
OpenGL
R©

ES Native Platform Graphics Interface
(Version 1.0)

Editor: Jon Leech

Copyright c© 2002-2003 Promoters of the Khronos Group (3Dlabs, ARM Ltd.,
ATI Technologies, Inc., Discreet, Ericsson Mobile, Imagination Technologies

Group plc, Motorola, Inc., Nokia, Silicon Graphics, Inc., SK Telecom, and Sun
Microsystems).

This document is protected by copyright, and contains information proprietary to
The Khronos Group. Any copying, adaptation, distribution, public performance, or
public display of this document without the express written consent of the copy-
right holders is strictly prohibited. The receipt or possession of this document does
not convey any rights to reproduce, disclose, or distribute its contents, or to manu-
facture, use, or sell anything that it may describe, in whole or in part.

This document is a derivative work of ”OpenGL
R©

Graphics with the X Window
System (Version 1.4)”. Silicon Graphics, Inc. owns, and reserves all rights in, the
latter document.

OpenGL is a registered trademark, and OpenGL ES is a trademark, of Silicon
Graphics, Inc.

Contents

1 Overview 1

2 EGL Operation 2
2.1 Native Window System and Rendering APIs2

2.1.1 Scalar Types . 2
2.1.2 Displays . 3

2.2 Rendering Contexts and Drawing Surfaces3
2.2.1 Using Rendering Contexts 4
2.2.2 Rendering Models . 4
2.2.3 Interaction With Native Rendering 4

2.3 Direct Rendering and Address Spaces5
2.4 Shared State . 5

2.4.1 Texture Objects . 6
2.5 Multiple Threads . 6
2.6 Power Management . 7

3 EGL Functions and Errors 8
3.1 Errors . 8
3.2 Initialization . 10
3.3 EGL Versioning . 11
3.4 Configuration Management .12

3.4.1 Querying Configurations15
3.4.2 Lifetime of Configurations18
3.4.3 Querying Configuration Attributes19

3.5 Rendering Surfaces .19
3.5.1 Creating On-Screen Rendering Surfaces19
3.5.2 Creating Off-Screen Rendering Surfaces20
3.5.3 Creating Native Pixmap Rendering Surfaces21
3.5.4 Destroying Rendering Surfaces22

i

ii CONTENTS

3.5.5 Querying Surface Attributes22
3.6 Rendering Contexts .23

3.6.1 Creating Rendering Contexts23
3.6.2 Destroying Rendering Contexts24
3.6.3 Binding Contexts and Drawables24

3.7 Synchronization Primitives .26
3.8 Posting the Color Buffer .27

3.8.1 Posting to a Window .27
3.8.2 Copying to a Native Pixmap28
3.8.3 Posting Semantics .28
3.8.4 Posting Errors .29

3.9 Obtaining Extension Function Pointers29

4 Extending EGL 31

5 EGL Versions and Enumerants 32
5.1 Compile-Time Version Detection32
5.2 Enumerant Values .32

6 Glossary 33

A Version 1.0 35
A.1 Acknowledgements .35

Version 1.0 - July 23, 2003

List of Tables

3.1 EGLConfig attributes. 13
3.2 Types of surfaces supported by anEGLConfig 13
3.3 Default values and match criteria forEGLConfig attributes. . . . 17

iii

Chapter 1

Overview

This document describes EGL, the interface between OpenGL ES and the underly-
ing native platform window system. It refers to concepts discussed in the OpenGL
ES specification, and may be viewed as an appendix to that document. EGL uses
OpenGL ES conventions for naming entry points and macros.

EGL provides mechanisms for creating rendering surfaces onto which OpenGL
ES can draw, and synchronizing drawing by both OpenGL ES and native platform
rendering APIs. EGL does not explicitly support remote orindirect rendering,
unlike the similar GLX API.

1

Chapter 2

EGL Operation

2.1 Native Window System and Rendering APIs

EGL is intended to be implementable on multiple operating systems (such as Sym-
bian, embedded Linux, Unix, and Windows) andnative window systems(such as
X and Microsoft Windows). Implementations may also choose to allow rendering
into specific types of EGLsurfacesvia other supportednative rendering APIs, such
as Xlib or GDI. Native rendering is described in more detail in section2.2.3.

To the extent possible, EGL itself is independent of definitions and concepts
specific to any native window system or rendering API. However, there are a few
places where native concepts must be mapped into EGL-specific concepts, includ-
ing the definition of thedisplayon which graphics are drawn, and the definition of
native windows and pixmaps which can also support OpenGL ES rendering.

2.1.1 Scalar Types

EGLBoolean is an integral type representing a boolean value, and should only
take on the valuesEGL TRUE(1) andEGL FALSE(0). If boolean parameters passed
to EGL take on other values, behavior is undefined, although typically any non-zero
value will be interpreted asEGL TRUE.

EGLint is an integral type used because EGL may need to represent scalar
values larger than the native platform ”int” type. All legal attribute names and
values, whether their type is boolean, bitmask, enumerant (symbolic constant),
integer, handle , or other, may be converted to and fromEGLint without loss of
information.

2

2.2. RENDERING CONTEXTS AND DRAWING SURFACES 3

2.1.2 Displays

Most EGL calls include anEGLDisplay parameter. This represents the abstract
display on which graphics are drawn. In most environments a display corresponds
to a single physical screen. The initialization routines described in section3.2
include a method for querying adefault display, and platform-specific EGL exten-
sions may be defined to obtain other displays.

2.2 Rendering Contexts and Drawing Surfaces

The OpenGL ES specification is intentionally vague on how arendering context
(an abstract OpenGL ES state machine) is created. One of the purposes of EGL is
to provide a means to create an OpenGL ES context and associate it with a surface.

EGL defines several types of drawing surfaces collectively referred to as
EGLSurface s. These includewindows, used for onscreen rendering;pbuffers,
used for offscreen rendering; andpixmaps, used for offscreen rendering into buffers
that may be accessed through native APIs. EGL windows and pixmaps are tied to
native window system windows and pixmaps.

EGLSurface s are created with respect to anEGLConfig . TheEGLConfig
describes the depth of the color buffer components and the types, quantities and
sizes of theancillary buffers(i.e., the depth, multisample, and stencil buffers).

Ancillary buffers are associated with anEGLSurface , not with a rendering
context. If several rendering contexts are all writing to the same window, they will
share those buffers. Rendering operations to one window never affect the unob-
scured pixels of another window, or the corresponding pixels of ancillary buffers
of that window.

A rendering context can be used with anyEGLSurface that it is compati-
ble with (subject to the restrictions discussed in the section on address space). A
surface and context are compatible if they

• have color buffers and ancillary buffers of the same depth.

• were created with respect to the sameEGLDisplay (in environments sup-
porting multiple displays).

As long as the compatibility constraint and the address space requirement are
satisfied, clients can render into the sameEGLSurface using different render-
ing contexts. It is also possible to use a single context to render into multiple
EGLSurface s.

Version 1.0 - July 23, 2003

4 CHAPTER 2. EGL OPERATION

2.2.1 Using Rendering Contexts

OpenGL ES defines both client state and server state. Thus a rendering context
consists of two parts: one to hold the client state and one to hold the server state.

Each thread can have at most one current rendering context. In addition, a ren-
dering context can be current for only one thread at a time. The client is responsible
for creating a rendering context and a surface.

2.2.2 Rendering Models

EGL and OpenGL ES supports two rendering models: back buffered and single
buffered.

Back buffered rendering is used by window and pbuffer surfaces. Memory for
the color buffer used during rendering is allocated and owned by EGL. When the
client is finished drawing a frame, the back buffer may be copied to a visible win-
dow usingeglSwapBuffers. Pbuffer surfaces have a back buffer but no associated
window, so the back buffer need not be copied.

Single buffered rendering is used by pixmap surfaces. Memory for the color
buffer is specified at surface creation time in the form of a native pixmap, and
OpenGL ES is required to use that memory during rendering. When the client
is finished drawing a frame, the native pixmap contains the final image. Pixmap
surfaces typically do not support multisampling, since the native pixmap used as
the color buffer is unlikely to provide space to store multisample information.

Both back and single buffered surfaces may also be copied to a specified native
pixmap usingeglCopyBuffers.

Window Resizing

EGL window surfaces need to be resized when their corresponding native window
is resized. Implementations typically use hooks into the OS and native window
system to perform this resizing on demand, transparently to the client. Some imple-
mentations may instead define an EGL extension giving explicit control of surface
resizing.

Implementations which cannot resize EGL window surfaces on demand must
instead respond to native window size changes ineglSwapBuffers (see sec-
tion 3.8.3).

