
The 7U Evaluation Method: Evaluating Software Systems via Runtime Fault-Injection and
Reliability, Availability and Serviceability (RAS) Metrics and Models

Rean Griffith

Submitted in partial fulfillment of the
Requirements for the degree

of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2008



c© 2008

Rean Griffith
All Rights Reserved



Abstract

The 7U Evaluation Method: Evaluating Software Systems via Runtime Fault-Injection and

Reliability, Availability and Serviceability (RAS) Metrics and Models

Rean Griffith

Renewed interest in developing computing systems that meet additional non-functional

requirements such as reliability, high availability and ease-of-management/self-management

(serviceability) has fueled research into developing systems that exhibit enhanced reliability,

availability and serviceability (RAS) capabilities. This research focus on enhancing the RAS

capabilities of computing systems impacts not only the legacy/existing systems we have

today, but also has implications for the design and development of next generation (self-

managing/self-*) systems, which are expected to meet these non-functional requirements

with minimal human intervention.

To reason about the RAS capabilities of the systems of today or the self-* systems of

tomorrow, there are three evaluation-related challenges to address. First, developing (or

identifying) practical fault-injection tools that can be used to study the failure behavior of

computing systems and exercise any (remediation) mechanisms the system has available

for mitigating or resolving problems. Second, identifying techniques that can be used to

quantify RAS deficiencies in computing systems and reason about the efficacy of individual

or combined RAS-enhancing mechanisms (at design-time or after system deployment).

Third, developing an evaluation methodology that can be used to objectively compare

systems based on the (expected or actual) benefits of RAS-enhancing mechanisms.



This thesis addresses these three challenges by introducing the 7U Evaluation Methodology,

a complementary approach to traditional performance-centric evaluations that identifies crite-

ria for comparing and analyzing existing (or yet-to-be-added) RAS-enhancing mechanisms,

is able to evaluate and reason about combinations of mechanisms, exposes under-performing

mechanisms and highlights the lack of mechanisms in a rigorous, objective and quantitative

manner.

The development of the 7U Evaluation Methodology is based on the following three hy-

potheses. First, that runtime adaptation provides a platform for implementing efficient and

flexible fault-injection tools capable of in-situ and in-vivo interactions with computing sys-

tems. Second, that mathematical models such as Markov chains, Markov reward networks

and Control theory models can successfully be used to create simple, reusable templates

for describing specific failure scenarios and scoring the system’s responses, i.e., studying

the failure-behavior of systems, and the various facets of its remediation mechanisms and

their impact on system operation. Third, that combining practical fault-injection tools with

mathematical modeling techniques based on Markov Chains, Markov Reward Networks

and Control Theory can be used to develop a benchmarking methodology for evaluating and

comparing the reliability, availability and serviceability (RAS) characteristics of computing

systems.

This thesis demonstrates how the 7U Evaluation Method can be used to evaluate the RAS

capabilities of real-world computing systems and in so doing makes three contributions.

First, a suite of runtime fault-injection tools (Kheiron tools) able to work in a variety

of execution environments is developed. Second, analytical tools that can be used to

construct mathematical models (RAS models) to evaluate and quantify RAS capabilities

using appropriate metrics are discussed. Finally, the results and insights gained from

conducting fault-injection experiments on real-world systems and modeling the system

responses (or lack thereof) using RAS models are presented. In conducting 7U Evaluations of



real-world systems, this thesis highlights the similarities and differences between traditional

performance-oriented evaluations and RAS-oriented evaluations and outlines a general

framework for conducting RAS evaluations.



Contents

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Motivation 11

2.1 DASADA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Kinesthetics eXtreme (KX) . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Probing Technologies used in KX . . . . . . . . . . . . . . . . . . 14

2.2.2 Effector Technologies used in KX . . . . . . . . . . . . . . . . . . 16

2.3 Short-term Research Objectives after KX . . . . . . . . . . . . . . . . . . 17

2.4 Long-term Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Scoping the Self-Management Capabilities to be Evaluated . . . . . 19

2.4.2 Expanding the Classes of Systems to be Evaluated . . . . . . . . . 21

2.5 Revised Research Agenda . . . . . . . . . . . . . . . . . . . . . . . . . . 22

i



2.6 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 25

I Runtime Adaptation and Fault-Injection 28

3 Runtime Modification of Systems 29

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Background on Execution Environments . . . . . . . . . . . . . . . . . . . 36

3.5 Challenges of Runtime Adaptation via the Execution Environment . . . . . 37

3.6 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Kheiron/CLR: Runtime Adaptation in the Common Language Runtime . . 40

3.7.1 Common Language Runtime Execution Model . . . . . . . . . . . 41

3.7.2 The CLR Profiler and Unmanaged Metadata APIs . . . . . . . . . . 41

3.7.3 Kheiron/CLR Architecture . . . . . . . . . . . . . . . . . . . . . . 42

3.7.4 Model of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7.5 Performing an Adaptation . . . . . . . . . . . . . . . . . . . . . . 47

3.7.6 Forcing Multiple JIT Compilations (re-JITs) . . . . . . . . . . . . 50

3.7.7 Evaluation Part 1: Kheiron/CLR Performance Impact . . . . . . . . 51

3.7.8 Evaluation Part 2: Kheiron/CLR Dynamic Reconfiguration Case

Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Kheiron/JVM: Runtime Adaptation in the Java Virtual Machine . . . . . . 66

3.8.1 Java Virtual Machine Execution Model (Java HotspotVM) . . . . . 67

3.8.2 JVM Profiler and Metadata APIs . . . . . . . . . . . . . . . . . . . 67

3.8.3 Kheiron/JVM Architecture . . . . . . . . . . . . . . . . . . . . . . 68

3.8.4 Model of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8.5 Evaluation Part 1: Kheiron/JVM Performance Impact . . . . . . . . 74

ii



3.8.6 Evaluation Part 2: Kheiron/JVM Web-Application Fault-Injection . 76

3.9 Kheiron/C: Runtime Adaptation of Compiled-C Programs . . . . . . . . . 82

3.9.1 Native Execution Model . . . . . . . . . . . . . . . . . . . . . . . 82

3.9.2 Kheiron/C Model of Operation . . . . . . . . . . . . . . . . . . . . 85

3.9.3 Evaluation Part 1: Kheiron/C Performance Impact . . . . . . . . . 87

3.9.4 Evaluation Part 2: Kheiron/C Injecting Selective Emulation . . . . 88

3.10 Integrity/Consistency-preserving Adaptations . . . . . . . . . . . . . . . . 93

3.11 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.11.1 Runtime Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.11.2 Software Implemented Fault-Injection Tools . . . . . . . . . . . . 98

3.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

II RAS Evaluations via Runtime Adaptation and RAS Modeling 102

4 Evaluating RAS Capabilities 103

4.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Analytical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 Continuous Time Markov Chains (CTMCs) . . . . . . . . . . . . . 106

4.2.2 Markov Reward Networks . . . . . . . . . . . . . . . . . . . . . . 112

4.2.3 Feedback Control Models . . . . . . . . . . . . . . . . . . . . . . 113

4.3 Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.1 Microreboot RAS Model . . . . . . . . . . . . . . . . . . . . . . . 117

4.3.2 Model Analysis – RAS Measures and Metrics . . . . . . . . . . . . 122

4.3.3 Reliability Measures . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3.4 Availability Measures . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3.5 Serviceability Measures . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.6 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

iii



4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5 The 7U-Evaluation Benchmark 139

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 The 7U RAS Benchmarking Methodology . . . . . . . . . . . . . . . . . . 141

5.3 RAS Benchmarking Challenges . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.1 Selecting reasonable or representative faults . . . . . . . . . . . . . 143

5.3.2 Representative Workloads . . . . . . . . . . . . . . . . . . . . . . 145

5.3.3 Reproducibility and Portability . . . . . . . . . . . . . . . . . . . . 146

5.3.4 Metrics and Scoring . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4 Evaluation Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4.1 7U Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4.2 Deployment 1: Resin, MySQL, Linux 2.4.18 . . . . . . . . . . . . 152

5.4.3 Deployment 2: Resin, MySQL, Linux 2.6.20 . . . . . . . . . . . . 158

5.4.4 Deployment Comparisons . . . . . . . . . . . . . . . . . . . . . . 160

5.5 Evaluation Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5.1 7U Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.5.2 VM-Rejuv Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 170

5.6 Evaluation Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.6.1 7U Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.6.2 Evaluating Hardened Network Device Drivers on OpenSolaris . . . 180

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6 Contributions, Future Work and Conclusion 188

6.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.2 Research Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . 189

iv



6.3 Practical Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.4.1 Immediate Future Applications . . . . . . . . . . . . . . . . . . . . 193

6.4.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7 Bibliography 200

A Experience with StackSafe’s Test Center 210

A.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

v



List of Figures

2.1 DASADA system architecture [41] . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Kinesthetics eXtreme (KX) system architecture [88] . . . . . . . . . . . . . 13

3.1 Overview of the CLR execution cycle . . . . . . . . . . . . . . . . . . . . 41

3.2 Kheiron/CLR prototype architecture diagram . . . . . . . . . . . . . . . . 43

3.3 First method invocation in a managed application . . . . . . . . . . . . . . 44

3.4 Preparing a shadow method . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Creating a shadow method . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Kheiron/CLR conceptual diagram of a wrapper . . . . . . . . . . . . . . . 46

3.7 Jump into adaptation engine . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Before epilogue insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 After epilogue insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Locating the prestub and forcing a re-JIT by hand . . . . . . . . . . . . . . 50

3.11 JIT compilation overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.12 Enabling Kheiron/CLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.13 Kheiron/CLR overheads when no repair active . . . . . . . . . . . . . . . . 54

3.14 CLR re-JIT measurements for SciMark2.SOR::execute wrapper . . . . . . 56

3.15 Alchemi architecture – source: User Guide for Alchemi 1.0 [5] . . . . . . . 59

3.16 Kheiron/JVM architecture diagram . . . . . . . . . . . . . . . . . . . . . . 69

3.17 First method invocation in the Java HotspotVM . . . . . . . . . . . . . . . 71

vi



3.18 Preparing and creating a shadow method . . . . . . . . . . . . . . . . . . . 72

3.19 Kheiron/JVM conceptual diagram of a wrapper . . . . . . . . . . . . . . . 73

3.20 Enabling Kheiron/JVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.21 Kheiron/JVM overheads when no repair active . . . . . . . . . . . . . . . . 75

3.22 Enabling application-server instrumentation with Kheiron/JVM . . . . . . . 78

3.23 TPC-W servlet method invocation profile . . . . . . . . . . . . . . . . . . 79

3.24 JVM memory request profile w/o Kheiron/JVM-injected memory leak . . . 80

3.25 JVM memory request profile w/Kheiron/JVM-injected memory leak . . . . 80

3.26 JVM garbage collection events with and without Kheiron/JVM-injected

memory leak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.27 Average servlet method execution times with and without Kheiron/JVM-

injected delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.28 TPCW execute search invocation failures . . . . . . . . . . . . . . . . . . 81

3.29 Injecting configuration faults with Kheiron/JVM . . . . . . . . . . . . . . . 82

3.30 ELF symbol table entry [189] . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.31 Dyninst model of operation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.32 Kheiron/C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.33 Kheiron/C overheads of simple instrumentation . . . . . . . . . . . . . . . 88

3.34 Selective emulation in action . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.35 Inserting STEM via source code . . . . . . . . . . . . . . . . . . . . . . . 90

3.36 Selective emulation via Kheiron/C + Dyninst . . . . . . . . . . . . . . . . 93

4.1 Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Block diagram of feedforward control [90] . . . . . . . . . . . . . . . . . . 114

4.3 Block diagram of a feedback control system [90] . . . . . . . . . . . . . . 114

4.4 RAS model for a microrebootable application server . . . . . . . . . . . . 120

4.5 Microreboot Recovery Manager feedback control diagram . . . . . . . . . 134

vii



5.1 Failure scenario scoring RAS model . . . . . . . . . . . . . . . . . . . . . 151

5.2 Client interactions – Configuration B . . . . . . . . . . . . . . . . . . . . . 153

5.3 Client-side interaction trace - Configuration B . . . . . . . . . . . . . . . . 154

5.4 Simple RAS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.5 RAS model of a system with imperfect repair . . . . . . . . . . . . . . . . 156

5.6 Availability – Configuration D . . . . . . . . . . . . . . . . . . . . . . . . 157

5.7 Complete RAS-model – Configuration E . . . . . . . . . . . . . . . . . . . 157

5.8 Availability – Configuration E . . . . . . . . . . . . . . . . . . . . . . . . 158

5.9 Preventative maintenance RAS-model . . . . . . . . . . . . . . . . . . . . 161

5.10 Expected impact of preventative maintenance . . . . . . . . . . . . . . . . 163

5.11 VM-Rejuv framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.12 VM-Rejuv deployment1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.13 VM-Rejuv RAS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.14 VM-Rejuv configuration2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.15 VM-Rejuv baseline throughput sample . . . . . . . . . . . . . . . . . . . . 172

5.16 VM-Rejuv baseline response time sample . . . . . . . . . . . . . . . . . . 172

5.17 VM-Rejuv VM failover time . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.18 VM-Rejuv rejuvenation window size (50 clients) . . . . . . . . . . . . . . 173

5.19 Tomcat resource exhaustion trace . . . . . . . . . . . . . . . . . . . . . . . 174

5.20 Hardened device driver RAS model . . . . . . . . . . . . . . . . . . . . . 179

A.1 StackSafe Test Center – source Improve Business Uptime and Resiliency

through a New Model for Software Infrastructure Testing by IT Operations

[81] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.2 Test Center: VM-Rejuv baseline throughput sample . . . . . . . . . . . . . 213

A.3 Test Center: VM-Rejuv baseline response time sample . . . . . . . . . . . 213

viii



List of Tables

3.1 Kheiron/CLR overheads on SCIMark when no repair active . . . . . . . . . 53

3.2 Kheiron/CLR overheads on Linpack when no repair active . . . . . . . . . 53

3.3 Kheiron/CLR overheads of preparing shadows . . . . . . . . . . . . . . . . 55

3.4 Kheiron/CLR overheads of creating shadows . . . . . . . . . . . . . . . . 55

3.5 Execution overheads on SciMark2.SOR::execute . . . . . . . . . . . . . . 56

3.6 CLR re-JIT measurements for SciMark2.SOR::execute wrapper . . . . . . 57

3.7 Reconfiguration engine API . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 PiCalculator.exe job completion times . . . . . . . . . . . . . . . . . . . . 65

3.9 Kheiron/JVM overheads on SCIMark when no repair active . . . . . . . . . 74

3.10 Kheiron/JVM overheads on Linpack when no repair active . . . . . . . . . 75

3.11 Kheiron/JVM web-application stack fault-model . . . . . . . . . . . . . . 77

3.12 Execution environment facilities . . . . . . . . . . . . . . . . . . . . . . . 100

4.1 RAS model parameters for a microrebootable application server . . . . . . 121

4.2 Microrebootable application server RAS model failure scenario parameters 122

4.3 Microreboot RAS model steady-state probabilities . . . . . . . . . . . . . . 123

4.4 Failure escalation incidents per day . . . . . . . . . . . . . . . . . . . . . . 124

4.5 Expected downtime penalties using Microreboots . . . . . . . . . . . . . . 133

4.6 Summary of Microreboot RAS model analysis results . . . . . . . . . . . . 135

5.1 RAS-Model Parameters – Configuration B . . . . . . . . . . . . . . . . . . 155

ix



5.2 Expected SLA penalties for Configuration B . . . . . . . . . . . . . . . . . 155

5.3 RAS model parameters – Configuration C . . . . . . . . . . . . . . . . . . 156

5.4 RAS model Parameters – Configuration D . . . . . . . . . . . . . . . . . . 156

5.5 TPC-W Deployment 1 and Deployment 2 Results . . . . . . . . . . . . . . 160

5.6 Preventative maintenance model parameters . . . . . . . . . . . . . . . . . 162

5.7 VM-Rejuv RAS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.8 VM-Rejuv subjected to memory leaks . . . . . . . . . . . . . . . . . . . . 174

5.9 VM-Rejuv steady state probabilities – memleak scenario . . . . . . . . . . 174

5.10 Summary of VM-Rejuv RAS model analysis results . . . . . . . . . . . . . 176

5.11 Hardened bge device driver steady-state probabilities . . . . . . . . . . . . 183

5.12 Summary of hardened bge driver RAS model analysis results . . . . . . . . 183

A.1 Test Center: VM-Rejuv subjected to memory leaks . . . . . . . . . . . . . 214

A.2 Test Center: VM-Rejuv steady state probabilities – memleak scenario . . . 214

A.3 Test Center: Summary of VM-Rejuv RAS model analysis results . . . . . . 215

x



Acknowledgments

First and foremost I would like to thank my advisor, Gail Kaiser, for all her support, and

guidance throughout my graduate school career. Without her efforts, advice and willingness

to go to the ends of the earth for her students, completing the Ph.D. would not have been

possible. It was a pleasure being a member of the Programming Systems Lab (PSL) and

working under Gail’s direction. I would also like to acknowledge my colleagues in PSL for

their support: Phil Gross, Hila Becker, Chris Murphy, Swapneel Sheth and Leon Wu. I have

to specially thank Phil Gross, who brought me into the lab and convinced Gail to take me on

as a Masters project-student during my first semester at Columbia.

I thank my secondary advisor, Angelos Keromytis and my thesis committee (Jason Nieh,

Vishal Misra, David Waltz and Carolyn Turbyfill) for their involvement and insightful

feedback on this research. I would specially like to acknowledge Carolyn for being one of

the nicest people that I have ever had the pleasure to meet and work for. Her commitment to

making sure that the people who work with/for her are well taken care of is outstanding.

Conducting the research work in this thesis involved a number of colleagues and led to

many interesting collaborations and discussions. As a result I would like to thank Joseph

L. Hellerstein (IBM/Microsoft), Prof. Michael Swift (formerly a member of the Nooks

research project at the University of Washington, now a faculty member at the University

of Wisconsin-Madison), Drew Bernat and Matthew Legendre (Paradyn/Dyninst project,

University of Wisconsin-Madison), Dr. Kishor Trivedi (SHARPE project, Duke University),

xi



Javier Alonso López (Universitat Politècnica de Catalunya, Barcelona), Matti Hiltunen

(AT&T Research), Gavin Maltby, Dong Tang, Cynthia McGuire, Michael W. Shapiro,

Fauzia Saeed, and Sridhar Yedunuthula (all of Sun Microsystems), Andrew Gross, Loren

Burnett, Joe Pendry, Letitia Larry, Dennis Powell, John Clemens, and Jude Nagurney (all

of StackSafe Inc.) for their contributions, which improved the quality and content of this

thesis.

It would be remiss of me not to acknowledge the members of the administrative staff in

the Computer Science department at Columbia University for their contributions, which

made things run smoothly throughout this process. As such I would like to thank Genevive

Goubourn, Patricia Hervey (who skillfully resolved any and all issues related to financial

matters), Twinkle Edwards, Alice Cueba, Lily Secora, Remi Moss and Susan Tritto for all

their help.

Placing the blame squarely where it should go, I would like to thank Dr. Brian Glen Patrick

(formerly a lecturer at the University of the West Indies - Cave Hill Campus, now a faculty

member at Trent University, Ontario Canada) for encouraging me to go on to graduate

school, helping me prepare for the transition from UWI to Columbia and for being an

endless source of advice throughout the years.

I would like to acknowledge some of the funding sources that made this journey possible.

The Programming Systems Laboratory is funded in part by NSF grants CNS-0627473, CNS-

0426623 and EIA-0202063, NIH grant 1U54CA121852-01A1, and Consolidated Edison

Company of New York. The work in this thesis was supported in part by an IBM Ph.D.

fellowship and equipment donations from Sun Microsystems and StackSafe Inc.

Finally I would like to thank my circle of family and friends, including my mother, father,

brother and aunt (Judith) for their tireless support and encouragement (especially towards

the end when I needed it the most); Tawana for her infinite patience and ability to convince

me to take a break; Gayle Alleyne for her unending support and constant cheerleading;

xii



Mrs. Pauline Holder for keeping the faith; my “brothers” at Icon Studios Inc. (Barbados),

Andrew Jemmott and Anton Shepherd, who keep pushing me to do better; the parishioners

of St. Patrick’s Anglican Church (Ch. Ch. Barbados) who have been behind me even

before I ventured off to graduate school; and the collection of friends who helped keep my

spirits high over the years, including: Gaurav Kc, Alpa Jain, Dan Phung, Jamika Burge,

Corrie Small, Marquez Griffin, Cheryl A. Linton, Karen “FM” Alleyne, Janelle Bryan,

Cindy Cobham, Doreen King, Camille Ashby, Rodney Bryan, Ramon Brathwaite, Randy

Brathwaite, Brian Hoyte and Wade Catlyn.

xiii



Dedicated to my grandparents

Evelyn, Joseph, Gertrude and Gordon

who saw me start this process and watched over me

from above while I finished.

R.I.P.

xiv



Chapter 1

Introduction

Measuring a system’s performance is the most well-understood approach to evaluating

and comparing computing systems. Researchers routinely use traditional performance

benchmarks produced by organizations including the National Institute of Science and

Technology (NIST) [140], the Standard Performance Evaluation Corporation (SPEC R©)

[177] and the Transaction Processing and Performance Council (TPC) [190], to demonstrate

the feasibility of some experimental system prototype. However, there are a number of other

demands placed on computing systems besides being fast.

Recent renewed interest, [40, 79, 100, 102, 113], in realizing computing systems that meet

additional non-functional requirements such as reliability, high availability and ease-of-

management/self-management (also referred to as serviceability) has fueled research efforts

into enhancing the reliability, availability and serviceability (RAS) capabilities of exist-

ing/legacy systems as well as next-generation self-managing, self-configuring, self-healing,

self-optimizing and self-protecting systems (collectively referred to as self-* systems).

A common desired characteristic of these systems is that they collect, analyze and act on

information about their own operation and changes to their environment while meeting

their functional requirements. Whereas instrumenting systems, collecting, analyzing and

1



CHAPTER 1. INTRODUCTION 2

acting on behavioral and environmental data potentially impact the performance of a system

by diverting processing cycles away from meeting functional requirements, these diverted

cycles are used by mechanisms concerned with improving the RAS capabilities of the system

by effecting a feedback/monitoring loop around it.

To reason about tradeoffs between RAS-enhancing mechanisms or to evaluate these mech-

anisms and their impact we need something other than performance metrics. Whereas

performance metrics are suitable for studying the feasibility of having RAS-enhancing

mechanisms activated, i.e., to demonstrate that the system provides “acceptable” perfor-

mance with these mechanisms enabled, the resulting performance numbers convey little

about the efficacy of the mechanisms.

Performance measures do not allow us to analyze the expected or actual impact (beyond

system overheads) of individual or combined mechanisms on the system’s operation. They

are inadequate for comparing the efficacy of individual or combined RAS-enhancing mecha-

nisms, discussing tradeoffs between mechanisms, evaluating different styles of mechanisms

(reactive vs. preventative vs. proactive) or reasoning about the composition of multiple

mechanisms. In essence, performance metrics limit the scope and depth of analysis that

can be performed on systems possessing (or considering the inclusion of) RAS-enhancing

mechanisms.

Reasoning about the RAS capabilities of the systems of today or the self-* systems of

tomorrow also involves addressing three evaluation-related challenges. First, developing (or

identifying) practical fault-injection tools that can be used to study the failure behavior of

computing systems and exercise any (remediation) mechanisms the system has available

for mitigating or resolving problems. Second, identifying techniques that can be used to

quantify RAS deficiencies in computing systems and reason about the efficacy of individual

or combined RAS-enhancing mechanisms (at design-time or after system deployment).

Third, developing an evaluation methodology that can be used to objectively compare



CHAPTER 1. INTRODUCTION 3

systems based on the (expected or actual) benefits of RAS-enhancing mechanisms.

This thesis addresses these three challenges by introducing the 7U Evaluation Methodology,

a complementary approach to traditional performance-centric evaluations that identifies crite-

ria for comparing and analyzing existing (or yet-to-be-added) RAS-enhancing mechanisms,

is able to evaluate and reason about combinations of mechanisms, exposes under-performing

mechanisms and highlights the lack of mechanisms in a rigorous, objective and quantitative

manner.

Under the 7U approach, non-functional requirements concerned with reliability, high avail-

ability, and serviceability represent additional high-level goals the system is expected to

meet. In this thesis, we demonstrate how these goals can be codified as augmentations

or additions to the existing policies, service level agreements (SLAs) and service level

objectives (SLOs) that govern the system’s operation. In developing our methodology we

demonstrate techniques that can be used to identify and quantify these goals as well as

measure whether they are being met or exceeded.

1.1 Definitions

This section formalizes some of the terms used throughout this thesis.

• An error is the deviation of system external state from correct service state [107].

Approaches to defining and detecting such deviations include, but are not limited

to: monitoring violations of service level agreements (SLAs), quantifying system

degradation, self-checking software approaches [157], the use of functional redun-

dancy, e.g., Recovery Blocks [152] or computational redundancy, e.g., N-Version

programming [7].

• A fault is the adjudged or hypothesized cause of an error [107].



CHAPTER 1. INTRODUCTION 4

• The fault hypothesis/fault model is the set of faults a system is expected to be able

to respond to with a reactive, proactive or preventative action [102]. This fault-model

may include all plausible faults that can affect the system, regardless of whether an

explicit remediation/system-response is available.

• Remediation is the process of trying to correct a fault. In this thesis, remediation

spans the activities of detection, diagnosis and repair since the first step in responding

to a fault is detection [102].

• A failure is an event that occurs when the delivered service violates an environmen-

tal/contextual constraint, e.g., a policy or SLA. This definition allows us to consider

multiple perspectives when discussing failures including, but not limited to, that of

the end-user [16] or system operator/administrator.

• Reliability is a function of the number (or frequency) of end-user interruptions1.

• Availability is a function of the rate of failure/maintenance events and the speed of

recovery [89].

• Serviceability is a function of the frequency and success of servicing and/or adminis-

trative activities addressing failures.

1.2 Problem statement

Performance metrics and performance-oriented benchmarks are not the most effective way

to evaluate systems given the extra-functional demands concerning reliability, availability

and serviceability placed on them. What is required is an evaluation methodology that

allows us to go beyond drawing conclusions about the feasibility of using a system with its

RAS-enhancing mechanisms enabled and instead directly addresses the issue of quantifying

1Reliability may be interpreted as the inverse of the frequency of end-user interruptions.



CHAPTER 1. INTRODUCTION 5

the expected or actual benefits of these RAS-enhancing mechanisms.

1.3 Requirements

There are a number of elements needed to effectively solve the problem:

1. Fault-injection techniques that facilitate “in-situ” and “in-vivo” interactions with

computing systems. “In-situ” interactions (in principle2) allow us to study the failure-

behavior of a computing system in its deployed environment while “in-vivo” interac-

tions allow us to inject faults into running systems. Both techniques offer advantages

for studying the failure-behavior of computing systems.

Studying the failure-behavior of computing systems is a non-trivial task. Reproduc-

ing or replicating problems in computing systems may require interacting with the

system in its production/deployed environment rather than in a replicated staging

area/cleanroom since faults may manifest themselves due to unanticipated interactions

between the system of interest and elements (e.g., other software systems) in its envi-

ronment. Further, depending on the scale and/or complexity of the system, replicating

the deployment environment can be a difficult task. Fault-injection tools that can be

used “in-situ” would allow us to study the system directly in its current deployment,

thereby removing the need for replicating the entire production environment.

“In-vivo” interactions with computing systems allow us to perform operations on

them while they execute. The ability to interact with computing systems in execu-

tion gives us a flexible tool that can be used to collect detailed information directly

from the internals of a system and make fine-grained modifications to the system

2Prudence and/or organizational policies may limit or restrict conducting fault-injection experiments on
systems being used by other members of the organization/business. Organizational restrictions on interacting
with “live” production systems do not preclude us from using system mirroring and traffic/request replay
techniques to create an environment suitable for in-situ studies.



