
u_long height;

231

u_long frame_size;
u_long codebook_entries;
u_long codebook_entry_size;
u_long frames_per_sec;
u_long extra_data_len;

} VQ_file_header;

The magic_number field always contains the following constant:

#define VQ_MAGIC_NUM 0x49505651 /* `IPVQ' */

The major_version and minor_version fields contain major and minor version that the file
conforms to. Currently 1 and 0 respectively. The width and height fields are measured in I
and Q entries which are one eighth the number of uncompressed pixels. So for the InfoPad
hardware resolution of 128x240 this would be width=128/8=16 and height=240/8=30.
framesize is the size of a frame in bytes which for InfoPad VQ is width * height * 6.
(Since Y is at double the resolution in both directions, there are 4 Y bytes per 1 I and 1 Q).
codebook_entries is the number of entries in all codebooks. For InfoPad, this is
256*3=768. codebook_entry_size is the size in bytes of each entry. For InfoPad, this is 16
bytes. (One byte for each pixel in the 8x8 block.) frames_per_sec is the number of frames
per second that the video was recorded at. It is a 32 bit integer but is stored * 65536 so it
can be as high as 65536 frames per second and has the accuracy of 1/65536th of a frame
per second. The last field in the header is extra_data_len which is used to specify the size
of additional header information which followes the header. This could be used to add a
frame offset table or other information to the VQ file.

After the header is the optional header data. This data is ignored by vq_play and send_vq.

CODEBOOK UPDATES
The header and optional header data are followed by pairs of codebook update and frame
data sections. The codebook update sections may contain as little as a single integer speci-
fying that no codebook updates happen before the next frame. Alternatively any number
of section in the codebook may be updated. The format of the codebook update sections is
as follows:

ENTRIES_TO_UPDATE
If ENTRIES_TO_UPDATE != 0

FIRST_ENTRY_NUM
CODEBOOK DATA

ENTRIES_TO_UPDATE
If ENTRIES_TO_UPDATE != 0

FIRST_ENTRY_NUM
CODEBOOK DATA

...

ENTRIES_TO_UPDATE = 0

ENTRIES_TO_UPDATE and FIRST_ENTRY_NUM are both 32-bit integers (in net byte

232

order). ENTRIES_TO_UPDATE indicates how many entries in the codebook are to be
updated. It must not be negative or exceed the codebook_entries (768 for InfoPad) value
specified in the VQ file header. A 0 value indicates that the codebook update section is
done and the frame data will follow.

Note that any program that reads VQ files (such as vq_play(1) and send_vq(1)) should
check to see if ENTRIES_TO_UPDATE is the magic number #defined as
VQ_MAGIC_NUM (0x49505651 = `IPVQ') expected for the magic_number field in the
header. If this is the case, it should assume that two (or more) VQ files have been concati-
nated together. It should parse the new header, possibly making sure that it is consistent
with the old one or making many necessary modifications (like resizing the play window),
and procede. In this way, larger VQ files can be created by simple concatination of a num-
ber of smaller clips.

FIRST_ENTRY_NUM specifies the first codebook entry to be updated (in this block) and
should be between 0 and codebook_entries - ENTRIES_TO_UPDATE to specify a valid
region. For the InfoPad hardware, entries 0 through 255 specify the Y codebook, entries
256 through 511 specify the I codebook, and entries 512 through 767 specify the Q code-
book.

CODEBOOK DATA is codebook_entry_size (16 for InfoPad) *
ENTRIES_TO_UPDATE bytes of codebook data. For InfoPad, the codebook data is orga-
nized in 16 byte blocks in A to P order in the file:

A B C D
E F G H
I J K L
M N O P

The Y Codebook values are 0..255 unsigned binary - 0=black, 255=white. The I and Q
Codebook values are 0..255 offset binary: 128 means 0, 127 is -1, 129 is 1 etc. Note that
this is slightly different from the InfoPad hardware: it uses 6 bit sign-magnitude format
aligned to 6 bits. The send_vq(1) program will, however, correct the format in order to
keep the VQ file format as simple and flexible as possible.