2.2.3 Interaction With Native Rendering

Native rendering will always be supported by pixmap surfaces (to the extent that
native rendering APIs can draw to native pixmaps). Pixmap surfaces are typically

Version 1.0 - July 23, 2003

2.3. DIRECT RENDERING AND ADDRESS SPACES 5

used when mixing native and OpenGL ES rendering is desirable, since there is no
need to move data between the back buffer visible to OpenGL ES and the native
pixmap visible to native rendering APIs. However, pixmap surfaces may, for the
same reason, have restricted capabilities and performance relative to window and
pbuffer surfaces.

Native rendering will not be supported by pbuffer surfaces, since the color
buffers of pbuffers are allocated internally by EGL and are not accessible through
any other means.

Native rendering may be supported by window surfaces, but only if the native
window system has a compatible rendering model allowing it to share the OpenGL
ES back buffer.

When both native rendering APIs and OpenGL ES are drawing into the same
underlying surface, no guarantees are placed on the relative order of completion
of operations in the different rendering streams other than those provided by the
synchronization primitives discussed in section3.7.

Some state is shared between OpenGL ES and the underlying native window
system and rendering APIs, including pixel values in the visible frame buffer and,
in the case of pixmaps, color buffer values.

2.3 Direct Rendering and Address Spaces

EGL is assumed to support onlydirectrendering, unlike similar APIs such as GLX.
EGL objects and related OpenGL ES client and server state cannot be used out-
side of theaddress spacein which they are created. In a single-threaded environ-
ment, each process has its own address space. In a multi-threaded environment,
all threads may share the same virtual address space; however, this capability is
not required, and implementations may choose to restrict their address space to be
per-thread even in an environment supporting multiple application threads.

Both the client context state and the server context state of a rendering context
exist in the client’s address space; this state cannot be shared by a client in another
process.

Support of indirect rendering (in those environments where this concept makes
sense) may have the effect of relaxing these limits on sharing. However, such
support is beyond the scope of this document.

2.4 Shared State

Most OpenGL ES state is small. However, some types are of state are potentially
large and/or expensive to copy, in which case it may be desirable for multiple

Version 1.0 - July 23, 2003

6 CHAPTER 2. EGL OPERATION

rendering contexts to share such state rather than replicating it in each context.
EGL provides for sharing certain types of server state among contexts exist-

ing in a single address space. At present such state includes onlytexture objects;
additional types of state may be shared in future revisions of OpenGL ES where
such types of state (for example, display lists) are defined and where such sharing
makes sense.

2.4.1 Texture Objects

OpenGL ES texture state can be encapsulated in a named texture object. A texture
object is created by binding an unused name to the texture targetGL TEXTURE2D

of a rendering context. When a texture object is bound, OpenGL ES operations on
the target to which it is bound affect the bound texture object, and queries of the
target to which it is bound return state from the bound texture object.

OpenGL ES makes no attempt to synchronize access to texture objects. If a
texture object is bound to more than one context, then it is up to the programmer to
ensure that the contents of the object are not being changed via one context while
another context is using the texture object for rendering. The results of changing a
texture object while another context is using it are undefined.

All modifications to shared context state as a result of executingglBindTexture
are atomic. Also, a texture object will not be deleted while it is still bound to any
rendering context.

2.5 Multiple Threads

The EGL and OpenGL ES client side libraries must be threadsafe. Interrupt rou-
tines may not share a rendering context with their main thread.

EGL guarantees sequentiality within a command stream for OpenGL ES , but
not between OpenGL ES and other rendering APIs which may be rendering into
the same surface. It is possible, for example, that a native drawing command issued
by a single threaded client after an OpenGL ES command might be executed before
that OpenGL ES command.

OpenGL ES commands are not guaranteed to be atomic. Some OpenGL ES
rendering commands might otherwise impair interactive use of the windowing sys-
tem by the user. For instance, rendering a large texture mapped polygon on a
system with no graphics hardware could prevent a user from popping up a menu
soon enough to be usable.

Synchronization is in the hands of the client. It can be maintained at moder-
ate cost with the judicious use of theglFinish, eglWaitGL , andeglWaitNative

Version 1.0 - July 23, 2003

2.6. POWER MANAGEMENT 7

commands, as well as (if they exist) synchronization commands present in native
rendering APIs. OpenGL ES and native rendering can be done in parallel so long
as the client does not preclude it with explicit synchronization calls.

Some performance degradation may be experienced if needless switching be-
tween OpenGL ES and native rendering is done.

2.6 Power Management

EGL 1.0 does not address power management issues. Although this is an important
area for developing robust applications on mobile devices, we instead encourage
implementations to provide platform notes documenting interaction of EGL and
OpenGL ES with platform-specific power management issues, including event de-
tection, scope and nature of resource loss, behavior of EGL and OpenGL ES calls
under resource loss, and recommended techniques for recovering from events.

Implementations are expected to develop EGL extensions to assist with power
management. Future versions of EGL are expected to develop crossplatform power
management support based on these extensions.

Version 1.0 - July 23, 2003

Chapter 3

EGL Functions and Errors

3.1 Errors

Where possible, when an EGL function fails it has no side effects.
EGL functions usually return an indicator of success or failure; either an

EGLBoolean EGL TRUEor EGL FALSE value, or in the form of an out-of-band
return value indicating failure, such as returningEGL NOCONTEXTinstead of a re-
quested context handle Additional information about the success or failure of the
most recentEGL function called in a specific thread, in the form of an error code,
can be obtained by calling

EGLint eglGetError ();

The error codes that may be returned fromeglGetError , and their meanings,
are:

EGL SUCCESS

Function succeeded.

EGL NOTINITIALIZED

EGL is not initialized, or could not be initialized, for the specified display.

EGL BADACCESS

EGL cannot access a requested resource (for example, a context is bound in
another thread).

EGL BADALLOC

EGL failed to allocate resources for the requested operation.

8

3.1. ERRORS 9

EGL BADATTRIBUTE

An unrecognized attribute or attribute value was passed in an attribute list.

EGL BADCONTEXT

An EGLContext argument does not name a validEGLContext .

EGL BADCONFIG

An EGLConfig argument does not name a validEGLConfig .

EGL BADCURRENTSURFACE

The current surface of the calling thread is a window, pbuffer, or pixmap that
is no longer valid.

EGL BADDISPLAY

An EGLDisplay argument does not name a validEGLDisplay ; or, EGL
is not initialized on the specifiedEGLDisplay .

EGL BADSURFACE

An EGLSurface argument does not name a valid surface (window, pbuffer,
or pixmap) configured for OpenGL ES rendering.

EGL BADMATCH

Arguments are inconsistent; for example, an otherwise valid context requires
buffers (e.g. depth or stencil) not allocated by an otherwise valid surface.

EGL BADPARAMETER

One or more argument values are invalid.

EGL BADNATIVE PIXMAP

A NativePixmapType argument does not refer to a valid native pixmap.

EGL BADNATIVE WINDOW

A NativeWindowType argument does not refer to a valid native window.

Some specific error codes that may be generated by a failed EGL func-
tion, and their meanings, are described together with each function. However,
not all possible errors are described with each function. Errors whose mean-
ings are identical across many functions (such as returningEGL BADDISPLAY or
EGL NOTINITIALIZED for an unsuitableEGLDisplay argument) may not be
described repeatedly.

EGL normally checks the validity of objects passed into it, but detecting invalid
native objects (pixmaps, windows, and displays) may not always be possible. Spec-
ifying such invalid handles may result in undefined behavior, although implemen-

Version 1.0 - July 23, 2003

10 CHAPTER 3. EGL FUNCTIONS AND ERRORS

tations should generateEGL BADNATIVE PIXMAPandEGL BADNATIVE WINDOW

errors if possible.

3.2 Initialization

Initialization must be performed once for each display prior to calling most other
EGL functions. A display can be obtained by calling

EGLDisplay eglGetDisplay(NativeDisplayType
display id);

The type and format ofdisplay id are implementation-specific, and it describes a
specific display provided by the system EGL is running on. For example, an EGL
implementation under X windows would requiredisplay id to be an XDisplay ,
while an implementation under Microsoft Windows would requiredisplay id to be
a Windows Device Context. Ifdisplay id is EGL DEFAULTDISPLAY, a default
displayis returned.

If no display matchingdisplay id is available,EGL NODISPLAY is returned;
no error condition is raised in this case.

EGL may be initialized on a display by calling

EGLBoolean eglInitialize(EGLDisplay dpy , EGLint
* major , EGLint * minor);

EGL TRUEis returned on success, andmajorandminorare updated with the major
and minor version numbers of the EGL implementation.major andminor are not
updated if they are specified asNULL.

EGL FALSE is returned on failure andmajor andminor are not updated. An
EGL BADDISPLAY error is generated if thedpyargument does not refer to a valid
EGLDisplay . An EGL NOTINITIALIZED error is generated if EGL cannot be
initialized for an otherwise validdpy.