CHAPTER 1. INTRODUCTION 6

from the inside [64]. A few examples of “in-vivo” interactions include, but are

not limited to: dynamically connecting to/disconnecting from running systems, in-

serting/modifying/removing instrumentation from running systems and performing

fine-grained adaptations in running systems [63], e.g., inducing failures.

An additional benefit of “in-situ” and “in-vivo” interactions is that neither requires

that source code be available. The ability to interact with computing systems without

requiring access to source code has implications for working with legacy and contem-

porary software systems where source code may not be readily accessible. Whereas

we desire tools that can work without requiring access to the source code, access to

the source code, however, may enhance our understanding of how the system operates

and provide insights into how to perform “safe” adaptations of running systems, see

§3.7.8 for an example and §3.10 for more discussion.

Fault-injection techniques that leverage these in-situ and in-vivo interaction capabili-

ties can be used to build tools that can target specific components or subsystems in

computing systems, inject faults into them while the system is running and collect

data on the system’s responses.

2. Fault-injection tools that exercise the RAS mechanisms available by inducing/injecting

reasonable (or representative) faults for the system to be evaluated. Whereas there is

no shortage of fault-injection tools – example tools include: [77, 112, 68, 99, 95, 70,

165, 116, 172, 123] – the utility of using a specific fault-injection tool in conducting a

RAS evaluation depends on the fault-model under consideration and the granularity

of the faults that can be injected using the tool. The granularity of the faults in the

fault-model must match the granularity of the faults injected by the tool and the

semantics of the target system’s operation.

Possible mismatches between the granularity of the faults in the fault-model and

the faults that can be injected by the fault-injection tools available prevent us from



CHAPTER 1. INTRODUCTION 7

appropriately exercising (and studying) the existing RAS-enhancing mechanisms.

Further, we may not be able to adequately identify all the RAS deficiencies under the

fault-model being considered using these tools since these tools may not trigger/induce

the failures that we wish to study. For example, whereas tools like FIST [68] and

MARS [99] induce bit flips in chips (e.g. processor or memory) by exposing them to

heavy-ion radiation it is not clear whether the bit-flips caused would have a specific

(targeted) effect on a given workload such that perturbations to the workload could be

detected and compensated for by some RAS mechanism.

When conducting a RAS evaluation of a computing system, the evaluation-process

is guided by the fault-model/fault-hypothesis, which codifies the reasonable and/or

representative faults of interest. Each fault in the fault-model is associated with

an existing (or yet-to-be-added) RAS-enhancing mechanism; as a result, each fault

injected by a fault-injection tool should either exercise an existing RAS-enhancing

mechanisms or cause a system-response that highlights a RAS deficiency (under the

current fault-model) that could be addressed by a yet-to-be-added mechanism.

3. Analysis techniques that can be used to quantify (at design-time and post-deployment

time) the impact of the faults under consideration as well as the actual or expected

impact/benefit of RAS-enhancing mechanisms. The analytical techniques we employ

should allow us to identify RAS deficiencies or under-performing RAS mechanisms.

Further, they should facilitate the study of individual or combined mechanisms as

well as accommodate the analysis of different styles of mechanisms (e.g., reactive,

proactive and preventative).

To evaluate and compare the RAS capabilities of computing systems we need to

be able to quantify the impact of faults in terms of reliability, availability and/or

serviceability metrics. Quantifying fault-impacts in terms of RAS metrics involves

identifying and measuring the facets of reliability, availability and serviceability that



CHAPTER 1. INTRODUCTION 8

vary when faults occur.

Fortunately, there are many facets of reliability, availability and serviceability that

can be used, and have been used in the past, to quantify fault-impacts including, but

not limited to: frequency of service interruptions or outages, yearly downtime and

its associated “costs” (time and money spent on restoring complete or partial service,

time and money lost due to system unavailability, end-user downtime, etc.), meantime

to system breakdown, the number of servicing visits, the frequency of servicing visits,

the ability to meet SLA targets, the ability to meet production targets, the ability to

avoid or mitigate production slowdowns and system stability.

Further, there are a number of analytical tools/approaches, which have been used in

other engineering disciplines, that we can use to inform our analyses. Probability

Theory, Queuing Theory, Stochastic Petri Nets, Markov Chains and Markov Reward

Networks have been used in Computer Engineering and Computer Science to study the

Reliability and Availability properties of specific hardware and/or software systems

[101, 69]. Techniques from Control Theory – used to study the behavior of dynamic

systems – have found applications in Mechanical Engineering and more recently

Computer Science [90] where the regulation of one or more system objectives is

required.

4. An Evaluation Methodology that allows us to analyze the details of RAS-enhancing

mechanisms (the micro-view) in the context of the high-level goals governing the

system’s operation (the macro-view).

Establishing a link between the details of the mechanisms and their expected or actual

impact on high-level goals allows us to reason about the benefits of existing RAS

mechanisms or the necessity of additional mechanisms. Further, it informs discussions

about the suitability of system objectives concerned with (or affected by) reliability,

availability and serviceability issues.



CHAPTER 1. INTRODUCTION 9

1.4 Hypotheses

This thesis investigates three hypotheses for enabling the RAS evaluation of software

systems:

1. Runtime adaptation provides a platform for implementing efficient and flexible fault-

injection tools capable of “in-situ” and “in-vivo” interactions with computing systems.

2. Mathematical models such as Markov chains, Markov reward networks and Control

theory models can successfully be used to create simple, reusable templates for

describing specific failure scenarios and scoring the system’s responses, i.e., studying

the failure-behavior of systems, and the various facets of its remediation mechanisms

and their (actual or expected) impact on system operation.

3. RAS models and experiments using flexible fault-injection tools can be used together

to develop a RAS benchmarking methodology for computing systems. This combina-

tion provides practical advantages over existing purely model-based (e.g. [97, 182]),

purely measurement-based (e.g. [37, 191, 17]) or simulation-based evaluation ap-

proaches (e.g. [50, 187]).

1.5 Thesis outline

The rest of this thesis is organized as follows:

• Chapter 2 describes the origins of this thesis, the motivations behind it and briefly

summarizes its contributions.

• Chapter 3 presents techniques for enabling a range of runtime adaptations in software

applications running in a variety of managed and unmanaged execution environments.

The latter part of this chapter presents and evaluates Kheiron, a suite of runtime



CHAPTER 1. INTRODUCTION 10

adaptation tools for .NET, Java and compiled-C applications.

• Chapter 4 identifies analytical tools used to evaluate facets of reliability, availability

and serviceability.

• Chapter 5 outlines the considerations of traditional and non-traditional benchmarks

for software systems, develops the ideas leading to a discussion of the 7U-Evaluation

Methodology and compares the 7U to other evaluation approaches. The latter part of

the chapter describes experiments and presents results from conducting 7U-evaluations

on a number of target systems.

• Chapter 6 summarizes the contributions of the thesis, presents its conclusions and

discusses the possibilities for future work.



Chapter 2

Motivation

The research leading to the development of a Reliability, Availability and Serviceability

(RAS) evaluation methodology had its origins in work on on-the-fly system reconfiguration

and retro-fitting self-management (specifically monitoring, pattern/event analysis, repair and

reconfiguration) capabilities onto existing systems, conducted under the DARPA Dynamic

Assembly for Systems, Adaptability, Dependability and Assurance (DASADA) program

[40].

2.1 DASADA Overview

The DASADA program was concerned with tackling the problem of system complexity

and manageability through the identification of technologies that would allow systems to

gauge their own health and rapidly integrate new heterogeneous, common-off-the shelf

(COTS) components or reconfigure existing components while in operation – Continual

Validation and Co-ordination. The focus of the program was on systems-of-systems and

the technologies developed were expected to deal with heterogeneous systems/components

and internet-scale systems [41]. A reference architecture for the realization of the DASADA

11



CHAPTER 2. MOTIVATION 12

project is shown in Figure 2.1.

Figure 2.1: DASADA system architecture [41]

At a high-level, technologies devised to meet the requirements of DASADA revolved around

the concepts of events, probes, gauges, models, controllers and effectors.

Events are the units of information communication and represent system activities of vary-

ing granularities, from low-level resource readings to high-level component or system

interactions. Probes collect primitive data from the target system and send this information

to gauges in the form of events. Gauges aggregate, filter and interpret probe data based on

information contained in models of the system under consideration. Models codify proper-

ties of the target system. These properties may include, but are not limited to, structural,

behavioral and domain considerations. Controllers use gauge-output and system models to

decide which reconfigurations/adaptations need to be performed. Effectors/actuators are

responsible for carrying out adaptations on the target system and its components.

One of the consortiums 1 of researchers collaborating under DASADA produced technologies

used in Kinesthetics eXtreme (KX pronounced “kicks”) our implementation of the DASADA

1This consortium included: Teknowledge, BBN, CMU, WPI, OBJS, UMass and Columbia University.



CHAPTER 2. MOTIVATION 13

reference architecture [93].

Figure 2.2: Kinesthetics eXtreme (KX) system architecture [88]

2.2 Kinesthetics eXtreme (KX)

KX is a platform for retro-fitting self-managing (i.e., monitoring, reconfiguration or re-

pair) capabilities onto systems. It provides a framework for collecting and interpreting

application-specific behavioral and performance data at runtime from a variety of systems

and components. In its deployment, KX monitors, analyzes, reconfigures and/or repairs

applications guided by models of application-level semantics, protocols and performance

requirements [93]. These models express expected correct behaviors of the system and may

be used to anticipate and address error situations. KX also includes a software feedback-

control loop that plans, coordinates and automatically handles contingencies arising from

reconfiguration or repair activities.

KX is an example of a generic, externalized adaptation platform (see Figure 2.2). It

provides a general platform for monitoring and reconfiguring software systems. In order to



CHAPTER 2. MOTIVATION 14

manage/interact with a variety of target systems, KX does not formally mandate specific

probe, gauge, modeling, controller or effector technologies, rather it is able to loosely couple

disparate implementations via semi-structured event formats and a content-based-routing,

publish-subscribe communications substrate, such as Siena [26] 2, Elvin [167] 3 or Gryphon

[12] 4, which facilitates the routing of probe data to interested gauges and controllers 5.

An important goal for KX is to be able to monitor and adapt existing/legacy systems 6. How-

ever, there is a major practical issue that needs to be addressed. Whereas gauges, controllers

and models can be generic, and possibly reusable across different target systems, probes

and effectors may be more tightly coupled to the target system, its components/sub-systems

and/or its environment. As a result, the degree to which KX can remain completely exter-

nalized (separate) from the system being managed (monitored and/or adapted at runtime)

depends heavily on the probe and effector technologies it employs.

2.2.1 Probing Technologies used in KX

In the past, KX has employed a number of different probing solutions developed by others,

each with their relative strengths and weaknesses:

• AIDE, the Active Interface Development Environment [74], developed by Worcester

Polytechnic Institute (WPI), was created to enable the use of Active Interfaces [73]

to adapt Java classes. Components built with active interfaces support two separate

interfaces – one interface representing its functionality and the other representing

adaptation facilities. Application builders can use the adaptation interface to associate

2Siena was developed at the University of Colorado at Boulder.
3Elvin was developed at the University of Queensland, Australia.
4Gryphon was developed at IBM Research.
5Early versions of KX have used both Siena and Elvin for communications.
6The term legacy here considers a) systems where the source code may not be available or easily accessible

and b) systems that were not constructed with all/any of the self-management capabilities that could be
beneficial



CHAPTER 2. MOTIVATION 15

callbacks with the before and/or after invocation phases of a component’s methods7.

The AIDE compiler takes the source code of a Java class and inserts hooks before and

after each phase of a method [58]. As implied from the description, AIDE is limited

to the insertion of probes in Java applications. Further, probe-insertion requires access

to the source-code of the target system.

• ProbeMeister, developed by Object Services and Consulting Inc. (OBJs), used an

early implementation of the Java Debug Interface (JDI) – released as part of Sun

Microsystems’ JDK 1.4 [131] – to deploy probes into (local or) remotely running

Java software [146]. The JDI is part of the Java Platform Debugger Architecture

(JPDA) [130], and it (the JDI) defines a high-level Java Language interface which tool

developers can use to write remote debugger applications. ProbeMeister instruments

Java bytecode and uses the HotSwap Class File Replacement feature available in the

v1.4.x Java Virtual Machine (JVM) [131] to dynamically replace an existing class

with an instrumented one. Whereas ProbeMeister does not need access to the source

code of the application being modified, the JVM where it is hosted needs to run

with debugging services enabled. For example, to invoke methods on remote objects,

ProbeMeister needs to cause a breakpoint in the remote application. However, running

a Java application under a debugger can impose a non-negligible performance penalty.

• Mediating Connectors, developed by Teknowledge, is a technology for mediating

all shared library calls [11] using wrappers and as a result operate in the environment

surrounding a target application – the operating system (specifically the Windows

operating system). Mediators can instrument interfaces, monitor interactions, inte-

grate components together or sandbox potentially harmful or unreliable components.

Whereas Teknowledge’s approach is theoretically applicable to programs running

on other operating systems that package functionality in shared libraries (modulo

7This is similar to the “before-method” and “after-method” advice concepts in Aspect Oriented Program-
ming (AOP) [61].



CHAPTER 2. MOTIVATION 16

idiosyncrasies of executable linking, program startup, library loading and process

creation in Unix-based operating systems and in other members of the Windows

family of operating systems), in practice, an implementation was only provided for

programs running under Windows NT and porting to other operating systems was

considered non-trivial.

2.2.2 Effector Technologies used in KX

KX also experimented with different effector technologies:

• Worklets [193], mobile agent technology, was used as the primary effector technology

in KX. Worklets were originally developed as “...rehostable lightweight mobile agents

for on-the-fly process construction, adaptation and evolution, system reconfiguration,

and knowledge propagation” [92]. They can be transmitted from host to host along a

pre-determined or dynamically determined route based on changes in a host and/or

the host’s environment. In KX, Worklets carry self-contained mobile code (JPython

or Java) that can adapt (reconfigure) local target components based on the state of

the component(s) and the capabilities of the worklet. Worklet interaction with the

target system is mediated by service access modules (SAMs), which translate the

internal configuration capabilities exposed by the host into terminology meaningful

to the worklet. Whereas the movement of Worklets going from one host to another

performing reconfigurations can be used to effect a flexible micro-workflow of co-

ordinated reconfiguration activities, at each hop, the configuration actions that a

Worklet can perform are limited by the configuration “knobs”/capabilities exposed by

the target system or component.

• JMX, Java Management Extensions, provide a standard way of managing and mon-

itoring local and/or remote resources, e.g., applications, devices, services and net-

works [133]. Each resource is instrumented with Java objects called ManagedBeans



CHAPTER 2. MOTIVATION 17

(MBeans). One or more MBean codifies the monitoring and/or management inter-

face exposed by a resource. [193] details a case study involving the combination of

Worklets and JMX to effect the monitoring and reconfiguration of distributed soft-

ware systems. Whereas MBeans can provide a uniform way to monitor and manage

resources, they must either be embedded at the source level (for Java applications

only), or they must interact with Java-based and non-Java-based resources via their

existing/accessible configuration “knobs”.

2.3 Short-term Research Objectives after KX

For a completely externalized approach to the dynamic adaptation of systems, KX relies

on the judicious placement of probes in or around the target system and the exposure of

appropriate configuration “knobs” by the target system for effecting reconfigurations and

adaptations.

Experience with the probe and effector implementations used in the KX case studies [94, 88,

93, 192] during and after DASADA support this assessment of KX and highlight a number of

limitations to retrofitting self-management capabilities (monitoring, reconfiguration and/or

repair) onto existing/legacy systems using an externalized adaptation engine including, but

not limited to:

• The extent to which monitoring, reconfiguration or repair activities could be carried out

on an existing/legacy system was largely determined by the built-in instrumentation,

reconfiguration or repair facilities exposed for external manipulation. For systems

or components lacking these facilities, probes were limited to being placed in the

environs of the target, e.g., monitoring the resource utilization of a process [192] or

monitoring network activity. Similarly, effectors were limited to relatively coarse-

grained reconfiguration or repair activities, e.g., editing a configuration file and/or



CHAPTER 2. MOTIVATION 18

restarting a process [94].

• Limited ability to embed or modify monitoring, configuration or repair mechanisms

in existing/legacy systems without recompiling and/or relinking the target application.

ProbeMeister [146] supports the ability to embed new probes into Java applications

only.

• Limited ability to remove instrumentation from existing/legacy systems without

recompiling and/or relinking the target application.

• Limited ability to effect fine-grained repairs or reconfigurations in target systems, e.g.,

targeted interactions with individual components vs. interactions with the aggregat-

ing/composed application.

To address these limitations we identified four short-term research objectives for improving

the probe and effector technologies used to retrofit self-management capabilities onto

existing/legacy systems:

1. Develop techniques that support the dynamic insertion, modification and/or removal

of monitoring, reconfiguration and/or repair facilities, without requiring recompilation

or relinking of the target system/component - i.e., access to the source code should

not be a requirement.

2. Develop tools and techniques that are able to interact with systems/components written

in multiple programming languages and running on different operating systems.

3. Develop tools and techniques that are transparent to the target systems/components

being adapted.

4. Develop tools and techniques that are able to perform fine-grained dynamic adaptations

in existing/legacy systems.



CHAPTER 2. MOTIVATION 19

2.4 Long-term Research Objectives

Our work towards retro-fitting self-management capabilities onto existing/legacy systems

presented an interesting set of evaluation challenges. Specifically, to evaluate a self-

managing system realized via retro-fitting we must consider:

1. The kinds of self-management capabilities that can be retro-fitted.

2. The approaches and technologies used to retro-fit self-management.

3. The impact of these technologies on specific functional characteristics of the system.

4. The efficacy of the self-management capabilities added to the system, i.e., the impact

of these capabilities on specific non-functional characteristics of the system.

For practical reasons however, these challenges need to be refined. The challenges (as stated

above) are overly broad – with respect to the self-management capabilities to be evaluated

– and overly restrictive with respect to the class of systems considered – self-managing

systems realized via retro-fitting.

2.4.1 Scoping the Self-Management Capabilities to be Evaluated

Under DASADA – DARPA’s initiative to tackle system complexity and manageability

issues – the term self-management was related to the identified principles of Continual

Validation and Co-ordination: system monitoring, modeling, dynamic repair and dynamic

reconfiguration. However, post-DASADA, the notion of self-management took on a broader

context with the advent of Autonomic Computing in 2001 [79].

Autonomic Computing is IBM’s proposal for addressing issues of system automation and

system complexity. [79] identifies eight key elements (properties) of autonomic systems,

which can be used to classify systems into one (or more) of four distinct classes – self-

configuring systems, self-healing systems, self-optimizing systems and self-protecting



CHAPTER 2. MOTIVATION 20

systems 8.

The following definitions for the four classes of self-* systems are adapted from [100]:

• Self-Configuring systems configure themselves automatically in accordance with

high-level policies – representing business-level objectives. When a component is

introduced, it will automatically learn about and take into consideration the composi-

tion and configuration of the system and incorporate itself seamlessly, while the rest

of the system adapts to its presence.

• Self-Healing systems detect, diagnose, and repair localized hardware and software

problems.

• Self-Optimizing systems continually seek ways to improve their operation, identifying

and seizing opportunities to make themselves more efficient in performance or cost.

• Self-Protecting systems will defend the system as a whole against large-scale, corre-

lated problems arising from malicious attacks.

In Autonomic Computing, the goal of self-management “...is to free system administrators

from the details of system operation and maintenance...” [100]. As a result, this contem-

porary definition of self-management encompasses all four aspects of self-configuration,

self-healing, self-optimization and self-protection.

Evaluating self-management capabilities of systems considering all four sub-areas (self-

configuration, self-healing, self-optimization and self-protection) is a non-trivial task. As a

result, the first step in refining the evaluation challenges outlined at the beginning of Section

2.4 is to focus on one of the four sub-areas of self-management.

Our past experience with effecting dynamic reconfigurations and repairs in systems (via

KX) provided a suitable foundation for exploring the area of Self-Healing systems. Further,

our short term research goals (Section 2.3) of developing more flexible, dynamic probe and

8Each system-class maps to a distinct research sub-area in Autonomic Computing.



CHAPTER 2. MOTIVATION 21

effector technologies align nicely with the proposed core sub-areas of self-healing systems

research – problem detection, diagnosis and repair.

2.4.2 Expanding the Classes of Systems to be Evaluated

Whereas focusing on the evaluation of self-managing (later refined to self-healing) systems

realized via retrofit is specific to evaluating systems enhanced by frameworks like KX, this

focus is unnecessarily restrictive for a number of reasons.

First, whether self-healing systems are realized via retrofit or via design, the approaches

and techniques used to evaluate the efficacy of their self-healing capabilities are expected

to be similar (if not identical) while evaluation approaches and tools concerned with the

enabling technologies (runtime retro-fitting tools and technologies vs. design-time tools and

technologies) are expected to differ, resulting in a multi-part evaluation process. Therefore,

the first step in expanding the classes of systems to be evaluated is to consider self-healing

systems regardless of whether they are realized by retrofit or by design.

Second, challenges associated with finding systems, which exhibit all the desired charac-

teristics of self-healing systems, to evaluate or compare against. With a nascent research

area such as autonomic computing, it will take some time for a) fully self-healing systems

to appear, and b) researchers to determine whether any properties of existing systems can

be mapped to the desiderata of self-healing systems [102]. The second step in expanding

the classes of systems to be evaluated is to consider partially self-healing systems and/or

existing systems re-classified as self-healing systems.

Further, an additional implication of a dearth of self-healing systems, is that the classes of

systems to be evaluated may also be expanded to consider non-self-healing systems in order

to facilitate comparisons between a non-self-healing/”vanilla” version of a system, S vanilla,

with its self-healing counterpart, S sel f−healing.



CHAPTER 2. MOTIVATION 22

Whereas expanding the classes of systems to be evaluated to include non-self-healing

systems may at first seem overly permissive, additional motivation for this decision can be

obtained by an examination of the expected benefits of self-healing systems.

Based on desired capabilities of self-healing systems provided in [79] and [100], we can

identify and summarize a number of expected benefits including, but not limited to:

• Improved reliability resulting from the system’s ability to automatically detect, diag-

nose and repair problems.

• High availability from the system’s ability to orchestrate and effect repair activities

online/dynamically – perhaps degrading its operation if necessary.

• Improved manageability/serviceability by shifting responsibility for some of the

management/administration activities (e.g., problem detection, problem determination

and problem resolution) onto the system, thereby reducing the management burden

placed on system administrators.

These expected benefits, however, are not exclusive to self-healing systems alone, rather

they are desirable characteristics for software systems in general. As a result, a Reliability,

Availability and Serviceability evaluation is equally applicable/relevant to self-healing and

non-self-healing systems.

2.5 Revised Research Agenda

The general theme of conducting reliability, availability and serviceability (RAS) evaluations

of systems allows us to align the short term research objectives, concerned with developing

flexible, dynamic probe and effector technologies, and the long-term research objectives

concerned with assessing the impact and efficacy of any self-healing mechanisms a system

may possess or be retro-fitted with.



CHAPTER 2. MOTIVATION 23

Probes and effectors allow us to obtain information on the system’s execution and initiate

changes to the system’s components and/or configuration respectively. Embedding probes

dynamically allows us to provide additional (or modify existing) detection and diagnostic

services, which we expect to impact the system’s reliability and serviceability. Similarly,

the ability to introduce or modify effectors allows us to repair or reconfigure the system as

well as exercise the system’s built-in or retro-fitted self-healing mechanisms via targeted

fault-injection. In the former scenario, we expect dynamic repair or reconfiguration to

impact the system’s reliability, availability and serviceability, whereas in the latter scenario

targeted fault-injection allows us to study the failure behavior of the system and evaluate the

efficacy of any mechanism(s) the system has in place to deal with the faults injected.

To reason about the RAS-properties of systems we need to be able to evaluate target systems

from three broad categories:

1. Category A – Systems without any self-healing/RAS-enhancing mechanisms. Sys-

tems in this category either have no RAS-enhancing mechanisms or have their mech-

anisms turned off. Evaluations of these systems will primarily focus on the failure

behavior of systems and ways to quantify the impact of failures on the system.

2. Category B – Systems with some retro-fitted self-healing/RAS-enhancing mecha-

nisms. Systems in this category include those retro-fitted using externalized adaptation

platforms like KX. Evaluations of these systems must consider the feasibility of the

retro-fitting techniques/technologies as well as the efficacy of the retro-fitted feedback

loop.

3. Category C – Systems with some built-in self-healing/RAS-enhancing mechanisms.

Evaluations of these systems will focus primarily on the efficacy of the built-in

mechanisms; however, discussions of approaches and techniques used to design and

develop these systems may warrant some consideration.

Whereas the development of dynamic probe and effector technologies are necessary to



CHAPTER 2. MOTIVATION 24

realize Category B systems, these technologies can also be used to develop fault-injection

tools for studying the failure behavior of Category A systems and exercising the RAS-

enhancing mechanisms in Category B and C systems. Building fault-injection tools on top

of a dynamic adaptation foundation allows us to use these tools in-vivo (while the system

executes) and in-situ (in the system’s current deployment rather than a staging environment

or “clean-room”) on Category A, B and C systems.

Interest in the RAS-evaluations of Category A, B and C systems guide our revised research

agenda:

• Develop techniques, tools and identify principles for enabling in-vivo and in-situ

retro-fitting/adaptations in systems. This research direction continues the work started

in KX with a focus on supporting fine-grained adaptations of systems/components

written in multiple languages, running on different platforms.

• Develop tools capable of in-vivo and in-situ fault-injection. This research direction

is concerned with designing fault-injection tools and fault-models for target sys-

tems/components, studying the failure behavior of systems and exercising (where

possible) any RAS-enhancing mechanisms available.

• Develop techniques for quantitatively reasoning about the the impact of faults and

the benefits of RAS-enhancements. This research direction is concerned with iden-

tifying design-time and/or post-deployment time analytical techniques and metrics

for quantifying RAS-deficiencies in systems and studying individual or combinations

of existing or proposed RAS-enhancing mechanisms. To increase their applicability,

the analytical techniques should be able to account for and compare mechanisms that

employ different styles of operation (reactive, proactive or preventative) and different

degrees of automation (e.g., to cater for mechanisms that may require some human

intervention).

• Develop an evaluation methodology that allows us to reason about the details of



CHAPTER 2. MOTIVATION 25

RAS-mechanisms or the lack of RAS-mechanisms in the context of the high-level

goals/constraints governing the system’s operation. This research direction is con-

cerned with establishing a framework for comparing systems with and without RAS-

enhancements (i.e., systems in categories A, B and C). The key focus is to identify

ways to relate the details of the RAS-mechanisms a system may have or consider

(accounting for composition, style, automation, etc.) to the high-level constraints gov-

erning the system’s operation including, but not limited to: service level agreements

(SLAs), administrator time/servicing activities, mean time to repair (MTTR) and

cost considerations. In essence, we seek to investigate how RAS-mechanisms could

affect/influence the choice of systems; whether quantitative data on RAS-capabilities

and environmental constraints can be used to determine that one system is “better”

than another; and finally to investigate the relationship between the process of evalu-

ating and comparing RAS-capabilities to the more well understood and established

process of evaluating and comparing performance.