FRAME DATA
The frame data consists of the new frame of Y data followed by the new frame of IQ data.
(The I and Q data is interleaved due to hardware design.) The Y frame data consists of
width * height (from header) * 4 bytes of Y frame data (one byte per 4x4 block) present in
normal scan order - top left to top right down to bottom right. The IQ frame data consists
of width * height (from header) * 2 bytes of IQ frame data. The reason that this is half as
many bytes as the Y frame data is that the I and Q are subsambled by 2 in each direction
(for a reduction by 4 in data) but both the I and Q are present, making the reduction only
by a factor of 2. The I and Q data are interleaved in foursomes of 2 apiece - i.e:

 I I Q Q I I Q Q I I Q Q ...
 0 1 0 1 2 3 2 3 4 5 4 5 ...

233

where the 0,1,2,3,... again correspond to the normal scan order.

SEE ALSO
vq_play(1) send_vq(1) mpeg2vq(1) vq2codebook(1) codebook2ras(1) showcodebook(1)
showvqcodebook(1) raw_video(5)

AUTHOR
Jeff Gilbert <gilbertj@eecs.berkeley.edu>

234

235

APPENDIX B The WebChip Applet

This appendix describes the details of the WebChip applet, used to illustrate concepts in

application-level link management described in Chapter 11.

B.1. Motivation

The web has proven to be an effective medium for exchanging information and documenta-

tion. It has been an invaluable aid in enabling researchers and industry to share information. Its

use in Electronic Design Automation (EDA) is also expanding rapidly.

However, currently it does not provide an adequate solution to the problem of displaying

integrated circuit layout in a manner that is readily accessible to a large number of people with

varying compute and network resources. Integrated circuit designers wishing to document layout

on the web are limited to placing static GIF images of their design in the pages. Alternatively they

can leave a link to the actual layout files for others to download and run with their particular layout

editor. This is, of course, contingent upon the user having access to a compatible viewer or editor.

Even if so, it can be a time consuming process at best.

236

With the WebChip Interactive Java VLSI Layout Viewer, the designer can now embed the

actual layout in the web pages and remote users are able to actively navigate the layout by zoom-

ing, panning, and expanding and unexpanding subcells. WebChip accepts standard Magic layout

files and does rapid rendering of hierarchical designs including the sub-cell transformations,

arrays, label justification, and layer display. WebChip is tailored to the task of remote access and

customizable to work with any fabrication process.

Interactive viewing of large layouts over the web brings up a number of interesting chal-

lenges which WebChip addresses. One set of challenges relates to obtaining the greatest viewing

speed and lowest latency possible. One factor which impedes this is the bandwidth limitation of

the link connecting the user to the remote web server. Often this is a slow modem or wireless link

which would not seem congenial to large layout databases. Another problem is that even when the

local host receives the data, it has to be able to render it quickly to obtain interactive navigation.

However, the local machine may not have sufficient compute power, or in case of the web, the

local machine may be using interpreted Java which further hampers performance. In order to

address these issues, a display optimization called cell image caching was developed, which

greatly accelerates the display of hierarchical layouts. In many cases, WebChip, written in Java,

can display fully expanded layout faster than Magic’s or Cadence’s layout editor! The technique

of cell image caching, however, could be applied to existing commercial tools as well to yield even

faster display. In order to address the issue of loading speed, compression and link scheduling are

used to deliver the layout data to the local host.

No matter how well data is transferred and the display is optimized, it will inevitably still be

too slow in some circumstances. However, this problem can be masked by allowing the user to

deal with “work in progress”. They should be able to effectively navigate all portions of the layout

that they have received even during the loading process. Additionally, to mitigate slow redrawing,

237

the user must be able to interact with the system even while it is still busy displaying something

else1.

B.2. Operation Tutorial

Although no Magic code is used in WebChip, the GUI was modeled in some ways after

Magic, as Magic is the best layout editor! The WebChip viewer uses Magic files for input. It can

used gzipped magic files to reduce load time. (Described in Section 11.2.2.1..) It could be modi-

fied to also accept CIF or other formats but Magic delivered all of the necessary functionality.

Many of the issues in interactive web-based operation, of course, do not have a parallel in the stan-

dard Magic implementation.