Initializing an already-initialized display is allowed, but the only effect of such
a call is to returnEGL TRUEand update the EGL version numbers. An initialized
display may be used from other threads in the same address space without being
initalized again in those threads.

To release resources associated with use of EGL and OpenGL ES on a display,
call

EGLBoolean eglTerminate(EGLDisplay dpy);

Version 1.0 - July 23, 2003

3.3. EGL VERSIONING 11

Termination marksall EGL-specific resources associated with the specified display
for deletion. If contexts or surfaces created with respect todpy arecurrent (see
section3.6.3) to any thread, then they are not actually released while they remain
current. Such contexts and surfaces will be destroyed, and all future references to
them will become invalid, as soon as any otherwise valideglMakeCurrent call is
made from the thread they are bound to.

eglTerminate returnsEGL TRUEon success.
If the dpy argument does not refer to a validEGLDisplay , EGL FALSE is

returned, and anEGL BADDISPLAY error is generated.
Termination of a display that has already been terminated, or has not yet been

initialized, is allowed, but the only effect of such a call is to returnEGL TRUE, since
there are no EGL resources associated with the display to release. A terminated
display may be re-initialized by callingeglInitialize again. When re-initializing
a terminated display, resources which were marked for deletion as a result of the
earlier termination remain so marked, and references to them are not valid.

3.3 EGL Versioning

const char * eglQueryString(EGLDisplay dpy , EGLint
name);

eglQueryString returns a pointer to a static, zero-terminated string describ-
ing some aspect of the EGL implementation.name may be EGL VENDOR,
EGL VERSION, or EGL EXTENSIONS. The format and contents of theEGL VENDOR

string is implementation dependent. TheEGL EXTENSIONSstring describes which
EGL extensions are supported by the EGL implementation running on the speci-
fied display. The string is zero-terminated and contains a space-separated list of
extension names; extension names themselves do not contain spaces. If there are
no extensions to EGL, then the empty string is returned. TheEGL VERSIONstring
is laid out as follows:

<major version.minorversion><space><vendor-specific info>

Both the major and minor portions of the version number are of arbitrary length.
The vendor-specific information is optional; if present, its format and contents are
implementation specific.

On failure,NULLis returned. AnEGL NOTINITIALIZED error is generated if
EGL is not initialized fordpy. An EGL BADPARAMETERerror is generated ifname
is not one of the values described above.

Version 1.0 - July 23, 2003

12 CHAPTER 3. EGL FUNCTIONS AND ERRORS

3.4 Configuration Management

An EGLConfig describes the format, type and size of the color buffers and an-
cillary buffers for anEGLSurface . If the EGLSurface is a window, then the
EGLConfig describing it may have an associated nativevisual type.

Names ofEGLConfig attributes are shown in Table3.1. These names may
be passed toeglChooseConfigto specify required attribute properties.

EGL CONFIGID is a unique integer identifying differentEGLConfig s. Con-
figuration IDs must be small positive integers starting at 1 and ID assignment
should be compact; that is, if there areN EGLConfig s defined by the EGL im-
plementation, their configuration IDs should be in the range[1, N]. Small gaps
in the sequence are allowed, but should only occur when removing configurations
defined in previous revisions of an EGL implementation.

EGL BUFFERSIZE gives the total depth of the color buffer in bits;
this is the sum ofEGL REDSIZE , EGL GREENSIZE , EGL BLUE SIZE , and
EGL ALPHASIZE .

EGL SAMPLEBUFFERSindicates the number of multisample buffers, which
must be zero or one.EGL SAMPLESgives the number of samples per pixel;
if EGL SAMPLEBUFFERS is zero, thenEGL SAMPLESwill also be zero. If
EGL SAMPLEBUFFERSis one, then the number of color, depth, and stencil bits
for each sample in the multisample buffer are as specified by theEGL * SIZE at-
tributes.

There are no single-sample depth or stencil buffers for a multisample
EGLConfig ; the only depth and stencil buffers are those in the multisample
buffer. If the color samples in the multisample buffer store fewer bits than are
stored in the color buffers, this fact will not be reported accurately. Presumably a
compression scheme is being employed, and is expected to maintain an aggregate
resolution equal to that of the color buffers.

EGL SURFACETYPEis a mask indicating the surface types that can be created
with the correspondingEGLConfig (the config is said tosupportthese surface
types). The valid bit settings are shown in Table3.2.

For example, anEGLConfig for which the value of theEGL SURFACETYPE

attribute is
EGL WINDOWBIT | EGL PIXMAP BIT | EGL PBUFFERBIT

can be used to create any type of EGL surface, while anEGLConfig for which this
attribute value isEGL WINDOWBIT cannot be used to create a pbuffer or pixmap.

EGL NATIVE RENDERABLEis anEGLBoolean indicating whether the native
window system can be used to render into a surface created with theEGLConfig .
Constraints on native rendering are discussed in more detail in sections2.2.2
and2.2.3.

Version 1.0 - July 23, 2003

3.4. CONFIGURATION MANAGEMENT 13

Attribute Type Notes

EGL BUFFERSIZE integer depth of the color buffer
EGL REDSIZE integer bits of Red in the color buffer

EGL GREENSIZE integer bits of Green in the color buffer
EGL BLUE SIZE integer bits of Blue in the color buffer

EGL ALPHASIZE integer bits of Alpha in the color buffer
EGL CONFIGCAVEAT enum any caveats for the configuration

EGL CONFIGID integer uniqueEGLConfig identifier
EGL DEPTHSIZE integer bits of Z in the depth buffer

EGL LEVEL integer frame buffer level
EGL MAXPBUFFERWIDTH integer maximum width of pbuffer

EGL MAXPBUFFERHEIGHT integer maximum height of pbuffer
EGL MAXPBUFFERPIXELS integer maximum size of pbuffer
EGL NATIVE RENDERABLE boolean EGL TRUEif native rendering

APIs can render to surface
EGL NATIVE VISUAL ID integer handle of corresponding

native visual
EGL NATIVE VISUAL TYPE integer native visual type of the

associated visual
EGL SAMPLEBUFFERS integer number of multisample buffers

EGL SAMPLES integer number of samples per pixel
EGL STENCIL SIZE integer bits of Stencil in the stencil buffer
EGL SURFACETYPE bitmask which types of EGL surfaces

are supported.
EGL TRANSPARENTTYPE enum type of transparency supported

EGL TRANSPARENTREDVALUE integer transparent red value
EGL TRANSPARENTGREENVALUE integer transparent green value
EGL TRANSPARENTBLUE VALUE integer transparent blue value

Table 3.1:EGLConfig attributes.

EGL Token Name Description

EGL WINDOWBIT EGLConfig supports windows
EGL PIXMAP BIT EGLConfig supports pixmaps

EGL PBUFFERBIT EGLConfig supports pbuffers

Table 3.2: Types of surfaces supported by anEGLConfig

Version 1.0 - July 23, 2003

14 CHAPTER 3. EGL FUNCTIONS AND ERRORS

If an EGLConfig supports windows then it may have an associated na-
tive visual. EGL NATIVE VISUAL ID specifies an identifier for this visual, and
EGL NATIVE VISUAL TYPE specifies its type. If anEGLConfig does not sup-
port windows, or if there is no associated native visual type, then querying
EGL NATIVE VISUAL ID will return 0 and queryingEGL NATIVE VISUAL TYPE

will return EGL NONE.
The interpretation of the native visual identifier and type is platform-dependent.

For example, if the native window system is X, then the identifier will be the XID
of an XVisual .

The EGL CONFIGCAVEATattribute may be set to one of the following val-
ues: EGL NONE, EGL SLOWCONFIG or EGL NONCONFORMANTCONFIG. If the
attribute is set toEGL NONE then the configuration has no caveats; if it is
set to EGL SLOWCONFIG then rendering to a surface with this configuration
may run at reduced performance (for example, the hardware may not sup-
port the color buffer depths described by the configuration); if it is set to
EGL NONCONFORMANTCONFIG then rendering to a surface with this configura-
tion will not pass the required OpenGL ES conformance tests.

OpenGL ES conformance requires that a set ofEGLConfig s supporting cer-
tain defined minimum attributes (such as the number, type, and depth of supported
buffers) be supplied by any conformant implementation. Those requirements are
documented only in the conformance specification.

EGL TRANSPARENTTYPE indicates whether or not a configuration sup-
ports transparency. If the attribute is set toEGL NONE then windows cre-
ated with theEGLConfig will not have any transparent pixels. If the at-
tribute isEGL TRANSPARENTRGB, then theEGLConfig supports transparency;
a transparent pixel will be drawn when the red, green and blue values which
are read from the framebuffer are equal toEGL TRANSPARENTREDVALUE,
EGL TRANSPARENTGREENVALUE and EGL TRANSPARENTBLUE VALUE, re-
spectively.