2.6 Summary of Contributions

This thesis presents four contributions:

1. Kheiron, a suite of tools developed to perform runtime adaptations, transparently

and with low overheads, on programs written in different languages running on

different platforms. Three versions of Kheiron exist, each one targeting a specific

platform. Kheiron/CLR manipulates .NET programs running in Microsoft’s Common

Language Runtime (CLR). Kheiron/JVM manipulates Java programs running in Sun

Microsystems’ Java Virtual Machine (JVM). Kheiron/C manipulates compiled-C

programs (ELF binaries) running on Linux. Despite targeting three very different

execution environments all three implementations of Kheiron are built around four



CHAPTER 2. MOTIVATION 26

shared principles that allow us to use the unmodified execution environment as a

common vehicle for manipulating programs in execution. (Chapter 3)

2. Runtime fault-injection tools for applications and operating systems. We build on

Kheiron’s dynamic adaptation capabilities and techniques to develop tools for injecting

targeted faults into components of the popular N-tier web application stack (including

application servers, the web-applications they host and the operating systems they run

on). We use these fault-injection capabilities to develop a fault-model for N-tier web-

application stacks and study the failure-behavior of the targeted systems/components.

(Chapter 3)

3. RAS-models. These are analytical models that can be used at design-time and/or

post-deployment to quantitatively reason about facets of reliability, availability and

serviceability (potentially or actually) affected by failures and/or mitigated by the

existence of reactive, proactive or preventative mechanisms for detection, diagnosis

or repair. RAS-models depend on well known mathematical formalisms for study-

ing system-behavior and system-failures including continuous time Markov chains

(CTMCs), Markov Reward Networks and Control Theory as part of the process of

quantitatively comparing the expected or actual RAS-properties of systems. (Chapter

4)

4. The 7U-Evaluation Methodology. A complementary approach to traditional performance-

centric evaluations of systems that focuses on comparing the RAS-capabilities of

systems. The 7U evaluates the details of RAS-enhancing mechanisms (micro-view)

in the context of the high-level goals governing the system’s operation (macro-view),

e.g., SLAs, administrator time/servicing activities, Mean time to repair (MTTR),

etc. via the combination of fault-injection tools, RAS-models and fault-injection

experiments and model-driven-simulations. The 7U emphasizes the link between the

mechanism-details and their impact on the policies governing the system as a way to



CHAPTER 2. MOTIVATION 27

reason about the overall benefits derived from RAS-mechanisms. Using this link, we

develop a RAS-benchmarking framework that allows us to discuss a number of issues

quantitatively including: whether there are deficiencies that need to be addressed, the

efficacy of current or proposed mechanisms, and the effects on high-level goals when

mechanisms are added, replaced, removed or modified.



Part I

Runtime Adaptation and Fault-Injection

This part describes Kheiron, a suite of tools for effecting adaptations and injecting faults in

programs running in contemporary managed and unmanaged execution environments based

on a shared model of operation.

28



Chapter 3

Runtime Modification of Systems

Runtime adaptation allows us to effect controlled changes in software systems without

having to take them offline. It is a form of system evolution – “...modification of a func-

tion already provided by the system or extension by the introduction of new functions”

[103]. Examples of changes include, but are not limited to: introducing new functional-

ity, modifying existing functionality [166], conducting system upgrades/updates [49] and

performing reconfigurations [144, 104], repairs or fine-grained manipulations of program

elements (data structures, modules, routines, type definitions, classes, objects,components

etc.) [197, 49]. In this thesis we also include runtime fault-injection in this list as a form

of runtime adaptation concerned with adding or evaluating (self-)diagnostic capabilities to

systems.

Runtime adaptation provides two major benefits: support for in-vivo interactions with

systems and support for in-situ interactions with systems. In-vivo interactions allow us

to perform operations on systems while they execute, whereas in-situ interactions allow

us to perform operations on systems where they execute, i.e., in their current deployment

environment, obviating the need for a separate staging area or clean-room environment.

Avoiding the re-creation of the deployment environment has three advantages; 1) system

29



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 30

engineers and operators can interact with systems that are deployed in environments that

may be infeasible to duplicate due to cost, complexity, etc., 2) engineers and operators

interested in studying the failure behavior of systems may find it more difficult to reproduce

failures in a system re-deployed in a clean room, e.g., if factors in the deployed environment

contribute to the failure events of interest and 3) allows the deployment organization, rather

than the vendors, to manage the assessment process.

We identify four shared requirements for runtime adaptation and runtime fault-injection

tools and techniques:

1. Support for in-vivo and in-situ interactions with systems. The tools and techniques

developed must be able to interact with systems while they execute. Further, they

should be amenable to interacting with systems in their current deployment.

2. The tools and techniques developed should be transparent to the target system. The

target system should not require recompilation or relinking.

3. Support for fine-grained interactions with program elements (e.g., data types, type

definitions, modules, methods).

4. Support for interacting with applications written in multiple languages, running on

different operating system platforms.

In this chapter we develop a generic model for effecting runtime adaptations in systems and

present a suite of runtime adaptation tools (Kheiron) that satisfy the above requirements.

Our model for effecting runtime adaptations identifies the execution environment as the main

enabler of transparent adaptations in existing/legacy software systems and is based on four

key facilities exposed by (or transparently added to) contemporary execution environments:

• Profiling/tracing facilities to understand the operation of the target system

• Program steering facilities to modify or augment the control flow of the target system



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 31

• Meta-data querying facilities to discover structural properties of the system

• Metadata editing facilities to define/modify structural properties of the system in order

to modify the functionality of the target system

We use these four facilities to build and evaluate a suite of runtime adaptation tools for

.NET, Java and compiled C applications: Kheiron/CLR, Kheiron/JVM and Kheiron/C

respectively. We demonstrate Kheiron’s ability to effect a variety of sophisticated fine-

grained adaptations in running applications via three case studies concerned with dynamic

reconfiguration (Kheiron/CLR) §3.7.8, runtime fault-injection (Kheiron/JVM) §3.8.6, and

selective emulation of applications (Kheiron/C) §3.9.4.

The remainder of this chapter is organized as follows: §3.1 introduces common terms

used throughout this chapter. §3.2 provides an overview of runtime adaptation. §3.3

presents the motivations behind runtime adaptation. §3.4 provides some background on

execution environments including their role and general operation. §3.5 describes some of

the challenges involved in facilitating runtime adaptation via the execution environment. §3.6

outlines the hypotheses investigated in this chapter. §3.7 - §3.9 present the implementations

of Kheiron and their evaluation. §3.11 covers related work and §3.12 summarizes the

contributions made in this chapter.

3.1 Definitions

This section formalizes some of the terms used throughout this chapter.

• An existing/legacy system is any system for which the source code may not be avail-

able or for which it is undesirable to engage in substantial re-design and development.

• An execution environment is responsible for the preparation for distinguished entities

– executables – such that they can be run. Preparation in this context involves the



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 32

loading and laying out in memory of an executable. The level of sophistication, in

terms of services provided by the execution environment beyond loading, depends

largely on the type of executable.

• A managed execution environment, e.g., Sun Microsystems’ Java Virtual Machine

(JVM) or Microsoft’s Common Language Runtime (CLR), is responsible not only

for loading and running managed executables, but for providing additional applica-

tion services, including but not limited to: garbage collection, application isolation,

security sandboxing and structured exception handling. These application services

are typically geared towards enhancing the robustness of applications. Managed

execution environments are typically implementations of an abstract machine with its

own “specialized” instruction set and rules about the content/packaging of managed

executables [111, 124].

• A managed executable/application is represented in an abstract intermediate form

expected by the managed execution environment. This abstract intermediate form

consists of metadata and managed code. Metadata describes the structural aspects

of the application, including classes, their members and attributes, and their rela-

tionships with other classes [110]. Managed code represents the functionality of the

application’s methods encoded in an abstract binary form, bytecode, conforming to

the specialized instruction set expected by the managed execution environment.

• An unmanaged execution environment consists of the underlying processor (e.g.,

IA-32/x86) and the operating system (e.g., Linux).

• An unmanaged/native executable also contains metadata, albeit not as rich as its

managed counterparts. Compiled C/C++ programs may contain symbol information;

however, there is neither a guarantee nor requirement that it be present. Further,

unmanaged/native executables contain instructions that can be directly executed on

the underlying processor (hence the use of the term native) whereas the bytecode



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 33

found in managed executables must be interpreted or Just-In-Time (JIT) compiled

into processor instructions by a component of the managed execution environment.

3.2 Overview

The need for software to evolve as its usage and operational goals change has added

the non-functional requirement of adaptation to the list of facilities expected in systems

[104, 144, 143, 75, 166]. Example system-adaptations include, but are not limited to, the

ability to support reconfigurations, repairs, self-diagnostics or user-directed evaluations

driven by fault-injection.

However, not all systems have the built-in facilities to support many of the desired system-

adaptations. System designers have two alternatives when it comes to realizing software

systems capable of adaptation. Adaptation mechanisms can be static, i.e., built into the

system, as is done in the K42 operating system [19], or such functionality can be dynamically

added, i.e., retro-fitted onto them using externalized architectures like KX [94] or Rainbow

[169].

While arguments can be made for either approach, the retrofit approach provides more

flexibility. Static system-adaptations force the system to be taken offline, rebuilt and

restarted/redeployed to add, modify or remove mechanisms whereas dynamic adaptations

allow mechanisms to be added, modified or removed while the system executes. The ability

to keep the system running while adaptations occur make dynamic adaptations preferable to

their static counterparts [170, 102, 162]. Further, “baked-in” adaptation mechanisms restrict

the analysis and reuse of said mechanisms.

With any system there is a spectrum of adaptations that can be performed. Frameworks

like KX perform coarse-grained adaptations, e.g., re-writing configuration files and restart-

ing/terminating operating system processes. However, in this thesis, we focus on fine-grained



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 34

adaptations, those interacting with individual components, sub-systems or methods, e.g.,

augmenting these elements at runtime to support reconfigurations, repairs, self-diagnostics

or user-directed evaluations driven by fault-injection.

In this chapter we describe the technologies underlying Kheiron, a framework for facilitating

adaptations in running programs in a variety of execution environments with low-overhead,

upon which we build the dynamic fault-injection tools used in §3.8.6 and Chapter 5. The

fault-injection tools we build are examples of software-implemented fault-injection tools

[77].

Kheiron supports a variety of application types and execution environments. It manipulates

compiled C-programs running in an unmanaged execution environment as well as programs

running in Microsoft’s Common Language Runtime and Sun Microsystems’ Java Virtual

Machine. We present case-studies and experiments that demonstrate the feasibility of using

Kheiron to support fine-grained runtime system-adaptations. We also describe the concepts

and techniques used to retro-fit adaptations onto existing systems in the various execution

environments.

Managing the performance impact of the mechanisms used to effect fine-grained adaptations

in the running system presents an additional challenge. Since we are interacting with

individual methods or components we must be cognizant of the performance impact of

effecting the adaptations e.g. inserting instrumentation into individual methods may slow

down the system; but being able to selectively add/remove instrumentation allows the

performance impact to be tuned throughout the system’s execution.

This chapter is primarily concerned with addressing the challenges of efficiently retro-

fitting fine-grained adaptation mechanisms onto existing software systems and managing

the performance impacts associated with retro-fitting these adaptation mechanisms. We

leverage the unmodified execution environment to transparently facilitate the adaptations

of existing/legacy systems. We describe three systems we have developed for this purpose.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 35

Kheiron/CLR manipulates running .NET applications. Kheiron/JVM manipulates running

Java applications. Finally, Kheiron/C manipulates running compiled C programs on the

Linux platform.

Our contribution is the ability to transparently retro-fit new functionality onto existing soft-

ware systems. The techniques used to facilitate the retro-fit exhibit negligible performance

overheads on the running systems. Finally, our techniques address effecting adaptations in a

variety of contemporary execution environments. New functionality, packaged in separate

modules, collectively referred to as an adaptation engine, is loaded by Kheiron. At runtime,

Kheiron can seamlessly transfer control over to the adaptation engine, which effects the

desired adaptations in the running application.

3.3 Motivation

The ability to adapt is critical for systems [100]. However, not every system is designed or

constructed with all the adaptation mechanisms it will ever need. As a result, there needs to

some way to enable existing applications to introduce and employ new mechanisms.

There are a number of specific fine-grained adaptations that can be retro-fitted onto existing

systems including: adding fault-injection, problem detection, diagnosis and in some cases

remediation mechanisms.

In this chapter we describe how our Kheiron implementations can be used to facilitate a

number of fine-grained adaptations in running systems via leveraging facilities and properties

of the execution environments hosting these systems. These adaptations include: Inserting

or removing system instrumentation [138] to discover performance bottlenecks in the

application or detect (and where possible repair) data-structure corruption. The ability to

remove instrumentation can decrease the performance impact on the system associated with

collecting information. Periodic refreshing of data-structures, components and subsystems



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 36

done using micro-reboots, which could be performed at a fine granularity, e.g., restarting

individual components or sub-systems, or at a coarse granularity, e.g., restarting entire

processes periodically. Replacing failed, unavailable or suspect components and subsystems

(where possible) [64]. Input filtering/audit to detect misused APIs. Inserting faults or

initiating ghost transactions[157] against select components or subsystems and collecting

the results to obtain more details about a problem or investigate a system response. Selective

emulation of functions – effectively running portions of computation in an emulator, rather

than on the raw hardware to detect errors and prevent them from crashing the application.

3.4 Background on Execution Environments

At a bare minimum, an execution environment is responsible for the preparation of dis-

tinguished entities – executables – such that they can be run. Preparation, in this context,

involves the loading and laying out in memory of an executable. The level of sophistication,

in terms of services provided by the execution environment beyond loading, depends largely

on the type of executable.

We distinguish between two types of executables, managed and unmanaged executables,

each of which require or make use of different services provided by the execution environ-

ment. A managed executable, e.g., a .NET program or Java bytecode program, runs in a

managed execution environment such as Microsoft’s Common Language Runtime (CLR)

or Sun Microsystems’ Java Virtual Machine (JVM), respectively, whereas an unmanaged

executable, e.g., a compiled C program, runs in an unmanaged execution environment, which

consists of the operating system and the underlying processor. Both types of executables

consist of metadata and code. However the main differences are the amount and specificity

of the metadata present and the representation of the instructions to be executed.

Managed executables/applications are represented in an abstract intermediate form expected



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 37

by the managed execution environment. This abstract intermediate form consists of two

main elements, metadata and managed code. Metadata describes the structural aspects of

the application including classes, their members and attributes, and their relationships with

other classes [110]. Managed code represents the functionality of the application’s methods

encoded in an abstract binary format known as bytecode.

The metadata in unmanaged executables is not as rich as the metadata found in managed

executables. Compiled C/C++ programs may contain symbol information; however, there

is neither a guarantee nor requirement that it be present. Finally, unmanaged executables

contain instructions that can be directly executed on the underlying processor unlike the

bytecode found in managed executables, which must be interpreted or Just-In-Time (JIT)

compiled into native processor instructions.

Managed execution environments differ substantially from unmanaged execution environ-

ments1. The major differentiation points are the metadata available in each execution context

and the facilities exposed by the execution environment for tracking program execution,

receiving notifications about important execution events including; thread creation, type

definition loading and garbage collection. In managed execution environments, built-in

facilities also exist for augmenting program entities such as type definitions, method bodies

and inter-module references, whereas in unmanaged execution environments such facilities

are not as well-defined.

3.5 Challenges of Runtime Adaptation via the Execution

Environment

There are a number of properties of execution environments that make them attractive for

effecting adaptations on running systems. They represent the lowest level (short of the

1The JVM and CLR also differ considerably even though they are both managed execution environments.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 38

hardware)2 at which changes could be made to a running program. Some may expose

(reasonably standardized) facilities (e.g., profiling APIs [126, 134]) that allow the state of

the program to be queried and manipulated. Further, other facilities (e.g., metadata APIs

[125]) may support the discovery, inspection and manipulation of program elements, e.g.,

type definitions and structures. Finally, there may be mechanisms that can be employed to

alter to the execution of the running system.

However, the low-level nature of execution environments also makes effecting adaptations a

risky (and potentially arduous) exercise. Injecting and effecting adaptations must not corrupt

the execution environment nor the system being adapted. The execution environment’s rules

for what constitutes a “valid” program must be respected while guaranteeing consistency-

preserving adaptations in the target software system. Causing a crash in the execution

environment typically has the undesirable side-effect of crashing the target application and

any other applications being hosted.

At the level of the execution environment the programming-model used to specify adap-

tations may be quite different from the one used to implement the original system. For

example, to effect changes via an execution environment, those changes may have to be

specified using assembly instructions (moves and jump statements), or bytecode instructions

where applicable, rather than higher level language constructs. This disconnect may limit

the kinds of adaptations that can be performed and/or impact the mechanisms used to inject

adaptations.

3.6 Hypotheses

The main hypothesis in this chapter is that: Runtime adaptation provides a platform for

implementing efficient and flexible fault-injection tools capable of “in-situ” and “in-
2The un-managed execution environment includes the operating system.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 39

vivo” interactions with computing systems. In validating this hypothesis we investigate

the following supporting propositions:

1. The execution environment is a feasible target for efficiently and transparently

effecting adaptations in the applications they host. All software systems run in an

execution environment, as a result we can target the execution environment as the

lowest common denominator for adapting live systems.

2. Existing facilities in execution environments can be leveraged to effect runtime

adaptations in software systems. Built-in facilities for profiling, execution control

and any available APIs for metadata querying or manipulation allow for a trans-

parent and sufficiently low-overhead approach to adapting running programs. Two

adaptations of interest for the purposes of this thesis are: the insertion of monitor-

ing/instrumentation, and the insertion of faults/disturbances to measure their effects

on systems with/without appropriate remediation mechanisms.

3. Any guarantees on application integrity/consistency are a function of the exe-

cution environment, the execution environment’s operation and the amount of

knowledge we have about the application’s operation. The ability to perform

adaptations on running systems allows for a great degree of flexibility. On-the-fly

adaptations allow the system to remain available (even if it operates in a degraded

mode) during these changes. However, the greatest challenge is preserving the in-

tegrity/consistency during and after adaptations. We demonstrate how properties of

the execution environment and working knowledge of the target system’s operation

can be combined to guarantee that the application’s integrity is preserved during and

after adaptations.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 40

3.7 Kheiron/CLR: Runtime Adaptation in the Common

Language Runtime

The Common Language Runtime (CLR) is the runtime environment in which .NET ap-

plications execute. It provides an operating layer between the .NET application and the

underlying operating system [110]. The CLR manages the execution of .NET applications,

taking on the responsibility of providing services such as application isolation, security

sandboxing and garbage collection. Managed .NET applications are called assemblies and

managed executables are called modules. Within the CLR, assemblies execute in application

domains, which are logical constructs used by the runtime to provide isolation from other

managed applications.

.NET applications, as generated by the various compilers that target the CLR, are represented

in an abstract intermediate form. This abstract intermediate representation is comprised of

two main elements, metadata and managed code. Metadata is “...a system of descriptors

of all structural items of the application – classes, their members and attributes, global

items...and their relationships”[110]. Tokens are handles to metadata entries; they can refer

to types, methods, members, etc. Tokens are used instead of pointers so that the abstract

intermediate representation is memory-model independent. Managed code “...represents the

functionality of the application’s methods...encoded in an abstract binary format known as

Microsoft Intermediate Language (MSIL)” [110]. MSIL, also referred to as bytecode, is a

set of abstract instructions targeted at the CLR.

.NET applications written in different languages can interoperate closely, calling each others’

functions and leveraging cross-language inheritance, since they share the same abstract

intermediate representation.

It should be noted that the ability to interoperate relies on programs’ adherence to certain

rules on naming conventions, data types, function types and certain other elements, forming



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 41

a common denominator for different languages [110]. These detailed rules can be found in

the Common Language Specification (CLS) [124].

3.7.1 Common Language Runtime Execution Model

During execution, two major components of the CLR that interact with metadata and

bytecode are the loader and the just-in-time (JIT) compiler. The loader reads the assembly

metadata and creates an in-memory representation and layout of the various classes, members

and methods on demand as each class is referenced. The JIT compiler uses the results of

the loader and compiles the bytecode for each method into native assembly instructions

for the target platform. JIT compilation only occurs the first time the method is called

in the managed application. Compiled methods remain cached in memory; subsequent

method calls jump directly into the native (compiled) version of the method skipping the

JIT compilation step, as shown in Figure 3.1.

Figure 3.1: Overview of the CLR execution cycle

3.7.2 The CLR Profiler and Unmanaged Metadata APIs

The CLR Profiler APIs allow an interested party (a Kheiron/CLR) to collect information

on the execution and memory usage of a running application. There are two interfaces of



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 42

interest, ICorProfilerCallback, which Kheiron/CLR must implement, and ICorProfilerInfo,

which is implemented by the CLR. Implementors of ICorProfilerCallback (also referred

to as the notifications API [126]) can receive notifications about assembly loads and un-

loads, module loads and unloads, class loads and unloads, function entry and exit, and

just-in-time compilations of method bodies. The complete list of notifications can be found

in [126]. The ICorProfilerInfo interface is used by Kheiron/CLR to obtain details about

particular events, e.g., when a module has finished loading, the CLR will call the ICorProfil-

erCallback::ModuleLoadFinished implementation of Kheiron/CLR passing the moduleID.

Kheiron/CLR can then use ICorProfilerInfo::GetModuleInfo to get the module’s name, path

and base load address.

The unmanaged metadata APIs allow users (e.g. Kheiron/CLR) to emit/import data for/from

the CLR. These interfaces are considered low-level interfaces that provide fast access to

metadata [125]. There are two interfaces of interest, IMetaDataEmit and IMetaDataImport.

As the names suggest, the former is used to write metadata and the latter is used to read

metadata. As mentioned earlier in Section 3.7, tokens are abstractions used as handles to the

metadata of module, type, method, members etc. IMetaDataEmit generates new metadata

tokens as metadata is written while IMetaDataImport resolves the details of a supplied

metadata token.

3.7.3 Kheiron/CLR Architecture

Our Kheiron/CLR prototype is implemented as a single dynamic linked library (DLL) that

includes an implementation of ICorProfilerCallback. Figure 3.2 shows the four (4) main

components in our prototype.

• The Execution Monitor receives module load, unload and module attached to as-

sembly events, JIT compilation, events and function entry and exit events from the

CLR.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 43

• The Metadata Helper wraps the IMetaDataImport interface and is used by the

Execution Monitor to resolve metadata tokens, such as method tokens, to less cryptic

method names and attributes.

• Internal book-keeping structures store the results of metadata resolutions as well

as execution statistics such as method invocation and JIT compilation times.

• The Byte-code and Metadata Transformer wraps the IMetaDataEmit interface

to write new metadata, e.g., adding new methods to a type and adding references

to external assemblies, types and methods. It also generates, inserts and replaces

bytecode in existing methods as directed by the Execution Monitor. Bytecode changes

are committed by forcing the CLR to JIT compile the modified methods again (re-

JIT).

Figure 3.2: Kheiron/CLR prototype architecture diagram

3.7.4 Model of Operation

Kheiron/CLR performs operations on types and methods at various stages in the method

invocation cycle shown in Figure 3.3 to make them capable of interacting with modules

concerned with performing instrumentation, fault-injection, etc..



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 44

Figure 3.3: First method invocation in a managed application

To allow an adaptation engine to interact with a class instance we augment the type definition

such that the necessary “hooks” can be added. Augmenting the type definition is a two-phase

operation. The first phase occurs at module load time, Stage 1 in Figure 3.3.

When the loader loads a module, the bytecode for the method bodies of the module’s

types is laid out in memory. The starting address of the first bytecode instruction in a

method body is referred to as the Relative Virtual Address (RVA) of the method. At the

end of the module load Kheiron/CLR automatically adds (prepares) shadow methods, using

IMetaDataEmit::DefineMethod, for each of the original public and/or private methods of

the type. A shadow method shares all the properties (attributes, signature, implementation

flags and RVA) of the original method except the name. By sharing (borrowing) the RVA of

the original method, the shadow method points at the method body of the original method.

Figure 3.4 shows an example of adding a shadow method, SampleMethod, for an original

method, SampleMethod. Extending the metadata of a type by adding methods must be done

before the type definition is installed in the CLR. Once the type definition is installed its

list of methods and members becomes read only; further requests to define new methods



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 45

or members are silently ignored even though the return value from the API call indicates

success.

Figure 3.4: Preparing a shadow method

The second phase of type augmentation occurs the first time an original method is JIT

compiled, Stage 4 in Figure 3.3. This phase converts the original method into a thin wrapper

that simply calls the shadow method as shown in Figure 3.5. The heart of phase 2 allocates

space for a new method body, uses the Byte-code & Metadata Transformer to generate the

sequence of bytecode instructions to call the shadow, and sets the new RVA for the original

method to point at the new method body.

There are a number of special considerations when creating shadows, especially in the

case of non-void methods. The main issues revolve around ensuring the MaxStack and

LocalVarSigTok properties in the method header of the wrapper are kept consistent with the

newly defined method body with respect to the number of local variables and the maximum

stack space needed to execute the instructions in the method body. Additionally, the new

method body must contain any applicable instructions to push the arguments expected by the

shadow method. Failure to get these details right results in a failed program verification and

a subsequent crash of the CLR. The interested reader is directed to [110] for more details.

Using shadows and wrappers has a number of advantages. Given the structure of the wrapper

method, see Figure 3.6, we can inject repair instructions as prologues and/or epilogues to

shadow method calls.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 46

Figure 3.5: Creating a shadow method

Figure 3.6: Kheiron/CLR conceptual diagram of a wrapper

Adding a prologue to the wrapper requires that new bytecode instructions prefix the existing

bytecode instructions. The level of difficulty is the same whether we augment the wrapper or

the original method. Adding epilogues, however, presents a few more challenges. Intuitively,

to add an epilogue, we wish to insert new instructions before control leaves a method. In the

simple case, a method has a single return statement and the epilogue can be inserted right

before that point. For methods with multiple return statements and/or exception handling

routines, finding every possible return point can be an arduous task [137]. Further, the

layout and packing of the bytecode for methods that contain exception handling routines is

considered a special case which may be challenging to augment correctly [137].

Using wrappers presents a cleaner approach since we can ignore all of the complexity in the

shadow method. Further, the regular structure and single return statement of the wrapper



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 47

method lends itself easily to adding an epilogue. Exceptions thrown, but not caught inside

the shadow method, will cause the stack to be unwound to the wrapper where the exception

can be caught – if an exception handler was included in the wrapper generation process – or

passed up to the caller as would be the case in the original unmodified application.

3.7.5 Performing an Adaptation

To perform a repair, for example, we augment the wrapper to insert a jump into an adaptation

engine at the control point(s) before and/or after a shadow method call. Effecting the jump

into an adaptation engine is a four-step process.

• Step one extends the metadata of the assembly currently executing in the CLR such

that a reference to the assembly containing the adaptation engine is added using

IMetaDataEmit::DefineAssemblyRef.

• Step two uses IMetaDataEmit::DefineTypeRef to add references to the adaptation

engine type (class).

• Step three adds references to the subset of the adaptation engine’s methods that we

wish to insert calls to, using IMetaDataEmit::DefineMemberRef.

• Step four augments the bytecode and metadata of the wrapper function to insert

bytecode instructions to make calls into the adaptation engine before and/or after the

existing bytecode that calls the shadow method.

Of the above four steps, steps 1 – 3 are relatively easy compared to step 4. The main concern

when performing steps 1 through 3 is to ensure the assembly properties (name, version,

path, culture info, etc.), type properties (type name and assembly reference) and member

properties (method name, type reference, and method signature) are valid. The unmanaged

APIs were designed to be fast and as a result sacrifice extensive semantic error checking

[125]. Further, these APIs are intended to be used by tool developers and compiler writers



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 48

and as a consequence, it is the responsibility of the API user to get the details right as it

relates to generating or editing metadata. Errors in these details can result in failed metadata

verifications, failed assembly resolutions and halting of the CLR.

In step 4, adding a jump into the adaptation engine as a prologue is done by inserting as few

as two (2) MSIL instructions3, see Figure 3.7, before the existing MSIL instructions that

comprise the current method body.