B.2.1. New Window / Close Window

To start our tutorial, open another view of the sample layout. This can be done in a multi-

tude of way: Either click on the New Window button on the applet at the top of this page, type an

“o” anywhere in the same applet or type an “o” in the following copy of the same applet:

The window can be resized and the layout will grow or shrink to keep the same amount in

view while maintaining a 1:1 aspect ratio. Windows can be closed either by using the standard

window manager hooks or else by clicking on the Close Window button or typing “O” in them.

B.2.2. Showing / Hiding Control Buttons and Labels

If you opened a new window from the applet directly, you will notice that the control but-

tons are not present. Typing space in the applet toggles the display of the control buttons and

labels. (This works both on the embedded version as well as stand-alone copies.)

1. I believe that neither Magic nor Cadence do this.

238

B.2.3. The Selection Box

To effect many of the WebChip commands, a region has to be selected. This is done by

dragging the mouse with the left mouse button pressed. A white selection rubber band box will

appear. Clicking in the window will make it go away. (This differs slightly from Magic as Magic

does not allow a drag but rather clicks to set box corners.)

B.2.4. Expand / Unexpand

The layout viewer is a hierarchical viewer. It only shows the layout and subcells in a given

cell if they are “expanded.” Initially all subcells are “unexpanded” so that a box with this top cell

and instance name appears, indicating the layout bounds. Drag a box in the layout window that

crosses some unexpanded subcell. Now press “x” or click on the Expand button. The cells under

it are expanded. If you drag a box around the whole layout and press “x”, all subcells are

expanded. (This can be specified as the default by setting the applet parameter defaultExpand to

anything.)

To unexpand a region, drag the box so it crosses or contains the cell to be unexpanded and

press “X” or click on the Unexpand button. (The expand / unexpand semantics are exactly as in

Magic.)

B.2.5. Zooming and Panning

Zooming into a specified area can be performed by dragging a box around the area and typ-

ing “z” or clicking on Zoom Area. To magnify the current region of interest, type “f” or click on

Zoom In. Similarly, to zoom out, the “Z” key or Zoom Out button can be used. Zoom Full or the

“F” key sets the zoom to see the full layout. Lastly, the arrow keys can be used to pan left, right,

up and down. If the shift key is used, it moves in bigger jumps while the control key causes move-

ment in smaller jumps.

239

B.2.6. Redisplay

Finally, control-L can be used to refresh the screen if ever necessary (or just to investigate

the drawing speed)

B.2.7. Status Panel

Below the buttons is displayed the name of the top cell in the design followed by a dash and

the location of the design. In our case, the name of the design is http://Infopad.EECS.Berke-

ley.EDU/~gilbertj/Coursework/ee244/project/cor_at4 and the top cell is correlat. (This is a dual

64x64 image correlator that I built as part of a PC-based real-time face recognition system for my

undergraduate honors thesis. See the thesis [34] or conference paper [33] if you are interested!)

B.2.8. Design File Loading Status Indicator

As the files are loading, the status is shown below the design name. Note that it loads up to

3 design cell files concurrently.

Loading multiple cells concurrently can help amortize TCP connection times as is com-

monly done by web browsers. Using a single managed stream would have all of the benefits that it

has for the web as outlined in Chapter 10. Also note that as the design is loading, the cells that are

visible (i.e. all of their ancestors have been expanded) will be displayed in gray until they are

loaded. Once they are loaded, the outlines turn yellow if they are unexpanded or the layout is

shown if they are expanded. Meanwhile, feel free to navigate the design as it is loading!

All design cell information is managed centrally such that if multiple instances of the Web-

Chip applet reference the same design, they will share the same database. Thus the multiple

instances do not use more memory or incur the load-time penalty multiple times. By specifying a

different initial zoom region to different WebChip applet instances, multiple views of the same

layout can be included at low computational cost and without additional bandwidth utilization.

240

B.2.9. Display Mode Choice Button

Lastly, the mode choice button which now indicates “Cached Block Mode” allows the user

to change the display method being used. This is described in Section 11.2.1.

B.3. Configuration

Several applet parameters control WebChip. The file parameter is used to specify the top-

level URL of the file to load. This is also the design name. (The design name without the top-

level cell name is shown in the control panel.) The URL can specify a .mag magic file or a

.mag.gz gzipped magic file or not have any extension as described in Section 11.2.2.1.

The style parameter is used to specify a URL for the display style. See below for more on

style files.

