OpenGI_® ES Native Platform Graphics Interface
(Version 1.0)

Editor: Jon Leech

Copyright(©) 2002-2003 Promoters of the Khronos Group (3Dlabs, ARM Ltd.,

ATI Technologies, Inc., Discreet, Ericsson Mobile, Imagination Technologies

Group plc, Motorola, Inc., Nokia, Silicon Graphics, Inc., SK Telecom, and Sun
Microsystems).

This document is protected by copyright, and contains information proprietary to

The Khronos Group. Any copying, adaptation, distribution, public performance, or

public display of this document without the express written consent of the copy-

right holders is strictly prohibited. The receipt or possession of this document does
not convey any rights to reproduce, disclose, or distribute its contents, or to manu-
facture, use, or sell anything that it may describe, in whole or in part.

This document is a derivative work of ”Open@LGraphics with the X Window
System (Version 1.4)". Silicon Graphics, Inc. owns, and reserves all rights in, the
latter document.

OpenGL is a registered trademark, and OpenGL ES is a trademark, of Silicon
Graphics, Inc.

Contents

1 Overview 1
2 EGL Operation 2
2.1 Native Window System and Rendering APIs 2
211 ScalarTypes i 2

212 Displays 3

2.2 Rendering Contexts and Drawing Surfaces 3
2.2.1 UsingRenderingContexts 4

2.2.2 RenderingModels 4

2.2.3 Interaction With Native Rendering 4

2.3 Direct Rendering and Address Spaces 5
24 SharedState 5
241 TextureObjects 6

2.5 Multiple Threads 6
2.6 PowerManagement 7

3 EGL Functions and Errors 8
3.1 Erors e e 8
3.2 Initialization 10
33 EGLVersioning 11
3.4 Configuration Management 12
3.4.1 Querying Configurations 15

3.4.2 Lifetime of Configurations 18

3.4.3 Querying Configuration Attributes 19

3.5 RenderingSurfaces, 19
3.5.1 Creating On-Screen Rendering Surfaces 19

3.5.2 Creating Off-Screen Rendering Surfaces 20

3.5.3 Creating Native Pixmap Rendering Surfaces 21

3.5.4 Destroying Rendering Surfaces 22

CONTENTS

3.5.5 Querying Surface Attributes 22
3.6 RenderingContexts 23
3.6.1 Creating RenderingContexts 23
3.6.2 Destroying Rendering Contexts 24
3.6.3 Binding Contexts and Drawables 24
3.7 Synchronization Primitives 26
3.8 Posting the ColorBuffer 27
3.8.1 PostingtoaWindow 27
3.8.2 CopyingtoaNative Pixmap 28
3.8.3 PostingSemantics 28
3.84 PostingErrors oo 29
3.9 Obtaining Extension Function Pointers 29
Extending EGL 31
EGL Versions and Enumerants 32
5.1 Compile-Time Version Detection 32
5.2 EnumerantValues, 32
Glossary 33
Version 1.0 35
Al Acknowledgements 35

Version 1.0 - July 23, 2003

List of Tables

3.1 EGLConfig attributes.
3.2 Types of surfaces supported byEBLConfig
3.3 Default values and match criteria 86LConfig attributes. . . .

Chapter 1

Overview

This document describes EGL, the interface between OpenGL ES and the underly-
ing native platform window system. It refers to concepts discussed in the OpenGL
ES specification, and may be viewed as an appendix to that document. EGL uses
OpenGL ES conventions for naming entry points and macros.

EGL provides mechanisms for creating rendering surfaces onto which OpenGL
ES can draw, and synchronizing drawing by both OpenGL ES and native platform
rendering APIs. EGL does not explicitly support remoteiratirect rendering,
unlike the similar GLX API.

Chapter 2

EGL Operation

2.1 Native Window System and Rendering APIs

EGL is intended to be implementable on multiple operating systems (such as Sym-
bian, embedded Linux, Unix, and Windows) amative window system(such as

X and Microsoft Windows). Implementations may also choose to allow rendering
into specific types of EGkurfacesia other supportedative rendering APlssuch

as Xlib or GDI. Native rendering is described in more detail in secti@n3

To the extent possible, EGL itself is independent of definitions and concepts
specific to any native window system or rendering API. However, there are a few
places where native concepts must be mapped into EGL-specific concepts, includ-
ing the definition of thelisplayon which graphics are drawn, and the definition of
native windows and pixmaps which can also support OpenGL ES rendering.

2.1.1 Scalar Types

EGLBoolean is an integral type representing a boolean value, and should only
take on the valueBGLTRUE(1) andEGLFALSE(0). If boolean parameters passed

to EGL take on other values, behavior is undefined, although typically any non-zero
value will be interpreted asGL TRUE

EGLint is an integral type used because EGL may need to represent scalar
values larger than the native platform "int” type. All legal attribute names and
values, whether their type is boolean, bitmask, enumerant (symbolic constant),
integer, handle , or other, may be converted to and fegaiint without loss of
information.

2.2. RENDERING CONTEXTS AND DRAWING SURFACES 3

2.1.2 Displays

Most EGL calls include aEGLDisplay parameter. This represents the abstract
display on which graphics are drawn. In most environments a display corresponds
to a single physical screen. The initialization routines described in segtibn
include a method for queryingdefault displayand platform-specific EGL exten-
sions may be defined to obtain other displays.

2.2 Rendering Contexts and Drawing Surfaces

The OpenGL ES specification is intentionally vague on hosgralering context
(an abstract OpenGL ES state machine) is created. One of the purposes of EGL is
to provide a means to create an OpenGL ES context and associate it with a surface.

EGL defines several types of drawing surfaces collectively referred to as
EGLSurface s. These includevindows used for onscreen renderingbuffers
used for offscreen rendering; apckmaps used for offscreen rendering into buffers
that may be accessed through native APIs. EGL windows and pixmaps are tied to
native window system windows and pixmaps.

EGLSurface sare created with respecttoBGLConfig . TheEGLConfig
describes the depth of the color buffer components and the types, quantities and
sizes of theancillary buffers(i.e., the depth, multisample, and stencil buffers).

Ancillary buffers are associated with &GLSurface , not with a rendering
context. If several rendering contexts are all writing to the same window, they will
share those buffers. Rendering operations to one window never affect the unob-
scured pixels of another window, or the corresponding pixels of ancillary buffers
of that window.

A rendering context can be used with aB@LSurface that it is compati-
ble with (subject to the restrictions discussed in the section on address space). A
surface and context are compatible if they

e have color buffers and ancillary buffers of the same depth.

e were created with respect to the sag@LDisplay (in environments sup-
porting multiple displays).

As long as the compatibility constraint and the address space requirement are
satisfied, clients can render into the saB@LSurface using different render-
ing contexts. It is also possible to use a single context to render into multiple
EGLSurface s.

Version 1.0 - July 23, 2003

4 CHAPTER 2. EGL OPERATION

2.2.1 Using Rendering Contexts

OpenGL ES defines both client state and server state. Thus a rendering context
consists of two parts: one to hold the client state and one to hold the server state.

Each thread can have at most one current rendering context. In addition, a ren-
dering context can be current for only one thread at atime. The client is responsible
for creating a rendering context and a surface.

2.2.2 Rendering Models

EGL and OpenGL ES supports two rendering models: back buffered and single
buffered.

Back buffered rendering is used by window and pbuffer surfaces. Memory for
the color buffer used during rendering is allocated and owned by EGL. When the
client is finished drawing a frame, the back buffer may be copied to a visible win-
dow usingeglSwapBuffers Pbuffer surfaces have a back buffer but no associated
window, so the back buffer need not be copied.

Single buffered rendering is used by pixmap surfaces. Memory for the color
buffer is specified at surface creation time in the form of a native pixmap, and
OpenGL ES is required to use that memory during rendering. When the client
is finished drawing a frame, the native pixmap contains the final image. Pixmap
surfaces typically do not support multisampling, since the native pixmap used as
the color buffer is unlikely to provide space to store multisample information.

Both back and single buffered surfaces may also be copied to a specified native
pixmap usingeglCopyBuffers

Window Resizing

EGL window surfaces need to be resized when their corresponding native window
is resized. Implementations typically use hooks into the OS and native window
system to perform this resizing on demand, transparently to the client. Some imple-
mentations may instead define an EGL extension giving explicit control of surface
resizing.

Implementations which cannot resize EGL window surfaces on demand must
instead respond to native window size changeegiSwapBuffers (see sec-
tion 3.8.3.