1: ldarg.0 //pass this pointer to the adaptation
engine method
2: call <Metadata token of adaptation engine
method>

Figure 3.7: Jump into adaptation engine

Adding a jump as an epilogue is slightly more complicated, despite the regular structure of

the wrapper method. Class methods that have a return type other than void look like Figure

3.8 after we create a shadow for them.

1: ldarg.0 //push *this* before calling member
method
2: call <Metadata token of shadow method>
3: stdloc.0 //store return value in first local slot
4: ldloc.0 //push the return value on the stack
5: ret //return

Figure 3.8: Before epilogue insertion

To add the epilogue, we need to keep track of where we inserted the last call instruction and

whether it returns a value or not. If it returns a value we insert the instructions shown in

Figure 3.7 between instructions 3 and 4 in Figure 3.8 and re-emit instructions 4 to 6. The

final result is shown in Figure 3.9.

3This assumes that the method being called on the adaptation engine is a static method that takes an object
as its sole argument, e.g., public static void RepairEngine::Repair(Object o). In the case of invoking non-static
methods additional bytecode instructions to load the this pointer of an instance of the class containing the
method to be invoked also need to be inserted



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 49

1: ldarg.0 //push *this* before calling member
method
2: call <Metadata token of shadow method>
3: stdloc.0 //store return value in first local slot
4: ldarg.0 //pass this pointer to the adaptation
engine method
5: call <Metadata token of adaptation engine
method>
6: ldloc.0 //push the return value on the stack
7: ret //return

Figure 3.9: After epilogue insertion

To persist the bytecode changes made to the method bodies of the wrappers, the Execution

Monitor requests the CLR JIT compile the wrapper method again (referred to as a re-JIT).

The actual re-JIT takes place the next time the wrapper method is called. In our Kheiron/CLR

prototype re-JIT requests are submitted in the Function Exit event, Stage 6 in Figure 3.3.

Kheiron/CLR uses the ICorProfilerInfo::SetFunctionReJIT function to persist bytecode

changes but it can also use it to undo the changes we make. We can temporarily disable

shadows, reverting back to shadow prepare phase, Figure 3.4, and we can remove prologues

and/or epilogues by setting the wrapper method RVA to the RVA of a method body without

those prologues and/or epilogues and requesting a re-JIT. This facility allows us to manage

the performance hit we take from making shadowed method calls and we can flexibly attach

or detach the adaptation engine as desired by rewriting the bytecode in the wrapper method,

removing the instrumentation or jumps into the repair engine and requesting a re-JIT of the

modified wrapper.

The ability to perform multiple JIT compilations on demand is a powerful facility, allowing

us to undo or redo any changes we make; however, some additional tweaking (see §3.7.6) is

required to get function re-JITs to work as expected in our prototype.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 50

3.7.6 Forcing Multiple JIT Compilations (re-JITs)

The CLR includes some infrastructure support for function re-JITs. To enable re-JITs the

CLR the predefined constant COR PRF ENABLE REJIT, found in corprof.h, must be used

when informing the CLR of the kinds of notifications Kheiron/CLR wishes to receive. As

shown in Figure 3.1, the CLR needs a way to determine whether a method body has already

been JIT-compiled. To do this the CLR relies on a tripwire in the form of an indirect method

call to a helper function known as the prestub helper. When a type is loaded, a structure

known as a MethodTable is created for it. The method table will eventually contain pointers

to the native assembly versions of the method bodies. However, initially each slot in the

method table is loaded with a pointer to the prestub helper [181].

Function ID 0x00975338
Calculating the address of the
prestub by hand:

Before JIT Compilation
0x0097532A 00 00 f8 be de 02 04
0x00975331 00 fe e8 18 dc f7 ff
0x00975338 05 00 00 00 98 20 00
0x0097533F c0 05 00 fc e8 08 dc
0x00975346 f7 ff 06 00 00 00 b0

Function ID + Word(Function ID-4)

0x00975338 + 0xfff7dc18 = 008F2F50

Once we know where the prestub is
We can restore:

Byte Function ID-5
Word Function ID-4

by hand to force a re-JIT.

Figure 3.10: Locating the prestub and forcing a re-JIT by hand

The prestub helper does the work of compilation. After compilation the relevant slot in the

MethodTable is updated with a pointer to the compiled version of the method body. Figure



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 51

3.11 illustrates what happens before and after a JIT compilation. Before the JIT compilation,

execution jumps into the prestub helper, instruction e8 near address on X86. After JIT

compilation this is replaced with an absolute jump, instruction e9 address on X86, where

the jump target is the memory location of the compiled method body. The process used to

force reJITs in our framework, is based on refinements and extensions to the process used in

[56]. We calculate the address of the prestub helper in memory, as shown in Figure 3.10.

The prestub address is used to calculate the offset for the near address jump for any function

ID. Restoring the appropriate memory location causes the CLR to jump into the prestub

helper the next time the function is called.

In the CLR v1.0 and v1.1 the changes we make by hand to force a re-JIT can be achieved

using the ICorProfilerInfo::SetFunctionReJIT; however, this API function was inadvertently

included in the CLR v1.x releases and has been subsequently removed from CLR v2.0

[127]. As a result Kheiron/CLR’s ability to make changes and then undo them (via causing a

re-JIT) is currently limited to CLR v1.x. Our by hand approach for causing a re-JIT (Figure

3.10) has not been tested in the CLR v2.0.

3.7.7 Evaluation Part 1: Kheiron/CLR Performance Impact

The first part of the evaluation of our Kheiron/CLR prototype focuses on quantifying the

overheads on program execution using two separate benchmarks.

The experiments were run on a single Pentium III Mobile Processor, 1.2 GHz with 1

GB RAM. The platform was Windows XP SP2 running the .NET Framework v1.14322.

Enabling Kheiron/CLR is done by setting four environment variables before starting the

application (Figure 3.12) 4. In our evaluation we used the C# benchmarks SciMark 5 and

4Information about the CLR Profiler must also be entered into the Windows registry via regsvr32 /s <fully
qualified path to Kheiron/CLR dll>

5http://rotor.cs.cornell.edu/SciMark/



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 52

Function ID 0x00975338

Before JIT Compilation
0x0097532A 00 00 f8 be de 02 04
0x00975331 00 fe e8 18 dc f7 ff
0x00975338 05 00 00 00 98 20 00
0x0097533F c0 05 00 fc e8 08 dc
0x00975346 f7 ff 06 00 00 00 b0
0x0097534D 20 00 c0 00 00 08 00
0x00975354 0c 00 00 00 08 34 e2
0x0097535B 02 00 00 00 00 00 00

After JIT Compilation
0x0097532A 00 00 f8 be de 02 04
0x00975331 00 fe e9 a0 70 47 02
0x00975338 05 00 00 00 d8 c3 de
0x0097533F 02 05 00 fc e9 e0 88
0x00975346 47 02 06 00 00 00 28
0x0097534D dc de 02 00 00 08 00
0x00975354 0c 00 00 00 08 34 e2
0x0097535B 02 00 00 00 00 00 00

Distinguished memory addresses:

Byte Function ID-5

Word Function ID-4

Word Function ID+4 restored by

SetFunctionReJIT

Byte Function ID+11

Word Function ID+12

Figure 3.11: JIT compilation overview

Linpack 6.

SciMark is a benchmark for scientific and numerical computing. It includes five (5)

computation kernels: Fast Fourier Transform (FFT), Jacobi Successive Over-relaxation

(SOR), Monte Carlo integration (Monte Carlo), Sparse matrix multiply (Sparse MatMult)

and dense LU matrix factorization (LU).

Linpack is a benchmark that uses routines for solving common problems in numerical

linear algebra including linear systems of equations, eigenvalues and eigenvectors, linear

6http://www.shudo.net/jit/perf/Linpack.cs



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 53

set DBG PRF LOG=0x1

set Cor Enable Profiling=0x1

set COR PROFILER DLL=<path to Kheiron/CLR dll>

set COR PROFILER=<Identifier string Kheiron/CLR>

Figure 3.12: Enabling Kheiron/CLR

least squares and singular value decomposition. In our tests we used a problem size of 1000.

Overheads. Kheiron/CLR consists of a profiler that uses the Profiler API [126] to intercept

module load, unload and module attached to assembly events, JIT compilation events and

function entry and exit events. As expected, running an application in the profiler imposes

some overhead on the application. Figure 3.13 shows the runtime overhead for running the

benchmarks with and without profiling enabled. We performed five (5) test runs for SciMark

and Linpack each with and without profiling enabled. All executables under test and our

profiler implementation were optimized release builds. For each benchmark, the bar on the

left shows the performance of the benchmark running without profiling enabled. The bar on

the right shows the normalized performance with our profiler (Kheiron/CLR) enabled.

Our measurements show that Kheiron/CLR contributes ∼5% runtime overhead when no

repairs are active, which we consider negligible.

SCIMark Composite Score Average Stdev
Without Kheiron/CLR 187.71 189.15 189.28 189.08 189.56 188.956 0.720
With Kheiron/CLR 181.52 181.95 182.19 182.43 182.64 182.146 0.435
% Slowdown 3.30% 3.81% 3.75% 3.52% 3.65% 3.60% 0.20%

Table 3.1: Kheiron/CLR overheads on SCIMark when no repair active

Linpack Composite Score Average Stdev
Without Kheiron/CLR 60.1 60.045 61.54 61.089 61.37 60.829 0.709
With Kheiron/CLR 57.91 57.511 58.112 58.366 57.91 57.962 0.314
% Slowdown 3.64% 4.22% 5.57% 4.46% 5.64% 4.71% 0.87%

Table 3.2: Kheiron/CLR overheads on Linpack when no repair active



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 54

Figure 3.13: Kheiron/CLR overheads when no repair active

Our prototype imposes additional overheads on the running application at different points in

its execution. We prepare shadows at module load time, specifically when the module binds

to an assembly, which occurs before the application begins running. We create shadows

the first time the method is JIT compiled, provided a shadow has been prepared for it and

we force re-JITs when we add or remove the prologues and epilogues that jump into the

adaptation engine.

To quantify these overheads, we use the SciMark2.SOR class, which executes the Jacobi

Successive Over-relaxation benchmark. Table 3.3 shows the impact on module bind time due

to preparing shadows on the two public methods of SciMark2.SOR, SciMark2.SOR::execute

and SciMark2.SOR::num flops.

Preparing shadows at module load time causes the application to take slightly longer to

load but does not affect its steady state execution since the module bind must occur before

the application begins to execute. Moreover, the impact on module bind time in this

case is relatively small, sub-millisecond, and is dominated by time spent making calls to

IMetaDataEmit::DefineMethod, which adds new method definitions to a type.

Creating shadows imposes a one time overhead incurred the first time the method is JIT



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 55

Module Name SciMark.exe
Module Load time (ms) 0.0230229
Module bind time (ms) 0.374817
# shadows prepared 2
Total shadow prepare time (ms) 0.196664
Average shadow prepare time (ms) 0.0983317
Bind time - shadow prepare time (ms) 0.178153

Table 3.3: Kheiron/CLR overheads of preparing shadows

compiled. As shown in Table 3.4 the time for the first JIT compilation is dominated by the

time spent creating the shadow7.

Method name SOR::execute
First JIT time (ms) 13.7202
# shadows created 1
Total shadow create time (ms) 13.3576
Average shadow create time (ms) 13.3576
First JIT time - shadow create time (ms) 0.3626

Table 3.4: Kheiron/CLR overheads of creating shadows

Forcing multiple JIT-compilations adds additional overhead to the steady-state execution

times of the application. In our experiments we compute the method time as:

Ttotalmethodtime = Tshadowcreatetime + TJIT time + Tinvoketime

Table 3.5 compares the total method time for the SciMark2.SOR::execute wrapper method,

with the total method time for its shadow method. In this case the disparity in method times

is�1% and the overall impact on the performance of the benchmark is negligible.

For methods that are not as computationally intensive as SOR::execute, where Tshadowcreatetime+

TJIT time is a significant fraction of Tinvoketime, the overheads of creating shadows and multiple

re-JITs will be much worse.
7Shadow creation time is dominated by the calls to the IMethodMalloc::Alloc function, which allocates the

buffer for the new method body at the appropriate address in memory



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 56

Wrapper Method Shadow Method
SOR::execute SOR:: execute

Function ID 0x935ae8 0x935b18
Enter/Leave count 15 15
JIT Count 15 1
# shadows created 1 0
Create shadow (ms) 11.1834 n/a
Total Invoke time (ms) 6273.27 6272.31
Total JIT time (ms) 2.9621 0.90244
Total method time (ms) 6287.4156 6273.21244

Table 3.5: Execution overheads on SciMark2.SOR::execute

Figure 3.14: CLR re-JIT measurements for SciMark2.SOR::execute wrapper

Based on our experiments we are able to identify and measure three sources of overhead

Kheiron/CLR imposes on a target system’s operation – load-time overhead, JIT-compilation

time overhead and runtime overhead. In the case of the load-time and JIT-compilation

overheads, the impact is small (sub-second and in some cases sub-millisecond) and for

runtime overhead, Kheiron/CLR’s impact on the target system is negligible ∼5% when no

repairs or reconfigurations are active. We are also able to demonstrate how Kheiron/CLR

can interact with the Common Language Runtime and the applications it hosts in a manner

that is transparent to both the runtime and the target application.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 57

JIT # JIT Time (ms)
1 0.3829
2 0.121878
3 0.106419
4 0.098367
5 0.109359
6 0.097914
7 0.114577
8 0.169962
9 0.147907
10 0.120658
11 0.286591
12 0.304285
13 0.300659
14 0.300795
15 0.299871
Total JIT time (ms) 2.962142
Average JIT time (ms) 0.197476
Stdev (ms) 0.101077

Table 3.6: CLR re-JIT measurements for SciMark2.SOR::execute wrapper

3.7.8 Evaluation Part 2: Kheiron/CLR Dynamic Reconfiguration Case

Study

The second part of the evaluation of Kheiron/CLR looks at its ability to effect repairs and

reconfigurations in a non-trivial system while preserving the integrity of the target system

and the CLR.

To evaluate our Kheiron/CLR prototype beyond small/toy examples, we searched on Source-

Forge.NET [174] for potential target systems already implemented on the CLR that might

benefit from runtime adaptation. We report on our experience using Kheiron/CLR to fa-

cilitate runtime reconfigurations in a system that was developed (and is in use) by others:

the Alchemi Enterprise Grid Computing System developed at the University of Melbourne,

Australia [188].

We selected the Alchemi Enterprise Grid Computing System [6], from the University of

Melbourne, Australia. Alchemi has several appealing characteristics relevant for our case



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 58

study purposes: It was developed and is currently maintained by others, whom we do not

know and have not contacted, hence we regard it as a legacy system upon which runtime

adaptations can be carried out only via an externalized engine. It is publicly available on

SourceForge [175], which makes it possible for other autonomic computing researchers to

“repeat” our experiment employing their own technology for comparison purposes. Alchemi

is also well-documented, which makes it feasible to construct plausible scenarios, where

performing runtime reconfigurations and/or repairs on the system could result in real benefits

for its real-world users.

Alchemi is apparently being used in a number of scientific and commercial grid applications,

including an application for distributed, parallel environmental simulations at Common-

wealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, Australia,

and a micro-array data processing application for early detection of breast cancer devel-

oped by Satyam Computers Applied Research Laboratory in India.8 Finally, Alchemi is

implemented as a .NET application on top of the CLR, which is a prerequisite for Khe-

iron/CLR. Alchemi is written in C#, and leverages a number of technologies provided by

the .NET Framework, including .NET Remoting [86], multi-threading and asynchronous

programming.

Alchemi Architecture. The Alchemi Grid follows a master-worker parallel programming

paradigm, where a central component (the Manager) dispatches independent units of parallel

execution (grid threads) to be executed on grid nodes (Executors), see Figure 3.15. The

Manager is responsible for providing the services associated with the execution of grid

applications and their constituent grid threads. It monitors the status of the Executors

registered with it, and schedules grid threads to run on them. Executors accept grid threads

from the Manager, execute them, and return the completed threads to the Manager. An

Executor can be configured as either dedicated, i.e., managed centrally where the Manager

8A list of projects using Alchemi can be found at http://www.alchemi.net/projects.html.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 59

Figure 3.15: Alchemi architecture – source: User Guide for Alchemi 1.0 [5]

“pushes” a computation to an idle, dedicated Executor whenever its scheduling requires,

or non-dedicated, where the Executor instead polls the Manager and hence “pulls” some

computational work only during idle periods, e.g., when a screen saver is active.

Motivation behind Reconfiguring Alchemi. The Alchemi Manager is clearly a key

subsystem and, within the Manager, the scheduler – which makes all the grid work allocation

decisions – is a key component. As in any resource allocation scenario, the scheduling

strategy is critical to the overall efficacy of the system. Further, the efficacy of any particular

scheduling algorithm may depend on factors that can vary quite dynamically within the

grid, such as the arrival times and rate of jobs submitted for execution, the computational

weight of individual work units, the set of currently available Executors, and the overall

workload placed on Executors at any point in time. The version of Alchemi used in our

evaluation (v1.0 beta) provides a default scheduler, embodied in its DefaultScheduler class,

that schedules grid threads on a Priority and First Come First Served (FCFS) basis, in that

order. This scheduling algorithm is fixed at compile-time and used throughout the execution

lifetime. However, Alchemi conveniently provides a scheduling API that allows custom

schedulers to be written.

We do not address whether a one-size-fits-all scheduling algorithm could be implemented



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 60

to take into account all operating conditions and all kinds of submitted application mixes,

but instead intend to enable the Alchemi Manager to switch dynamically among different

scheduling algorithms, each potentially tuned for specific conditions and workloads, as the

state of the system changes. The same scheduler-swapping provisions could also be used

to avert or alleviate situations in which (a subset of) Executors misbehave – for reasons

varying from misconfiguration, to the occasional bug in the code of grid threads for some

applications, to malicious interference by rogue Executor nodes – in ways that cannot

be immediately detected by the monitoring capabilities of the Manager. By default, the

Manager only tracks whether an executor node is “alive” using periodic heatbeats.

In the next section we describe a proof-of-concept experimental case study that demonstrates

how Kheiron/CLR can be used to facilitate runtime reconfiguration, specifically replacement

of the Alchemi scheduler, without any modifications to the source code of the target system

or the underlying CLR managed execution environment. We show how our adaptation

engine attached via Kheiron/CLR is able to transparently swap scheduler implementations

on the fly, which would enable existing Alchemi installations to take advantage of multiple

alternative scheduling algorithms without having to re-compile and re-install any system

components. We also discuss how the reconfigurations are carried out in a way that preserves

the consistency of the running grid application, as well as the overall distributed grid system.

We should stress that our case study focuses on the feasibility of effecting such consistency-

preserving reconfigurations of a legacy software system like Alchemi running in a managed

execution environment. We do not at all address the optimization issues implied by the

concept of dynamic scheduler replacement. We claim only that Kheiron/CLR facilitates the

development of specific remedies such as optimization: for instance, our approach could

enable an adaptive scheduler-swapping scheme that could ensure the grid’s performance

across a vast range of applications and conditions, which remains an open and interesting

research issue.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 61

Reconfiguring Alchemi. To swap the grid scheduler in a running instance of the Alchemi

grid, we need to implement the reconfiguration engine that interacts with Alchemi’s Manager

component. Using Kheiron/CLR, our CLR profiler described in Section 3.7.3, we can

dynamically attach/detach such an adaptation engine implemented as a separate assembly

to/from a running managed application in a fairly mechanical way. However, a first important

step is to carefully plan the interactions between the running application, the reconfiguration

engine and the CLR, in such a way that they do not compromise the integrity of either the

managed application or the CLR.

Consequently, we – as the developers of the adaptation engine to be attached by Kheiron/CLR

– must gather some knowledge about the system. Specifically, we need details about how

the Alchemi Manager component works, particularly the execution flow in the Manager

from startup to shutdown. That enables us to identify potential “safe” control points where

reconfiguration actions can take place. We also need to identify those classes the adaptation

engine must interact with to effect the scheduler swap. The final step is to implement the

special-purpose reconfiguration engine based on what we learn about the system.

In particular, we learned that when the Alchemi Manager is started (by running the Al-

chemi.Manager.exe assembly) an instance of the ManagerContainer class, from the Al-

chemi.Core.dll assembly), is created. The instance of the ManagerContainer class repre-

sents the Manager proper. On startup, the ManagerContainer::Start() routine performs a

set of initialization tasks:

1. An object is registered with the .NET Remoting services, allowing Executors to

interact with the Manager instance.

2. A singleton instance of the InternalShared class is created, holding a reference to the

scheduler implementation being used (among other things). The concrete scheduler im-

plementation is referenced as an implementation of the Alchemi.Core.Manager.IScheduler

interface, which standardizes the scheduler API [6].



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 62

3. Two threads, the scheduler thread and the watchdog thread, are started. The sched-

uler thread runs the ManagerContainer::ScheduleDedicated() method, which loops

“forever” on a flag member variable, stopScheduler. It periodically retrieves the

scheduler implementation from the InternalShared singleton instance and queries

it for a DedicatedSchedule. A DedicatedSchedule is a <Grid Thread ID, Executor

ID> tuple specifying where the selected grid thread should be scheduled to run. The

watchdog thread runs the ManagerContainer::Watchdog() method, which loops

“forever” on the stopWatchdog flag member variable, periodically checking the

status of dedicated Executors.

Based on this Manager startup sequence, we outline below the tasks involved in performing

a scheduler swap:

1. Use Kheiron/CLR to insert a prologue into the ManagerContainer::Start() method

such that it jumps into the reconfiguration engine assembly where the instance of the

ManagerContainer can be cached so we can interact with it later to effect the scheduler

swap.

2. Use Kheiron/CLR to insert a prologue into the constructor for the InternalShared class

such that it jumps into the reconfiguration engine assembly where the instance can be

cached.

3. Once instances of the ManagerContainer and InternalShared classes have been cached,

the reconfiguration engine can cause the scheduler thread to exit normally by setting

the stopScheduler flag to true, allowing the thread to exit when it next tests the while

loop condition.

4. The Alchemi.Core.Manager.IScheduler reference stored in the InternalShared sin-

gleton can then be replaced by another IScheduler implementation.

5. The stopScheduler flag is set to false and the scheduler thread is restarted.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 63

The Reconfiguration Engine and Replacement Scheduler. Our adaptation engine im-

plementation, found in the PSL.Alchemi.ReconfigEngine.dll assembly, consists of two C#

classes, PSLScheduler and ReconfigEngine. The implementation was done without contact-

ing the Alchemi developers and took about half a day to complete. The total implementation

is 465 LOC – 95 LOC for PSLScheduler.cs and 370 LOC for ReconfigEngine.cs.

PSLScheduler implements the Alchemi.Core.Manager.IScheduler interface, and is func-

tionally equivalent to the DefaultScheduler implementation that ships with Alchemi, except

for some extra debugging and logging facilities. As noted previously, the goal of PSLSched-

uler is solely to demonstrate a successful reconfiguration – the scheduler swap – and to

exemplify how Kheiron facilitates the development of such a reconfiguration, not to actually

improve scheduling.

ReconfigEngine is responsible for caching instances of the Manager classes of interest, Man-

agerContainer and InternalShared, as well as effecting the scheduler swap. It is implemented

according to the singleton design pattern. To effect changes on the ManagerContainer and

InternalShared instances, the ReconfigEngine relies on the Reflection API, since many of

the key variables are private and in some cases read-only. The ReconfigEngine sets up a

communication channel after it has attached to the Manager, which allows a Reconfiguration

Console to send commands to the ReconfigEngine to trigger reconfigurations (our case study

did NOT include sensor monitoring for those conditions under which a different scheduler

would be warranted). Table 3.7 shows the method signatures of the ReconfigEngine API.

Method
public static ReconfigEngine GetInstance()
public static void CacheManagerContainer(object o)
public static void CacheInternalShared(object o)
public void SwapScheduler()

Table 3.7: Reconfiguration engine API



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 64

Experimental Setup. Our experimental testbed was an Alchemi cluster consisting of two

Executors (Pentium-4 3GHz desktop machines each with 1GB RAM running Windows XP

SP2 and the .NET Framework v1.1.4322), and a Manager (Pentium-III 1.2GHz laptop with

1GB RAM running Windows XP SP2 and the same .NET Framework version).

We ran the PiCalculator sample grid application, which ships with Alchemi, multiple times

while requesting that the scheduler implementation be changed during the application’s

execution. The PiCalculator application computes the value of Pi to n decimal digits. In our

tests we used the default n=100.

We swapped between the DefaultScheduler and the PSLScheduler. The two schedulers are

algorithmically equivalent, except that the PSLScheduler outputs extra logging information

to the Alchemi Manager GUI so that we could confirm that a scheduler swap actually

occurred.

Results. One thing we measured was the time taken to swap the scheduler. We requested

scheduler swaps between runs of the the PiCalculator application. The time taken to replace

the scheduler instance was about 500 ms, on average; however, that time was dominated by

the time spent waiting for the scheduler thread to exit. In the worst case, a scheduler-swap

request arrived while the scheduler thread was sleeping (as it is programmed to do for up

to 1000 ms on every loop iteration), causing the request to wait until the thread resumes

and exits before it is honored. As a result we consider the time taken to actually effect

the scheduler swap (modulo the time spent waiting for the scheduler thread to exit) to be

negligible.

Table 3.8 compares the job completion times when no scheduler swap requests are submitted

during execution of the PiCalculator grid application, with job completion times when one or

more scheduler swap requests are submitted. As expected, the difference in job completion

times is negligible, ∼1%, since the scheduler implementations are functionally equivalent.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 65

Further, swapping the scheduler had no impact on on-going execution of the Executors, as

an Executor is not assigned an additional work unit (grid thread) until it is finished executing

its current work unit.

run# Job Completion time (ms) w/o swap Job Completion time (ms) w/swap #Swaps
1 18.3063232 17.2748400 2
2 18.3163376 18.4665536 1
3 18.3363664 17.3148976 4
4 18.3463808 17.3148976 2
5 18.3063232 17.4150416 2
6 17.4250560 18.2662656 2
7 18.3463808 18.3163376 4
8 17.5352144 18.5266400 1
9 17.5252000 18.4965968 2
10 18.3363664 18.3463808 2
Avg 18.07799488 17.97384512 2.2

Table 3.8: PiCalculator.exe job completion times

Thus we were able to demonstrate that Kheiron/CLR can be used to facilitate a consistency-

preserving reconfiguration of the Alchemi Grid Manager without compromising the integrity

of the CLR or the Alchemi Grid Manager, and by extension the Alchemi Grid and jobs

actively executing in the grid. The combination of ensuring that the augmentations made

by Kheiron/CLR to insert hooks for the adaptation engine respect the CLR’s verification

rules for type and method definitions and the inclusion of human analysis to determine what

transformations Kheiron/CLR should perform on the target system, and when they should

be performed, can help guarantee that the operation of the target system is not compromised.

Human analysis of the target system’s operation leverages the consistency-guarantees of

Kheiron/CLR with respect to the CLR, allowing the designers of adaptations to focus on

preserving the consistency of the target system (at the application level) based on knowledge

of its operation.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 66

3.8 Kheiron/JVM: Runtime Adaptation in the Java Vir-

tual Machine

The Java Virtual Machine (JVM) is the technology component responsible for the hardware

and operating system independence of Java applications [111]. It is an abstract computing

machine, with its own instruction set and binary format for executables (the class file format).

These two elements – the abstract computing machine and the class file binary format for

executables – allow Java applications to be written and compiled once (into class files) and

run on multiple operating system and hardware platforms provided that an implementation

of the Java Virtual Machine exists for that operating system/hardware platform 9.

Java applications are compiled into executables (classfiles), which contain JVM instructions

(bytecodes), a symbol table (constant pool) and other ancillary information.