The noControlButtons and noControlLabels options are used to specify whether the control

buttons and labels should initially appear. The space bar will always toggle this. It is useful when

embedding many layouts or small ones to not have the control buttons and labels as they consume

space.

The defaultExpand controls the initial state of subcells. If it is not set to anything then sub-

cells are initialized as unexpanded until explicitly expanded. If it is set to anything then they are

expanded by default. This allows the initial view to appear similar to a die photo.

B.3.1. Style Files

The style files control all display aspects of WebChip, including layer colors, stipple pat-

terns, crossing, and outlining. The style files also allow background color, sub-cell color, and

unloaded cell colors to be specified. The files are standard ASCII and can be customized to viewer

241

preference as well as different technologies. Figure B.1 shows an example of two different style

files used on the same design.

 The style file is similar in format to Magic technology files. The file must start with the lit-

eral LayoutStyleFile. This is followed by two numbers specifying the stipple height and width

which should be 2, 4, or 8. This is followed by a set of color and layer definitions. WebChip

draws layers as some combination of a stipple pattern, an optional solid outline, and an optional

solid cross. The layer stippling is specified in terms of a swath the size of the stipple. Each pixel

in the swath can be some opaque color or transparent. While the style file could be specified in

terms of RGB or transparent for each pixel in each stipple, an extra level of indirection was intro-

duced to aid in style file design. The indirection is accomplished by having a set of user-named

colors and then specifying the stipple and layer information in terms of the named colors. The file

is similar to a magic tech file in that sections are demarcated with << section >>. Here section can

be “layer LayerName” or << colors>> corresponding to layer and color definitions. C++ style //

comments can be included (thanks to the Java tokenizer) and sections and colors can be redefined.

FIGURE B.1. Effects of style files on layout presentation.
The two figures are of the same layout but different style files.

242

LayoutStyleFile
8 8 // Stipple size

<< colors >>
trans transparent
background 0 0 0
label 255 255 0
subcell 255 255 0
missingCell 128 128 128

red 255 0 0
green 0 255 0
blue 0 0 255
purple 255 0 255
black 0 0 0
white 255 255 255

polyRed 255 0 0
m1Blue 60 101 185
m1Blue 100 120 255
m2Purple 125 88 157
m2Purple 255 128 255
m2Purple 230 120 255
ndiffGreen 0 255 0
pdiffBrown 200 150 75
ndcDrkGrn 30 110 110
ndcCross 30 120 120
pdcGray 100 110 120
pdcCross 110 120 130
nwellGray 128 128 128
pcPurp 200 100 200
pcOut 100 100 100
via1 175 124 255
via1 230 120 255
via2 0 0 0
nsc1 30 110 110
nsc2 100 120 255
psc1 200 150 75
psc2 100 120 255

<< layer metal1 >>
mono_stipple m1Blue
 0 0 0 0 0 0 0 0
 1 0 1 0 1 0 1 0
 0 0 0 0 0 0 0 0
 1 0 1 0 1 0 1 0
 0 0 0 0 0 0 0 0
 1 0 1 0 1 0 1 0
 0 0 0 0 0 0 0 0
 1 0 1 0 1 0 1 0

mono_stipple m1Blue
 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0

<< layer metal2 >>
mono_stipple m2Purple
 0 1 0 1 0 1 0 1
 0 0 0 0 0 0 0 0
 0 1 0 1 0 1 0 1
 0 0 0 0 0 0 0 0
 0 1 0 1 0 1 0 1
 0 0 0 0 0 0 0 0
 0 1 0 1 0 1 0 1
 0 0 0 0 0 0 0 0

mono_stipple m2Purple
 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1
 0 1 0 1 0 1 0 1

<< layer m2contact >>
outline via2
color_stipple
 trans via1 trans via1 trans via1 trans via1
 via1 trans via1 trans via1 trans via1 trans
 trans via1 trans via2 trans via1 trans via2
 via1 trans via2 trans via1 trans via2 trans
 trans via1 trans via1 trans via1 trans via1
 via1 trans via1 trans via1 trans via1 trans
 trans via2 trans via1 trans via2 trans via1
 via2 trans via1 trans via2 trans via1 trans

<< layer polysilicon >>
mono_stipple polyRed
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1

<< layer polycontact >>
cross pcOut
mono_stipple pcPurp
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1