If EGL TRANSPARENTTYPE is EGL NONE, then the values for
EGL TRANSPARENTREDVALUE, EGL TRANSPARENTGREENVALUE, and
EGL TRANSPARENTBLUE VALUEare undefined. Otherwise, they are interpreted
as integer framebuffer values between 0 and the maximum framebuffer value for
the component. For example,EGL TRANSPARENTREDVALUEwill range between
0 and (2**EGL REDSIZE)-1.

EGL MAXPBUFFERWIDTHandEGL MAXPBUFFERHEIGHT indicate the max-
imum width and height that can be passed intoeglCreatePbufferSurface, and
EGL MAXPBUFFERPIXELS indicates the maximum number of pixels (width times
height) for a pbuffer surface. Note that an implementation may return a value
for EGL MAXPBUFFERPIXELS that is less than the maximum width times the

Version 1.0 - July 23, 2003

3.4. CONFIGURATION MANAGEMENT 15

maximum height. The value forEGL MAXPBUFFERPIXELS is static and as-
sumes that no other pbuffers or native resources are contending for the framebuffer
memory. Thus it may not be possible to allocate a pbuffer of the size given by
EGL MAXPBUFFERPIXELS .

3.4.1 Querying Configurations

Use

EGLBoolean eglGetConfigs(EGLDisplay dpy ,
EGLConfig * configs , EGLint config size ,
EGLint * num config);

to get the list of allEGLConfig s that are available on the specified display.configs
is a pointer to a buffer containingconfigsizeelements. On success,EGL TRUEis
returned. The number of configurations is returned innumconfig, and elements 0
throughnum config − 1 of configsare filled in with the validEGLConfig s. No
more thanconfigsizeEGLConfig s will be returned even if more are available on
the specified display. However, ifeglGetConfigsis called withconfigs= NULL,
then no configurations are returned, but the total number of configurations available
will be returned innumconfig.

On failure,EGL FALSE is returned. AnEGL NOTINITIALIZED error is gen-
erated if EGL is not initialized ondpy. An EGL BADPARAMETERerror is generated
if numconfigis NULL.

Use

EGLBoolean eglChooseConfig(EGLDisplay dpy , const
EGLint * attrib list , EGLConfig * configs ,
EGLint config size , EGLint * num config);

to getEGLConfig s that match a list of attributes. The return value and the mean-
ing of configs, configsize, and numconfig are the same as foreglGetConfigs.
However, only configurations matchingattrib list, as discussed below, will be re-
turned.

On failure,EGL FALSE is returned. AnEGL BADATTRIBUTE error is gener-
ated ifattrib list contains an undefined EGL attribute or an attribute value that is
unrecognized or out of range.

All attribute names inattrib list are immediately followed by the corresponding
desired value. The list is terminated withEGL NONE. If an attribute is not specified
in attrib list, then the default value (listed in Table3.3) is used (it is said to be
specified implicitly). IfEGL DONTCAREis specified as an attribute value, then the

Version 1.0 - July 23, 2003

16 CHAPTER 3. EGL FUNCTIONS AND ERRORS

attribute will not be checked.EGL DONTCAREmay be specified for all attributes
exceptEGL LEVEL. If attrib list is NULL or empty (first attribute isEGL NONE),
then selection and sorting ofEGLConfig s is done according to the default criteria
in Tables3.3and3.1, as described below underSelectionandSorting.

Selection ofEGLConfig s

Attributes are matched in an attribute-specific manner, as shown in Table3.3.
The match criteria listed in the table have the following meanings1:

SmallerEGLConfig s with an attribute value that meets or exceeds the specified
value are matched.

Larger EGLConfig s with an attribute value that meets or exceeds the specified
value are matched.

Exact EGLConfig s whose attribute value equals the requested value are
matched.

MaskEGLConfig s for which the set bits of attribute include all the bits that are
set in the requested value are matched. (Additional bits might be set in the
attribute).

Some of the attributes must match the specified value exactly; others, such as
EGL REDSIZE , must meet or exceed the specified minimum values.

To retrieve an EGLConfig given its unique integer ID, use the
EGL CONFIGID attribute. WhenEGL CONFIGID is specified, all other attributes
are ignored, and only theEGLConfig with the given ID is returned.

If EGL MAXPBUFFERWIDTH, EGL MAXPBUFFERHEIGHT,
EGL MAXPBUFFERPIXELS , or EGL NATIVE VISUAL ID are specified in
attrib list, then they are ignored (however, if present, these attributes must still be
followed by an attribute value inattrib list). If EGL SURFACETYPE is specified
in attrib list and the mask that follows does not haveEGL WINDOWBIT set, or if
there are no native visual types, then theEGL NATIVE VISUAL TYPEattribute is
ignored.

If EGL TRANSPARENTTYPE is set to EGL NONE in attrib list, then
the EGL TRANSPARENTREDVALUE, EGL TRANSPARENTGREENVALUE, and
EGL TRANSPARENTBLUE VALUEattributes are ignored.

1 The distinction between Smaller and Larger, which affects only sorting, not selection, has
proven confusing. We will update table3.3with separate selection criteria and sort order columns in
the next EGL revision.

Version 1.0 - July 23, 2003

3.4. CONFIGURATION MANAGEMENT 17

Attribute Default Selection Sort
and Sorting Priority

Criteria

EGL BUFFERSIZE 0 Smaller 3
EGL REDSIZE 0 Larger 2

EGL GREENSIZE 0 Larger 2
EGL BLUE SIZE 0 Larger 2

EGL ALPHASIZE 0 Larger 2
EGL CONFIGCAVEAT EGL DONTCARE Exact 1

EGL CONFIGID EGL DONTCARE Exact 9 (last)
EGL DEPTHSIZE 0 Smaller 6

EGL LEVEL 0 Exact
EGL NATIVE RENDERABLE EGL DONTCARE Exact
EGL NATIVE VISUAL TYPE EGL DONTCARE Exact 8

EGL SAMPLEBUFFERS 0 Smaller 4
EGL SAMPLES 0 Smaller 5

EGL STENCIL SIZE 0 Smaller 7
EGL SURFACETYPE EGL WINDOWBIT Mask

EGL TRANSPARENTTYPE EGL NONE Exact
EGL TRANSPARENTREDVALUE EGL DONTCARE Exact

EGL TRANSPARENTGREENVALUE EGL DONTCARE Exact
EGL TRANSPARENTBLUE VALUE EGL DONTCARE Exact

Table 3.3: Default values and match criteria forEGLConfig attributes.

Version 1.0 - July 23, 2003

18 CHAPTER 3. EGL FUNCTIONS AND ERRORS

If no EGLConfig matching the attribute list exists, then the call succeeds, but
numconfigis set to 0.

Sorting of EGLConfig s

If more than one matchingEGLConfig is found, then a list ofEGLConfig s,
sorted according to thebestmatch criteria, is returned. The list is sorted according
to the following precedence rules that are applied in ascending order (i.e., configu-
rations that are considered equal by lower numbered rule are sorted by the higher
numbered rule):

1. By EGL CONFIGCAVEAT where the precedence isEGL NONE,
EGL SLOWCONFIG, EGL NONCONFORMANTCONFIG.

2. Larger total number of RGBA color bits (EGL REDSIZE , EGL GREENSIZE ,
EGL BLUE SIZE , plusEGL ALPHASIZE). If the requested number of bits in
attrib list for a particular color component is 0 orEGL DONTCARE, then the
number of bits for that component is not considered.

3. SmallerEGL BUFFERSIZE .

4. SmallerEGL SAMPLEBUFFERS.

5. SmallerEGL SAMPLES.

6. SmallerEGL DEPTHSIZE .

7. SmallerEGL STENCIL SIZE .

8. By EGL NATIVE VISUAL TYPE (the actual sort order is implementation-
defined, depending on the meaning of native visual types).

9. SmallerEGL CONFIGID (this is always the last sorting rule, and guarantees
a unique ordering).

3.4.2 Lifetime of Configurations

Configuration handles (EGLConfig s) returned byeglGetConfigs and egl-
ChooseConfigremain valid so long as theEGLDisplay from which the handles
were obtained is not terminated. Implementations supporting a large number of dif-
ferent configurations, where it might be burdensome to instantiate data structures
for each configuration so queried (but never used), may choose to return handles
encoding sufficient information to instantiate the corresponding configurations dy-
namically, when needed to create EGL resources or query configuration attributes.