Despite the JVM’s primary association with the Java programming language, it is not tightly

tied to the Java. In fact the JVM “...knows nothing of the Java programming language, only

of a particular binary format, the class file format” [111]. As a result any language with

functionality that can be expressed in a valid class file can be hosted in the JVM.

The JVM, like the CLR, is an example of a managed execution environment In addition to

providing host and operating system independence, it also provides a number of services

to the applications it hosts including: application isolation, garbage collection of memory,

security sandboxing of applications and structured exception handling.

Despite the conceptual similarities between the CLR and JVM with respect to the abstrac-

tions and services they provide to the applications they host, there are many differences

between them. In this thesis we only highlight the differences related to effecting adaptations

in running Java applications.

9This is/was one theoretical goal for Java and the JVM; however, multiple JVM implementations running
on top of different operating systems e.g. Windows, Linux, Solaris, etc. led to subtle differences in how a
program executes across platforms [194].



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 67

3.8.1 Java Virtual Machine Execution Model (Java HotspotVM)

The unit of execution (sometimes referred to as a module) in the JVM is the classfile. Class-

files contain both the metadata and bytecode of a Java application. Two major components of

the JVM interact with the metadata and bytecode contained in the classfile during execution,

the classloader and the global native-code optimizer.

The classloader reads the classfile metadata and creates an in-memory representation and

layout of the various classes, members and methods on demand as each class is referenced.

The global native-code optimizer uses the results of the classloader and compiles the

bytecode for a method into native assembly for the target platform.

The JVM first runs the program using an interpreter, while analyzing the code to detect the

critical hot spots in the program. Based on the statistics it gathers, it then focuses the attention

of the global native-code optimizer on the hotspots to perform optimizations including JIT-

compilation and method inlining [131]. This model of execution of the JVM was introduced

in v1.4, and is the reason why these and later VM versions/implementations are referred

to as Hotspot VMs. Compiled methods remain cached in memory, and subsequent method

calls jump directly into the native (compiled) version of the method.

3.8.2 JVM Profiler and Metadata APIs

The v1.5 implementation of the Java HotspotVM introduces a new API for inspecting and

controlling the execution of Java applications – the Java Virtual Machine Tool Interface

(JVMTI) [134]. JVMTI replaces both the Java Virtual Machine Profiler Interface (JVMPI)

and the Java Virtual Machine Debug Interface (JVMDI) available in older releases. The

JVMTI is a two-way interface: clients of the JVMTI, often called agents, can receive

notifications of execution events in addition to being able to query and control the application

via functions either in response to events or independent of events. JVMTI notification



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 68

events include (but are not limited to): classfile loading, class loading, method entry/exit.

The Java HotspotVM does not have a built in API for manipulating type definitions. As a

result, to perform operations such as reading class and method attributes, parsing method

descriptors, defining new methods for types, emitting/rewriting the bytecode for method

implementations and creating new type references the first version of Kheiron/JVM relied on

APIs we developed based on information provided in the Java Virtual Machine Specification

(Chapter 4) [111]. Later versions of Kheiron/JVM use the Byte Code Engineering Library

(BCEL) [149], which provides a set of abstractions for manipulating metadata in classfiles

and facilities for verifying the validity of the modified classfile(s).

3.8.3 Kheiron/JVM Architecture

The implementation of Kheiron/JVM consists of a JVMTI agent (1890 lines of C++ code)

and a set of supporting Java classes that modify classfiles, collect execution statistics and

communicate with the JVMTI agent (779 lines of Java code) using the Java Native Interface

(JNI). To deploy Kheiron/JVM, the C++ code is packaged in an application extension library,

(.dll on Windows and .so on Linux), while the Java code is packaged in a jar file. Figure

3.16 shows the five main components of Kheiron/JVM.

• The Kheiron JVMTI Agent receives execution-related events from the JVM. Specif-

ically, our agent subscribes to class hook events (e.g., classfile load events for every

class), garbage collection events (e.g., GC start and end events), compiled method

load events (method compiled, loaded and unloaded events) and exception events

(exception thrown and caught events). Our JVMTI agent does not subscribe to method

entry/exit events from the JVM since these can severely degrade application perfor-

mance [134]. Instead, we rely on the Bytecode Transformer to add method entry and

exit profiling hooks to the methods of the classes we are interested in.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 69

Figure 3.16: Kheiron/JVM architecture diagram

• The Bytecode Transformer parses and modifies classfiles. It is able to add new

methods or variables to types and add references to other classes or methods. It is also

responsible for generating, inserting or replacing the bytecode in existing methods.

Bytecode changes can be committed at loadtime (via returning a modified classfile

in response to the ClassfileLoadHook event generated by the JVM when a classfile

is read from storage) or at runtime via the RedefineClasses function exposed by the

JVMTI. In the case of runtime modifications of methods, active method invocations

continue to use the old implementation of a method while new invocations use the

latest version [134]10. In our Kheiron/JVM implementation the Bytecode Transformer

is primarily responsible for injecting instrumentation hooks into classes such that

method invocations and object creations can be tracked. The hooks inserted interact

with methods exposed by the Stats Collector and/or the Fault Manager depending on

the desired adaptation.

• The Stats Collector captures object creation and method entry and exit events via the

hooks inserted by the Bytecode Transformer. The Stats Collector uses a number of

different book-keeping data structures to manage and collate the events received while

10[134] also outlines the restrictions on the modifications permitted using the RedefineClasses API.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 70

an application is executing.

• The Object Manager manages an object pool of book-keeping data structures. It is

responsible for creating, distributing and recycling these book-keeping data-structure

instances in an effort to limit the amount of memory consumed by Kheiron related

objects.

• The Fault Manager is responsible for injecting faults or inducing failures in a Java

application. It relies on hooks inserted by the Bytecode Transformer to capture and/or

interact with elements (object instances, data structures, methods implementations,

etc.) in the target application.

Communication between the Kheiron JVMTI agent written in C++ and the Kheiron/JVM

Java classes is achieved using the Java Native Interface (JNI). JNI is a two-way interface that

allows Java code running in a JVM to call and by called by code written in other languages,

e.g., C and C++ [132]. Whereas there are other approaches to facilitating communication

between Java and non-Java applications, e.g., TCP/IP sockets, interprocess communication

mechanisms (IPC), etc., JNI allows communication between Java and non-Java elements that

share the same process space as is the case with our JVMTI C++ agent and Kheiron/JVM

Java classes, which are hosted in a single JVM process.

The ability of the profiler/JVMTI agent to call or interact with managed (Java) code in a

structured way via the JNI APIs is unique to the JVM. This allows JVMTI agents to leverage

functionality available in the Java system libraries and/or other Java based libraries. In the

CLR, profilers are intended to be purely unmanaged code, i.e., written in C/C++. Profiler

developers are warned that “...attempts to combine managed and unmanaged code from a

CLR profiler can cause crashes, hangs and deadlocks” [126].



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 71

3.8.4 Model of Operation

Kheiron/JVM performs operations on type definitions, object instances and methods at

various stages in the execution cycle (see Figure 3.17) to make them capable of interacting

with an adaptation engine. In particular, to enable an adaptation engine to interact with a

class instance, Kheiron/JVM augments the type definition to add the necessary “hooks”.

Augmenting the type definition is a two-step operation.

Figure 3.17: First method invocation in the Java HotspotVM

Step 1 occurs at classfile load time (Stage 1 in Figure 3.17), signaled by the ClassFileLoad-

Hook JVMTI callback that precedes it. At this point the VM has obtained the classfile

data from storage but has not yet constructed the in-memory representation of the class.

Kheiron/JVM adds what we call shadow methods for each of the original public and/or

private methods. A shadow method shares most of the properties – including a subset of

attributes, e.g., exception specifications and the method descriptor – of the corresponding

original method. However, a shadow method gets a unique name. Figure 3.18, transition

A to B, shows an example of adding a shadow method SampleMethod for the original



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 72

method SampleMethod.

Extending the metadata of a type by adding new methods must be done before the type

definition is installed in the JVM. Once a type definition is installed, the JVM will reject the

addition or removal of methods. Attempts to call RedefineClasses will fail if new methods

or fields are added. Similarly, changing method signatures, method modifiers or inheritance

relationships is also not allowed.

Figure 3.18: Preparing and creating a shadow method

Step 2 of type augmentation occurs immediately after the shadow method has been added,

while still in the ClassFileLoadHook JVMTI callback. Kheiron/JVM uses bytecode-

rewriting techniques to convert the implementation of the original method into a thin

wrapper that calls the shadow method, as shown in Figure 3.18, transition B to C.

Kheiron/JVM’s wrappers and shadow methods facilitate the adaptation of class instances.

In particular, the regular structure and single return statement of the wrapper method, see

Figure 3.19, enables Kheiron/JVM to easily inject adaptation instructions into the wrapper

as prologues and/or epilogues to shadow method calls.

To add a prologue to a method new bytecode instructions must prefix the existing bytecode

instructions. The level of difficulty is the same whether we perform this insertion in the

wrapper or in the original method. Adding epilogues, however, is more challenging (as

highlighted in 3.7.4). To address these challenges, we employ the same wrapper-based



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 73

Figure 3.19: Kheiron/JVM conceptual diagram of a wrapper

approach, which allows us to create a regular method structure with a single entry point, and

a single known exit point. The simplified structure of the wrapper makes it easy to add/edit

prologues and epilogues as necessary.

To initiate an adaptation, Kheiron/JVM augments the wrapper to insert a jump into an

adaptation engine at the control point(s) before and/or after a shadow method call. This

allows an adaptation engine to be able to take control before and/or after a method executes.

Effecting the jump into the adaptation engine is a two-step process.

• Step 1: Extend the metadata of the classfile currently executing in the JVM such that

a reference to the classfile containing the adaptation engine is added to the constant

pool11 as well as references to the subset of the adaptation engine’s methods that we

wish to insert calls to.

• Step 2: Augment the bytecode and metadata of the wrapper function to insert bytecode

instructions to transfer control to the adaptation engine before and/or after the existing

bytecode that calls the shadow method. The adaptation engine can then perform

any number of operations, such as inserting and removing instrumentation, caching

class instances, performing consistency checks over class instances and components,

injecting faults, or performing reconfigurations and diagnostics of components.

11The constant pool stores symbolic information about fields, methods, interfaces, constants, data types, etc.
that is referenced by bytecode instructions.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 74

3.8.5 Evaluation Part 1: Kheiron/JVM Performance Impact

We are able to show, that like our other framework for facilitating adaptations in a managed

execution environment, Kheiron/CLR, Kheiron/JVM imposes only a modest performance

impact on a target system when no adaptations, repairs or reconfigurations are active. We

have evaluated the performance of our prototype by quantifying the overheads on program

execution using two separate benchmarks.

The experiments were run on a single Pentium III Mobile Processor, 1.2 GHz with 1 GB

RAM. The platform was Windows XP SP2 running the Java HotspotVM v1.5 update 4.

Enabling Kheiron/JVM is done by adding a switch to the commandline that starts the JVM

(Figure 3.20). In our evaluation we used the Java benchmarks SciMark v2.012 and Linpack13.

java -cp .;kheiron.jar -agentpath:<path to

Kheiron/JVM dll/.so> <main class>

Figure 3.20: Enabling Kheiron/JVM

SciMark is a benchmark for scientific and numerical computing. It includes five compu-

tation kernels: Fast Fourier Transform (FFT), Jacobi Successive Over-relaxation (SOR),

Monte Carlo integration (Monte Carlo), Sparse matrix multiply (Sparse MatMult) and dense

LU matrix factorization (LU). Linpack is a benchmark that uses routines for solving com-

mon problems in numerical linear algebra including linear systems of equations, eigenvalues

and eigenvectors, linear least squares and singular value decomposition. In our tests we used

a problem size of 1000.

SCIMark Composite Score Average Stdev
Without Kheiron/JVM 115.15 115.83 116.10 116.01 116.57 115.934 0.515
With Kheiron/JVM 113.61 111.50 114.89 116.00 115.54 114.308 1.807
% Slowdown 1.34% 3.74% 1.04% 0.02% 0.89% 1.40% 1.39%

Table 3.9: Kheiron/JVM overheads on SCIMark when no repair active

12http://math.nist.gov/scimark2/
13http://www.shudo.net/jit/perf/Linpack.java



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 75

Linpack Composite Score Average Stdev
Without Kheiron/JVM 55.00 58.06 57.81 58.42 58.36 57.531 1.434
With Kheiron/JVM 54.33 57.47 56.30 57.66 57.96 56.744 1.488
% Slowdown 1.22% 1.02% 2.62% 1.30% 0.69% 1.369% 0.738%

Table 3.10: Kheiron/JVM overheads on Linpack when no repair active

Figure 3.21: Kheiron/JVM overheads when no repair active

Running an application under the JVMTI profiler imposes some overhead on the application.

Also, the use of shadow methods and wrappers converts one method call into two. Figure

3.21 shows the runtime overhead for running the benchmarks with and without profiling

enabled. We performed five test runs for SciMark and Linpack each with and without

profiling enabled. Our Kheiron/JVM DLL profiler implementation was compiled as an

optimized release build. For each benchmark, the bar on the left shows the performance

normalized to one, of the benchmark running without profiling enabled. The bar on the right

shows the normalized performance with our profiler enabled.

Our measurements show that our profiler contributes ∼2% runtime overhead when no

adaptations are active, which we consider negligible. Further, Kheiron-related objects occupy

∼155K of memory on the JVM heap, 120K of which is pre-allocated for the ObjectManager’s

pool of book-keeping data structures. Finally, we demonstrate how Kheiron/JVM can interact



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 76

with the Java Virtual Machine and effect adaptations in the applications it hosts in a manner

that is transparent to both the JVM and the target application requiring only a change to the

commandline used to start the application.

By implementing Kheiron/JVM we are able to show that our conceptual approach of lever-

aging facilities exposed by the execution environment, specifically profiling and execution

control services, and combining these facilities with metadata edit and emit APIs that respect

the verification rules for types, their metadata and their method implementations (bytecode)

is a sufficiently low-overhead approach for adapting running programs in contemporary

managed execution environments.

3.8.6 Evaluation Part 2: Kheiron/JVM Web-Application Fault-Injection

The second part of the evaluation of Kheiron/JVM looks at its ability to dynamically

instrument, inject faults and induce failures in a Java-based application server and its hosted

web-application classes.

For this case study we use an n-tier web application stack consisting of the TPC-W web-

application [119]14, the (Java-based) Resin web and application server [186] and a MySQL

database server as our system under test (SUT). We target the Java-based components of the

stack, i.e. the web/application server and the TPC-W servlet classes for fault-injection.

We add to Kheiron/JVM the ability to inject 18 different faults into the web-application stack

components. Wrapper methods generated by Kheiron/JVM include a call into the Fault

Manager, which looks up the name of the method being invoked and performs a specific

fault-injection action, e.g., allocating a block of memory or throwing a specific exception as

necessary. Methodname-fault mappings are stored in a fault-model specification file that is

read by Kheiron/JVM upon initialization.

14TPC-W is a transactional web e-Commerce benchmark, modeled after an online bookstore.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 77

These 18 faults make up our fault-model and are are grouped into four failure categories

– resource depletion failures, processing failures, configuration failures and JVM failures

– (see Table 3.11. Our fault-model for N-tier web-applications is motivated primarily by

the discussion in [21] and [142], which identify resource leaks/state corruption, intermit-

tent/transient processing faults, hangs, configuration errors and crashes as major causes of

failures in internet services.

Failure category Fault

Resource depletion failures
Memory Leak
Out of Memory Error

Processing failures

Delays
Hangs
Servlet Exception
IO Exceptions
NullPointer Exception
Index Out of Bounds Exception
Arithmetic Exception

Configuration failures

Class Cast Exception
Illegal Argument Exception
Missing Resource Exception
Security Exception
No Class Definition Found Exception
Unsatisfied Link Error (JNI)
Type Not Present Exception

JVM failures
Internal Error
Stack Overflow Error

Table 3.11: Kheiron/JVM web-application stack fault-model

In our evaluation experiments we use an implementation of the TPC-W benchmark (web-

application and client-load generator) developed by the Predictive High-Performance Ar-

chitecture Research Mavens (PHARM) group at the University of Wisconsin-Madison.

Resin 3.0.22 was chosen as the web/application server and MySQL 5.0.27 was used for the

database servers. Resin and MySQL were installed on a single Windows XP Media Center

Edition Version 2002 SP2 machine (2 GB RAM, 228 GB HD and an Intel R©CoreTM2 Duo

CPU E6750 @ 2.66 GHz Processor) running a v1.5.0 update 7 Java Virtual Machine. These

evaluations were conducted using an optimized release build of the Kheiron/JVM Windows



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 78

DLL.

We use the injection of resource depletion faults, processing faults and configuration faults to

demonstrate Kheiron/JVM’s ability to induce failures in the TPC-W web-application classes.

Fault-injection using Kheiron/JVM is guided by a fault-specification configuration file which

contains the name of the fault to inject, the fully-qualified name of the method to target for

fault-injection and the frequency of injection (e.g. once every N method invocations or once

every N minutes).

Servlet Instrumentation. The TPC-W distribution consists of 14 servlet classes, which

together expose 15 servlet methods for remote clients to interact with. To identify potential

targets for fault-injection we first collect profiles of servlet execution over five 25-minute

intervals using the TPC-W load generator configured to generate traffic for 20 clients.

Enabling application-server instrumentation was done using the commandline shown in

Figure 3.22. The configuration file watch.config contains the names of the servlets to

instrument as well as a pointer to a fault-specification file, which uses a NullFault (not to be

confused with the NullPointer Fault mentioned in Table 3.11) to collect invocation statistics

on the 15 servlet methods.

httpd.exe -verbose -classpath .;kheiron.jar

-J-agentpath:kheiron jvm.1.5.dll=watch.config

Figure 3.22: Enabling application-server instrumentation with Kheiron/JVM

The execution profile for the TPC-W servlets is shown in Figure 3.23. From this graph

we can identify five potential fault-injection targets: TPCW search request servlet.doGet,

TPCW home interaction.doGet, TPCW execute search.doGet, TPCW product detail servlet

and TPCW shopping cart interaction.doGet.

Resource Depletion Failures. For our resource depletion tests we target the

TPCW execute search servlet with an aggressive memory leak, 500K every 5 invocations,



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 79

Figure 3.23: TPC-W servlet method invocation profile

in a JVM configured to use a maximum heap size of 64 MB. The TPCW execute search

servlet is invoked approximately 651 times during a 25 minute TPC-W run with a 20 client

load. Figures 3.24 and 3.25 show the effects of the memory leak injected into the TPC-W

servlet on 1) the length of time the underlying JVM operates with a given heap-size and

2) the rate at which the JVM requests additional memory from the Operating System to

accommodate the expanding heap. In addition to the increased memory-request rate, we

also observe a surge in Garbage Collection activity as the JVM’s Garbage Collector works

to recover memory in order to compensate for the heap’s growth (see Figure 3.26).

Processing Failures. To demonstrate a processing failure, we slow down the entire TPC-

W web-application by injecting a 100 msec delay in every servlet method invoked by a

remote client – the name of each servlet method is associated with a delay in the fault-model

specification file used by Kheiron/JVM. Figure 3.27 shows the average execution time of



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 80

Figure 3.24: JVM memory request profile
w/o Kheiron/JVM-injected memory leak

Figure 3.25: JVM memory request profile
w/Kheiron/JVM-injected memory leak

Figure 3.26: JVM garbage collection events with and without Kheiron/JVM-injected
memory leak

the servlets with and without the Kheiron/JVM injected delays.

Configuration Failures. To demonstrate a targeted configuration failure, we cause the

TPCW execute search servlet to fail 30% of the time by injecting a MissingResourceFault

(by causing a Missing Resource Exception to be thrown). The invocation results are shown

in Figure 3.28. Further stacktraces dumped to the application server logs (see Figure 3.29)

confirm Kheiron/JVM as the cause of the failure.

In this section we demonstrated the ability of Kheiron/JVM to transparently instrument



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 81

Figure 3.27: Average servlet method execution times with and without
Kheiron/JVM-injected delays

Figure 3.28: TPCW execute search invocation failures

and inject targeted faults into web-application classes hosted in an application server. We

presented a simple fault-model for web-applications consisting of four failure categories,

injected faults from three of the four categories and measured the effects on the web-

application classes, remote clients accessing these classes and the the underlying Java

Virtual Machine.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 82

java.util.MissingResourceException: Kheiron/JVM

MissingResourceException

at psl.kheiron.faults.MissingResourceFault.doInject

at psl.kheiron.faults.Fault.injectFault

at psl.kheiron.FaultManager.injectFault

at TPCW execute search.doGet

[Stacktrace edited for brevity]
at com.caucho.server.port.TcpConnection.run

at com.caucho.util.ThreadPool.runTasks

at com.caucho.util.ThreadPool.run

at java.lang.Thread.run

Figure 3.29: Injecting configuration faults with Kheiron/JVM

3.9 Kheiron/C: Runtime Adaptation of Compiled-C Pro-

grams

Effecting adaptations in unmanaged applications is markedly different from effecting adapta-

tions in their managed counterparts, since they lack many of the characteristics and facilities

that make runtime adaptation qualitatively easier, in comparison, in managed execution

environments. Unmanaged execution environments store/have access to limited metadata

about program elements, limited or no built-in facilities for execution tracing, and less

structured rules on well-formed programs.

In this section we focus on using Kheiron/C to facilitate adaptations in running compiled C

programs, built using standard compiler toolkits like gcc and g++, packaged as Executable

and Linking Format (ELF) [189] object files, on the Linux platform.

3.9.1 Native Execution Model

One unit of execution in the Linux operating system is the ELF executable. ELF is the

specification of an object file format. Object files are binary representations of programs

intended to execute directly on a processor as opposed to being run in an implementation of



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 83

an abstract machine such as the JVM or CLR. The ELF format provides parallel views of

a file’s contents that reflects the differing needs of program linking, loading and program

execution.

Program loading is the procedure by which the operating system creates or augments

a process image. A process image has segments that hold its text (instructions for the

processor), data and stack. On the Linux platform the loader/linker maps ELF sections into

memory as segments, resolves symbolic references, runs some initialization code (found in

the .init section) and then transfers control to the main routine in the .text segment.

One approach to execution monitoring in an unmanaged execution environment is to build

binaries in such a way that they emit profiler data. Special flags, e.g., -pg, are passed to the

gcc compiler used to generate the binary. The executable, when run, will also write out a

file containing the times spent in each function executed. Since a compile-time/link-time

flag is used to create an executable that has logic built in to write out profiling information,

it is not possible to augment the data collected without rebuilding the application. Further,

selectively profiling portions of the binary is not supported.

To gain control of a running unmanaged application on the Linux operating system, tools

use built-in facilities such as ptrace and the /proc file system. ptrace is a system call that

allows one process to attach to a running program to monitor or control its execution and

examine and modify its address space. Several monitored events can be associated with a

traced program including: the end of execution of a single assembly language instruction,

entering/exiting a system call, and receiving a signal. ptrace is primarily used to implement

breakpoint debuggers. Traced processes behave normally until a signal is caught – at which

point the traced process is suspended and the tracing process notified [39]. The /proc

filesystem is a virtual filesystem created by the kernel in memory that contains information

about the system and the current processes in their various stages of execution.

With respect to metadata, ELF binaries support various processors with 8-bit bytes and



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 84

32-bit architectures. Complex structures, etc. are represented as compositions of 32-bit,

16-bit and 8-bit “types”. The binary format also uses special sections to hold descriptive

information about the program. Two important sections are the .debug and .symtab sections,

where information used for symbolic debugging and the symbol table, respectively, are kept.

The symbol table contains the information needed to locate and relocate symbolic references

and definitions. The fields of interest in a symbol table entry (Figure 3.30) are st name,

which holds an index into the object file’s symbol string table where the symbol name is

stored, st size, which contains the data object’s size in bytes and st info, which specifies the

symbol’s type and binding attributes.

Figure 3.30: ELF symbol table entry [189]

Type information for symbols can be one of: STT NOTYPE, when the symbol’s type is

not defined, STT OBJECT, when the symbol’s type is associated with a data object such as

variable or array, STT FUNC, for a function or other executable code, and STT SECTION,

for symbols associated with a section. As we can see, the metadata available in ELF object

files is not as detailed or as expressive as the metadata found in managed executables. For

example, we lack richer information on abstract data types and their relationships, functions

and their signatures – number of expected parameters, parameter types and function return

types – i.e., limited support for sophisticated reflection and metadata APIs. Further, since

unmanaged applications run on the underlying processor, there is no intermediary exposing

an execution tracing and control API; instead we have to rely on platform-specific operating

system support, e.g., ptrace and strace on Unix.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 85

3.9.2 Kheiron/C Model of Operation

Our current implementation of Kheiron/C relies on the Dyninst API [18] (v4.2.1) to interact

with target applications while they execute. Dyninst presents an API for inserting new code

into a running program. The program being modified is able to continue execution and does

not need to be recompiled or relinked. Uses for Dyninst include, but are not limited to,

runtime code-patching and performance steering in large/long-running applications.

Dyninst employs a number of abstractions to shield clients from the details of the runtime

assembly language insertion that takes place behind the scenes. The main abstractions

are points and snippets. A point is a location in a program where instrumentation can

be inserted, whereas a snippet is a representation of the executable code to be inserted.

Examples of snippets include BPatch funcCallExpr, which represents a function call, and

BPatch variableExpr, which represents a variable or area of memory in a thread’s address

space. Behind the abstractions, Dyninst relies on trampolines – a small piece of code

constructed on-the-fly on the stack – to alter the original flow of execution to include the

inserted instrumentation (see Figure 3.31).

To use the Dyninst terminology, Kheiron/C is implemented as a mutator (Figure 3.32), which

uses the Dyninst API to attach to and modify running programs. On the Linux platform,

where we conducted our experiments, Dyninst relies on ptrace and the /proc filesystem

facilities of the operating system to interact with running programs.

Kheiron/C uses the Dyninst API to search for global or local variables/data structures (in

the scope of the insertion point) in the target program’s address space, read and write

values to existing variables, create new variables, load new shared libraries into the address

space of the target program, and inject function calls to routines in loaded shared libraries

as prologues/epilogues (at the points shown in Figure 3.32) for existing function calls in

the target application. As an example, Kheiron/C could search for globally visible data

structures, e.g., the head of a linked list of abstract data types, and insert periodic checks of



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 86

Figure 3.31: Dyninst model of operation

the list’s consistency by injecting new function calls passing the linked-list head variable as

a parameter.

To initiate an adaptation, Kheiron/C attaches to a running application (or spawns a new

application given the command line to use). The process of attaching causes the thread of the

target application to be suspended. It then uses the Dyninst API to find the existing functions

to instrument (each function abstraction has an associated call-before instrumentation point

and a call-after instrumentation point). The target application needs to be built with symbol

information for locating functions and variables to work – with stripped binaries Dyninst

reports ∼95% accuracy locating functions and an ∼87% success rate instrumenting functions.

The disparity between the percentage of functions located and the percentage of functions

instrumented is attributed to difficulties in instrumenting code rather than failures in the

analysis of stripped binaries [71]. Kheiron/C uses the Dyninst API to locate global structures

or local variables in the scope of the intended instrumentation points. It then loads any



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 87

Figure 3.32: Kheiron/C

external library/libraries that contain the desired adaptation logic and uses the Dyninst API

to find the functions in the adaptation libraries, for which calls will be injected into the target

application. Next, Kheiron/C constructs function call expressions, which are converted into

assembly instruction sequences by Dyninst, and inserts them at the instrumentation points.

Finally, Kheiron/C allows the target application to continue its execution.