<< layer ndiffusion >>
mono_stipple ndiffGreen
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1

<< layer pdiffusion >>
mono_stipple pdiffBrown
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 0 1 0 1 0 1 0 1

<< layer nwell >>
mono_stipple nwellGray
 1 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0
 0 0 1 0 0 0 0 0
 0 0 0 1 0 0 0 0
 0 0 0 0 1 0 0 0
 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 0 1

<< layer ndcontact >>
cross ndcCross
mono_stipple ndcDrkGrn
 1 0 1 0 1 0 1 0
 1 1 1 1 1 1 1 1
 1 0 1 0 1 0 1 0
 1 1 1 1 1 1 1 1
 1 0 1 0 1 0 1 0
 1 1 1 1 1 1 1 1
 1 0 1 0 1 0 1 0
 1 1 1 1 1 1 1 1

FIGURE B.2. Style file used to produce image in Figure 11.1.
Continued on next page.

243

<< layer pdcontact >>
outline pdcCross
cross pdcCross
mono_stipple pdcGray
 1 0 1 0 1 0 1 0
 1 1 1 1 1 1 1 1
 1 0 1 0 1 0 1 0
 1 1 1 1 1 1 1 1
 1 0 1 0 1 0 1 0
 1 1 1 1 1 1 1 1
 1 0 1 0 1 0 1 0
 1 1 1 1 1 1 1 1

<< layer ntransistor >>
color_stipple

ndiffGreen trans polyRed trans polyRed trans polyRed trans
trans ndiffGreen trans polyRed trans polyRed trans polyRed
polyRed trans ndiffGreen trans polyRed trans polyRed trans
trans polyRed trans ndiffGreen trans polyRed trans polyRed
polyRed trans polyRed trans ndiffGreen trans polyRed trans
trans polyRed trans polyRed trans ndiffGreen trans polyRed
polyRed trans polyRed trans polyRed trans ndiffGreen trans
trans polyRed trans polyRed trans polyRed trans ndiffGreen

<< layer ptransistor >>
color_stipple

pdiffBrown trans polyRed trans polyRed trans polyRed trans
trans pdiffBrown trans polyRed trans polyRed trans polyRed
polyRed trans pdiffBrown trans polyRed trans polyRed trans
trans polyRed trans pdiffBrown trans polyRed trans polyRed
polyRed trans polyRed trans pdiffBrown trans polyRed trans
trans polyRed trans polyRed trans pdiffBrown trans polyRed
polyRed trans polyRed trans polyRed trans pdiffBrown trans
trans polyRed trans polyRed trans polyRed trans pdiffBrown

<< layer nsubstratencontact >>
outline nsc2
color_stipple

nsc1 trans nsc1 trans nsc1 trans nsc1 trans
trans nsc1 trans nsc2 trans nsc1 trans nsc2
nsc1 trans nsc2 trans nsc1 trans nsc2 trans
trans nsc1 trans nsc1 trans nsc1 trans nsc1
nsc1 trans nsc1 trans nsc1 trans nsc1 trans
trans nsc2 trans nsc1 trans nsc2 trans nsc1
nsc2 trans nsc1 trans nsc2 trans nsc1 trans
trans nsc1 trans nsc1 trans nsc1 trans nsc1

<< layer psubstratepcontact >>
outline psc2
color_stipple

psc1 trans psc1 trans psc1 trans psc1 trans
trans psc1 trans psc2 trans psc1 trans psc2
psc1 trans psc2 trans psc1 trans psc2 trans
trans psc1 trans psc1 trans psc1 trans psc1
psc1 trans psc1 trans psc1 trans psc1 trans
trans psc2 trans psc1 trans psc2 trans psc1
psc2 trans psc1 trans psc2 trans psc1 trans
trans psc1 trans psc1 trans psc1 trans psc1

<< layer error_p >>
mono_stipple white
 0 0 0 0 0 0 0 0
 0 1 1 0 0 1 1 0
 0 1 1 0 0 1 1 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 1 1 0 0 1 1 0
 0 1 1 0 0 1 1 0
 0 0 0 0 0 0 0 0

FIGURE B.2. Style file used to produce image in Figure 11.1. Continued from previous page.

244

The colors can be specified in terms of red, green, and blue triples or the literal transparent.