Version 1.0 - July 23, 2003

3.5. RENDERING SURFACES 19

3.4.3 Querying Configuration Attributes

To get the value of anEGLConfig attribute, use

EGLBoolean eglGetConfigAttrib (EGLDisplay dpy ,
EGLConfig config , EGLint attribute , EGLint
* value);

If eglGetConfigAttrib succeeds then it returnsEGL TRUEand the value for the
specified attribute is returned invalue. Otherwise it returnsEGL FALSE. If attribute
is not a valid attribute thenEGL BADATTRIBUTE is generated.

Refer to Table3.1and Table3.3for a list of valid EGL attributes.

3.5 Rendering Surfaces

3.5.1 Creating On-Screen Rendering Surfaces

To create an on-screen rendering surface, first create a native platform window
with attributes corresponding to the desiredEGLConfig (e.g. with the same color
depth, with other constraints specific to the platform). Using a platform-specific
type (here calledNativeWindowType) referring to a handle to that native win-
dow, then call:

EGLSurface eglCreateWindowSurface(EGLDisplay dpy ,
EGLConfig config , NativeWindowType win ,
const EGLint * attrib list);

eglCreateWindowSurfacecreates an onscreenEGLSurface and returns a han-
dle to it. Any EGL rendering context created with a compatibleEGLConfig can
be used to render into this surface.

attrib list specifies a list of attributes for the window. The list has the same
structure as described foreglChooseConfig. Currently no attributes are recog-
nized, soattrib list will normally beNULLor empty (first attribute ofEGL NONE).
However, it is possible that some platforms will define attributes specific to those
environments, as an EGL extension.

On failure eglCreateWindowSurface returns EGL NOSURFACE. If the at-
tributes ofwin do not correspond toconfig, then anEGL BADMATCHerror is gen-
erated. Ifconfigdoes not support rendering to windows (theEGL SURFACETYPE

attribute does not containEGL WINDOWBIT), anEGL BADMATCHerror is gener-
ated. Ifconfigis not a validEGLConfig , anEGL BADCONFIGerror is generated.
If win is not a valid native window handle, then anEGL BADNATIVE WINDOWerror

Version 1.0 - July 23, 2003

20 CHAPTER 3. EGL FUNCTIONS AND ERRORS

should be generated. If there is already anEGLConfig associated withwin (as
a result of a previouseglCreateWindowSurfacecall), then anEGL BADALLOC

error is generated. Finally, if the implementation cannot allocate resources for the
new EGL window, anEGL BADALLOCerror is generated.

3.5.2 Creating Off-Screen Rendering Surfaces

EGL supports off-screen rendering surfaces in pbuffers. Pbuffers differ from win-
dows in the following ways:

1. Pbuffers are typically allocated in offscreen (non-visible) graphics memory
and are intended only for accelerated offscreen rendering. Allocation can fail
if there are insufficient graphics resources (implementations are not required
to virtualize framebuffer memory). Clients should deallocate pbuffers when
they are no longer in use, since graphics memory is often a scarce resource.

2. Pbuffers are EGL resources and have no associated native window or native
window type. It may not be possible to render to pbuffers using APIs other
than OpenGL ES and EGL.

To create a pbuffer, call

EGLSurface eglCreatePbufferSurface(EGLDisplay dpy ,
EGLConfig config , const EGLint
* attrib list);

This creates a single pbuffer surface and returns a handle to it.
attrib list specifies a list of attributes for the pbuffer. The list has the same

structure as described foreglChooseConfig. Currently only three attributes can be
specified inattrib list: EGL WIDTH, EGL HEIGHT, andEGL LARGESTPBUFFER. It
is possible that some platforms will define additional attributes specific to those
environments, as an EGL extension.

attrib list may beNULLor empty (first attribute ofEGL NONE), in which case
all the attributes assume their default values as described below.

EGL WIDTHandEGL HEIGHTspecify the pixel width and height of the rectan-
gular pbuffer. The default values forEGL WIDTHandEGL HEIGHTare zero.

UseEGL LARGESTPBUFFERto get the largest available pbuffer when the al-
location of the pbuffer would otherwise fail. The width and height of the allocated
pbuffer will never exceed the values ofEGL WIDTHandEGL HEIGHT, respectively.
UseeglQuerySurfaceto retrieve the dimensions of the allocated pbuffer. By de-
fault, EGL LARGESTPBUFFERis EGL FALSE.

Version 1.0 - July 23, 2003

3.5. RENDERING SURFACES 21

The resulting pbuffer will contain color buffers and ancillary buffers as speci-
fied byconfig.

On failureeglCreatePbufferSurfacereturnsEGL NOSURFACE. If the pbuffer
could not be created due to insufficient resources, then anEGL BADALLOCerror is
generated. Ifconfigis not a validEGLConfig , anEGL BADCONFIGerror is gen-
erated. Ifconfigdoes not support pbuffers, anEGL BADMATCHerror is generated.

3.5.3 Creating Native Pixmap Rendering Surfaces

EGL also supports rendering surfaces whose color buffers are stored in native
pixmaps. Pixmaps differ from windows in that they are typically allocated in off-
screen (non-visible) graphics or CPU memory. Pixmaps differ from pbuffers in
that they do have an associated native pixmap and native pixmap type, and it may
be possible to render to pixmaps using APIs other than OpenGL ES and EGL.

To create a pixmap rendering surface, first create a native platform pixmap
with attributes corresponding to the desiredEGLConfig (e.g. with the same
color depth, with other constraints specific to the platform). Using a platform-
specific type (here calledNativePixmapType) referring to a handle to that na-
tive pixmap, then call:

EGLSurface eglCreatePixmapSurface(EGLDisplay dpy ,
EGLConfig config , NativePixmapType pixmap ,
const EGLint * attrib list);

eglCreatePixmapSurfacecreates an offscreenEGLSurface and returns a han-
dle to it. Any EGL rendering context created with a compatibleEGLConfig can
be used to render into this surface.

attrib list specifies a list of attributes for the pixmap. The list has the same
structure as described foreglChooseConfig. Currently no attributes are recog-
nized, soattrib list will normally beNULLor empty (first attribute ofEGL NONE).
However, it is possible that some platforms will define attributes specific to those
environments, as an EGL extension.

On failure eglCreatePixmapSurfacereturns EGL NOSURFACE. If the at-
tributes of pixmap do not correspond toconfig, then an EGL BADMATCH

error is generated. Ifconfig does not support rendering to pixmaps
(the EGL SURFACETYPE attribute does not containEGL PIXMAP BIT), an
EGL BADMATCHerror is generated. Ifconfig is not a validEGLConfig , an
EGL BADCONFIG error is generated. Ifpixmap is not a valid native pixmap
handle, then anEGL BADNATIVE PIXMAP error should be generated. If there
is already anEGLSurface associated withpixmap (as a result of a previous

Version 1.0 - July 23, 2003

22 CHAPTER 3. EGL FUNCTIONS AND ERRORS

eglCreatePixmapSurfacecall), then aEGL BADALLOCerror is generated. Fi-
nally, if the implementation cannot allocate resources for the new EGL pixmap, an
EGL BADALLOCerror is generated.

3.5.4 Destroying Rendering Surfaces

An EGLSurface of any type (window, pbuffer, or pixmap) is destroyed by calling

EGLBoolean eglDestroySurface(EGLDisplay dpy ,
EGLSurface surface);

All resources associated withsurfaceare marked for deletion as soon as possible.
If surfaceis current to any thread (see section3.6.3), resources are not actually
released while the surface remains current. Future references tosurfaceremain
valid only so long as it is current; it will be destroyed, and all future references to it
will become invalid, as soon as any otherwise valideglMakeCurrent call is made
from the thread it is bound to.

eglDestroySurfacereturnsEGL FALSEon failure. AnEGL BADSURFACEer-
ror is generated ifsurfaceis not a valid rendering surface.

3.5.5 Querying Surface Attributes

To query an attribute associated with anEGLSurface call:

EGLBoolean eglQuerySurface(EGLDisplay dpy ,
EGLSurface surface , EGLint attribute ,
EGLint * value);

eglQuerySurface returns invalue the value ofattribute for surface. attribute
must be set to one ofEGL WIDTH, EGL HEIGHT, EGL LARGESTPBUFFER, or
EGL CONFIGID .

QueryingEGL CONFIGID returns the ID of theEGLConfig with respect to
which the surface was created.

QueryingEGL LARGESTPBUFFERfor a pbuffer surface returns the same at-
tribute value specified when the surface was created witheglCreatePbufferSur-
face. For a window or pixmap surface, the contents ofvalueare not modified.