3.9.3 Evaluation Part 1: Kheiron/C Performance Impact

We carry out a simple experiment to measure the performance impact of Kheiron/C on a

target system. Using the C version of the SciMark v2.0 benchmark we compare the time

taken to execute the un-instrumented program, to the time taken to execute the instrumented

program – we instrumented the SOR execute and SOR num flops functions such that a call

to a function (AdaptMe) in a custom shared library is inserted. The AdaptMe function is

passed an integer indicating the instrumented function that was called. Our experiment was

run on a single Pentium 4 Processor, 2.4 GHz with 1 GB RAM. The platform was SUSE

Linux 9.2 running a 2.6.8-24.18 kernel and using Dyninst v4.2.1. All source files used in

the experiment (including the Dyninst v4.2.1 source tree) were compiled using gcc v3.3.4

and glibc v2.3.3.

As shown in Figure 3.33, the overhead of the inserted function call is negligible, ∼1%. This

is expected since the x86 assembly generated behind the scenes effects a simple jump into



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 88

Figure 3.33: Kheiron/C overheads of simple instrumentation

the adaptation library followed XSby a return before executing the bodies of SOR execute

and SOR num flops. We expect that the overhead on overall program execution would

depend largely on the operations performed by the inserted “snippets”. Further, the time

the SciMark process spends suspended while Kheiron/C performs the instrumentation is

sub-second, ∼684 msecs ± 7.0686.

3.9.4 Evaluation Part 2: Kheiron/C Injecting Selective Emulation

In this section, we explore the flexibility of Kheiron/C by using it enable a sophisticated

runtime adaptation of a compiled-C application.

To enable applications to detect low-level faults and recover at the function level or, to

enable portions of an application to be run in a computational sandbox, we describe an

approach that allows portions of an executable to be run under the STEM x86 emulator (see

Figure 3.36). We use Kheiron/C to dynamically load the emulator into the target process’

address space and emulate individual functions. STEM (Selective Transactional EMulation)

is an instruction-level emulator – developed by Locasto et al. [171] – that can be selectively

invoked for arbitrary segments of code. The emulator can be used to monitor applications

for specific types of failure prior to executing an instruction, to undo any memory changes

made by the function inside which the fault occurred (by having the emulator track memory



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 89

modifications) and, simulate an error return from the function (error virtualization)[171].

Figure 3.34: Selective emulation in action

The original implementation of STEM works at the source-code level, i.e., a programmer

must insert the necessary STEM “statements” around the portions of the application’s source

code expected to run under the emulator (Figure 3.35). In addition, the STEM library is

statically linked to the executable. To inject STEM into a running, compiled C application,

we need to be able to: load STEM dynamically into a process’ address-space, manage the

CPU-to-STEM transition as well as the STEM-to-CPU transition.

To dynamically load STEM we change the way STEM is built. The original version of

STEM is deployed as a GNU AR archive of the necessary object files; however, the final

binary does not contain an ELF header – this header is required for executables and shared

object (dynamically loadable) files. A cosmetic change to STEM’s makefile suffices – using

gcc with the -shared switch at the final link step. Once the STEM emulator is built as a true

shared object, it can then be dynamically loaded into the address space of a target program



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 90

Figure 3.35: Inserting STEM via source code

using the Dyninst API.

Next, we focus on initializing STEM once it has been loaded into the target process’ address

space. The original version of STEM requires two things for correct initialization. First, the

state of the machine before emulation begins must be saved – at the end of emulation STEM

either commits its current state to the real CPU registers and applies the memory changes or

STEM performs a rollback of the state of the CPU, restoring the saved register state, and

undoes the memory changes made during emulation. Second, STEM’s instruction pipeline

needs to be correctly setup, including the calculation of the address of the first instruction to

be emulated.

To correctly initialize our dynamically-loadable version of STEM we need to be able to

effect the same register saving and instruction pipeline initialization as in the source-scenario.

In the original version of STEM register saving is effected via the emulate init macro, shown

in Figure 3.35. This macro expands into inline assembly, which moves the CPU (x86)

registers (eax, ebx, ecx, edx, esi, edi, ebp, esp, eflags) and segment registers (cs, ds, es, fs,

gs, ss) into STEM data structures.

Whereas Kheiron/C can use Dyninst to dynamically load the shared-object version of STEM

into a target process’ address-space and inject a call to the emulate begin function, the same

cannot be done for the emulate init macro, which must precede a call to emulate begin.

Macros cannot be injected by Dyninst since they are intended to be expanded inline by the



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 91

C/C++ preprocessor before compilation begins. This issue is resolved by modifying the

trampoline – a small piece of code constructed on-the-fly on the stack – Dyninst sets up for

inserting prologues, code (usually function calls) executed before a function is invoked.

Dyninst instrumentation via prologues works as follows: the first five bytes after the base

address15 of the function to be instrumented are replaced with a jump (0xE9 [32-bit

address] ) to the beginning of the trampoline. The assembly instructions in the trampoline

save the CPU registers on the stack, execute the prologue instrumentation code, restore the

CPU registers and branches to the instructions displaced by the jump instruction into the

trampoline. Then another jump is made to the remainder of the function body before control

is finally transferred to the instruction after the instrumented function call [18].

We modify this trampoline such that the contents of the CPU general purpose registers and

segment registers are saved at a memory address (register storage area) accessible by the

process being instrumented. This modification ensures that the saved register data can be

passed into STEM and used in lieu of the emulate init macro. In addition, we modify Dyninst

such that the instructions affected by the insertion of the five-byte jump into the trampoline

are saved at another memory address (code storage area) accessible by the process being

instrumented. Since the x86 processor uses variable-length instructions, there is no direct

correlation between number of instructions displaced and the number of bytes required to

store them. However, Dyninst has an internal function getRelocatedInstructionSz, which

it uses to perform such calculations. We use this internal function to determine the size of

the code storage area where the affected instructions are copied.

The entire CPU-to-STEM transition using our dynamically-loadable version of STEM

is as follows: Kheiron/C loads the STEM emulator shared library and a custom library

(dynamically linked to the STEM shared library) that has functions (RegisterSave and

EmulatorPrime). Next, Kheiron/C uses the Dyninst API to find the functions to be run

15The location in memory of the first assembly instruction of the function.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 92

under the emulator. Kheiron/C uses Dyninst functions that support its BPatch thread::malloc

API to allocate the areas of memory in the target process’ address-space where register

data and relocated instructions are saved. The addresses of these storage areas are set as

fields added to the BPatch point class – the concrete implementation of Dyninst’s point

abstraction. RegisterSave is passed the address of the storage area and copies data over from

the storage area into STEM registers – so that a subsequent call to emulate begin will work.

EmulatorPrime is passed the address of the code storage area, its size and the number of

instructions it contains. Kheiron/C injects calls to the RegisterSave, EmulatorPrime and

emulate begin functions (in this order) as prologues for the functions to be emulated and

allows the target program to continue. A modification to STEM’s emulate begin function

causes STEM to begin its instruction fetch from the address of the code storage area.

At the end of this process, the instrumented function, when invoked, loads the STEM

emulator and initializes it with the CPU and segment register values as well as enough

information to cause our dynamically-loadable version of STEM to alter its instruction

pointer after executing the relocated instructions and continue the emulation of the remaining

instructions of the function. After the initialization, the injected call to emulate begin will

cause STEM to begin its instruction fetch-decode-execute loop thus running the function

under the emulator.

The final modification to STEM addresses the STEM-to-CPU transition, which occurs when

the emulator needs to unload and allow the real CPU to continue from the address after the

function call run under the emulator. Rather than inject calls to emulate end, we modify

STEM’s emulate begin function such that it keeps track of its own stack-depth. Initially,

this value is set to 0; if the function being emulated contains a call (0xE8) instruction, the

stack-depth is incremented, when it returns the stack-depth is decremented. STEM marks the

end of emulation by the detection of a leave (0xC9) or return/ret (0xC2/0xC3) at stack-depth

0. At this point, the emulator either commits or restores the CPU registers and, using the



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 93

Figure 3.36: Selective emulation via Kheiron/C + Dyninst

address stored in the saved stack pointer register (esp), causes the real CPU to continue its

execution from the instruction immediately after the emulated function call.

3.10 Integrity/Consistency-preserving Adaptations

To provide any guarantees that the runtime adaptations we effect preserve the integrity and

consistency of the application and execution environment we need to have an understanding

of how the execution environment works and how the application works.

In the preceding three sections (§3.7, §3.8 and §3.9) we discuss and demonstrate techniques

for effecting a variety of runtime adaptations in applications running in managed and

unmanaged execution environments; however, in the presentation of our runtime adaptation

techniques we have primarily focused on the execution environment’s role in ensuring

that adaptations preserve the integrity/consistency of the application and the execution



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 94

environment.

For example, managed execution environments like the CLR and JVM have rules on what

constitutes a valid program, these rules act as guidelines for our metadata and bytecode

insertions and modifications. Similarly, the instruction set of the underlying processor,

function call setup/cleanup conventions and linkage specifications provide guidelines for

runtime adaptations in unmanaged execution environments.

However, understanding how the execution environment works is only one aspect of effecting

integrity/consistency-preserving adaptations. Knowledge of how the target application

operates is also important. Our case study of reconfiguring the Alchemi Enterprise Grid

Computing system using Kheiron/CLR briefly touches on this (see §3.7.8).

Whereas Kheiron/CLR can effect adaptations in Alchemi without requiring access to source

code for re-compilation, our ability to safely effect a scheduler swap in the Alchemi Manager

was enhanced by having access to its source code. This access allowed us identify the main

activities and actors (object instances, threads, variables, etc.) involved in its startup and

shutdown processes and develop an adaptation strategy that effected an orderly shutdown of

the Alchemi Manager and correctly re-initialized it with a with a new scheduler instance.

This example of adapting Alchemi safely underscores the need to understand the operation

of the target system being adapted. Without access to knowledge of how the system works –

either through source code, developer/engineer knowledge etc. – the only guarantees that

can be given are ones concerning the execution environment’s rules for valid programs.

Whereas analysis of executable units can identify structural dependencies, e.g., compile-time

program-element dependencies, symbols and function/method implementations (bytecode

or assembly instructions), while program tracing can provide insights into the sequences

of operations that occur, they are not guaranteed to reveal the semantics of the system’s

operation – symbol names may be misleading or obfuscated/mangled – making it difficult

to understand how the system works and harder to provide guarantees that the adaptations



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 95

being effected will not compromise its integrity/consistency.

3.11 Related Work

3.11.1 Runtime Adaptation

Our Kheiron prototypes are concerned with facilitating very fine-grained adaptations in

existing/legacy systems, whereas systems such as KX [94] and Rainbow [169] are concerned

with coarser-grained adaptations. However, the Kheiron prototypes could be used as low-

level mechanisms orchestrated/directed by these larger frameworks.

JOIE [34] is a toolkit for performing load-time transformations on Java classfiles. Un-

like Kheiron/JVM, JOIE uses a modified classloader to apply transformations to each

class brought into the local environment [33]. Further, since the goal of JOIE is to fa-

cilitate load-time modifications, any applied transformations remain fixed throughout the

execution-lifetime of the class whereas Kheiron/JVM can undo/modify some of its load-time

transformations at runtime e.g. removing instrumentation and modifying instrumentation

and method implementations via bytecode rewriting. Finally, Kheiron/JVM can also perform

certain runtime modifications to metadata, e.g. adding new references to external classes

such that their methods can be used in injected instrumentation.

FIST [105] is a framework for the instrumentation of Java programs. The main difference

between FIST and Kheiron/JVM is that FIST works with a modified version of the Jikes

Research Virtual Machine (RVM) [9] whereas Kheiron/JVM works with unmodified Sun

JVMs. FIST modifies the Jikes RVM Just-in-Time compiler to insert a breakpoint into the

prologue of a method to generate an event when the method is entered to allow a response

on the method entry event. Control transfer to instrumentation code can then occur when the

compiled version of the method is executed. The Jikes RVM can be configured to always



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 96

JIT-compile methods; however, the unmodified Sun JVMs, v1.4x and v1.5x, do not support

this configuration. As a result, Kheiron/JVM relies on bytecode rewriting to transfer control

to instrumentation code as a response to method entry and/or method exit – transfer of

control will occur with both the interpreted and compiled versions of methods 16.

A popular approach to performing fine-grained adaptations in managed applications is

to use Aspect Oriented Programming (AOP). AOP is an approach to designing software

that allows developers to modularize cross-cutting concerns [61] that manifest themselves

as non-functional system requirements. In the context of self-managing systems AOP is

an approach to designing the system such that the non-functional requirement of having

adaptation mechanisms available is cleanly separated from the logic that meets the system’s

functional requirements. An AOP engine is still necessary to realize the final system. Unlike

Kheiron, which can facilitate adaptations in existing systems at the execution environment-

level, the AOP approach is a design-time approach, mainly relevant for new systems.

AOP engines weave together the code that meets the functional requirements of the system

with the aspects that encapsulate the non-functional system requirements. There are three

kinds of AOP engines: those that perform weaving at compile time (static weaving), e.g.,

AspectJ [57], Aspect C# [76]; those that perform weaving after compile time but before load

time, e.g., Weave .NET [46], which pre-processes managed executables, operating directly

on bytecode and metadata; and those that perform weaving at runtime (dynamic weaving)

using facilities of the execution environment, e.g. A dynamic AOP-Engine for .NET [56]

and CLAW [106]. Kheiron/JVM is similar to the dynamic weaving AOP engines only in its

use of the facilities of execution environment to effect adaptations in managed applications

while they run.

Adaptation concepts such as Micro-Reboots [21] and adaptive systems such as the K42

operating system [19] require upfront design-time effort to build in adaptation mechanisms.

16Kheiron/JVM uses the JVMTI, which was introduced in the v1.5 JVM and as a result only works with
v1.5x or later JVM implementations.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 97

Our Kheiron implementations do not require special designed-in hooks, but they can take

advantage of them if they exist. In the absence of designed-in hooks, our Kheiron imple-

mentations could refresh components/data structures or restart components and sub-systems,

provided that the structure/architecture of the system is amenable to it, i.e., reasonably

well-defined APIs exist.

Georgia Tech’s ‘service morphing’ [148] involves compiler-based techniques and operating

system kernel modifications for generating and deploying special code modules, both to

perform adaptation and to be selected amongst during dynamic reconfigurations. A service

that supports service morphing is actually comprised of multiple code modules, potentially

spread across multiple machines. The assumption here is that the information flows and the

services applied to them are well specified and known at runtime. Changes/adaptations take

advantage of meta-information about typed information flows, information items, services

and code modules. In contrast, Kheiron operates entirely at runtime rather than compile

time. Further, Kheiron does not require a modified execution environment: it uses existing

facilities and characteristics of the execution environment whereas service morphing makes

changes to a component of the unmanaged execution environment – the operating system.

Trap/J [159] and Trap.NET [158] produce adapt-ready programs (statically) via a two-step

process. An existing program (compiled bytecode) is augmented with generic interceptors

called “hooks” in its execution path, wrapper classes and meta-level classes. These are then

used by a weaver to produce an adapt-ready set of bytecode modules. Kheiron/JVM operates

entirely at runtime and could use function call replacement (or delegation) to forward

invocations to specially produced adapt-ready implementations via runtime bytecode re-

writing.

For performing fine-grained adaptations on unmanaged applications, a number of toolkits

are available; however many of them, including EEL [108] and ATOM [178], operate

post-link time but before the application begins to run. As a result, they cannot interact with



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 98

systems in execution and the changes they make cannot be modified without rebuilding/re-

processing the object file on disk. Using Dyninst as the foundation under Kheiron/C we are

able to interact with running programs – provided they have been built to include symbol

information.

Our Kheiron implementations specifically focus on facilitating fine-grained adaptations

in applications rather than in the operating system itself. KernInst [184] enables a user

to dynamically instrument an already-running unmodified Solaris kernel in a fine-grained

manner. KernInst can be seen as implementing some autonomic functionality, i.e., kernel

performance measurement and consequent runtime optimization, while applications continue

to run. DTrace [24] dynamically inserts instrumentation code into a running Solaris kernel

by implementing a simple virtual machine in kernel space that interprets bytecode generated

by a compiler for the ‘D’ language, a variant of C specifically for writing instrumentation

code. TOSKANA [48] takes an aspect-oriented approach to deploying before, after and

around advice for in-kernel functions into the NetBSD kernel. They describe some examples

of self-configuration (removal of physical devices while in use), self-healing (adding new

swap files when virtual memory is exhausted), self-optimization (switching free block

count to occur when the free block bitmap is updated rather than read), and self-protection

(dynamically adding access control semantics associated with new authentication devices).

3.11.2 Software Implemented Fault-Injection Tools

For software-implemented fault-injection tools there are a number of benefits realized by

building them on top of a dynamic-adaptation framework like Kheiron.

1. Unlike FAUMachine [172], Ferrari [95] and Ftape [191], which are limited to injecting

bit flips in CPU registers, memory addresses and emulating disk I/O errors, using

Kheiron’s capabilities we build fault-injection tools that can inject more specific

faults targeting individual components, subsystems, methods and data structures e.g.



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 99

removing components, inserting delays or hangs, modifying specific fields of data

structures/objects or inducing resource leaks.

2. Unlike Doctor [70], which uses compile-time program modifications to insert the fault-

injection mechanisms, Kheiron’s ability to dynamically add and remove mechanisms

allows us the flexibility to manage the performance overhead of persistent fault-

injection mechanisms by dynamically removing them. Further, new fault-injection

mechanisms can be added on-the-fly.

3. Unlike Xception [112], which depends on the low-level facilities of the PowerPC

processor, Kheiron’s ability to support the insertion of fault-injection mechanisms

does not rely on specific debugging or performance monitoring facilities of the x86

processor.

4. Unlike FIST (Fault Injection System for Study of Transient Fault Effect) [68] and

MARS (Maintainable Real-Time System) [99], fault-injection tools built using Khe-

iron do not require special hardware to induce faults. FIST and MARS use hardware

that generates ion radiation and electromagnetic fields to induce faults in target sys-

tems.

5. Holodeck [165] interposes between the application and the operating system. As a

result, it induces faults in the application indirectly. For example, it can corrupt files,

corrupt network packets, intercept/redirect system calls, etc. However, fault-injection

tools built on top of Kheiron can inject faults directly into the application itself.

6. Jaca [116] is a fault-injection tool intended to validate Java applications. Jaca injects

high-level faults affecting attributes and methods of an object’s public interface via

load-time bytecode rewriting. The faults injected by Jaca include corrupting method

attributes, parameters and return values. In addition to performing load-time bytecode

changes like Jaca, fault-injection tools built using Kheiron are also able to perform

runtime changes that add, augment or remove fault-injection mechanisms. Further,



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 100

Kheiron supports the adaptations of applications written in a broader set of languages

including C, Java and languages targeting Microsoft’s CLR, e.g., C#, VB .NET, etc.

through the use of a common model for interacting with programs dynamically that is

built on top of existing execution environment facilities.

3.12 Summary

This chapter introduced Kheiron, a suite of tools for effecting fine-grained in-vivo and

in-situ adaptations in software systems written in different languages (.NET, Java and C),

running in different execution environments. We identified two major classes of execution

environments, managed and unmanaged, and presented a generic model, which is used by

Kheiron, for facilitating runtime adaptation in these execution environments.

Unmanaged
Execution
Environment

Managed Execution Environment

ELF Binaries JVM 1.5.x CLR 1.1

Program tracing ptrace, /proc
JVMTI
callbacks

ICorProfiler
ICorProfilerCallback

Program
steering

Trampolines +
Dyninst

Bytecode
rewriting MSIL rewriting

Execution-unit
metadata
available
to query

.symtab, .debug
sections

Classfile constant-
pool + bytecode

Assembly, type &
method metadata
+MSIL

Metadata
augmentation/
editing

N/A for
compiled
C-programs

Custom classfile
parsing & editing
APIs using
BCEL + JVMTI
RedefineClasses

IMetaDataImport
IMetaDataEmit
APIs

Table 3.12: Execution environment facilities

Our generic model of adaptation is based on four key facilities existing, or easily added

to, contemporary execution environments: program tracing, program steering, metadata



CHAPTER 3. RUNTIME MODIFICATION OF SYSTEMS 101

querying and metadata editing. Table 3.12 summarizes techniques used to effect adaptations

in the three execution environments studied – Microsoft’s Common Language Runtime, Sun

Microsystems’ Java Virtual Machine and the unmanaged execution environment consisting

of the Linux operating system and the raw x86 processor.

In elaborating on the implementation details of Kheiron, we comprehensively cover and

compare the techniques that are used to effect runtime adaptations in the contemporary

managed and unmanaged execution environments studied.

Finally, we demonstrate Kheiron’s ability to effect fine-grained adaptations in multiple

systems using three case studies: runtime reconfiguration of .NET applications using Khe-

iron/CLR (§3.7.8), runtime fault-injection in Java-based applications using Kheiron/JVM

((§3.8.6)) and selective emulation of C programs using Kheiron/C (§3.9.4). The next

chapter develops an evaluation methodology and benchmark for assessing the Reliability,

Availability and Serviceability (RAS) properties of software systems, which uses the run-

time adaptation capabilities of Kheiron (specifically its in-vivo and in-situ fault-injection

capabilities) to construct failure scenarios that are used in RAS-evaluations.



Part II

RAS Evaluations via Runtime

Adaptation and RAS Modeling

This part describes the runtime fault-injection tools and analytical techniques that we

combine to construct failure scenarios, which allow us to evaluate and compare the RAS

capabilities of software systems.

102



Chapter 4

Evaluating RAS Capabilities

Evaluating and comparing the Reliability, Availability and Serviceability (RAS) capabilities

of systems requires reasoning about aspects of the system’s operation that may be difficult

to capture or quantify using performance metrics alone.

Whereas performance metrics provide insights into the feasibility of using a system with its

RAS-enhancing remediation mechanisms enabled, there are more in-depth analyses that we

wish to perform. For example, we want to be able to evaluate the efficacy of any RAS mech-

anisms the system may have, reason about the expected benefits of yet-to-be-added RAS-

enhancing mechanisms, reason about RAS deficiencies, evaluate different combinations of

mechanisms, evaluate and compare mechanisms that may employ different remediation-

strategies (reactive, preventative, proactive), reason about tradeoffs between mechanisms and

identify under-performing or sub-optimal mechanisms. Measures concerned with overall

system performance do not adequately capture the details that distinguish one remediation

mechanism from another, e.g., remediation accuracy/success rates, fault/failure coverage,

the impact of remediation failures, the consequences of remediation strategy/style and

accounting for partially automated remediations. These deficiencies of performance metrics

and benchmarks limit our ability to use them as a primary means of comparing or ranking

103



CHAPTER 4. EVALUATING RAS CAPABILITIES 104

systems based on their RAS capabilities.

An additional consideration for evaluating the RAS capabilities of systems is that the no-

tions of “good” and “better” are dependent on the environmental constraints governing

the system’s operation. For example, service level agreements (SLAs), policies, and inter-

nally/externally visible service level objectives including but not limited to: uptime guaran-

tees, meeting production targets, reducing production delays, improving problem-resolution

and service-restoration activities, etc. Whereas there are aspects of the environmental con-

straints that can be evaluated using performance metrics, such as response time guarantees

in SLAs, these metrics are insufficient for evaluating other constraints.

As a result, evaluating and comparing RAS capabilities requires something beyond per-

formance metrics and benchmarks. Specifically, tools and techniques that support more

in-depth analyses of the details of RAS mechanisms (the micro-view), while considering the

role and effects of the environmental constraints (the macro-view).

The importance of the environmental constraints in evaluating the RAS capabilities of

systems cannot be understated since these constraints serve four major purposes. First, they

help identify the failures and faults that impact these environmental constraints. Second, they

enable reasoning about these impacts from the different perspectives of those affected (end-

users, system operators/engineers/administrators and management). Third, they provide a

source of possible metrics that can be used to quantify the impacts of RAS deficiencies,

remediation failures and partially automated remediations. And finally, they establish the

(scoring-)boundaries within which a system and its collection/composition of mechanisms

can be considered to be better than another.

In this thesis we develop a model-based and measurement-based approach to evaluating the

RAS capabilities of systems. Our evaluation approach is based on failure scenarios, which

can be combined and extended to develop a RAS benchmark for a specific system or class

of systems.



CHAPTER 4. EVALUATING RAS CAPABILITIES 105

A failure scenario consists of three elements:

1. A set of faults that induce the failure of interest

2. A set of fault-injection tools capable of a) injecting one or more of the faults or b)

otherwise inducing the failure of interest

3. A set of reusable analytical model templates used for scoring i.e. to quantify the

impact(s) of a failure and/or the efficacy of any remediation mechanism(s) available

and to capture the different perspectives of interest (end-user, operator/engineer and

management)

4.1 Hypotheses

In Chapter 3 we demonstrated techniques and a suite of tools for effecting fine-grained adap-

tations that could be used to inject faults and induce failures in a variety of systems written

in multiple languages running on different platforms. In the context of RAS evaluations

and the construction of failure-scenarios, similarly flexible adaptation tools allow failure

scenario support to be grafted onto existing/legacy systems allowing for the study of the

failure behavior of systems and an evaluation of their RAS capabilities directly in their

deployment environments. Such dynamic tools play a major role in our measurement-based

evaluations of RAS capabilities.

The main hypothesis in this chapter is that mathematical tools such as Markov chains,

Markov reward networks and Control Theory models can be successfully used to de-

scribe failure scenarios designed to quantitatively evaluate/score the RAS capabilities

of systems. In validating this hypothesis we demonstrate how these tools can be used to

create simple, reusable model templates for scoring and studying RAS properties. Further,

we show that these model templates produced for scoring can be simpler than a detailed

model of the implementation of the mechanisms, sub-system or system being studied while



CHAPTER 4. EVALUATING RAS CAPABILITIES 106

still providing insights into the failure behavior of systems and the efficacy of its remediation

mechanisms.

4.2 Analytical Tools

4.2.1 Continuous Time Markov Chains (CTMCs)

The first analytical tool we discuss is the Continuous Time Markov Chain (CTMC). We

use CTMCs to model the failure behavior of systems, model the activities associated with

remediations and quantitatively assess the impacts of these failures and/or remediations on

facets of system reliability, availability and serviceability.

We choose CTMCs as one of our evaluation tools because of their flexibility, their ability to

be combined and/or arranged hierarchically, their wide use and the existence of numerous

solution techniques for their analysis [69, 101]. CTMCs have been well studied and have

been used to analyze different classes of failures, e.g., independent [2], near-coincident [42]

and cascading failures [91] in degradable, repairable and fault-tolerant systems.

CTMCs can also be used to reason about different remediation strategies – reactive, preven-

tative, proactive [101]. Further, they provide the foundations for other modeling formalisms

used to study the behavior of computer systems including, but not limited to: Stochastic

Petri Nets (SPNs) and Stochastic Activity Networks (SANs) [161].

Finally, CTMCs can lead to the development of fluid models of system behavior allowing

for powerful control theoretic analysis of system operation [139].

We now provide some background on CTMCs, highlighting the properties that make them

suitable for modeling and evaluating RAS capabilities.

A Markov chain is defined as a Markov process with a finite (or countably infinite) state



CHAPTER 4. EVALUATING RAS CAPABILITIES 107

space. A Markov process is a stochastic process whose dynamic behavior is such that the

probability distributions for its future development depend only on the present state and not

on how the process arrived in that state [101] – the memoryless property. The memoryless

property of Markov processes greatly simplifies their analysis [69] and provides for tractable

solution techniques.

Graphically, Markov chains can be represented by a directed graph. The vertices in the

graph represent the states of system operation and the edges represent state transitions (see

Figure 4.1).

A Markov chain is irreducible if all states in the chain can be reached pairwise from each

other. A state in the chain is said to be absorbing if and only if no other state in the chain

can be reached from it [69]. These two distinctions allow us to use Markov chains to

model a software system (or aspects of its operation) as an infinitely running process or as a

terminating/on-demand process [59], depending on the kind of system being studied and/or

the kinds of analysis to be conducted e.g. studying the steady-state behavior of a system

using irreducible Markov chains vs. reasoning about the expected time to completion for an

operation using Markov chains with absorbing states.