For example:

 << colors >>
 green 0 255 0
 trans transparent
 polyColor 255 0 0

would define the color green as expected, define a color named trans to be transparent and

define polyColor to be red.

The colors are used in subsequent layer sections as well as to control certain global defaults

and colors. The background color is used to set the background color of the layout. (It is impor-

tant that this is in the style file since the background has to go with the other colors.) The label

color is used as a default color for labels. This can be overridden on a per-layer basis as well as

shown below. The subcell color is used to determine what color to draw unexpanded subcell

boxes and labels in. Finally, the missingCell color is used to determine in which color to draw

cells that could not be found or have not been loaded yet. Note that all of these colors can be an

RGB triple or the literal transparent. For instance, to not show missing cells, the following line

should be placed in a colors section:

 missingCell transparent

Once the colors are defined, the layers can be defined. Each layer has 4 attributes: label

color, outline color, cross color, and fill stipple. The first three are defined by single lines specify-

ing the literal and a predefined color while the fill stipple can be defined in one of three ways. If

no stipple information is included then it is transparent. Otherwise it can be defined as a

color_stipple in which each pixel in the stipple is defined as a color (which can be transparent.)

Lastly, mono_stipple is an abbreviation used for the common case where a stipple is just one color

245

and transparent. Here the color is specified followed by a series of 1's and 0's of the size of the

stipple.

The following illustrates part of a typical style file:

 LayoutStyleFile
 4 4 // This is the stipple size

 << colors >>
 trans transparent
 red 255 0 0
 green 0 13 34
 white 255 255 255
 pdcGray 100 110 120
 pdcCross 110 120 130
 brown 200 150 75

 << layer ptransistor >>
 outline green
 color_stipple brown trans red trans
 trans brown trans red
 red trans trans brown
 red trans trans brown

 << layer pdcontact >>
 outline pdcCross
 cross pdcCross
 mono_stipple pdcGray 1 0 1 0
 1 1 1 1
 1 0 1 0
 1 1 1 1

If WebChip encounters layout data on a layer not included in the style file, a warning is

printed and layout on that layer is ignored.

The order of the layers in the style file determines the order that they are drawn and thus the

order of precedence. The stipples should be carefully arranged such that all likely combinations of

layer overlaps produces viable results. For instance if metal1 and metal2 have the same stipple

patterns but different colors, when they overlapped, whichever one was drawn last would be hid-

den. Thus the stipple patterns should be at least partially offset.

246

247

APPENDIX C The SpeedSurfer Application

This appendix describes the operation of the SpeedSurfer client-side proxy application and

the format used to communicate with the SurfServ server-side proxy. These are both presented in

Chapter 12.

C.1. SpeedSurfer Operation

SpeedSurfer is a Windows NT-based client-side proxy as described in Section 12.2., written

using Microsoft’s Visual C++ development environment and Microsoft Foundation Classes

(MFC). SpeedSurfer is a standard user-mode application and does not require special installation.

The only step needed to browse through the SpeedSurfer is to set the web browser’s Proxy setting

to localhost port 2000. (The port 2000 is user-selectable as shown in SectionC.1.4.).

SpeedSurfer manages the GUI as well as the client proxy interface. It is readily config-

urable and can automatically initiate contact with the server-side proxy. SpeedSurfer allows for up

to 5 user-configurable tunnels in addition to the web proxy. It allows web proxy chaining whereby

the connections are forwarded to another proxy rather than going to the web server specified by the

web address. SpeedSurfer also analyzes the traffic rates delivered to the web browser facilitating

248

evaluation. It can be run in “enabled” mode which implements the full proxy-proxy system or

“disabled” mode where the SpeedSurfer routes HTTP traffic directly through it, maintaining mul-

tiple transient conventional TCP connections for analysis purposes only.

C.1.1. Connection Page

The connection page (see FigureC.1) is used to control the SpeedSurfer’s basic mode of

operation. At the top the user can select whether to disable the SpeedSurfer (but still enable statis-

tics gathering), or if it is enabled what mode to run the proxy-proxy link in. Currently only the two

TCP options are implemented. The managed / conventional TCP refers to whether the additional

flow control is used. The user can also specify where the SurferServ can be found. When the

mode is changed from Disable SpeedSurfer to one of the other modes and the Apply button is

pressed, the SpeedSurfer initiates contact with the SurferServ.