Querying EGL WIDTH and EGL HEIGHT returns respectively the width and
height, in pixels, of the surface. For a window or pixmap surface, these values are
initially equal to the width and height of the native window or pixmap with respect
to which the surface was created. If a native window is resized, the corresponding

Version 1.0 - July 23, 2003

3.6. RENDERING CONTEXTS 23

window surface will eventually be resized by the implementation to match (as dis-
cussed in section3.8.1). If there is a discrepancy because EGL has not yet resized
the window surface, the size returned byeglQuerySurfacewill always be that of
the EGL surface, not the corresponding native window.

For a pbuffer, they will be the actual allocated size of the pbuffer (which may
be less than the requested size ifEGL LARGESTPBUFFERis EGL TRUE).

eglQuerySurfacereturnsEGL FALSE on failure andvalue is not updated. If
attribute is not a valid EGL surface attribute, then anEGL BADATTRIBUTE error
is generated. Ifsurfaceis not a validEGLSurface then anEGL BADSURFACE

error is generated.

3.6 Rendering Contexts

3.6.1 Creating Rendering Contexts

To create an OpenGL ES rendering context, call

EGLContext eglCreateContext(EGLDisplay dpy ,
EGLConfig config , EGLContext share context ,
const EGLint * attrib list);

If eglCreateContextsucceeds, it initializes the rendering context to the initial
OpenGL ES state and returns a handle to it. The handle can be used to render
to any compatibleEGLSurface .

If sharecontextis notEGL NOCONTEXT, then all shareable data (except texture
objects named 0) will be shared bysharecontext, all other contextssharecontext
already shares with, and the newly created rendering context. An arbitrary number
of EGLContext s can share data in this fashion. The server context state for all
sharing contexts must exist in a single address space or anEGL BADMATCHerror
is generated.

Currently no attributes are recognized, soattrib list will normally beNULLor
empty (first attribute ofEGL NONE). However, it is possible that some platforms
will define attributes specific to those environments, as an EGL extension.

On failure eglCreateContext returnsEGL NOCONTEXT. If sharecontext is
neither zero nor a valid EGL rendering context, then anEGL BADCONTEXTerror
is generated. Ifconfigis not a validEGLConfig , then anEGL BADCONFIGerror
is generated. If the server context state forsharecontextexists in an address space
that cannot be shared with the newly created context, ifsharecontextwas created
on a different display than the one referenced byconfig, or if the contexts are oth-
erwise incompatible (for example, one context being associated with a hardware

Version 1.0 - July 23, 2003

24 CHAPTER 3. EGL FUNCTIONS AND ERRORS

device driver and the other with a software renderer), then anEGL BADMATCHer-
ror is generated. If the server does not have enough resources to allocate the new
context, then anEGL BADALLOCerror is generated.

3.6.2 Destroying Rendering Contexts

A rendering context is destroyed by calling

EGLBoolean eglDestroyContext(EGLDisplay dpy ,
EGLContext ctx);

All resources associated withctxare marked for deletion as soon as possible. Ifctx
is current to any thread (see section3.6.3), resources are not actually released while
the context remains current. Future references toctx remain valid only so long as
it is current; it will be destroyed, and all future references to it will become invalid,
as soon as any otherwise valideglMakeCurrent call is made from the thread it is
bound to).

eglDestroyContextreturnsEGL FALSEon failure. AnEGL BADCONTEXTer-
ror is generated ifctx is not a valid rendering context.

3.6.3 Binding Contexts and Drawables

To make a context current, call

EGLBoolean eglMakeCurrent(EGLDisplay dpy ,
EGLSurface draw , EGLSurface read ,
EGLContext ctx);

eglMakeCurrent bindsctx to the current rendering thread and to thedraw and
readsurfaces.draw is used for all OpenGL ES operations except for any pixel data
read back, which is taken from the frame buffer values ofread. Note that the same
EGLSurface may be specified for bothdrawandread.

If the calling thread already has a current rendering context, then that context
is flushed and marked as no longer current.ctx is made the current context for the
calling thread.

eglMakeCurrent returnsEGL FALSEon failure. Ifdraw or readare not com-
patible withctx, then anEGL BADMATCHerror is generated. Ifctx is current to
some other thread, or if eitherdraw or read are bound to contexts in another
thread, anEGL BADACCESSerror is generated. Ifctx is not a valid EGL rendering
context, anEGL BADCONTEXTerror is generated. If eitherdraw or read are not
valid EGL surfaces, anEGL BADSURFACEerror is generated. If a native window

Version 1.0 - July 23, 2003

3.6. RENDERING CONTEXTS 25

underlying eitherdraw or read is no longer valid, anEGL BADNATIVE WINDOW

error is generated. Ifdraw and read cannot fit into graphics memory simultane-
ously, anEGL BADMATCHerror is generated. If the previous context of the calling
thread has unflushed commands, and the previous surface is no longer valid, an
EGL BADCURRENTSURFACEerror is generated. If the ancillary buffers fordraw
andreadcannot be allocated, anEGL BADALLOCerror will be generated.

Other errors may arise when the context state is inconsistent with the surface
state, as described in the following paragraphs.

If draw is destroyed aftereglMakeCurrent is called, then subsequent render-
ing commands will be processed and the context state will be updated, but the
frame buffer state becomes undefined. Ifread is destroyed aftereglMakeCurrent
then pixel values read from the framebuffer (e.g., as result of callingglReadPixels)
are undefined. If a native window or pixmap underlying thedraw or readsurfaces
is destroyed, rendering and readback are handled as above.

To release the current context without assigning a new one, setctx
to EGL NOCONTEXTand setdraw and read to EGL NOSURFACE. If ctx is
EGL NOCONTEXTand draw and read are not EGL NOSURFACE, or if draw
or read are set toEGL NOSURFACEand ctx is not EGL NOCONTEXT, then an
EGL BADMATCHerror will be generated.

The first timectx is made current, the viewport and scissor dimensions are set
to the size of thedraw surface (as thoughglViewport (0, 0, w, h) andglScissor(0,
0, w, h) were called, where w and h are the width and height of the surface, respec-
tively). However, the viewport and scissor dimensions are not modified whenctx
is subsequently made current. The client is responsible for resetting the viewport
and scissor in this case.

Only one rendering context may be in use, orcurrent, for a particular thread at
a given time, and only one context may be bound to a particular surface at a given
time.

The minimum number of current rendering contexts that must be supported by
an EGL implementation is one.

To get the current context, call

EGLContext eglGetCurrentContext(void);

If there is no current context,EGL NOCONTEXTis returned (this is not an error).
To get the surfaces used for rendering by the current context, call

EGLSurface eglGetCurrentSurface(EGLint readdraw);

readdrawis eitherEGL READor EGL DRAWto respectively return the read or draw
surfaces. If there is no correponding surface,EGL NOSURFACEis returned (this is

Version 1.0 - July 23, 2003

26 CHAPTER 3. EGL FUNCTIONS AND ERRORS

not an error) Ifreaddrawis neitherEGL READnorEGL DRAW, EGL NOSURFACEis
returned and anEGL BADPARAMETERerror is generated.

To get the display associated with the current context, call

EGLDisplay eglGetCurrentDisplay(void);

If there is no current context,EGL NODISPLAY is returned.
To obtain the value of context attributes, use

EGLBoolean eglQueryContext(EGLDisplay dpy ,
EGLContext ctx , EGLint attribute , EGLint
* value);

eglQueryContextreturns invaluethe value ofattribute for ctx. attributemust be
set toEGL CONFIGID .

QueryingEGL CONFIGID returns the ID of theEGLConfig with respect to
which the context was created.

eglQueryContext returnsEGL FALSE on failure andvalue is not updated. If
attribute is not a valid EGL context attribute, then anEGL BADATTRIBUTE error
is generated. Ifctx is invalid, anEGL BADCONTEXTerror is generated.

3.7 Synchronization Primitives

To prevent native rendering API functions from executing until any outstanding
OpenGL ES rendering affecting the same surface is complete, call

EGLBoolean eglWaitGL (void);

OpenGL ES calls made prior toeglWaitGL are guaranteed to be executed before
native rendering calls made aftereglWaitGL which affect the surface associated
with the calling thread’s current context. The same result can be achieved us-
ing glFinish. Clients rendering to single buffered surfaces (e.g. pixmap surfaces)
should calleglWaitGL before accessing the native pixmap from the client.

eglWaitGL returnsEGL TRUEon success. If there is no current rendering con-
text, the function has no effect but still returnsEGL TRUE. If the surface associated
with the calling thread’s current context is no longer valid,EGL FALSE is returned
and anEGL BADCURRENTSURFACEerror is generated.