Figure 4.1: Markov chain

States in a Markov chain may be labeled/grouped to identify some interesting behavioral

property of the system or process being modeled. For example a state may be marked as

’UP’ to indicate that the system being modeled is doing useful work (this includes operating

in a degraded mode); otherwise it may be labeled as ’DOWN’ to indicate that the system is

offline or not doing useful work.

A Markov chain may be (time)-homogeneous or non-homogeneous. In a homogeneous

Markov chain, the transition probabilities are independent of the time epoch, i.e., the



CHAPTER 4. EVALUATING RAS CAPABILITIES 108

probability of a transition from state si to s j during an interval [v, t] – usually written pi j(v, t)

– depends only on the time difference (t − v) rather than on the specific time/epoch (global

clock value) when the transition occurs. However, in a non-homogeneous Markov chain the

transition probabilities pi j(v, t) can change as a result of the current epoch (global clock).

Using homogeneous Markov chains, allows us to model the failure behavior of a system as

time-independent, whereas using non-homogeneous Markov chains allows us to analyze

time-dependent failures, e.g., aging-related failures as presented in [13].

There are two classes of Markov chains, Continuous Time Markov Chains (CTMCs) and

Discrete Time Markov Chains (DTMCs). Whereas DTMCs and CTMCs have a number

of similarities, the major distinction between them comes with respect to when transitions

between states can occur. This distinction is integral to our use of CTMCs to model failures

and remediation activities rather than DTMCs.

In a DTMC, state transitions occur at fixed discrete time points. From its start state s0, a

DTMC evolves step by step according to one-step transition probabilities. For any time

point the probabilities of a transition from si to s j can be computed using the transition

probabilities of the initial state, s0. CTMCs, on the other hand, are more flexible. In a

CTMC, state transitions occur at arbitrary points in time leading to a fluid-like interpretation

of its behavior using rates of transition between states to describe/characterize the behavior

of a CTMC over time.

State transition rates (i.e., state transitions and state sojourn times) of a homogeneous CTMC

can be described by an exponential distribution [69] 1. In the context of studying system

failures the memoryless property of the exponential distribution implies that failures appear

at random points during an interval. This can be restated as: the time we must wait for

the next failure event is statistically independent of how long we have spent waiting for

it to happen [72]. Modeling failures as randomly-appearing using CTMCs provides more

1The exponential distribution is the only continuous-time distribution that provides the memoryless
property.



CHAPTER 4. EVALUATING RAS CAPABILITIES 109

flexibility than DTMCs and may be more natural, for example, in situations where predicting

failure events down to a specific time step, as can be done with a DTMC using its one-step

transition probabilities, is difficult in the general case or unnecessary for the analysis at hand.

However, if such specificity is required, transient analysis of the CTMC, using a technique

called Uniformization can derive the one-step transition probability matrix for an equivalent

DTMC [69].

The exponentially distributed rates of transition between the states of a CTMC and its

structure – the arrangement of subsets of states in series, parallel or combinations thereof

– can be used to model processes that may be characterized by a variety of probability

distributions. In the context of RAS evaluations, the probability distributions are used to

estimate the hazard rates (rates of failure), describe the failure behaviors and/or remediation

activities and to construct the CTMCs used in their analysis.

There are a number of probability distributions that have been used to model failures

and remediations including, but are not limited to: the Erlang-k distribution, the Hypo-

exponential distribution, the Hyper-exponential distribution, the Weibull distribution and the

Log-Logistic distribution. Details on estimating the rate of failure (hazard rate) for each of

these probability distributions using exponentially distributed transition rates can be found

in [101].

• The Erlang-k distribution is used to model processes with k sequential stages each

having identical exponential rates of transition. The Exponential distribution is a

special case of the Erlang distribution with k = 1. In the context of characterizing

failure behaviors, the Erlang-k distribution can be used to model constant failure

rate (CFR) distributions in systems without redundancy (k = 1) or in systems with

redundancy (k > 1). Similarly, in the context of characterizing remediation activities

the Erlang-k distribution can be used to characterize systems with constant repair

times and a single shared repair station or multiple repair stations.



CHAPTER 4. EVALUATING RAS CAPABILITIES 110

• The Hypo-exponential distribution is used to model processes with multiple sequen-

tial stages as well; however, it provides for a variation on the Erlang-k distribution,

and allows each stage to have different exponential rates of transition. In the context

of characterizing failure behaviors, the Hypo-exponential distribution is used to model

systems with increasing failure rate (IFR) distributions. IFR distributions are one way

to model cascading failures, where the rate of failure monotonically increases at each

stage. In the context of characterizing remediation activities, IFR distributions are a

prerequisite for preventative maintenance. If a system’s failure behavior cannot be

described by an IFR distribution then preventative maintenance will not result in any

improvements [101]. The goal of preventative maintenance is to avoid the system

entering a stage where its failure rate increases by performing actions that revert the

system to an earlier point in its lifetime. If failure rates normally decrease over the

lifetime of a system, preventative maintenance actions that revert the system to an

early point in its lifetime would be counter-productive. The Hypo-exponential distri-

bution can also be used to model remediations with multiple sequential steps where

the remediation times are strictly increasing, e.g., resorting to one or more manual

remediations after one or more automated remediations have been unsuccessful.

• The Hyper-exponential distribution is used to model processes with k alternate

or parallel stages where the process can only occupy one stage at any time. In

the context of characterizing failure behaviors, the Hyper-exponential distribution

is used to model decreasing failure rate (DFR) distributions [101]. In the context

of characterizing remediation activities, the Hyper-exponential distribution can be

used for analyzing systems with multiple alternative remediations for a single failure.

This includes considerations for imperfect remediations where c% of failures are

successfully handled by remediation R1 and (1 − c)% of failures are handled by

remediation R2.



CHAPTER 4. EVALUATING RAS CAPABILITIES 111

• The Weibull distribution is a parametric distribution, which can be used to model

DFR, CFR or IFR distributions. Whereas its modeling capabilities are equivalent to

the Erlang-k, Hypo-exponential and Hyper-exponential distributions, it provides for

more flexibility via the choice of its parameters.

• The Log-Logistic distribution is a less rigid probability distribution able to model

more complex failure rate distributions than DFR (strictly decreasing), CFR (constant)

and IFR (strictly increasing). The Log-Logistic distribution can be used to model

processes where the rate of failure initially increases then decreases – UBT (upside-

down bathtub) distributions [101]. The Log-Logistic distribution has been used in

reliability growth models, which track reliability improvements over the lifetime of a

system as enhancements are made to its design, subsystems and/or components.

For modeling more complex processes, CTMCs may be constructed to represent combina-

tions of one or more of the probability distributions listed above. The Generalized Erlang

distribution is one example of a distribution realized by combining the Hyper-exponential

and Erlang-k distributions [69]. In addition to combining CTMCs to model different prob-

ability distributions, multiple CTMCs can be composed and/or arranged hierarchically to

analyze a system at different levels of detail. Such compositions allow us to manage the size

(state space) of the Markov chain being analyzed and is a standard largeness-avoidance tech-

nique for enabling the tractable analysis of complex Markov Chains [98]. In a hierarchical

arrangement, sub-models can be evaluated independently and their results later combined

using another sub-model.

In addition to being tractable to analyze, composable, and powerful enough to model com-

plex failure behaviors and/or remediation activities that can be characterized by different

probability distributions, techniques also exist for creating Markov chains to model processes

that may have non-exponential probability distributions. In the “simple” case, approxima-

tions based on combinations of exponential distributions may be used. For more complex



CHAPTER 4. EVALUATING RAS CAPABILITIES 112

cases techniques such as the inclusion of supplementary and indicator variables [121, 69]

and embedding techniques [69] may be used to turn an initially non-Markov process into a

Markov process, which can then be analyzed using existing solution techniques.

4.2.2 Markov Reward Networks

Markov Reward Networks are a simple extension of Markov Chains that allow us to assign

cost or reward structures (values) to states and/or transitions of a Markov process. As a result,

Markov Reward Networks provide a unifying framework for an integrated specification of

model structure and system requirements [69].

Markov Reward Networks have been used extensively in optimization problems in Markov

decision theory [69] and performability analysis [120] (an integrated approach to evaluating

performance and dependability characteristics of computing systems).

In our construction of RAS models we use Markov Reward Networks based on Continuous

Time Markov Chains (CTMCs) discussed earlier (4.2.1) to quantify the impacts of failure

and/or remediations. Using Markov Reward Networks does not preclude considering the

performance implications of failure and/or remediations, e.g., degradation since performance

related measures such as throughput per unit time can be assigned to one or more states in

the CTMC and used to quantify the performance impacts. Assigning rewards or costs to

CTMC states combined with the appropriate labeling/grouping of states allow us to capture

the impacts of failures and/or remediations from the three different perspectives of interest –

end user/client, administrator/operator/engineer and business/management (examples of this

are provided in 4.3).



CHAPTER 4. EVALUATING RAS CAPABILITIES 113

4.2.3 Feedback Control Models

In this thesis we use principles of the branch of Control Theory concerned with Feedback

control systems to reason quantitatively about a system’s ability to meet the operational

goals and environmental constraints (policies), which govern its operation.

We use feedback control models as one of our evaluation tools because of the framework it

provides for realizing predictable systems – systems where the expected response of the

system to changes (in the system and/or in its environment) can be characterized and/or

evaluated quantitatively. Further, feedback control can also be used to realize robust adaptive

systems – systems that automatically adjust to reject disturbances and accommodate noise

while continuing to meet their operational goals.

We posit that predictable systems are easier to manage than unpredictable systems, and

as a result predictability affects the Serviceability characteristics of a system concerned

with meeting objectives in the presence of failures and/or remediations. In this section we

identify the properties of feedback control systems that can be used to quantify facets of

system Serviceability in the development of our RAS models.

Control Theory and feedback control has been widely studied and employed in other

engineering disciplines including, but not limited to: mechanical engineering and electrical

engineering. Further, despite the stochastic nature of computing systems, feedback control

has been applied to their analysis and design with encouraging results [90, 145, 45, 196] 2.

We now provide some background on Feedback control, highlighting the properties that

make it suitable for use in constructing RAS models.

Control Theory is concerned with the study of dynamical systems and is commonly used to

achieve one or more of the following objectives: regulatory control, disturbance rejection

and optimization.
2One approach for dealing with system stochastics involves building on results from Queuing Theory[90]

when developing feedback control models of system behavior.



CHAPTER 4. EVALUATING RAS CAPABILITIES 114

Regulatory control ensures that some measurable characteristic (measured output) of the

(target) system is equal to or near a desired/specified reference value (reference input).

Disturbance rejection ensures that disturbances acting on the system do not significantly

affect its measured output. And finally, optimization is concerned with obtaining the best

value of the measured output of the system. In our development of RAS models we are

interested primarily in regulatory control.

There are two main classes of control systems, open-loop (feedforward) control systems

(Figure 4.2) and closed-loop (feedback) control systems (Figure 4.3). Before discussing

the differences between feedforward and feedback control systems we first describe the

elements typically found in control systems:

Figure 4.2: Block diagram of feedforward control [90]

Figure 4.3: Block diagram of a feedback control system [90]

• The Target System – the system to be controlled.

• Measured output – one or more measurable characteristics of the target system.

• Reference input – desired value(s) of the measured output.



CHAPTER 4. EVALUATING RAS CAPABILITIES 115

• Control input – one or more (dynamically adjustable) parameters that affect the

behavior of the target system.

• The Controller – manipulates/determines the setting of the control input to achieve

the reference input.

• The Transducer – transforms the measured output such that it can be compared with

the reference input and/or used by the Controller. Examples include moving-average

filters and unit conversions.

• Control error – difference between the measured output and the reference input.

• Disturbance input – changes that affect the way the control input influences the

measured output.

• Noise input – any effect that changes the measured output of the target system.

The main difference between feedforward control and feedback control is the role of the

measured output in each of these control systems and its implications for controller design.

Feedforward controllers use the reference input (and sometimes the disturbance input) to

determine the setting of the control input needed to achieve the desired measured output.

Unlike feedback controllers, they do not use the measured output to adjust the control

input. As a result, feedforward control is more suitable for systems where the control

input is a deterministic function of the reference and/or disturbance input and an accurate

model of the system that is robust to changes in the system and its operating environment is

available or can be constructed [90]. These properties of feedforward control systems, while

making them less complex to design than feedback control systems, also make them less

flexible/adaptive.

In addition to being more flexible than feedforward control systems, feedback control

systems and the design principles used to realize them can be used to develop systems that

exhibit four desirable properties – referred to as SASO properties – and analyze whether



CHAPTER 4. EVALUATING RAS CAPABILITIES 116

systems exhibit any or all of these properties:

1. Stability – a stable system produces bounded output for any bounded input (these con-

trol systems are sometimes referred to as being Bounded Input Bounded Output/BIBO

stable).

2. Accuracy – the measured output of an accurate control system converges or becomes

sufficiently close to the reference input (small steady-state control error).

3. Short settling times – a control system with short settling times quickly converges to

its steady state value.

4. Avoids overshoot – a control system that avoids overshoot allows changes to the

control input to made while maintaining its measured output.

The flexible/adaptive nature of feedback control systems and the ability to analyze the

SASO properties of such systems provides a framework for codifying operational policies

(internally and externally visible service level objectives, environmental constraints, SLAs

etc.) for a computing system and reasoning about the ability of the system to meet these

goals in the presence of failures and/or remediation activities.

4.3 Analysis Techniques

In §4.2 we described the three analytical tools/ frameworks: Continuous Time Markov

Chains (CTMCs) §4.2.1, Markov Reward Networks §4.2.2, and Feedback Control §4.2.3 –

and their associated properties that motivated their use in the creation of (RAS) models used

to analyze the failure behavior and/or remediation activities of systems. In this section we

discuss the specific facets (metrics) of reliability, availability and serviceability quantified

using our RAS models and describe the analysis techniques used to calculate them.

To aid this discussion we demonstrate the construction and use of RAS models via an exam-



CHAPTER 4. EVALUATING RAS CAPABILITIES 117

ple analytical evaluation of a recursively restartable (microrebootable) J2EE3 application

server prototype developed by the Berkeley/Stanford Recovery Oriented Computing (ROC)

group on top of a modified version of the open-source JBoss application server. Our analysis

complements the measurement-based evaluation done in [20]4 and uses the results reported

therein to derive estimates for RAS model parameters.

Whereas the evaluation done in [20] focuses primarily on comparing fine-grained microre-

boots to coarser-grained full-system reboots, the goal of our analysis is to create an RAS

model that can be used to describe failure scenarios for a system using recursive microreboots

and to score/evaluate the system’s responses.

4.3.1 Microreboot RAS Model

Recursive microreboots are a technique for improving overall system availability by reac-

tively restarting failed components and rejuvenating functioning components to prevent

degradation [21]. It is specifically targeted at recovering from failures such as crashes,

deadlocks, infinite loops, livelocks and state corruption (memory leaks, dangling pointers,

damaged heaps, etc.).

A microreboot (µRB) can be applied at different levels of a system: component-level,

subsystem-level or whole-system level5. As a remediation technique, recursive microreboots

target the minimal set of a system’s components for a restart and progressively restart larger

subsets of components up to and including restarting the entire system. Microreboots, like

whole-system reboots, have a number of properties in common that make them attractive

as a remediation mechanism. They return the target of recovery (component, subsystem,

3Java 2 Platform, Enterprise Edition (J2EE) defines the standard for developing multi-tier enterprise
applications [128].

4Additional measurement-based evaluations can be found in [23] and [22].
5The ability to precisely target and restart system elements at these various levels depend on a number of

structural properties and design considerations of the system under consideration. See [21] for more details on
design considerations for recursively restartable systems.



CHAPTER 4. EVALUATING RAS CAPABILITIES 118

system) to a well-understood state – its start state. Further, they provide a high confidence

way of reclaiming stale or leaked resources [21].

We chose recursive microreboot for our analysis example because it is an instance of a

sophisticated remediation mechanism that exhibits a number of characteristics that make it

interesting to study:

1. Layered recovery strategy – one layer for each level at which recovery can occur in

the system.

2. Imperfect recovery between layers – failures can escalate to higher layers e.g. if

component-level reboots are unsuccessful then the failure “bubbles” up to the next

higher layer to be handled – subsystem-level reboots – and so on.

3. Problem mitigation rather than elimination – microreboots do not eliminate the

underlying root cause of the problem, rather they attempt mitigate its effects. Over

time, the same failures can resurface.

In [20], the authors evaluate the efficacy of microrebooting, comparing fine-grained microre-

boots to coarse-grained system reboots using their microrebootable J2EE application server,

custom fault-injection tools and eBid, a version of the Rice University Bidding System

(RUBiS) N-tier web-application, modified to be amenable to microreboots. RUBiS is a

J2EE/Web-based auction system modeled after eBay.com.

The test system deployment in [20] consists of the following elements, which also correspond

to the units of recovery. These recovery units are listed in order of fine-grained restarts to

coarse-grained restarts:

• Enterprise Java Beans (EJBs) – these encapsulate the business logic of the eBid

web-application. They may interact with other EJBs and/or backend databases in the

processing of a client request.

• Web Archive (WAR) – this is the unit of deployment for the web application. It



CHAPTER 4. EVALUATING RAS CAPABILITIES 119

contains the presentation tier of the web application: Java Server Pages (JSPs) and

servlets. These invoke EJB methods and format the returned results for presentation

to the client.

• eBid web-application – the collection of EJBs, JSPs and servlets.

• JVM/JBoss – the execution/hosting environment for the eBid web-application.

A Recovery Manager component added to the JBoss application server performs failure

diagnosis and recovery guided by the simple recursive policy of “cheapest recovery first”. In

response to the faults injected into eBid, the recovery manager progressively reboots larger

sets of components: first EJBs, then eBid’s WAR, then the eBid web application, followed

by the JVM/JBoss, and if necessary finally reboots the operating system. To fully resolve

some failures microreboots may be followed up by additional automated or manual actions,

e.g., recovering persistent data may be done automatically (via transaction rollback) or may

require manual reconstruction of the data in the database.

Based on the description of the microrebootable application server in [20], we use the

SHARPE [160] RAS modeling and analysis tool to generate a model (shown in Figure 4.4)

that can be used to evaluate the efficacy of the application server and its recovery manager.

The RAS model is an irreducible CTMC that consists of 6 states and 17 parameters, see

Table 4.1.

Our RAS model captures a number of key elements of the operation of the application

server’s recovery manager including: a) multiple layers of recovery and b) the possible

escalation of failures to higher levels of recovery. Further, the use of an irreducible CTMC

allows us to model the operation of the Recovery Manager as an infinitely running process

where failures can re-occur.

This RAS model, plus fault-injection tools like Kheiron (Chapter 3) or the ones used in the

experiments in [20], can be used to design, initiate and score fault-injection experiments



CHAPTER 4. EVALUATING RAS CAPABILITIES 120

Figure 4.4: RAS model for a microrebootable application server

that represent different failure scenarios for evaluating the efficacy of microreboots.

Fault-injection tools can be used to control the rate of failure (λ f ailure) and/or the proportions

of failures that initially target a specific level of recovery (pe jb rb, pwar rb, and p jvm jboss rb).

Varying these parameters allows us to study the behavior of the system under different

fault-loads/failure mixes.

Parameters concerned with the success or failure of recovery at a specific level (pe jb rb success,

pe jb f allthru, pwar rb success, pwar f allthru, pebid rb success, pebid f allthru, p jvm jboss rb success, and

p jvm jboss f allthru) can be observed experimentally or varied in the model to reason about their

expected impacts on system operation.

Parameters concerned with recovery times at a specific level (µe jb rb, µwar rb, µebid rb,

µ jvm jboss rb, and µoperator f ix) can be observed experimentally or varied in the model based on

simple rules of thumb, e.g., an order of magnitude increase in recovery time as the recovery



CHAPTER 4. EVALUATING RAS CAPABILITIES 121

S 0 The initial state of the system
S 1 State where one or more EJBs is being restarted
S 2 State where the eBid WAR file is being restarted
S 3 State where the entire eBid application is being restarted
S 4 State where the JVM/JBoss application server is being restarted
S 5 State where an operator performs some action(s) to resolve an issue
λ f ailure Rate at which faults are injected/failures induced
pe jb rb Proportion of failures that are initially handled by an EJB restart
pwar rb Proportion of failures that are initially handled by a WAR restart
p jvm jboss rb Proportion of failures that are initially handled by a JVM/JBoss restart
pe jb rb success Proportion of failures successfully resolved by an EJBs restart
pe jb f allthru Proportion of failures that fall through to WAR restart level
pwar rb success Proportion of failures successfully resolved by a WAR restart
pwar f allthru Proportion of failures that fall through to eBid restart level
pebid rb success Proportion of failures successfully resolved by restarting eBid
pebid f allthru Proportion of failures that fall through to JVM/JBoss restart level
p jvm jboss rb success Proportion of failures successfully resolved by a JVM/JBoss restart
p jvm jboss f allthru Proportion of failures that fall through to operator fix level
µe jb rb EJB restart time
µwar rb WAR restart time
µebid rb eBid web-application restart
µ jvm jboss rb JVM/JBoss restart
µoperator f ix Time for an operator resolution

Table 4.1: RAS model parameters for a microrebootable application server

level increases.

Finally, labeling states associated with normal request processing or degraded request

processing as UP states and states where no requests are processed as DOWN states allow

us to capture different perspectives on what it means for the microrebootable application

server to be considered “working”. By adjusting state-labels and varying the parameters of

the RAS model, we can quantify various facets of reliability, availability and serviceability

for the microrebootable application server.



CHAPTER 4. EVALUATING RAS CAPABILITIES 122

4.3.2 Model Analysis – RAS Measures and Metrics

In our example analysis we use the numerical parameter values shown in Table 4.2 to

describe a specific failure scenario used to evaluate the efficacy of microreboots:

λ f ailure 3 failures every 10 minutes (3/600,000 msecs) [20]
pe jb rb 100%
pwar rb 0%
p jvm jboss rb 0%
pe jb rb success 95%
pe jb f allthru 5%
pwar rb success 95%
pwar f allthru 5%
pebid rb success 95%
pebid f allthru 5%
p jvm jboss rb success 95%
p jvm jboss f allthru 5%
µe jb rb EJB restart time – 1/501.27 msecs6

µwar rb WAR restart time – 1/1,028 msecs (Table 3 [20])
µebid rb eBid web-application restart – 1/7,699 msecs (Table 3 [20])
µ jvm jboss rb JVM/JBoss restart – 1/19,083 msecs (Table 3 [20])
µoperator f ix Time for an operator resolution – 1/5 minutes (1/300,000 msecs)

Table 4.2: Microrebootable application server RAS model failure scenario parameters

In this failure scenario, recovery is always initiated at the EJB restart level (pe jb rb = 100%),

recovery at each level is assumed to be 95% successful and human operators are only

involved if recovery of a failure escalates beyond the JVM/JBoss level.

Note that whereas some of the numerical parameter values used in our analysis are based

on experimental results reported in [20], e.g., λ f ailure, µe jb rb, µwar rb, µebid rb, and µ jvm jboss rb,

the remaining parameter values are hypothetical and are used solely to discuss the different

RAS measures and metrics that can be calculated.

The first step in our analysis is to use SHARPE to compute the steady-state probability vector,

π, for the CTMC in Figure 4.4 using the numerical parameters in Table 4.2 – see Table 4.3

for the results. The steady-state probabilities are the time-independent probabilities of being
6Average restart time of the 22 EJBs in eBid, calculated using Table 3 in [20].



CHAPTER 4. EVALUATING RAS CAPABILITIES 123

in a particular state of the CTMC as time, t → ∞. In the sections below we demonstrate how

the steady-state probability vector is used in the calculation of various reliability, availability

and serviceability measures.

π0 0.997127
π1 0.002499
π2 0.000256
π3 0.000096
π4 0.000012
π5 0.000009

Table 4.3: Microreboot RAS model steady-state probabilities

4.3.3 Reliability Measures

Reliability measures emphasize the occurrence of undesirable events in the system [72].

There are a number of forms and metrics that can be used to express the reliability of a

system including:

1. Reliability Functions – the probability that an incident of sufficient severity has not

yet occurred since the beginning of a time interval of interest.

2. Mean Time to Failure (MTTF) – the average length of time that elapses until an

incident occurs.

3. Frequency of Incidents – the average number of incidents that occur per unit time.

In our analytical evaluation of the microrebootable application-server we discuss its reliabil-

ity in terms of the Frequency of Incidents, where the frequency of an incident is a function

of the probability of being in a particular state, πi.

For the microrebootable application server we can identify four kinds of incidents that may

affect its reliability:

1. Frequency of failure escalations to higher levels of recovery (Fa→b), i.e., frequency of



CHAPTER 4. EVALUATING RAS CAPABILITIES 124

S 1 to S 2 transitions, S 2 to S 3 transitions, S 3 to S 4 transitions or S 4 to S 5 transitions.

Frequent failure escalations delays system recovery, may signal instabilities in the

system or its environment, or may result in other disruptions.

2. Frequency of recovery activities (F2), i.e., time spent in S 1, S 2, S 3, S 4, and S 5.

3. Frequency of outages resulting from more expensive recovery actions (F3) e.g. eBid

or JVM/JBoss restart vs. EJB or WAR restarts.

4. Frequency of recovery actions exceeding a given duration tolerance (F4).

Frequency of failure escalations (Fa→b). The frequency of failure escalations to higher

levels of recovery (Fa→b) during an interval T is given by:

Fa→b = T ∗ (γa→b ∗ πa) (4.1)

Where γa→b is the rate of transition out of recovery state S a to higher level recovery state S b.

During an interval of 1 day (T = 1,440 minutes = 86,400,000 msecs) we expect to inject

a total of 1440 ∗ 3 f ailures
10 minutes = 432 failures of which, 21.537952 (Equation 4.2) are escalated

from EJB recovery level to WAR recovery level, 1.076898 (Equation 4.3) are escalated

from WAR recovery level to eBid recovery level, 0.053845 (Equation 4.4) are escalated

from eBid to JVM/JBoss recovery level and 0.002692 (Equation 4.5) are escalated from

JVM/JBoss recovery level to Operator recovery level, resulting in a total of of 22.671386

failure escalation events per day (see Table 4.4).

Fe jb→war 21.537952
Fwar→eBid 1.076898
FeBid→JV M/JBoss 0.053845
FJV M/JBoss→Operator 0.002692
Total 22.671386

Table 4.4: Failure escalation incidents per day



CHAPTER 4. EVALUATING RAS CAPABILITIES 125

γe jb→war = pe jb f allthru ∗ µe jbrb =

(
0.05 ∗

1
501.27

)
(4.2)

Fe jb→war = 86, 400, 000 ∗ γe jb→war ∗ π1

→ Fe jb→war = 86, 400, 000 ∗ γe jb→war ∗ 0.002499 = 21.537952

γwar→eBid = pwar f allthru ∗ µwarrb =

(
0.05 ∗

1
1028

)
(4.3)

Fwar→eBid = 86, 400, 000 ∗ γwar→eBid ∗ π2

→ Fwar→eBid = 86, 400, 000 ∗ γwar→eBid ∗ 0.000256 = 1.076898

γeBid→JV M/JBoss = pebid f allthru ∗ µebidrb =

(
0.05 ∗

1
7699

)
(4.4)

FeBid→JV M/JBoss = 86, 400, 000 ∗ γeBid→JV M/JBoss ∗ π3

→ FeBid→JV M/JBoss = 86, 400, 000 ∗ γeBid→JV M/JBoss ∗ 0.000096 = 0.053845

γJV M/JBoss→Operator = pebid jvm jboss f allthru ∗ µ jvm jbossrb =

(
0.05 ∗

1
19083

)
(4.5)

FJV M/JBoss→Operator = 86, 400, 000 ∗ γJV M/JBoss→Operator ∗ π3

→ FJV M/JBoss→Operator = 86, 400, 000 ∗ γJV M/JBoss→Operator ∗ 0.000012 = 0.002692



CHAPTER 4. EVALUATING RAS CAPABILITIES 126

Frequency of recovery activities (F2). The frequency of recovery activities (F2) during

an interval T is given by:

F2 = T ∗ (π2 + π3 + π4 + π5) (4.6)

During an interval of 1 day (T = 86,400,000 msecs) we expect the recovery manager of

the microrebootable application server to spend 4.14 minutes per day performing failure

recovery activities (Equation 4.7).