2.2.3 Interaction With Native Rendering

Native rendering will always be supported by pixmap surfaces (to the extent that
native rendering APIs can draw to native pixmaps). Pixmap surfaces are typically

Version 1.0 - July 23, 2003

2.3. DIRECT RENDERING AND ADDRESS SPACES 5

used when mixing native and OpenGL ES rendering is desirable, since there is no
need to move data between the back buffer visible to OpenGL ES and the native
pixmap visible to native rendering APIs. However, pixmap surfaces may, for the
same reason, have restricted capabilities and performance relative to window and
pbuffer surfaces.

Native rendering will not be supported by pbuffer surfaces, since the color
buffers of pbuffers are allocated internally by EGL and are not accessible through
any other means.

Native rendering may be supported by window surfaces, but only if the native
window system has a compatible rendering model allowing it to share the OpenGL
ES back buffer.

When both native rendering APIs and OpenGL ES are drawing into the same
underlying surface, no guarantees are placed on the relative order of completion
of operations in the different rendering streams other than those provided by the
synchronization primitives discussed in sect®oni

Some state is shared between OpenGL ES and the underlying native window
system and rendering APIs, including pixel values in the visible frame buffer and,
in the case of pixmaps, color buffer values.

2.3 Direct Rendering and Address Spaces

EGL is assumed to support ordyrectrendering, unlike similar APIs such as GLX.

EGL objects and related OpenGL ES client and server state cannot be used out-
side of theaddress space which they are created. In a single-threaded environ-
ment, each process has its own address space. In a multi-threaded environment,
all threads may share the same virtual address space; however, this capability is
not required, and implementations may choose to restrict their address space to be
per-thread even in an environment supporting multiple application threads.

Both the client context state and the server context state of a rendering context
exist in the client’s address space; this state cannot be shared by a client in another
process.

Support of indirect rendering (in those environments where this concept makes
sense) may have the effect of relaxing these limits on sharing. However, such
support is beyond the scope of this document.

2.4 Shared State

Most OpenGL ES state is small. However, some types are of state are potentially
large and/or expensive to copy, in which case it may be desirable for multiple

Version 1.0 - July 23, 2003

6 CHAPTER 2. EGL OPERATION

rendering contexts to share such state rather than replicating it in each context.

EGL provides for sharing certain types of server state among contexts exist-
ing in a single address space. At present such state includeseatilye objects
additional types of state may be shared in future revisions of OpenGL ES where
such types of state (for example, display lists) are defined and where such sharing
makes sense.

2.4.1 Texture Objects

OpenGL ES texture state can be encapsulated in a named texture object. A texture
object is created by binding an unused name to the texture QIGEEXTURE2D

of a rendering context. When a texture object is bound, OpenGL ES operations on
the target to which it is bound affect the bound texture object, and queries of the
target to which it is bound return state from the bound texture object.

OpenGL ES makes no attempt to synchronize access to texture objects. If a
texture object is bound to more than one context, then it is up to the programmer to
ensure that the contents of the object are not being changed via one context while
another context is using the texture object for rendering. The results of changing a
texture object while another context is using it are undefined.

All modifications to shared context state as a result of execatBigdTexture
are atomic. Also, a texture object will not be deleted while it is still bound to any
rendering context.

2.5 Multiple Threads

The EGL and OpenGL ES client side libraries must be threadsafe. Interrupt rou-
tines may not share a rendering context with their main thread.

EGL guarantees sequentiality within a command stream for OpenGL ES , but
not between OpenGL ES and other rendering APIs which may be rendering into
the same surface. Itis possible, for example, that a native drawing command issued
by a single threaded client after an OpenGL ES command might be executed before
that OpenGL ES command.

OpenGL ES commands are not guaranteed to be atomic. Some OpenGL ES
rendering commands might otherwise impair interactive use of the windowing sys-
tem by the user. For instance, rendering a large texture mapped polygon on a
system with no graphics hardware could prevent a user from popping up a menu
soon enough to be usable.

Synchronization is in the hands of the client. It can be maintained at moder-
ate cost with the judicious use of tlgtFinish, eglWaitGL, andeglWaitNative

Version 1.0 - July 23, 2003

2.6. POWER MANAGEMENT 7

commands, as well as (if they exist) synchronization commands present in native
rendering APIs. OpenGL ES and native rendering can be done in parallel so long
as the client does not preclude it with explicit synchronization calls.

Some performance degradation may be experienced if needless switching be-
tween OpenGL ES and native rendering is done.

2.6 Power Management

EGL 1.0 does not address power management issues. Although this is an important
area for developing robust applications on mobile devices, we instead encourage
implementations to provide platform notes documenting interaction of EGL and
OpenGL ES with platform-specific power management issues, including event de-
tection, scope and nature of resource loss, behavior of EGL and OpenGL ES calls
under resource loss, and recommended techniques for recovering from events.

Implementations are expected to develop EGL extensions to assist with power
management. Future versions of EGL are expected to develop crossplatform power
management support based on these extensions.

Version 1.0 - July 23, 2003

Chapter 3

EGL Functions and Errors

3.1 Errors

Where possible, when an EGL function fails it has no side effects.

EGL functions usually return an indicator of success or failure; either an
EGLBoolean EGLTRUEOr EGLFALSE value, or in the form of an out-of-band
return value indicating failure, such as returnE@LNQCONTEXTinstead of a re-
guested context handle Additional information about the success or failure of the
most recentEGL function called in a specific thread, in the form of an error code,
can be obtained by calling

EGLint eglGetError();

The error codes that may be returned fregiGetError, and their meanings,
are:

EGLSUCCESS
Function succeeded.

EGLNOTINITIALIZED
EGL is not initialized, or could not be initialized, for the specified display.

EGLBADACCESS
EGL cannot access a requested resource (for example, a context is bound in
another thread).

EGLBADALLOC
EGL failed to allocate resources for the requested operation.

8

3.1. ERRORS 9

EGLBADATTRIBUTE
An unrecognized attribute or attribute value was passed in an attribute list.

EGLBADCONTEXT
An EGLContext argument does not name a valiGL Context .

EGLBADCONFIG
An EGLConfig argument does not name a vali6LConfig .

EGLBADCURRENISURFACE
The current surface of the calling thread is a window, pbuffer, or pixmap that
is no longer valid.

EGLBADDISPLAY
An EGLDisplay argument does not name a vaiGLDisplay ; or, EGL
is not initialized on the specifietGLDisplay .

EGLBADSURFACE
An EGLSurface argumentdoes not name a valid surface (window, pbuffer,
or pixmap) configured for OpenGL ES rendering.

EGLBADMATCH
Arguments are inconsistent; for example, an otherwise valid context requires
buffers (e.g. depth or stencil) not allocated by an otherwise valid surface.

EGLBADPARAMETER
One or more argument values are invalid.

EGLBADNATIVE_PIXMAP
A NativePixmapType argument does not refer to a valid native pixmap.

EGLBADNATIVE_WINDOW
A NativeWindowType argument does not refer to a valid native window.

Some specific error codes that may be generated by a failed EGL func-
tion, and their meanings, are described together with each function. However,
not all possible errors are described with each function. Errors whose mean-
ings are identical across many functions (such as retuB@IgBADDISPLAY or
EGLNOTINITIALIZED for an unsuitableeGLDisplay argument) may not be
described repeatedly.

EGL normally checks the validity of objects passed into it, but detecting invalid
native objects (pixmaps, windows, and displays) may not always be possible. Spec-
ifying such invalid handles may result in undefined behavior, although implemen-

Version 1.0 - July 23, 2003

10 CHAPTER 3. EGL FUNCTIONS AND ERRORS

tations should generaEsL BADNATIVE_PIXMAPandEGL BADNATIVE_WINDOW
errors if possible.

3.2 Initialization

Initialization must be performed once for each display prior to calling most other
EGL functions. A display can be obtained by calling

EGLDisplay eglGetDisplayNativeDisplayType
display _id);

The type and format aflisplayid are implementation-specific, and it describes a
specific display provided by the system EGL is running on. For example, an EGL
implementation under X windows would requilesplay.id to be an XDisplay
while an implementation under Microsoft Windows would requiigplay id to be
a Windows Device Context. Hisplayid is EGLDEFAULTDISPLAY, adefault
displayis returned.

If no display matchingdisplay.id is available,EGLNQDISPLAY is returned,;
no error condition is raised in this case.

EGL may be initialized on a display by calling

EGLBoolean eglinitialize(EGLDisplay dpy, EGLint
*major , EGLint * minor);

EGLTRUEIs returned on success, amdjorandminorare updated with the major
and minor version numbers of the EGL implementatiorajor andminor are not
updated if they are specified B&JLL

EGLFALSE is returned on failure anthajor andminor are not updated. An
EGLBADDISPLAY error is generated if theépyargument does not refer to a valid
EGLDisplay . An EGLNOTINITIALIZED error is generated if EGL cannot be
initialized for an otherwise validpy.