To prevent the OpenGL ES command sequence from executing until any out-
standing native rendering affecting the same surface is complete, call

EGLBoolean eglWaitNative(EGLint engine);

Version 1.0 - July 23, 2003

3.8. POSTING THE COLOR BUFFER 27

Native rendering calls made with the specified markingengine, and which affect
the surface associated with the calling thread’s current context, are guaranteed to
be executed before OpenGL ES rendering calls made aftereglWaitNative. The
same result may be (but is not necessarily) achievable using native synchronization
calls.

enginedenotes a particularmarking engine(another drawing API, such as GDI,
Xlib) to be waited on. Valid values ofengineare defined by EGL extensions spe-
cific to implementations, but implementations will always recognize the symbolic
constantEGL CORENATIVE ENGINE, which denotes the most commonly used
marking engine other then OpenGL ES itself.

eglWaitNative returnsEGL TRUEon success. If there is no current rendering
context, the function has no effect but still returnsEGL TRUE. If the surface does
not support native rendering (e.g. pbuffer and in most cases window surfaces), the
function has no effect but still returnsEGL TRUE. If the surface associated with
the calling thread’s current context is no longer valid,EGL FALSE is returned and
an EGL BADCURRENTSURFACEerror is generated. Ifenginedoes not denote a
recognized marking engine,EGL FALSE is returned and anEGL BADPARAMETER

error is generated.

3.8 Posting the Color Buffer

After completing rendering, the contents of the color buffer can be made visible in
a native window, or copied to a native pixmap.

3.8.1 Posting to a Window

To post the color buffer to a window, call

EGLBoolean eglSwapBuffers(EGLDisplay dpy ,
EGLSurface surface);

If surfaceis a window surface, then the color buffer is copied to the native
window associated with that surface. Ifsurfaceis a pixmap or pbuffer surface,
eglSwapBuffershas no effect.

The color buffer ofsurfaceis left in an undefined state after callingeglSwap-
Buffers.

Native Window Resizing

If the native window corresponding tosurfacehas been resized prior to the swap,
surfacemust be resized to match.surfacewill normally be resized by the EGL

Version 1.0 - July 23, 2003

28 CHAPTER 3. EGL FUNCTIONS AND ERRORS

implementation at the time the native window is resized. If the implementation
cannot do this transparently to the client, theneglSwapBuffersmust detect the
change and resizesurfaceprior to copying its pixels to the native window.

If surfaceshrinks as a result of resizing, some rendered pixels are lost. If
surfacegrows, the newly allocated buffer contents are undefined. The resizing
behavior described here only maintains consistency of EGL surfaces and native
windows; clients are still responsible for detecting window size changes (using
platform-specific means) and changing their viewport and scissor regions accord-
ingly.

3.8.2 Copying to a Native Pixmap

To copy the color buffer to a native pixmap, call

EGLBoolean eglCopyBuffers(EGLDisplay dpy ,
EGLSurface surface , NativePixmapType
target);

The color buffer is copied to the specifiedtarget, which must be a valid native
pixmap handle.

The target pixmap should have the same number of components and component
sizes as the color buffer it’s being copied from. Implementations may choose to
relax this restriction by converting data to the native pixmap formats. If they do
so, they should define an EGL extension specifying which pixmap formats are
supported, and specifying the conversion arithmetic used.

The mapping of pixels in the color buffer to pixels in the pixmap is platform-
dependent, since the native platform pixel coordinate system may differ from that
of OpenGL ES .

The color buffer ofsurfaceis left unchanged after callingeglCopyBuffers.

3.8.3 Posting Semantics

In EGL 1.0,surfacemust be bound to the current context. This restriction is ex-
pected to be lifted in future EGL revisions.

If dpy andsurfaceare the display and surface for the calling thread’s current
context,eglSwapBuffersandeglCopyBuffersperform an implicitglFlush. Sub-
sequent OpenGL ES commands can be issued immediately, but will not be ex-
ecuted until posting is completed (foreglSwapBuffers, this is typically during
vertical retrace of the display).

Version 1.0 - July 23, 2003

3.9. OBTAINING EXTENSION FUNCTION POINTERS 29

3.8.4 Posting Errors

eglSwapBuffersandeglCopyBuffers returnEGL FALSE on failure. If surfaceis
not a valid EGL surface, anEGL BADSURFACEerror is generated. Ifsurfaceis not
bound to the calling thread’s current context, anEGL BADSURFACEerror is gener-
ated. If target is not a valid native pixmap handle, anEGL BADNATIVE PIXMAP

error should be generated. If the format oftarget is not compatible with the color
buffer, or if the size oftarget is not the same as the size of the color buffer, an
EGL BADMATCHerror is generated. IfeglSwapBuffers is called and the native
window associated withsurfaceis no longer valid, anEGL BADNATIVE WINDOW

error is generated. IfeglCopyBuffers is called and the implementation does not
support native pixmaps, anEGL BADNATIVE PIXMAPerror is generated.

3.9 Obtaining Extension Function Pointers

The GL and EGL extensions which are available to a client may vary at runtime,
depending on factors such as the rendering path being used (hardware or software),
resources available to the implementation, or updated device drivers. Therefore,
the address of extension functions may be queried at runtime. The function

void (* eglGetProcAddress(const char
* procname))();

returns the address of the extension function named byprocName. procNamemust
be aNULL-terminated string. The pointer returned should be cast to a function
pointer type matching the extension function’s definition in that extension specifi-
cation. A return value ofNULL indicates that the specified function does not exist
for the implementation.

A non-NULL return value foreglGetProcAddressdoes not guarantee that
an extension function is actually supported at runtime. The client must also
queryglGetString(GL EXTENSIONS) (for OpenGL ES extensions) oreglQueryS-
tring (dpy, EGL EXTENSIONS) (for EGL extensions) to determine if an extension
is supported by a particular context.

Function pointers returned byeglGetProcAddressare independent of the dis-
play and the currently bound context, and may be used by any context which sup-
ports the extension.

eglGetProcAddressmay be queried for all of the following functions:

• All GL and EGL extension functions supported by the implementation
(whether those extensions are supported by the current context or not). This
includes any mandatory OpenGL ES extensions.

Version 1.0 - July 23, 2003

30 CHAPTER 3. EGL FUNCTIONS AND ERRORS

eglGetProcAddressmay not be queried for core (non-extension) functions in
GL and EGL. For functions that are queryable witheglGetProcAddress, imple-
mentations may choose to also export those functions statically from the OpenGL
ES link library. However, portable clients cannot rely on this behavior.

Version 1.0 - July 23, 2003

Chapter 4

Extending EGL

EGL implementors may extend EGL by adding new commands or additional enu-
merated values for existing EGL commands.

New names for EGL functions and enumerated types must clearly indicate
whether some particular feature is in the core EGL or is vendor specific. To make
a vendor-specific name, append a company identifier (in upper case) and any ad-
ditional vendor-specific tags (e.g. machine names). For instance, SGI might add
new commands and manifest constants of the formeglNewCommandSGIand
EGL NEWDEFINITION SGI. If two or more vendors agree in good faith to im-
plement the same extension, and to make the specification of that extension pub-
licly available, the procedures and tokens that are defined by the extension can be
suffixed byEXT. Extensions approved by supra-vendor organizations such as the
Khronos SIG and the OpenGL ARB use similar identifiers (OML and OES for
Khronos, and ARB for the ARB).

It is critically important for interoperability that enumerants and entry point
names be unique across vendors. The OpenGL ARB Secretary maintains a reg-
istry of enumerants, and all shipping enumerant values must be determined by
requesting blocks of enumerants from the registry. See

http://oss.sgi.com/projects/ogl-sample/registry/

for more information on defining extensions.

31

http://oss.sgi.com/projects/ogl-sample/registry/

Chapter 5

EGL Versions and Enumerants

Each version of EGL supports a specified OpenGL ES version, and all prior ver-
sions of OpenGL ES up to that version. EGL 1.0 supports OpenGL ES 1.0, includ-
ing both Common and Common-Lite profiles.

5.1 Compile-Time Version Detection

To allow code to be written portably against future EGL versions, the compile-time
environment must make it possible to determine which EGL version interfaces
are available. The details of such detection are language-specific and should be
specified in the language binding documents for each language. The base EGL
specification defines an ISO C language binding, and in that environment, the EGL
header file<GLES/egl.h> must define a C preprocessor symbol:

#define EGL VERSION1 0 1

Future versions of EGL will define additional preprocessor symbols corre-
sponding to the major and minor numbers of those versions.

5.2 Enumerant Values

Enumerant values for EGL tokens are required to be common across all implemen-
tations. A reference version of theegl.h header file, including defined values for
all EGL enumerants, accompanies this specification and can be downloaded from

http://www.khronos.org/

32

http://www.khronos.org/

Chapter 6

Glossary

Address Spacethe set of objects or memory locations accessible through a single
name space. In other words, it is a data region that one or more processes
may share through pointers.