FIGURE C.1. SpeedSurfer connection page FIGURE C.2. SpeedSurfer stats page

249

Rate limiting may be implemented at a later time. The number of active links and current

uplink and downlink rates are displayed.

C.1.2. Stats Page

The stats page, shown in FigureC.2 displays network traffic statistics in real-time. It dis-

plays the current uplink and downlink traffic rates and number of active links as well as informa-

tion about the current web page load. This information includes the duration of the load, the

number of transfers (data items) thus far encountered, the number of uplink and downlink bytes

transferred, and average uplink and downlink traffic rates over the load. Lastly, it displays the

minimum, average, and maximum response latency and size. The response latency is defined as

the duration between the web browser delivering a request and getting the first byte of response

data. A new web page download is detected whenever there are no connections through the web

proxy port for more than 1 second.

The “Log to File” button can be used to send collected data into a log file for later post pro-

cessing. The graphs in Chapter 10 are generated off-line using such a log file. The logs contain

time-stamped itemization of when connections are established, what items are requested, detailed

timing of data transfer, as well as when the connections are closed. A sample log file is shown in

Figure C.3.

C.1.3. Loading Graph Page

The loading graph page, shown in Figure C.4., shows real-time presentations of the loading

graphs used to quantify web page loading time in Section 10.4. Three views of the loading graph

are supported - “TOTAL BYTES”, “TOTAL RATE”, and “LOADING GRAPH” as depicted in the figure.

250

0 startAt 0
0 request GET /~gilbertj/ HTTP/1.1
0 host badlands.eecs.berkeley.edu:8090
0 recv 182 at 841
0 recv 2920 at 2043
1 startAt 2083
2 startAt 2103
0 recv 4096 at 2994
0 recv 1176 at 3214
1 request GET /~gilbertj/me_harry_jim_small.jpg HTTP/1.1
1 host badlands.eecs.berkeley.edu:8090
2 request GET /~gilbertj/eegsa_small.gif HTTP/1.1
2 host badlands.eecs.berkeley.edu:8090
1 recv 184 at 3655
0 recv 1257 at 3965
0 doneAt 3965
0 total 9631
GET /~gilbertj/ HTTP/1.1 size 9631
2 recv 181 at 3985
1 recv 1460 at 5047
1 recv 1460 at 5127
2 recv 542 at 5367
2 doneAt 5367
2 total 723
GET /~gilbertj/eegsa_small.gif HTTP/1.1 size 723
1 recv 1176 at 6249
1 recv 1460 at 6749
1 recv 1460 at 7250
1 recv 1176 at 7260
1 recv 1460 at 8252
1 recv 1460 at 8752
1 recv 1176 at 9253
1 recv 1864 at 9443
1 doneAt 9483
1 total 14336
GET /~gilbertj/me_harry_jim_small.jpg HTTP/1.1 size 14336

0 startAt 0
0 request GET /~gilbertj/cnn2/ HTTP/1.1
0 host badlands.eecs.berkeley.edu:8090
0 recv 183 at 851
0 recv 2920 at 1983
1 startAt 2003
1 request GET /~gilbertj/cnn2/cnn.js HTTP/1.1
1 host badlands.eecs.berkeley.edu:8090
0 recv 4096 at 2684
0 recv 1176 at 2864
0 recv 4096 at 3595
1 recv 183 at 3675

FIGURE C.3. Example SpeedSurfer log file

251

Each figure has time across the X axis. The three types of graphs can be zoomed using the mouse

to view particular regions in greater detail.

The TOTAL BYTES option graphs the total number of bytes of web traffic received since the

beginning of the web transfer. This is, by definition, is a monotonic non-decreasing function. The

instantaneous rate of data delivery is the slope of the line. Thus flat portions indicate stalls.

The TOTAL RATE option graphs the short-term averaged rate of data transfer across all con-

nections. Thus it is the derivative of the TOTAL BYTES graph. The size of the sampling window is

FIGURE C.4. SpeedSurfer loading graph page.
Three views shown: total bytes (top left), total rate (top right) and loading graph
(bottom center)

252

controlled by the INTEGRATION TIME (MS) field. This allows the trade-off of graph detail and

amount of sampling noise to be adjusted.