Initializing an already-initialized display is allowed, but the only effect of such
a call is to returrEGLTRUEand update the EGL version numbers. An initialized
display may be used from other threads in the same address space without being
initalized again in those threads.

To release resources associated with use of EGL and OpenGL ES on a display,
call

EGLBoolean eglTerminate(EGLDisplay dpy);

Version 1.0 - July 23, 2003

3.3. EGL VERSIONING 11

Termination marksll EGL-specific resources associated with the specified display
for deletion. If contexts or surfaces created with respeapypare current (see
section3.6.3 to any thread, then they are not actually released while they remain
current. Such contexts and surfaces will be destroyed, and all future references to
them will become invalid, as soon as any otherwise vetjtMakeCurrent call is
made from the thread they are bound to.

eglTerminate returnsEGL TRUEON success.

If the dpy argument does not refer to a valtGLDisplay , EGLFALSE s
returned, and aBGLBADDISPLAY error is generated.

Termination of a display that has already been terminated, or has not yet been
initialized, is allowed, but the only effect of such a call is to retB@L TRUE since
there are no EGL resources associated with the display to release. A terminated
display may be re-initialized by callingglinitialize again. When re-initializing
a terminated display, resources which were marked for deletion as a result of the
earlier termination remain so marked, and references to them are not valid.

3.3 EGL Versioning

const char * eglQueryString(EGLDisplay dpy, EGLint
name);

eglQueryString returns a pointer to a static, zero-terminated string describ-
ing some aspect of the EGL implementationrname may be EGLVENDOR
EGLVERSION or EGLEXTENSIONS The format and contents of &L VENDOR

string is implementation dependent. TBEGLEXTENSIONSstring describes which

EGL extensions are supported by the EGL implementation running on the speci-
fied display. The string is zero-terminated and contains a space-separated list of
extension names; extension names themselves do not contain spaces. If there are
no extensions to EGL, then the empty string is returned. BieVERSIONstring

is laid out as follows:

<major.version.minorversion><space-<vendor-specific info-

Both the major and minor portions of the version number are of arbitrary length.
The vendor-specific information is optional; if present, its format and contents are
implementation specific.

On failure,NULLIs returned. ArEGLNOTINITIALIZED error is generated if
EGL is not initialized fordpy. An EGLBADPARAMETERTTOr is generated iflame
is not one of the values described above.

Version 1.0 - July 23, 2003

12 CHAPTER 3. EGL FUNCTIONS AND ERRORS

3.4 Configuration Management

An EGLConfig describes the format, type and size of the color buffers and an-
cillary buffers for anEGLSurface . If the EGLSurface is a window, then the
EGLConfig describing it may have an associated natiweial type

Names ofEGLConfig attributes are shown in Tabk1l These names may
be passed teglChooseConfigo specify required attribute properties.

EGLCONFIGID is a unique integer identifying differeBGLConfig s. Con-
figuration IDs must be small positive integers starting at 1 and ID assignment
should be compact; that is, if there akeEGLConfig s defined by the EGL im-
plementation, their configuration IDs should be in the rafigev]. Small gaps
in the sequence are allowed, but should only occur when removing configurations
defined in previous revisions of an EGL implementation.

EGLBUFFERSIZE gives the total depth of the color buffer in bits;
this is the sum ofEGLREDSIZE, EGLGREENSIZE, EGLBLUESIZE, and
EGLALPHASIZE.

EGLSAMPLEBUFFERSIndicates the number of multisample buffers, which
must be zero or one.EGLSAMPLESgives the number of samples per pixel;
if EGLSAMPLEBUFFERSIis zero, thenEGLSAMPLESwill also be zero. If
EGLSAMPLEBUFFERSIs one, then the number of color, depth, and stencil bits
for each sample in the multisample buffer are as specified bg®ie _SIZE at-
tributes.

There are no single-sample depth or stencil buffers for a multisample
EGLConfig ; the only depth and stencil buffers are those in the multisample
buffer. If the color samples in the multisample buffer store fewer bits than are
stored in the color buffers, this fact will not be reported accurately. Presumably a
compression scheme is being employed, and is expected to maintain an aggregate
resolution equal to that of the color buffers.

EGLSURFACETYPEIs a mask indicating the surface types that can be created
with the correspondingGLConfig (the config is said tesupportthese surface
types). The valid bit settings are shown in TaBla

For example, aEGLConfig for which the value of thEGLSURFACETYPE
attribute is

EGLWINDOWBIT | EGLPIXMAPBIT | EGLPBUFFERBIT
can be used to create any type of EGL surface, whilE@hConfig for which this
attribute value i€EGLWINDOWIT cannot be used to create a pbuffer or pixmap.

EGLNATIVE_RENDERABLEs anEGLBoolean indicating whether the native
window system can be used to render into a surface created wiBGh€onfig .
Constraints on native rendering are discussed in more detail in sedigris
and2.2.3

Version 1.0 - July 23, 2003

3.4. CONFIGURATION MANAGEMENT 13

Attribute | Type | Notes \
EGLBUFFERSIZE integer | depth of the color buffer
EGLREDSIZE integer | bits of Red in the color buffer
EGLGREENSIZE integer | bits of Green in the color buffer
EGLBLUESIZE integer | bits of Blue in the color buffer
EGLALPHASIZE integer | bits of Alpha in the color buffer
EGLCONFIGCAVEAT enum | any caveats for the configuration
EGLCONFIGID integer | uniqueEGLConfig identifier
EGLDEPTHSIZE integer | bits of Z in the depth buffer
EGLLEVEL integer | frame buffer level
EGLMAXPBUFFERWIDTH integer | maximum width of pbuffer
EGLMAXPBUFFERHEIGHT integer | maximum height of pbuffer
EGLMAXPBUFFERPIXELS integer | maximum size of pbuffer

EGLNATIVE_RENDERABLE boolean| EGLTRUEIf native rendering
APIs can render to surface

EGLNATIVE_VISUAL .ID integer | handle of corresponding
native visual
EGLNATIVE_VISUAL _TYPE integer | native visual type of the
associated visual
EGLSAMPLEBUFFERS integer | number of multisample buffers
EGLSAMPLES integer | number of samples per pixel
EGLSTENCIL_SIZE integer | bits of Stencil in the stencil buffe
EGLSURFACETYPE bitmask | which types of EGL surfaces
are supported.
EGLTRANSPARENTYPE enum | type of transparency supported

EGLTRANSPARENREDVALUE | integer | transparent red value
EGLTRANSPARENGREENVALUE | integer | transparent green value
EGLTRANSPARENBLUEVALUE | integer | transparent blue value

Table 3.1:EGLConfig attributes.

EGL Token Name| Description \
EGLWINDOVBIT | EGLConfig supports windows

EGLPIXMAPBIT | EGLConfig supports pixmaps
EGLPBUFFERBIT | EGLConfig supports pbuffers

Table 3.2: Types of surfaces supported byE&31L Config

Version 1.0 - July 23, 2003

14 CHAPTER 3. EGL FUNCTIONS AND ERRORS

If an EGLConfig supports windows then it may have an associated na-
tive visual. EGLNATIVE_VISUAL_ID specifies an identifier for this visual, and
EGLNATIVE_VISUAL TYPE specifies its type. If aEGLConfig does not sup-
port windows, or if there is no associated native visual type, then querying
EGLNATIVE_VISUAL_ID will return 0 and queryingeEGLNATIVE_VISUAL _TYPE
will return EGLNONE

The interpretation of the native visual identifier and type is platform-dependent.
For example, if the native window system is X, then the identifier will be the XID
of an X Visual

The EGLCONFIGCAVEATattribute may be set to one of the following val-
ues: EGLNONE EGLSLOWCONFIG or EGLNONCONFORMANTONFIG If the
attribute is set toEGLNONEthen the configuration has no caveats; if it is
set to EGLSLOWCONFIG then rendering to a surface with this configuration
may run at reduced performance (for example, the hardware may not sup-
port the color buffer depths described by the configuration); if it is set to
EGLNONCONFORMANTONFIGthen rendering to a surface with this configura-
tion will not pass the required OpenGL ES conformance tests.

OpenGL ES conformance requires that a seEGLConfig s supporting cer-
tain defined minimum attributes (such as the number, type, and depth of supported
buffers) be supplied by any conformant implementation. Those requirements are
documented only in the conformance specification.

EGLTRANSPARENTYPE indicates whether or not a configuration sup-
ports transparency. If the attribute is set EGLNONEthen windows cre-
ated with theEGLConfig will not have any transparent pixels. If the at-
tribute iISEGLTRANSPARENRGB then theEGLConfig supports transparency;

a transparent pixel will be drawn when the red, green and blue values which
are read from the framebuffer are equal EGLTRANSPARENREDVALUE
EGLTRANSPARENGREENVALUE and EGLTRANSPARENBLUEVALUE re-
spectively.