Client an application, which communicates with the underlying EGL implemen-
tation and underlying native window system by some path. The application
program is referred to as a client of the window system server. To the server,
the client is the communication path itself. A program with multiple connec-
tions is viewed as multiple clients to the server. The resource lifetimes are
controlled by the connection lifetimes, not the application program lifetimes.

Compatible an OpenGL ES rendering context is compatible with (may be used
to render into) a surface if they meet the constraints specified in section2.2.

Connection a bidirectional byte stream that carries the X (and EGL) protocol be-
tween the client and the server. A client typically has only one connection to
a server.

(Rendering) Context an OpenGL ES rendering context. This is a virtual OpenGL
ES machine. All OpenGL ES rendering is done with respect to a context.
The state maintained by one rendering context is not affected by another
except in case of state that may be explicitly shared at context creation time,
such as textures.

EGLContext a handle to a rendering context. Rendering contexts consist of client
side state and server side state.

(Drawing) Surface an onscreen or offscreen buffer where pixel values resulting
from rendering through OpenGL ES or other APIs are written.

33

34 CHAPTER 6. GLOSSARY

Thread one of a group of processes all sharing the same address space. Typically,
each thread will have its own program counter and stack pointer, but the text
and data spaces are visible to each of the threads. A thread that is the only
member of its group is equivalent to a process.

Version 1.0 - July 23, 2003

Appendix A

Version 1.0

EGL version 1.0, approved on July 23, 2003, is the original version of EGL. EGL
was loosely based on GLX 1.3, generalized to be implementable on many differ-
ent operating systems and window systems and simplified to reflect the needs of
embedded devices running OpenGL ES .

A.1 Acknowledgements

EGL 1.0 is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following
is a partial list of contributors, including the company that they represented at the
time of their contribution:

Aaftab Munshi, ATI
Andy Methley, Panasonic
Carl Korobkin, 3d4W
Chris Hall, Seaweed Systems
Claude Knaus, Silicon Graphics
David Blythe, 3d4W
Ed Plowman, ARM
Graham Connor, Imagination Technologies
Harri Holopainen, Hybrid Graphics
Jacob Strom, Ericsson
Jani Vaarala, Nokia
Jon Leech, Silicon Graphics
Justin Couch, Yumetech
Kari Pulli, Nokia
Lane Roberts, Symbian

35

36 APPENDIX A. VERSION 1.0

Mark Callow, HI
Mark Tarlton, Motorola
Mike Olivarez, Motorola
Neil Trevett, 3Dlabs
Phil Huxley, Tao Group
Tom Olson, Texas Instruments
Ville Miettinen, Hybrid Graphics

Version 1.0 - July 23, 2003

Index of EGL Commands

EGL * SIZE,12
EGL ALPHA SIZE,12, 13, 17, 18
EGL BAD ACCESS,8, 24
EGL BAD ALLOC, 8, 20–22, 24, 25
EGL BAD ATTRIBUTE, 9, 15, 19, 23,

26
EGL BAD CONFIG,9, 19, 21, 23
EGL BAD CONTEXT,9, 23, 24, 26
EGL BAD CURRENTSURFACE, 9,

25–27
EGL BAD DISPLAY, 9–11
EGL BAD MATCH, 9, 19, 21, 23–25,

29
EGL BAD NATIVE PIXMAP, 9, 10,

21, 29
EGL BAD NATIVE WINDOW, 9, 10,

19, 25, 29
EGL BAD PARAMETER,9, 11, 15, 26,

27
EGL BAD SURFACE,9, 22–24, 29
EGL BLUE SIZE,12, 13, 17, 18
EGL BUFFERSIZE,12, 13, 17, 18
EGL CONFIG CAVEAT, 13, 14, 17, 18
EGL CONFIG ID, 12, 13, 16–18, 22, 26
EGL CORENATIVE ENGINE,27
EGL DEPTH SIZE,13, 17, 18
EGL DONT CARE,15–18
EGL DRAW, 25, 26
EGL EXTENSIONS,11, 29
EGL FALSE,2, 8, 10, 15, 19, 20, 22–24,

26, 27, 29
EGL GREENSIZE,12, 13, 17, 18
EGL HEIGHT, 20, 22
EGL LARGEST PBUFFER,20, 22, 23
EGL LEVEL, 13, 16, 17
EGL MAX PBUFFERHEIGHT, 13,

14, 16
EGL MAX PBUFFERPIXELS,13–16
EGL MAX PBUFFERWIDTH, 13, 14,

16
EGL NATIVE RENDERABLE,12, 13,

17
EGL NATIVE VISUAL ID, 13, 14, 16
EGL NATIVE VISUAL TYPE, 13, 14,

16–18
EGL NEW DEFINITION SGI,31
EGL NO CONTEXT,8, 23, 25
EGL NO DISPLAY, 10, 26
EGL NO SURFACE,19, 21, 25, 26
EGL NON CONFORMANT CONFIG,

14, 18
EGL NONE,14–21, 23
EGL NOT INITIALIZED, 8–11, 15
EGL PBUFFERBIT, 12, 13
EGL PIXMAP BIT, 12, 13, 21
EGL READ, 25, 26
EGL RED SIZE,12–14, 16–18
EGL SAMPLE BUFFERS,12, 13, 17,

18
EGL SAMPLES,12, 13, 17, 18
EGL SLOW CONFIG,14, 18
EGL STENCIL SIZE,13, 17, 18
EGL SUCCESS,8
EGL SURFACETYPE, 12, 13, 16, 17,

19, 21
EGL TRANSPARENTBLUE VALUE,

13, 14, 16, 17
EGL TRANSPARENTGREENVALUE,

13, 14, 16, 17
EGL TRANSPARENTRED VALUE,

13, 14, 16, 17
EGL TRANSPARENTRGB,14

37

38 INDEX

EGL TRANSPARENTTYPE, 13, 14,
16, 17

EGL TRUE,2, 8, 10, 11, 13, 15, 19, 23,
26, 27

EGL VENDOR,11
EGL VERSION,11
EGL WIDTH, 20, 22
EGL WINDOW BIT, 12, 13, 16, 17, 19
EGLBoolean,2, 8, 12
eglChooseConfig,12, 15, 18–21
EGLConfig,3, 9, 12–23, 26
EGLContext,9, 23
eglCopyBuffers,4, 28, 29
eglCreateContext,23
eglCreatePbufferSurface,14, 20–22
eglCreatePixmapSurface,21, 22
eglCreateWindowSurface,19, 20
eglDestroyContext,24
eglDestroySurface,22
EGLDisplay,3, 9–11, 18
eglGetConfigAttrib,19
eglGetConfigs,15, 18
eglGetCurrentContext,25
eglGetCurrentDisplay,26
eglGetCurrentSurface,25
eglGetDisplay,10
eglGetError,8
eglGetProcAddress,29, 30
eglInitialize,10, 11
EGLint, 2
eglMakeCurrent,11, 22, 24, 25
eglNewCommandSGI,31
eglQueryContext,26
eglQueryString,11, 29
eglQuerySurface,20, 22, 23
EGLSurface,3, 9, 12, 19, 21–24
eglSwapBuffers,4, 27–29
eglTerminate,10, 11
eglWaitGL,6, 26
eglWaitNative,6, 26, 27

GL EXTENSIONS,29
GL TEXTURE 2D, 6
glBindTexture,6
glFinish,6, 26

glFlush,28
glGetString,29
glReadPixels,25
glScissor,25
glViewport,25

Version 1.0 - July 23, 2003

	Overview
	EGL Operation
	Native Window System and Rendering APIs
	Scalar Types
	Displays

	Rendering Contexts and Drawing Surfaces
	Using Rendering Contexts
	Rendering Models
	Interaction With Native Rendering

	Direct Rendering and Address Spaces
	Shared State
	Texture Objects

	Multiple Threads
	Power Management

	EGL Functions and Errors
	Errors
	Initialization
	EGL Versioning
	Configuration Management
	Querying Configurations
	Lifetime of Configurations
	Querying Configuration Attributes

	Rendering Surfaces
	Creating On-Screen Rendering Surfaces
	Creating Off-Screen Rendering Surfaces
	Creating Native Pixmap Rendering Surfaces
	Destroying Rendering Surfaces
	Querying Surface Attributes

	Rendering Contexts
	Creating Rendering Contexts
	Destroying Rendering Contexts
	Binding Contexts and Drawables

	Synchronization Primitives
	Posting the Color Buffer
	Posting to a Window
	Copying to a Native Pixmap
	Posting Semantics
	Posting Errors

	Obtaining Extension Function Pointers

	Extending EGL
	EGL Versions and Enumerants
	Compile-Time Version Detection
	Enumerant Values

	Glossary
	Version 1.0
	Acknowledgements