The LOADING GRAPH option shows the web page loading graph of Section 10.4. in real time.

The LINE RATE (BPS) field is used to input the line rate to adjust the length of the bars in the graph.

This is required since the bars represent the amount of time a transfer corresponds to but in reality

all that is known is the number of bytes that are transferred. The line rate is the constant for this

conversion.

C.1.4. Ports Page

The ports page, shown in FigureC.5, allows the user to select incoming and outgoing ports.

In the example, if a connection is made to localhost:2001 then a connection will be made to Bad-

lands.EECS.Berkeley.EDU:23. If the mode set in the connection page is not “Disabled” then this

connection will be set up through the proxy-proxy link and the connection will originate from the

FIGURE C.5. SpeedSurfer ports page

253

server proxy. Thus, to hold a telnet session to Badlands through the proxy mechanism, the user

would just run telnet, setting the host to localhost and port to 2001. The maximum number of

simultaneous connections can also be set. If this many links are already in progress then no new

ones will be accepted. Finally, a remote web proxy can be specified to allow the web proxy chain-

ing.

C.2. Proxy-Proxy Link Protocol

As previously mentioned, the client proxy and server proxy communicate via a custom pro-

tocol that allows embedding of multiple connections in the link, as well as maintaining flow con-

trol. Additionally, an echo packet facility allows the client proxy to determine the round-trip time

as well as the number of bytes in transit by measuring the differences between packet transmission

and reception times. The protocol used between the two proxies will be briefly described here for

the purpose of better illustrating their operation.

The protocol is design to push as much of the complexity as possible into the client proxy

to keep the server proxy scalable since multiple simultaneous sessions may be running on a given

server. Additionally, this eases design since all GUI interaction occurs in the client proxy. The

CPU burden presented by both proxies is minimal though the addition of compression would

increase the necessary computation.

The proxy-proxy link is a single TCP/IP connection with the stream consisting of control

and data packets of a form understood by the two proxies. The packet formats are shown in

TableC.1. The server proxy is a general purpose multiplexor / demultiplexor that does not under-

stand HTML or HTTP at all. All data parsing is performed by the client proxy. Currently link-

254

Field Size Meaning
Packet header present at beginning of all packets
SYNC 2 bytes Must be 0x24CE. Used to assure synchronization
MSG 2 bytes Control packet type or data link ID
LEN 2 bytes Length of remaining bytes in message

ClientInit message is sent from client->server on connection. Could contain setup info.
HEADER 6 bytes See above. Msg=CLIENT_INIT, Len=0

ServerInit message is sent from server->client in response to ClientInit. Could have more info.
HEADER 6 bytes See above. Msg=SERVER_INIT, Len=0

NewLink message sent from client->server to establish new link.
HEADER 6 bytes See above. Msg=NEW_LINK, Len=6 + hostNameLen
ID 2 bytes ID for new connection.
PORTNUM 2 bytes TCP Port Number of new connection
PRIORITY 1 byte Priority - not currently used
WINDOWSIZE256 1 byte Used for link flow control - not currently used
HOSTNAME N bytes Name of host to connect to

CloseLink message sent in either direction to signal link closure
HEADER 6 bytes See above. Msg=CLOSE_LINK, Len=2 + errorStrLen
ID 2 bytes ID of link to close
ERRORSTR N bytes For server->client gives reason for closure. Empty for no error.

CloseAck message sent server->client to allow ID reuse
HEADER 6 bytes See above. Msg=CLOSE_ACK, Len=2
ID 2 bytes ID of link closed

EchoMsg message echoed by server and used by client for diagnostics - like ping packet.
HEADER 6 bytes See above. Msg=ECHO_MSG, Len=N
DATA N bytes Generic data. Client uses timestamp and downlinkBytesRcvd.

Window message used to impose additional flow control (currently downlink only)
HEADER 6 bytes See above. Msg=ECHO_MSG, Len=4
NEWTOTAL 4 bytes Allowable total bytes sent this session. -1 for no flow control

TABLE C.1. Proxy-proxy packet protocol

255

level flow control is not used but is provisioned. This is not a problem unless applications on

either end of the link are slower than the link, which is typically not the case.

256