If EGLTRANSPARENTYPE is EGLNONE then the values for
EGLTRANSPARENREDVALUE EGLTRANSPARENGREENVALUE and
EGLTRANSPARENBLUEVALUEare undefined. Otherwise, they are interpreted
as integer framebuffer values between 0 and the maximum framebuffer value for
the component. For exampEGL TRANSPARENREDVALUEWIll range between
0 and (2**EGLREDSIZE)-1.

EGLMAXPBUFFERWIDTHandEGL MAXPBUFFERHEIGHT indicate the max-
imum width and height that can be passed iaggCreatePbufferSurface and
EGLMAXPBUFFERPIXELS indicates the maximum number of pixels (width times
height) for a pbuffer surface. Note that an implementation may return a value
for EGLMAXPBUFFERPIXELS that is less than the maximum width times the

Version 1.0 - July 23, 2003

3.4. CONFIGURATION MANAGEMENT 15

maximum height. The value foEGLMAXPBUFFERPIXELS is static and as-
sumes that no other pbuffers or native resources are contending for the framebuffer
memory. Thus it may not be possible to allocate a pbuffer of the size given by
EGLMAXPBUFFERPIXELS.

3.4.1 Querying Configurations

Use

EGLBoolean eglGetConfiggEGLDisplay dpy,
EGLConfig * configs , EGLint config _size ,
EGLint * num.config);

to get the list of alEGLConfig s that are available on the specified displaonfigs
is a pointer to a buffer containingpnfig sizeelements. On succeBGL TRUEIS
returned. The number of configurations is returnedum.config and elements 0
throughnum_con fig — 1 of configsare filled in with the valilEGLConfig s. No
more tharconfigsizeEGLConfig s will be returned even if more are available on
the specified display. However, églGetConfigsis called withconfigs= NULL,
then no configurations are returned, but the total number of configurations available
will be returned immum.config

On failure,EGLFALSE is returned. ArEGLNOTINITIALIZED error is gen-
erated if EGL is not initialized odpy. An EGLBADPARAMETERTrOr is generated
if numconfigis NULL

Use

EGLBoolean eglChooseConfi(EGLDisplay dpy, const
EGLint * attrib _list , EGLConfig * configs ,
EGLint config _size , EGLint * numconfig);

to getEGLConfig s that match a list of attributes. The return value and the mean-
ing of configs configsize and numconfig are the same as faglGetConfigs
However, only configurations matchiragtrib_list, as discussed below, will be re-
turned.

On failure, EGLFALSE is returned. AnREGLBADATTRIBUTE error is gener-
ated ifattrib_list contains an undefined EGL attribute or an attribute value that is
unrecognized or out of range.

All attribute names imttrib_list are immediately followed by the corresponding
desired value. The list is terminated wEIGL NONEIf an attribute is not specified
in attrib_list, then the default value (listed in TabB3) is used (it is said to be
specified implicitly). IfEGLDONTCARHS specified as an attribute value, then the

Version 1.0 - July 23, 2003

16 CHAPTER 3. EGL FUNCTIONS AND ERRORS

attribute will not be checkedEGLDONTCAREmay be specified for all attributes
exceptEGLLEVEL. If attrib_list is NULL or empty (first attribute i€GLNONE,
then selection and sorting BlGLConfig s is done according to the default criteria
in Tables3.3and3.1, as described below undgelectionandSorting.

Selection ofEGLConfig s

Attributes are matched in an attribute-specific manner, as shown in J&ble
The match criteria listed in the table have the following meartings

SmallerEGLConfig s with an attribute value that meets or exceeds the specified
value are matched.

Larger EGLConfig s with an attribute value that meets or exceeds the specified
value are matched.

Exact EGLConfig s whose attribute value equals the requested value are
matched.

MaskEGLConfig s for which the set bits of attribute include all the bits that are
set in the requested value are matched. (Additional bits might be set in the
attribute).

Some of the attributes must match the specified value exactly; others, such as
EGLREDSIZE, must meet or exceed the specified minimum values.

To retrieve an EGLConfig given its unique integer ID, use the
EGLCONFIGID attribute. WherEGLCONFIGID is specified, all other attributes
are ignored, and only tHeGLConfig with the given ID is returned.

If EGLMAXPBUFFERWIDTH EGLMAXPBUFFERHEIGHT,
EGLMAXPBUFFERPIXELS, or EGLNATIVEVISUAL.ID are specified in
attrib_list, then they are ignored (however, if present, these attributes must still be
followed by an attribute value iattrib_list). If EGLSURFACETYPE s specified
in attrib_list and the mask that follows does not has@L WINDOVBIT set, or if
there are no native visual types, then #@LNATIVE_VISUAL TYPE attribute is
ignored.

If EGLTRANSPARENTYPE is set to EGLNONE in attrib_list, then
the EGLTRANSPARENREDVALUE EGLTRANSPARENGREENALUE and
EGLTRANSPARENBLUE VALUEattributes are ignored.

! The distinction between Smaller and Larger, which affects only sorting, not selection, has
proven confusing. We will update tal#e3with separate selection criteria and sort order columns in
the next EGL revision.

Version 1.0 - July 23, 2003

3.4. CONFIGURATION MANAGEMENT 17
Attribute Default Selection Sort
and Sorting| Priority
Criteria
EGLBUFFERSIZE 0 Smaller 3
EGLREDSIZE 0 Larger 2
EGLGREENSIZE 0 Larger 2
EGLBLUESIZE 0 Larger 2
EGLALPHASIZE 0 Larger 2
EGLCONFIGCAVEAT EGLDONTCARE Exact 1
EGLCONFIGID EGLDONTCARE Exact 9 (last)
EGLDEPTHSIZE 0 Smaller 6
EGLLEVEL 0 Exact
EGLNATIVE_RENDERABLE EGLDONTCARE Exact
EGLNATIVE_VISUAL_TYPE EGLDONTCARE Exact 8
EGLSAMPLEBUFFERS 0 Smaller 4
EGLSAMPLES 0 Smaller 5
EGLSTENCIL_SIZE 0 Smaller 7
EGLSURFACETYPE EGLWINDOVBIT Mask
EGLTRANSPARENTYPE EGLNONE Exact
EGLTRANSPARENREDVALUE EGLDONTCARE Exact
EGLTRANSPARENGREENALUE | EGLDONTCARE Exact
EGLTRANSPARENBLUEVALUE | EGLDONTCARE Exact

Table 3.3: Default values and match criteria E6LConfig attributes.

Version 1.0 - July 23, 2003

18 CHAPTER 3. EGL FUNCTIONS AND ERRORS

If no EGLConfig matching the attribute list exists, then the call succeeds, but
num.configis set to 0.

Sorting of EGLConfig s

If more than one matchingGLConfig is found, then a list bEGLConfig s,
sorted according to theestmatch criteria, is returned. The list is sorted according
to the following precedence rules that are applied in ascending order (i.e., configu-
rations that are considered equal by lower numbered rule are sorted by the higher
numbered rule):

1. By EGLCONFIGCAVEAT where the precedence iSEGLNONE
EGLSLOWCONFIG EGLNONCONFORMANTIONFIG

2. Larger total number of RGBA color bit§ GLREDSIZE , EGLGREENSIZE,
EGLBLUESIZE, plusEGLALPHASIZE). If the requested number of bits in
attrib_list for a particular color component is 0 BGLDONTCARE then the
number of bits for that component is not considered.

SmallerEGLBUFFERSIZE .
SmallerEGLSAMPLEBUFFERS
SmallerEGLSAMPLES
SmallerEGLDEPTHSIZE .

SmallerEGLSTENCIL_SIZE .

© N o 0 W

By EGLNATIVE_VISUAL_TYPE (the actual sort order is implementation-
defined, depending on the meaning of native visual types).

9. SmallerEGLCONFIGID (this is always the last sorting rule, and guarantees
a unique ordering).

3.4.2 Lifetime of Configurations

Configuration handles EGLConfig s) returned byeglGetConfigs and egl-
ChooseConfigremain valid so long as tHeGLDisplay from which the handles

were obtained is not terminated. Implementations supporting a large number of dif-
ferent configurations, where it might be burdensome to instantiate data structures
for each configuration so queried (but never used), may choose to return handles
encoding sufficient information to instantiate the corresponding configurations dy-
namically, when needed to create EGL resources or query configuration attributes.

Version 1.0 - July 23, 2003

3.5. RENDERING SURFACES 19

3.4.3 Querying Configuration Attributes

To get the value of aRGLConfig attribute, use

EGLBoolean eglGetConfigAttrib (EGLDisplay dpy,
EGLConfig config , EGLint attribute , EGLint
*value);

If eglGetConfigAttrib succeeds then it returr8GLTRUEand the value for the
specified attribute is returnedvalue Otherwise it returnEGLFALSE If attribute
is not a valid attribute theBGLBADATTRIBUTEIs generated.

Refer to Table3.1and Table3.3for a list of valid EGL attributes.

3.5 Rendering Surfaces

3.5.1 Creating On-Screen Rendering Surfaces

To create an on-screen rendering surface, first create a native platform window
with attributes corresponding to the desiiEe@LConfig (e.g. with the same color
depth, with other constraints specific to the platform). Using a platform-specific
type (here calledNativeWindowType) referring to a handle to that native win-
dow, then call:

EGLSurface eglCreateWindowSurfacdEGLDisplay dpy,
EGLConfig config , NativeWindowType win ,
const EGLint * attrib _list);

eglCreateWindowSurfacecreates an onscre&GLSurface and returns a han-
dle to it. Any EGL rendering context created with a compati{&LConfig can
be used to render into this surface.

attrib_list specifies a list of attributes for the window. The list has the same
structure as described faglChooseConfig Currently no attributes are recog-
nized, saattrib_list will normally be NULL or empty (first attribute oEGLNONE.
However, it is possible that some platforms will define attributes specific to those
environments, as an EGL extension.

On failure eglCreateWindowSurface returns EGLNQSURFACE If the at-
tributes ofwin do not correspond toonfig then anEGLBADMATCHerror is gen-
erated. Ifconfigdoes not support rendering to windows (E@LSURFACETYPE
attribute does not contailBGL WINDOWBIT), an EGLBADMATCHerror is gener-
ated. Ifconfigis not a validEGLConfig , anEGLBADCONFIGerror is generated.

If winis not a valid native window handle, then B6L BADNATIVE_WINDOWIror

Version 1.0 - July 23, 2003

20 CHAPTER 3. EGL FUNCTIONS AND ERRORS

should be generated. If there is alreadyEBLConfig associated withvin (as

a result of a previougglCreateWindowSurfacecall), then anEGLBADALLOC

error is generated. Finally, if the implementation cannot allocate resources for the
new EGL window, arEGLBADALLOCerror is generated.

3.5.2 Creating Off-Screen Rendering Surfaces

EGL supports off-screen rendering surfaces in pbuffers. Pbuffers differ from win-
dows in the following ways:

1. Pbuffers are typically allocated in offscreen (non-visible) graphics memory
and are intended only for accelerated offscreen rendering. Allocation can fail
if there are insufficient graphics resources (implementations are not required
to virtualize framebuffer memory). Clients should deallocate pbuffers when
they are no longer in use, since graphics memory is often a scarce resource.

2. Pbuffers are EGL resources and have no associated native window or native
window type. It may not be possible to render to pbuffers using APIs other
than OpenGL ES and EGL.

To create a pbuffer, call

EGLSurface eglCreatePbufferSurfacdEGLDisplay dpy,
EGLConfig config , const EGLint
*attrib _list),

This creates a single pbuffer surface and returns a handle to it.

attrib_list specifies a list of attributes for the pbuffer. The list has the same
structure as described feglChooseConfig Currently only three attributes can be
specified imattrib_list: EGLWIDTH EGLHEIGHT, andEGLLARGESTPBUFFERIt
is possible that some platforms will define additional attributes specific to those
environments, as an EGL extension.

attrib_list may beNULL or empty (first attribute oEGLNONE, in which case
all the attributes assume their default values as described below.

EGLWIDTHandEGLHEIGHT specify the pixel width and height of the rectan-
gular pbuffer. The default values faGLWIDTHandEGLHEIGHT are zero.

Use EGLLARGESTPBUFFERt0 get the largest available pbuffer when the al-
location of the pbuffer would otherwise fail. The width and height of the allocated
pbuffer will never exceed the values®GEL WIDTHandEGLHEIGHT, respectively.
UseeglQuerySurfaceto retrieve the dimensions of the allocated pbuffer. By de-
fault, EGLLARGESTPBUFFERS EGLFALSE

Version 1.0 - July 23, 2003

3.5. RENDERING SURFACES 21

The resulting pbuffer will contain color buffers and ancillary buffers as speci-
fied by config

On failureeglCreatePbufferSurfacereturnsEGLNQSURFACEIf the pbuffer
could not be created due to insufficient resources, thesGArBADALLOCerror is
generated. I€onfigis not a validEGLConfig , anEGLBADCONFIGerror is gen-
erated. Ifconfigdoes not support pbuffers, &@GLBADMATCHerror is generated.

3.5.3 Creating Native Pixmap Rendering Surfaces

EGL also supports rendering surfaces whose color buffers are stored in native
pixmaps. Pixmaps differ from windows in that they are typically allocated in off-
screen (non-visible) graphics or CPU memory. Pixmaps differ from pbuffers in
that they do have an associated native pixmap and native pixmap type, and it may
be possible to render to pixmaps using APIs other than OpenGL ES and EGL.

To create a pixmap rendering surface, first create a native platform pixmap
with attributes corresponding to the desireGLConfig (e.g. with the same
color depth, with other constraints specific to the platform). Using a platform-
specific type (here calledativePixmapType) referring to a handle to that na-
tive pixmap, then call:

EGLSurface eglCreatePixmapSurfacéEGLDisplay dpy,
EGLConfig config , NativePixmapType pixmap ,
const EGLint * attrib _list);

eglCreatePixmapSurfacecreates an offscredeGLSurface and returns a han-
dle to it. Any EGL rendering context created with a compatiB{&LConfig can
be used to render into this surface.

attrib_list specifies a list of attributes for the pixmap. The list has the same
structure as described faglChooseConfig Currently no attributes are recog-
nized, saattrib_list will normally be NULL or empty (first attribute oEGL NONE.
However, it is possible that some platforms will define attributes specific to those
environments, as an EGL extension.

On failure eglCreatePixmapSurfacereturns EGLNQSURFACE If the at-
tributes of pixmap do not correspond taconfig then an EGLBADMATCH
error is generated. Ifconfig does not support rendering to pixmaps
(the EGLSURFACETYPE attribute does not contairEGLPIXMAPBIT), an
EGLBADMATCHerror is generated. I€onfigis not a validEGLConfig , an
EGLBADCONFIG error is generated. Ipixmapis not a valid native pixmap
handle, then aleGLBADNATIVE_PIXMAP error should be generated. If there
is already anEGLSurface associated wittpixmap (as a result of a previous

Version 1.0 - July 23, 2003

22 CHAPTER 3. EGL FUNCTIONS AND ERRORS

eglCreatePixmapSurfacecall), then aEGLBADALLOC error is generated. Fi-
nally, if the implementation cannot allocate resources for the new EGL pixmap, an
EGLBADALLOCerror is generated.

3.5.4 Destroying Rendering Surfaces
An EGLSurface of any type (window, pbuffer, or pixmap) is destroyed by calling

EGLBoolean eglDestroySurfac€EGLDisplay dpy,
EGLSurface surface);

All resources associated witurfaceare marked for deletion as soon as possible.
If surfaceis current to any thread (see secti®1®.3, resources are not actually
released while the surface remains current. Future referencsfaceremain
valid only so long as it is current; it will be destroyed, and all future references to it
will become invalid, as soon as any otherwise valgMakeCurrent call is made
from the thread it is bound to.

eglDestroySurfacereturnsEGLFALSE on failure. ANEGLBADSURFACEer-
ror is generated iurfaceis not a valid rendering surface.

3.5.5 Querying Surface Attributes

To query an attribute associated withB@LSurface call:

EGLBoolean eglQuerySurfac€EGLDisplay dpy,
EGLSurface surface , EGLint attribute ,
EGLint * value);

eglQuerySurfacereturns invalue the value ofattribute for surface attribute
must be set to one 0cEGLWIDTH EGLHEIGHT, EGLLARGESTPBUFFER or
EGLCONFIGID.

QueryingEGLCONFIGID returns the ID of th&eGLConfig with respect to
which the surface was created.

QueryingEGLLARGESTPBUFFERfor a pbuffer surface returns the same at-
tribute value specified when the surface was created egtGreatePbufferSur-
face For a window or pixmap surface, the contentvalueare not modified.

Querying EGLWIDTH and EGLHEIGHT returns respectively the width and
height, in pixels, of the surface. For a window or pixmap surface, these values are
initially equal to the width and height of the native window or pixmap with respect
to which the surface was created. If a native window is resized, the corresponding

Version 1.0 - July 23, 2003

3.6. RENDERING CONTEXTS 23

window surface will eventually be resized by the implementation to match (as dis-
cussed in sectiof.8.]). If there is a discrepancy because EGL has not yet resized
the window surface, the size returned dylQuerySurfacewill always be that of
the EGL surface, not the corresponding native window.
For a pbuffer, they will be the actual allocated size of the pbuffer (which may
be less than the requested sizEBLLARGESTPBUFFERS EGLTRUB.
eglQuerySurfacereturnsEGLFALSE on failure andvalueis not updated. If
attributeis not a valid EGL surface attribute, then BGLBADATTRIBUTE error
is generated. I6urfaceis not a validEGLSurface then anEGLBADSURFACE
error is generated.

3.6 Rendering Contexts

3.6.1 Creating Rendering Contexts

To create an OpenGL ES rendering context, call

EGLContext eglCreateContex{EGLDisplay dpy,
EGLConfig config , EGLContext share _context |,
const EGLint * attrib _list);

If eglCreateContextsucceeds, it initializes the rendering context to the initial
OpenGL ES state and returns a handle to it. The handle can be used to render
to any compatibl&EGLSurface .

If sharecontextis NOtEGLNQCONTEXTthen all shareable data (except texture
objects named 0) will be shared bliarecontext all other contextshare context
already shares with, and the newly created rendering context. An arbitrary number
of EGLContext s can share data in this fashion. The server context state for all
sharing contexts must exist in a single address space BGaABADMATCHerror
is generated.

Currently no attributes are recognized,atrib_list will normally be NULL or
empty (first attribute oEGLNONE. However, it is possible that some platforms
will define attributes specific to those environments, as an EGL extension.

On failure eglCreateContextreturns EGLNQCONTEXT If sharecontextis
neither zero nor a valid EGL rendering context, there@i. BADCONTEXTerror
is generated. I€onfigis not a validEGLConfig , then arEGLBADCONFIGerror
is generated. If the server context statedoare contextexists in an address space
that cannot be shared with the newly created conteghdiecontextwas created
on a different display than the one referencecdbyfig or if the contexts are oth-
erwise incompatible (for example, one context being associated with a hardware

Version 1.0 - July 23, 2003

24 CHAPTER 3. EGL FUNCTIONS AND ERRORS

device driver and the other with a software renderer), theBGIDBADMATCHer-
ror is generated. If the server does not have enough resources to allocate the new
context, then aEGLBADALLOCerror is generated.

3.6.2 Destroying Rendering Contexts

A rendering context is destroyed by calling

EGLBoolean eglDestroyContex{EGLDisplay dpy,
EGLContext ctx);

All resources associated withx are marked for deletion as soon as possibletx{f
is current to any thread (see sectibf.3, resources are not actually released while
the context remains current. Future referencesxeemain valid only so long as
itis current; it will be destroyed, and all future references to it will become invalid,
as soon as any otherwise vaéidiMakeCurrent call is made from the thread it is
bound to).

eglDestroyContextreturnsEGLFALSE on failure. ANEGLBADCONTEXTer-
ror is generated i€txis not a valid rendering context.

3.6.3 Binding Contexts and Drawables

To make a context current, call

EGLBoolean eglMakeCurrent(EGLDisplay dpy,
EGLSurface draw, EGLSurface read,
EGLContext ctx);

eglMakeCurrent bindsctx to the current rendering thread and to ttraw and
readsurfacesdrawis used for all OpenGL ES operations except for any pixel data
read back, which is taken from the frame buffer valueseatl Note that the same
EGLSurface may be specified for bottiraw andread

If the calling thread already has a current rendering context, then that context
is flushed and marked as no longer currextit.is made the current context for the
calling thread.

eglMakeCurrent returnsEGLFALSE on failure. Ifdraw or readare not com-
patible with ctx, then anEGLBADMATCHerror is generated. Itx is current to
some other thread, or if eithelraw or read are bound to contexts in another
thread, alEGLBADACCESSerror is generated. Htxis not a valid EGL rendering
context, anEGLBADCONTEXTerror is generated. If eithelraw or read are not
valid EGL surfaces, aBGLBADSURFACEerror is generated. If a native window

Version 1.0 - July 23, 2003

3.6. RENDERING CONTEXTS 25

underlying eithedraw or read is no longer valid, arEGLBADNATIVE_WINDOW

error is generated. Mraw andread cannot fit into graphics memory simultane-
ously, anEGLBADMATCHerror is generated. If the previous context of the calling
thread has unflushed commands, and the previous surface is no longer valid, an
EGLBADCURRENISURFACEerror is generated. If the ancillary buffers fdraw
andreadcannot be allocated, &GLBADALLOCerror will be generated.

Other errors may arise when the context state is inconsistent with the surface
state, as described in the following paragraphs.

If drawis destroyed afteegIMakeCurrent is called, then subsequent render-
ing commands will be processed and the context state will be updated, but the
frame buffer state becomes undefinedetidis destroyed afteeglMakeCurrent
then pixel values read from the framebuffer (e.g., as result of cajliRgadPixel3
are undefined. If a native window or pixmap underlying dnaw or read surfaces
is destroyed, rendering and readback are handled as above.

To release the current context without assigning a new one, cbet
to EGLNQCONTEXTand setdraw and read to EGLNQSURFACE If ctx is
EGLNQCONTEXTand draw and read are not EGLNQSURFACE or if draw
or read are set toEGLNQSURFACEand ctx is not EGLNQCONTEXT then an
EGLBADMATCHerror will be generated.

The first timectx is made current, the viewport and scissor dimensions are set
to the size of thelraw surface (as thougblViewport (0, 0, w, h) andyIScissof0,

0, w, h) were called, where w and h are the width and height of the surface, respec-
tively). However, the viewport and scissor dimensions are not modified wixen

is subsequently made current. The client is responsible for resetting the viewport
and scissor in this case.

Only one rendering context may be in usecarrent for a particular thread at
a given time, and only one context may be bound to a particular surface at a given
time.

The minimum number of current rendering contexts that must be supported by
an EGL implementation is one.

To get the current context, call

EGLContext eglGetCurrentContext(void);

If there is no current contexXEGLNQCONTEXTs returned (this is not an error).
To get the surfaces used for rendering by the current context, call

EGLSurface eglGetCurrentSurface EGLint readdraw);

readdrawis eitherEGLREADor EGL DRAWO respectively return the read or draw
surfaces. If there is no correponding surfa&@L. NQSURFACHS returned (this is

Version 1.0 - July 23, 2003

26 CHAPTER 3. EGL FUNCTIONS AND ERRORS

not an error) lfreaddrawis neitherEGLREADNor EGL DRAWEGL NQSURFACHS
returned and aBGLBADPARAMETERTTOr is generated.
To get the display associated with the current context, call

EGLDisplay eglGetCurrentDisplay(void);

If there is no current contexEGLNQDISPLAY is returned.
To obtain the value of context attributes, use

EGLBoolean eglQueryContex{EGLDisplay dpy,
EGLContext ctx , EGLint attribute , EGLint
*value);

eglQueryContextreturns invaluethe value ofattributefor ctx. attribute must be
set toEGLCONFIGID .

QueryingEGLCONFIGID returns the ID of th&eGLConfig with respect to
which the context was created.

eglQueryContextreturnsEGLFALSE on failure andvalueis not updated. If
attributeis not a valid EGL context attribute, then &GLBADATTRIBUTE error
is generated. I€txis invalid, anEGLBADCONTEXTerror is generated.

3.7 Synchronization Primitives

To prevent native rendering API functions from executing until any outstanding
OpenGL ES rendering affecting the same surface is complete, call

EGLBoolean eglWaitGL (void);

OpenGL ES calls made prior #glWaitGL are guaranteed to be executed before
native rendering calls made afteglWaitGL which affect the surface associated
with the calling thread’s current context. The same result can be achieved us-
ing glFinish. Clients rendering to single buffered surfaces (e.g. pixmap surfaces)
should calleglWaitGL before accessing the native pixmap from the client.
eglWaitGL returnsEGL TRUEON success. If there is no current rendering con-
text, the function has no effect but still retulBELTRUE If the surface associated
with the calling thread’s current context is no longer validiL FALSEIs returned
and anEGLBADCURRENTSURFACEerror is generated.
To prevent the OpenGL ES command sequence from executing until any out-
standing native rendering affecting the same surface is complete, call

EGLBoolean eglWaitNative(EGLint engine);

Version 1.0 - July 23, 2003

3.8. POSTING THE COLOR BUFFER 27

Native rendering calls made with the specified markémgine and which affect
the surface associated with the calling thread’s current context, are guaranteed to
be executed before OpenGL ES rendering calls made efivaitNative. The
same result may be (but is not necessarily) achievable using native synchronization
calls.

enginedenotes a particulamarking enginéanother drawing API, such as GDI,
Xlib) to be waited on. Valid values angineare defined by EGL extensions spe-
cific to implementations, but implementations will always recognize the symbolic
constantEGLCORENATIVE_ENGINE which denotes the most commonly used
marking engine other then OpenGL ES itself.

eglWaitNative returnsEGLTRUEON success. If there is no current rendering
context, the function has no effect but still retuEBGL TRUE If the surface does
not support native rendering (e.g. pbuffer and in most cases window surfaces), the
function has no effect but still returr@GLTRUE If the surface associated with
the calling thread’s current context is no longer valiGGL FALSE is returned and
an EGLBADCURRENTSURFACEerror is generated. Knginedoes not denote a
recognized marking engineGL FALSE is returned and aBGLBADPARAMETER
error is generated.

3.8 Posting the Color Buffer

After completing rendering, the contents of the color buffer can be made visible in
a native window, or copied to a native pixmap.

3.8.1 Posting to a Window

To post the color buffer to a window, call

EGLBoolean eglSwapBufferdEGLDisplay dpy,
EGLSurface surface);

If surfaceis a window surface, then the color buffer is copied to the native
window associated with that surface. dfirfaceis a pixmap or pbuffer surface,
eglSwapBuffershas no effect.

The color buffer ofsurfaceis left in an undefined state after callieglSwap-
Buffers.

Native Window Resizing

If the native window corresponding surfacehas been resized prior to the swap,
surfacemust be resized to matctsurfacewill normally be resized by the EGL

Version 1.0 - July 23, 2003

28 CHAPTER 3. EGL FUNCTIONS AND ERRORS

implementation at the time the native window is resized. If the implementation
cannot do this transparently to the client, tregiSwapBuffersmust detect the
change and resizurfaceprior to copying its pixels to the native window.

If surfaceshrinks as a result of resizing, some rendered pixels are lost. If
surfacegrows, the newly allocated buffer contents are undefined. The resizing
behavior described here only maintains consistency of EGL surfaces and native
windows; clients are still responsible for detecting window size changes (using
platform-specific means) and changing their viewport and scissor regions accord-

ingly.

3.8.2 Copying to a Native Pixmap

To copy the color buffer to a native pixmap, call

EGLBoolean eglCopyBufferdEGLDisplay dpy,
EGLSurface surface , NativePixmapType
target);

The color buffer is copied to the specifieatget, which must be a valid native
pixmap handle.

The target pixmap should have the same number of components and component
sizes as the color buffer it's being copied from. Implementations may choose to
relax this restriction by converting data to the native pixmap formats. If they do
so, they should define an EGL extension specifying which pixmap formats are
supported, and specifying the conversion arithmetic used.

The mapping of pixels in the color buffer to pixels in the pixmap is platform-
dependent, since the native platform pixel coordinate system may differ from that
of OpenGL ES.

The color buffer ofsurfaceis left unchanged after callingglCopyBuffers

3.8.3 Posting Semantics

In EGL 1.0,surfacemust be bound to the current context. This restriction is ex-
pected to be lifted in future EGL revisions.

If dpy andsurfaceare the display and surface for the calling thread’s current
context,eglSwapBuffersandeglCopyBuffers perform an implicitgIFlush. Sub-
sequent OpenGL ES commands can be issued immediately, but will not be ex-
ecuted until posting is completed (feglSwapBuffers this is typically during
vertical retrace of the display).

Version 1.0 - July 23, 2003

3.9. OBTAINING EXTENSION FUNCTION POINTERS 29

3.8.4 Posting Errors

eglSwapBuffersandeglCopyBuffersreturnEGLFALSE on failure. If surfaceis
not a valid EGL surface, aBGLBADSURFACEerror is generated. Burfaceis not
bound to the calling thread'’s current context,BBL BADSURFACEerTOr is gener-
ated. Iftargetis not a valid native pixmap handle, &GLBADNATIVE_PIXMAP
error should be generated. If the formattafgetis not compatible with the color
buffer, or if the size oftargetis not the same as the size of the color buffer, an
EGLBADMATCHerror is generated. léglSwapBuffersis called and the native
window associated witBurfaceis no longer valid, alEGLBADNATIVE_WINDOW
error is generated. #glCopyBuffersis called and the implementation does not
support native pixmaps, &8GLBADNATIVE_PIXMAP error is generated.

3.9 Obtaining Extension Function Pointers

The GL and EGL extensions which are available to a client may vary at runtime,
depending on factors such as the rendering path being used (hardware or software),
resources available to the implementation, or updated device drivers. Therefore,
the address of extension functions may be queried at runtime. The function

void (* eglGetProcAddresgconst char
* procname))();

returns the address of the extension function namguateyName procNamemust

be aNULL-terminated string. The pointer returned should be cast to a function
pointer type matching the extension function’s definition in that extension specifi-
cation. A return value oNULL indicates that the specified function does not exist
for the implementation.

A non-NULL return value foreglGetProcAddressdoes not guarantee that
an extension function is actually supported at runtime. The client must also
queryglGetString(GLEXTENSIONS (for OpenGL ES extensions) eglQueryS-
tring (dpy, EGLEXTENSIONS (for EGL extensions) to determine if an extension
is supported by a particular context.

Function pointers returned BglGetProcAddressare independent of the dis-
play and the currently bound context, and may be used by any context which sup-
ports the extension.

eglGetProcAddressmay be queried for all of the following functions:

e All GL and EGL extension functions supported by the implementation
(whether those extensions are supported by the current context or not). This
includes any mandatory OpenGL ES extensions.

Version 1.0 - July 23, 2003

30 CHAPTER 3. EGL FUNCTIONS AND ERRORS

eglGetProcAddressmay not be queried for core (non-extension) functions in
GL and EGL. For functions that are queryable wathlGetProcAddress imple-
mentations may choose to also export those functions statically from the OpenGL
ES link library. However, portable clients cannot rely on this behavior.

Version 1.0 - July 23, 2003

Chapter 4

Extending EGL

EGL implementors may extend EGL by adding new commands or additional enu-
merated values for existing EGL commands.

New names for EGL functions and enumerated types must clearly indicate
whether some particular feature is in the core EGL or is vendor specific. To make
a vendor-specific name, append a company identifier (in upper case) and any ad-
ditional vendor-specific tags (e.g. machine names). For instance, SGI might add
new commands and manifest constants of the fegiNewCommandSGland
EGLNEWDEFINITION _SGlI. If two or more vendors agree in good faith to im-
plement the same extension, and to make the specification of that extension pub-
licly available, the procedures and tokens that are defined by the extension can be
suffixed byEXT. Extensions approved by supra-vendor organizations such as the
Khronos SIG and the OpenGL ARB use similar identifiers (OML and OES for
Khronos, and ARB for the ARB).

It is critically important for interoperability that enumerants and entry point
names be unique across vendors. The OpenGL ARB Secretary maintains a reg-
istry of enumerants, and all shipping enumerant values must be determined by
requesting blocks of enumerants from the registry. See

http://oss.sgi.com/projects/ogl-sample/registry/

for more information on defining extensions.

31

http://oss.sgi.com/projects/ogl-sample/registry/

Chapter 5

EGL Versions and Enumerants

Each version of EGL supports a specified OpenGL ES version, and all prior ver-
sions of OpenGL ES up to that version. EGL 1.0 supports OpenGL ES 1.0, includ-
ing both Common and Common-Lite profiles.

5.1 Compile-Time Version Detection

To allow code to be written portably against future EGL versions, the compile-time
environment must make it possible to determine which EGL version interfaces
are available. The details of such detection are language-specific and should be
specified in the language binding documents for each language. The base EGL
specification defines an ISO C language binding, and in that environment, the EGL
header file<GLES/egl.h> must define a C preprocessor symbol:

#define EGL _VERSION1 0 1

Future versions of EGL will define additional preprocessor symbols corre-
sponding to the major and minor numbers of those versions.

5.2 Enumerant Values

Enumerant values for EGL tokens are required to be common across all implemen-
tations. A reference version of tlegl.h header file, including defined values for

all EGL enumerants, accompanies this specification and can be downloaded from

http://www.khronos.org/

32

http://www.khronos.org/

Chapter 6

Glossary

Address Spacethe set of objects or memory locations accessible through a single
name space. In other words, it is a data region that one or more processes
may share through pointers.

Client an application, which communicates with the underlying EGL implemen-
tation and underlying native window system by some path. The application
program is referred to as a client of the window system server. To the server,
the client is the communication path itself. A program with multiple connec-
tions is viewed as multiple clients to the server. The resource lifetimes are
controlled by the connection lifetimes, not the application program lifetimes.

Compatible an OpenGL ES rendering context is compatible with (may be used
to render into) a surface if they meet the constraints specified in secfion

Connection a bidirectional byte stream that carries the X (and EGL) protocol be-
tween the client and the server. A client typically has only one connection to
a server.

(Rendering) Context an OpenGL ES rendering context. This is a virtual OpenGL
ES machine. All OpenGL ES rendering is done with respect to a context.
The state maintained by one rendering context is not affected by another
except in case of state that may be explicitly shared at context creation time,
such as textures.

EGLContext ahandle to a rendering context. Rendering contexts consist of client
side state and server side state.

(Drawing) Surface an onscreen or offscreen buffer where pixel values resulting
from rendering through OpenGL ES or other APIs are written.

33

34 CHAPTER 6. GLOSSARY

Thread one of a group of processes all sharing the same address space. Typically,
each thread will have its own program counter and stack pointer, but the text
and data spaces are visible to each of the threads. A thread that is the only
member of its group is equivalent to a process.

Version 1.0 - July 23, 2003

Appendix A

Version 1.0

EGL version 1.0, approved on July 23, 2003, is the original version of EGL. EGL
was loosely based on GLX 1.3, generalized to be implementable on many differ-
ent operating systems and window systems and simplified to reflect the needs of
embedded devices running OpenGL ES .

A.1 Acknowledgements

EGL 1.0 is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following
is a partial list of contributors, including the company that they represented at the
time of their contribution:

Aaftab Munshi, ATI

Andy Methley, Panasonic

Carl Korobkin, 3d4wW

Chris Hall, Seaweed Systems

Claude Knaus, Silicon Graphics

David Blythe, 3d4W

Ed Plowman, ARM

Graham Connor, Imagination Technologies

Harri Holopainen, Hybrid Graphics

Jacob Strom, Ericsson

Jani Vaarala, Nokia

Jon Leech, Silicon Graphics

Justin Couch, Yumetech

Kari Pulli, Nokia

Lane Roberts, Symbian

35

36

APPENDIX A. VERSION 1.0

Mark Callow, HI

Mark Tarlton, Motorola

Mike Olivarez, Motorola

Neil Trevett, 3Dlabs

Phil Huxley, Tao Group

Tom Olson, Texas Instruments
Ville Miettinen, Hybrid Graphics

Version 1.0 - July 23, 2003

Index of EGL Commands

EGL_*_SIZE, 12

EGLALPHA_SIZE, 12,13, 17,18

EGL_.BAD_ACCESSS, 24

EGL.BAD_ALLOC, 8§, 20-22, 24, 25

EGL_BAD _ATTRIBUTE, 9, 15, 19, 23,
26

EGL_BAD _CONFIG,9, 19, 21, 23

EGL.BAD_CONTEXT,9, 23, 24, 26

EGL_.BAD_CURRENTSURFACE, 9,
25-27

EGL_BAD_DISPLAY, 9-11

EGL.BAD_MATCH, 9, 19, 21, 23-25,
29

EGL_BAD_NATIVE _PIXMAP, 9, 10,
21,29

EGL_BAD _NATIVE WINDOW, 9, 10,
19, 25, 29

EGL_BAD _PARAMETER,9, 11, 15, 26,
27

EGL_BAD _SURFACE,9, 22-24, 29

EGL_BLUE_SIZE,12, 13,17, 18

EGL.BUFFERSIZE, 12,13, 17,18

EGL_.CONFIG.CAVEAT, 13, 14,17, 18

EGL_CONFIGLID, 12, 13,16-18, 22, 26

EGL_CORENATIVE _ENGINE, 27

EGL.DEPTHSIZE, 13, 17,18

EGL_.DONT_CARE, 15-18

EGL_DRAW, 25, 26

EGL_EXTENSIONS,11, 29

EGL_FALSE,?2, 8, 10, 15, 19, 20, 22-24,
26, 27,29

EGL.GREENSIZE, 12, 13,17, 18

EGL_HEIGHT, 20, 22

EGL_LARGEST.PBUFFER,20, 22, 23

EGL_LEVEL, 13,16, 17

EGL.MAX _PBUFFERHEIGHT, 13

37

14,16
EGL.MAX _PBUFFERPIXELS, 13-16
EGL.MAX _PBUFFERWIDTH, 13, 14,
16
EGL_NATIVE _RENDERABLE, 12, 13,
17
EGL_NATIVE _VISUAL _ID, 13, 14, 16
EGL_NATIVE _VISUAL _TYPE, 13, 14,
16-18
EGL_NEW_DEFINITION_SGI, 31
EGL_.NO_CONTEXT,S8, 23, 25
EGL_NO_DISPLAY, 10, 26
EGL.NO_SURFACE,19, 21, 25, 26
EGL.NON_.CONFORMANT.CONFIG,
14,18
EGL_.NONE, 1421, 23
EGL_NOT.INITIALIZED, 8-11, 15
EGL_.PBUFFERBIT, 12, 13
EGL_PIXMAP_BIT, 12,13, 21
EGL.READ, 25, 26
EGL.RED_SIZE, 12-14, 16-18
EGL_.SAMPLE BUFFERS,12, 13, 17,
18
EGL_SAMPLES,12, 13,17, 18
EGL_.SLOW_CONFIG,14, 18
EGL_.STENCILSIZE, 13, 17,18
EGL_.SUCCESSS8
EGL_.SURFACETYPE, 12, 13, 16, 17,
19,21
EGL_TRANSPARENTBLUE_VALUE,
13,14, 16,17
EGL_.TRANSPARENT.GREENVALUE,
13, 14,16,17
EGL_.TRANSPARENTRED_VALUE,
13,14,16,17
EGL_.TRANSPARENTRGB, 14

38

EGL_.TRANSPARENTTYPE, 13, 14,
16, 17
EGL.TRUE, 2, 8,10, 11, 13, 15, 19, 23,
26,27
EGL.VENDOR, 11
EGL_VERSION, 11
EGL_WIDTH, 20, 22
EGL_WINDOW _BIT, 12, 13,16, 17,19
EGLBoolean?, 8,12
eglChooseConfidl2, 15, 18-21
EGLConfig,3, 9, 12-23, 26
EGLContext9, 23
eglCopyBuffers4, 28, 29
eglCreateContexf3
eglCreatePbufferSurfacg4, 20-22
eglCreatePixmapSurface], 22
eglCreateWindowSurfacé9, 20
eglDestroyContex24
eglDestroySurface)2
EGLDisplay,3, 9-11, 18
eglGetConfigAttrib,19
eglGetConfigs]5, 18
eglGetCurrentContex5
eglGetCurrentDisplay 6
eglGetCurrentSurfac@b
eglGetDisplay,10
eglGetError3
eglGetProcAddres&9, 30
eglinitialize,10, 11
EGLint, 2
eglMakeCurrentl1, 22, 24, 25
egINewCommandSGRB1
eglQueryContext26
eglQueryStringL1, 29
eglQuerySurface0, 22, 23
EGLSurface3, 9, 12, 19, 21-24
eglSwapBuffers4, 27-29
eglTerminate10, 11
eglWaitGL, 6, 26
eglWaitNative 6, 26, 27

GL_EXTENSIONS,29
GL_TEXTURE.2D, 6
glBindTexture 6
glFinish,6, 26

glFlush,28
glGetString,29
gIReadPixels25
glScissor25
glViewport, 25

Version 1.0 - July 23, 2003

INDEX

	Overview
	EGL Operation
	Native Window System and Rendering APIs
	Scalar Types
	Displays

	Rendering Contexts and Drawing Surfaces
	Using Rendering Contexts
	Rendering Models
	Interaction With Native Rendering

	Direct Rendering and Address Spaces
	Shared State
	Texture Objects

	Multiple Threads
	Power Management

	EGL Functions and Errors
	Errors
	Initialization
	EGL Versioning
	Configuration Management
	Querying Configurations
	Lifetime of Configurations
	Querying Configuration Attributes

	Rendering Surfaces
	Creating On-Screen Rendering Surfaces
	Creating Off-Screen Rendering Surfaces
	Creating Native Pixmap Rendering Surfaces
	Destroying Rendering Surfaces
	Querying Surface Attributes

	Rendering Contexts
	Creating Rendering Contexts
	Destroying Rendering Contexts
	Binding Contexts and Drawables

	Synchronization Primitives
	Posting the Color Buffer
	Posting to a Window
	Copying to a Native Pixmap
	Posting Semantics
	Posting Errors

	Obtaining Extension Function Pointers

	Extending EGL
	EGL Versions and Enumerants
	Compile-Time Version Detection
	Enumerant Values

	Glossary
	Version 1.0
	Acknowledgements