F2 = 86, 400, 000 ∗ (π2 + π3 + π4 + π5) = 248, 193.82 msecs (4.14 mins) (4.7)

Frequency of outages (F3). The frequency of outages during 1 day resulting from more

expensive recovery actions (F3) is given by:

F3 = FeBid→JV M/JBoss + FJV M/JBoss→Operator (4.8)

We therefore expect the microrebootable application server to experience 0.056537 outages

per day (20.64 per year) due to expensive recovery actions (Equation 4.9).

F3 = 0.053845 + 0.002692 = 0.056537 (4.9)

Frequency of recovery actions exceeding a given duration tolerance (F4). The fre-

quency of recovery actions exceeding a given duration tolerance (F4) in an interval T is

given by:

F4(τ) = T ∗

 ∑
i∈S Recovery

γi→0 ∗ πi ∗ e(−γi→0∗τ)

 (4.10)



CHAPTER 4. EVALUATING RAS CAPABILITIES 127

Where:

• τ is the duration tolerance in time units.

• S Recovery = { S 1, S 2, S 3, S 4, S 5 }.

• γi→0 is the rate of transition from a recovery state S i ∈ S Recovery to the failure free state,

S 0.

• e(−γi→0∗τ) is the probability that a recovery action takes longer than τ time units.

Of the 432 failure recovery actions initiated per day (T = 86,400,000 msecs) , the number

of recovery actions expected to exceed 1000 msecs is 70.578179 (Equation 4.11).

F4(1000 msecs) = T ∗ (0.95 ∗
1

501.27
∗ π1 ∗ e−0.95∗ 1

501.27 ∗1000 (4.11)

+ 0.95 ∗
1

1028
∗ π2 ∗ e−0.95∗ 1

1028 ∗1000

+ 0.95 ∗
1

7699
∗ π3 ∗ e−0.95∗ 1

7699 ∗1000

+ 0.95 ∗
1

19083
∗ π4 ∗ e−0.95∗ 1

19083 ∗1000

+
1

300000
∗ π5 ∗ e−

1
300000 ∗1000)

= 70.578179

4.3.4 Availability Measures

Availability measures capture the proportion of total time in which a system is in an

operational condition [72]. To discuss system availability using the RAS model shown in

Figure 4.4, we need to identify which states of the model represent an operational state (UP

state) or an outage state (DOWN state). Availability measures can then be expressed as a

function of the UP states.



CHAPTER 4. EVALUATING RAS CAPABILITIES 128

There are three forms and metrics that can be used to express the availability of a system

[72]:

1. Instantaneous (or point) basic availability – the probability that a system is up at time

t.

2. Steady state basic availability – the probability that the system is up assuming that the

system has reached a steady state (i.e., time t → ∞).

3. Interval basic availability – the proportion within a given interval of time that the

system is up, which is calculated by carrying out a time average value of instantaneous

availability over the time interval of interest.

In our analytical evaluation of the microrebootable application server we discuss its avail-

ability in terms of its steady-state basic availability (S S avail), where the steady-state basic

availability is a function of the probability of being in a particular state, πi.

For the microrebootable application server we can identify three perspectives on its steady-

state availability that may be of interest:

1. Basic steady-state availability where all recovery activities are considered outages

(zero tolerance for recovery actions). This perspective captures the proportion of time

the system is in normal operating mode, S 0, and may be of special interest to system

administrators – S S avail(admin).

2. Tolerance availability, here a subset of the recovery actions result in outages that are

above a specific tolerance threshold, e.g, for the microrebootable application server,

recovery actions associated with eBid restarts, JVM/JBoss restarts and Operator

restarts may be considered above the tolerance threshold, while restarts to the EJB or

WAR levels may be considered tolerable. This perspective captures the proportion of

time that end-users can receive service, { S 0, S 1, S 2 }, and may be of special interest

to end-users/clients of the system – S S avail(client).



CHAPTER 4. EVALUATING RAS CAPABILITIES 129

3. Capacity-oriented availability, captures how much service the system is delivering.

Whereas in [20] microreboots are presented as a means of improving the availablility of

web application servers, they are not perfect. During a microreboot (or more expensive

system reboot) some client requests are lost – 78 requests per fine-grained restart

and 3917 requests per coarse-grained restart7. Using these numbers we can estimate

the percentage of requests lost during an interval as compared to the total number of

requests that could be serviced during that same interval – S S avail(capacity).

Basic Steady-state Availability (S S avail(admin)). The basic steady-state availability of

the system from the administrator’s perspective (i.e., zero tolerance for restarts) during an

interval T is given by:

UPadmin = {S 0},DOWNadmin = {S 1, S 2, S 3, S 4, S 5} (4.12)

S S avail(admin) = T ∗ π0

S S downtime(admin) = T ∗ (π1 + π2 + π3 + π4 + π5) (4.13)

During an interval of 1 day (1440 minutes), we expect the microrebootable application

server to be UP for 1435.86 minutes and DOWN for 4.14 minutes from the administrator’s

perspective (Equation 4.14).

S S avail(admin) = T ∗ π0 (4.14)

→ S S avail(admin) = 1440 ∗ 0.997127 = 1435.86 minutes

S S downtime(admin) = 1440 ∗ (1 − 0.997127) = 4.14 minutes (4.15)
7See [20] Figure 1.



CHAPTER 4. EVALUATING RAS CAPABILITIES 130

Tolerance Availability (S S avail(client)). The tolerance availability of the system (basic

steady state availability from the client perspective) during an interval T is given by:

UPclient = {S 0, S 1, S 2},DOWNclient = {S 3, S 4, S 5} (4.16)

S S avail(client) = T ∗ (π0 + π1 + π2)

S S downtime(client) = T ∗ (π3 + π4 + π5) (4.17)

During an interval of 1 day (1440 minutes), we expect the microrebootable application server

to be UP for 1439.83 minutes and DOWN for 0.17 minutes from the client’s perspective

(Equation 4.18).

S S avail(client) = T ∗ (π0 + π1 + π2) (4.18)

→ S S avail(client) = 1440 ∗ 0.999883 = 1439.83 minutes

S S downtime(client) = 1440 ∗ (1 − 0.999883) = 0.17 minutes (4.19)

Capacity-oriented Availability. The capacity-oriented availability of the microrebootable

application server, S S avail(capacity) during an interval T is calculated using:

• The number of failures during the interval, FT .

• The number of requests serviced during the interval, rT ; this is a function of the

throughput of the application server.

• The percentage of failures handled via fine-grained recovery actions, p f gr.

• The number of requests lost as a result of fine-grained recovery actions, r f gr.

• The percentage of failures handled via coarse-grained recovery actions, pcgr = (1 −



CHAPTER 4. EVALUATING RAS CAPABILITIES 131

p f gr).

• The number of requests lost as a result of coarse-grained recovery actions, rcgr.

And is given by:

S S avail(capacity) = 1 −
FT ∗

(
(p f gr ∗ r f gr) + (pcgr ∗ rcgr)

)
rT

(4.20)

Letting S 1 and S 2, EJB restarts and WAR restarts respectively, represent fine-grained

recovery actions and S 3, S 4 and S 5, eBid restarts, JVM/JBoss restarts and Operator fixes,

respectively, represent coarse-grained recovery actions, during the interval of 1 day (T =

86, 400, 000 msecs):

• FT =
3

600000 ∗ 86, 400, 000 = 432 failures per day

• rT = 70 requests per sec[20] ∗ 86, 400 secs = 6048000 requests per day

• p f gr = 99.74% (see failure/fault coverage equation, Equation 4.22)

• r f gr = 78 requests

• rcgr = 3917 requests

Therefore:

S S avail(capacity) = 1 −
432∗

(
(0.9974∗78)+((1−0.9974)∗3917)

)
6048000 = 0.993716 (4.21)

4.3.5 Serviceability Measures

Serviceability measures capture the impacts of system failures and/or remediation activi-

ties. Whereas reliability and availability have more rigorous mathematical definitions [72],



CHAPTER 4. EVALUATING RAS CAPABILITIES 132

serviceability is less well defined. For our evaluation purposes, when we discuss the service-

ability of a system we are specifically interested in quantifying the impacts of failures (which

may be expressed using a variety of metrics – e.g., monetary or time penalties) as well

as the efficacy of remediation mechanisms – overall success and coverage of remediation

mechanisms.

For the microrebootable application server, we identify four metrics that can be used to

evaluate its serviceability properties:

1. The fault/failure coverage of the system. This is the percentage of failures for which

the system has an acceptable response.

2. The mean time to system restoration. This is the expected number of time units needed

to restore the system to its normal/original operating condition, S 0.

3. The expected penalties associated with outages (downtime). These quantify the

negative consequences of outages and may be expressed in terms of money spent/lost

due to system un-availability (e.g., paying for SLA violations, or lost revenue due to

the system being down) or some other suitable metric.

4. The SASO (stability, accuracy, settling time and overshoot) properties of the Recovery

Manager’s operation. This describes the operation of the Recovery Manager using a

simple feedback control loop, which we can analyze using traditional control theory

tools.

Fault/Failure Coverage. The fault/failure coverage for the microrebootable application

server during an interval T is the percentage of failures for which there is an acceptable

response. In our analytical evaluation, failures handled in S 1 or S 2 are considered acceptable

since these result in minimal disruptions to the end-users of the system [20].

The fault/failure coverage of the system during an interval T is a function of the number of



CHAPTER 4. EVALUATING RAS CAPABILITIES 133

failure escalations. In 1 day (T = 86,400,000 msecs), 432 failures are injected, of which we

expect 99.74% to be handled in S 1 or S 2 (Equation 4.22).

432 − (Fwar→eBid + FeBid→JV M/JBoss + FJV M/JBoss→Operator)
432

∗ 100% = 99.74% (4.22)

Mean Time to System Restoration (MTTSR). The MTTSR is the average number of

time units required to return the system to its original/normal operating mode. Using

SHARPE we calculate this to be 576.177875 msecs.

Expected Downtime Penalties. The total expected downtime penalty is a function of the

total number and duration of outages experienced by the system during an interval T . These

penalties can be calculated based on any availability guarantees that govern the system’s

operation. Table 4.5 gives the downtime allowance per day (in minutes) based on the number

of 9’s availability guaranteed. Using this table and S S avail(client) calculated earlier we can

express the expected downtime penalties.

Availability guarantee Max downtime per day Expected penalties
99.999 ∼ 0.0144 mins (0.17 - 0.0144)*$p
99.99 ∼ 0.1440 mins (0.17 - 0.1440)*$p
99.9 ∼ 1.4400 mins $0
99 ∼14.4000 mins $0

Table 4.5: Expected downtime penalties using Microreboots

Stability of the Microreboot Recovery Manager. To reason about the stability of the

Recovery Manager’s operation we propose the feedback control diagram shown in Figure

4.5. In our diagram a controller takes a recovery time deadline as input (e.g., the MTTSR

calculated earlier – ∼ 576 msecs) and monitors how well the Recovery Manager is able to

meet that deadline (i.e., measured output equals the actual MTTSR). Based on the deviations

between the desired MTTSR and the actual MTTSR the controller can vary the control



CHAPTER 4. EVALUATING RAS CAPABILITIES 134

input. Possible choices for control inputs include, but are not limited to: the rate at which

failure events are routed to (or admitted by) the Recovery Manager for resolution via a

microreboot or the percentage of failure events dispatched to the Recovery Manager for

resolution via microreboot. Spikes in failure event arrival rates and accompanying increases

in the measured MTTSR may signal that these failures may need to be resolved by other

means and/or should be brought to the attention of a human operator.

Figure 4.5: Microreboot Recovery Manager feedback control diagram

Other Types of Analyses. In addition to evaluating (Markov and Control Theory) models

of the system to quantify various reliability, availability and serviceability properties, there

are three other types of analyses that can be performed on these models: sensitivity analysis,

tradeoff analysis and specification determination.

• Sensitivity analysis – looks at how the analysis results change if one or more of the

input parameters change [72]

• Tradeoff analysis – investigates how trading off a change in one input parameter for

another affects the analysis results [72].

• Specification determination – determines the values of given input parameters required

to meet a specific reliability, availability or serviceability goal.



CHAPTER 4. EVALUATING RAS CAPABILITIES 135

4.3.6 Analysis Results

Table 4.6 summarizes the analysis results for the microrebootable application server RAS

model shown in Figure 4.4 based on the model parameters in Table 4.2.

Measure Metrics Results

Reliability

Failure escalations per day (Fa→b) 22.671386
Frequency of recovery activities per day (F2) 4.14 mins
Frequency of outages per day (F3) 0.056537
Frequency of recovery actions per day > 1 sec (F4) 70.578179

Availability
Basic steady-state availability (S S avail(admin)) 0.997127
Tolerance availability (S S avail(client)) 0.999883
Capacity-oriented availability (S S avail(capacity)) 0.993716

Serviceability
Fault/failure coverage 99.74%
Mean-time to system restoration (MTTSR) 576 msecs
Expected downtime penalties per day (4 9’s) (0.17 - 0.1440)*$p

Table 4.6: Summary of Microreboot RAS model analysis results

4.4 Related Work

The analytical tools – Continuous Time Markov Chains (CTMCs), Markov Reward Networks

and Feedback Control models – and techniques for their analysis have been well studied

and used by others to study many aspects of computing system behavior.

[69], [101] and [121] provide a rigorous discussion of the mathematical principles (proba-

bility theory and queuing theory) underlying Markov chains and Markov reward networks

as well as techniques for their analysis and solution. [69] and [101] specifically provide

numerous examples of applying Markov chains to study the performance, reliability and

availability characteristics of computing systems.

[98] and [2] discuss techniques for the computationally tractable analysis and solution of

Markov models. These techniques are available in the SHARPE [160] RAS modeling tool,

which we use in the construction and analysis of RAS models.



CHAPTER 4. EVALUATING RAS CAPABILITIES 136

Markov chains have been used in the study and analysis of dependable and fault-tolerant

systems and the techniques used to realize them. Examples include analyses of RAID

(Redundant Arrays of Inexpensive Disks) [114] and telecommunication systems [101]. They

have also been used in the study of software aging [13] and in evaluating the efficacy of

preventative maintenance (software rejuvenation). Dependability is concerned with assess-

ing the ability of a system to deliver its intended level of service to its users especially in

the presence of failures which impinge on its level of service [107]. There are three of

the dependability measures of interest: reliability measures, availability measures and task

completion measures [72] – task-completion is the likelihood that a task will be completed

satisfactorily. [72] also discusses four types of analyses that can be performed – model

evaluation, sensitivity analysis, tradeoff analysis and specification determination. In our con-

struction and analysis of RAS models we employ select reliability and availability measures.

Further, whereas sensitivity analysis, tradeoff analysis and specification determination are

discussed in [72] with regard to Markov chains, these types of analyses can also be applied

to models constructed using other modeling formalisms. As a result, we can employ these

analyses as part of the RAS evaluation process.

Performability [120] provides unified measures for considering the performance and reli-

ability of systems together. Markov reward networks [69] have been used as a formalism

for establishing this link between the performance of a system and its reliability. Other

formalisms used in performability analysis include Stochastic Petri Nets (SPNs) [101] and

Stochastic Activity Networks (SANs) [161], which are both built on top of Markov chains.

SPNs and SANs allow for more detailed and sophisticated modeling of a system’s operation,

e.g., modeling concurrent activities in a system. In our construction of RAS models, we use

Markov reward networks to quantify the impacts of failures and/or remediation activities.

Further, our goal is to develop simple, reusable models templates that can be used for

describing failure scenarios and scoring system responses, rather developing a detailed

model of the operation of underlying system being evaluated.



CHAPTER 4. EVALUATING RAS CAPABILITIES 137

Different classes of failures have been studied using Markov chains including independent

failures [101], near-coincident failures [42] and cascading failures [91]. Leveraging these

analytical tools in our construction of RAS models allows us to describe failure scenarios

that represent these different classes of failures.

Feedback control has been used in the development of adaptive computing systems providing

mathematical tools for constructing predictable systems [90]. For example, [139] uses

control theory to develop a fluid model for network traffic management. [145] presents a

database server that adaptively throttles administrative utilities when necessary to maintain

a given level of query performance (an example of disturbance rejection in a control system)

while work in [45] describes the use of feedback control to automatically adjust the size

of memory pools to balance the resource demands in a database management system (an

example of regulatory control/regulation). Finally, [44] presents the principles of feedback

control and discusses the implications for realizing self-managing systems which exhibit the

desirable properties of stability, accuracy, short settling times and avoiding overshoot (SASO)

with respect to the policy-based objectives that govern their operation. In constructing RAS

models of systems we are interested primarily in applications of regulatory control and

assessing the SASO properties of systems and their failure handling mechanisms.

4.5 Summary

This chapter introduced the analytical tools and techniques used to construct RAS models –

Continuous Time Markov Chains, Markov Reward Networks and Feedback Control Models.

In §4.2 we provide background information on these analytical tools. And §4.3 discusses

the measures and metrics of reliability, availability and serviceability while providing an

example RAS model and analysis of the microrebootable application server described in

[20].



CHAPTER 4. EVALUATING RAS CAPABILITIES 138

Using our analytical example we demonstrate the construction of a basic RAS model that can

be used to a) describe failure scenarios used to evaluate a microrebootable application server

and b) score/evaluate the application server’s responses to injected faults. In conducting our

analysis we identify a number of reliability, availability and serviceability metrics that may

be used in system evaluations and illustrate how they are derived and calculated.

Our analysis is complementary to the measurement-based evaluation done in [20], consid-

ering other aspects of reliability, availability and serviceability not covered in the original

work, e.g., reasoning about the frequency of failure escalations, recovery activities and

outages; presenting three perspectives on availability for comparison – basic steady-state

availability, tolerance availability and capacity-oriented availability; and finally discussing

fault/failure coverage, mean-time to system restoration and estimated downtime penalties

for the microrebootable application server.

In the next chapter we combine runtime fault-injection tools, including Kheiron, which was

described in Chapter 3, with the RAS modeling tools described in this chapter to develop the

7U-Evaluation Benchmark – a model-based and measurement-based reliability, availability

and serviceability benchmark for web-application stacks and their components.



Chapter 5

The 7U-Evaluation Benchmark

In this chapter we present a methodology for evaluating the RAS characteristics of N-tier

web application stacks and their components – the 7U-Evaluation method – and demonstrate

its effectiveness via three case studies measuring the RAS properties of different deployments

of the TPC-W web-application [119].

The 7U-Evaluation Benchmark is a model-based and measurement-based evaluation ap-

proach that combines runtime fault-injection tools, Chapter 3, with analytical RAS models,

that describe and score specific failure scenarios (Chapter 4).

In our experiments we subject different TPC-W deployments to the same failure conditions,

develop RAS models to describe and score the failure scenarios, and conduct fault-injection

experiments to obtain values for the RAS model parameters. Based on the data collected

from the fault-injection experiments, we compute, compare and discuss the RAS metrics for

each deployment.

In the sections that follow we discuss the challenges of RAS benchmarking, the design

considerations for the 7U-Evaluation Benchmark that address those challenges, present our

experimental results, and compare our approach to traditional performance benchmarking

approaches as well as similar efforts to benchmark aspects of reliability, availability and ser-

139



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 140

viceability in the fault-tolerant computing, dependable computing and autonomic computing

communities.

5.1 Introduction

The importance placed on realizing reliable, highly available and serviceable (easy-to-

manage/self-managing) software systems necessitates approaches for evaluating the reliabil-

ity, availability and serviceability (RAS) characteristics of systems [113, 118, 102, 3]

Benchmarks provide a structured way to evaluate systems by allowing interested parties

“...to measure well-defined features of a system or component according to an agreed ... set

of methods and procedures [113]. In assessing the RAS characteristics of systems, we wish

to identify or develop methods and procedures that quantitatively capture: a) the impacts of

faults or failures on a system’s reliability, availability and serviceability and b) the efficacy

of any remediation mechanisms.

In order to conduct an RAS benchmark, it is necessary to have an environment and tools

that allow the system under test to be exposed to failure-provoking stimuli [16]. Direct

fault-injection into components of the system under test is the primary technique that enables

such an environment [8]. An important part of the RAS evaluation process is to inject faults

that exercise any remediation mechanisms that the system under test has or that highlight

RAS deficiencies. The determination of which faults meet this criteria depend on a) the

system or class of system being evaluated and b) problems that have been observed and/or

are currently being studied.

Another important element of an RAS benchmark is the generation of realistic workloads

for the system under test. This allows us to study the impact of failures and other stressful

conditions (the fault-load) on the typical operation of the system. Generating realistic

workloads for systems is a difficult problem; however, RAS evaluations can build upon



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 141

existing performance benchmarks, which provide excellent sources of workloads, e.g.,

benchmarks produced by the Standard Performance Evaluation Corporation (SPEC) [177],

the Transaction Processing Performance Council (TPC) [190] and the National Institutes of

Standards and Technology (NIST) [140].

The use of performance benchmarks to provide realistic workloads during an RAS evaluation

influences the metrics that are collected as well as the way these metrics are used in scoring

the system under test. The performance metrics collected can be used to reason about

complete outages or degraded modes of operation, which result from injecting faults or

inducing failures in the test system. In §4.3.6 we illustrate how variations in performance

metrics can be used/incorporated to reason about different facets of reliability, availability

and serviceability, e.g., basic availability vs. tolerance availability vs. capacity-oriented

availability, which take different operating modes of the system into consideration. The

metrics used to express these facets of reliability, availability and serviceability and the

RAS models used to compute them specify the scoring criteria for an RAS evaluation and

describe the failure scenarios that the system under test is subjected to during an evaluation.

5.2 The 7U RAS Benchmarking Methodology

In the previous section we describe the conceptual elements needed to build RAS bench-

marks: a system under test, a testing environment and tools that support fault-injection,

realistic workload generators and a set of scoring criteria/failure scenario descriptions. In

this section we combine these elements into a methodology for performing RAS evaluations.

Our methodology is an extension of measurement-based dependability benchmarks [96]. It

consists of seven steps:

1. Specify fault-model: first a fault-model is developed that mimics faults, failures and

stressful conditions previously seen or likely to be seen in practical deployments of the



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 142

system under test. The fault-model codifies the set of problems the system is expected

to detect, diagnose and/or repair. During this stage of the methodology fault-injection

tools that can reproduce the faults and failures of interest are identified or developed.

2. Specify the fault-remediation relationship: injecting faults in the system should

elicit a response from the system, e.g., triggering an existing remediation or compro-

mising a measure of interest. In the case of the latter, variations in the compromised

measure of interest can be used to build or improve detection or repair mechanisms in

the system.

3. Decide on micro-measurements for remediations: these are metrics collected from

the remediation mechanisms, e.g., remediation success, remediation times, etc.

4. Decide on macro-measurements and create scoring models for system evalua-

tion: macro-measurements are the measures of interest, e.g., different facets of

reliability, availability and serviceability. During this step RAS models used for

scoring are developed. These scoring models describe different failure scenarios,

establishing a link between the micro-measurements of the remediations – success,

coverage, recovery times, etc. – and the reliability, availability and serviceability

measures.

5. Develop workload and metric collectors: during a benchmark run the system under

test is subjected to a workload to simulate actual use of the system and allow for

the collection of metrics from the system related to its performance, failure behavior

and/or remediation activities.

6. Run benchmarking and fault-injection experiments: the overall benchmark study

consists of multiple experiments, each involving one or more failure scenarios where

the system under test is subjected to the workload and a faultload.

7. Analyze results and revise scoring models: results from the benchmark runs are



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 143

analyzed and scored, after which the existing scoring models may be refined or new

models that describe new failure scenarios added.

The RAS benchmarking methodology outlined above presents a number of practical chal-

lenges: selecting reasonable or representative faults, representative workloads, reproducibil-

ity of results and portability to different systems, identifying metrics used for scoring the

responses of the system under test, and collecting data from benchmark runs used as param-

eters in scoring models. In the next section we discuss how we addressed these challenges

as we develop an RAS benchmark for N-tier web-applications and their components.

5.3 RAS Benchmarking Challenges

5.3.1 Selecting reasonable or representative faults

The first practical challenge in developing an RAS benchmark is to specify the fault-model

under consideration. The fault-model follows from the system under test (or class of system

under test). Based on the system under test and/or the class of system under test, published

studies on problems/failures experienced in the field may be used to guide the creation of the

fault-model. To conduct an RAS evaluation the fault-model may have to be appropriately

scoped/restricted to the set of problems/failures that can be reproduced using accessible

fault-injection tools.

In our first application of this RAS benchmark we use N-tier web-applications as the

class of system under test and the TPC-W web-application as a specific test subject. We

chose N-tier web applications as our class of systems under test due to their ubiquity.

They have standardized components – web server, application server, database server and

operating system and a well-understood client-server workload model. Further, we were

able to find published studies about problems/failures experienced by N-tier applications



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 144

and their components [21, 31, 142, 179], which guided the identification and development

of fault-injection tools and provided some ideas for metrics (see §5.3.4).

The TPC-W web-application specification was developed by the Transaction Processing

Performance Council (TPC) [190] as part of a benchmark for e-commerce sites. It mimics the

activities of an online bookstore in a controlled environment and reference implementations

of the benchmark specifications can be found online, e.g., the Java-based implementation

from the PHARM research team at the University of Wisconsin-Madison [147], which we

use in our experiments (see §5.4, §5.5 and §5.6). Alternative web-applications, e.g., RUBiS

[141], which mimics an online auction website like eBay, or the SPEC jAppServer [176],

which emulates information flow among an automotive dealership, manufacturing, supply

chain management and an order/inventory system could have also been used.

Our fault-model for the TPC-W web application stack consists of device driver faults

targeting the operating system and memory leaks targeting the application server. We chose

device driver faults because device drivers account for ∼70% of the Linux kernel code and

have error rates seven times higher than the rest of the kernel [31]; similarly Microsoft’s

analysis of crash dumps submitted by Windows XP users to their Online Crash Analysis

website attribute 70% of crashes to faults or failures in third-party device drivers [115] –

faulty device drivers easily compromise the integrity and reliability of the kernel, while

memory leaks and general state corruption (dangling pointers and damaged heaps) are

highlighted as common bugs leading to system crashes in large-scale web deployments [21].

We identified the operating system and the application server as candidate targets for fault-

injection. Given the operating system’s role as resource manager [185] and part of the native

execution environment for applications [63], its reliability is critical to the overall stability of

the applications it hosts. Similarly, application servers act as containers for web-applications

and are responsible for providing a number of services, including but not limited to, isolation,

transaction management, instance management, resource management and synchronization.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 145

These responsibilities make application-servers another critical link in a web-application’s

reliability and another prime target for fault-injection. In our experiments we target Java-

based application servers due to the availability of a number of open-source/free alternatives

including Caucho Technology’s Resin [186] application server and The Apache Foundation’s

Tomcat [53] application server.

With respect to remediations for these faults, there are a number of possibilities. For device

driver failures operating system kernels may crash, which is a structured way of recording a

problem and halting the system to prevent further damage [115], or employ some form of

device driver recovery, e.g., Nooks [122], hardened device drivers on OpenSolaris [136]1.

To address resource leaks/memory leaks, application server restarts have been used to react

to low memory conditions resulting from memory leaks or as preventative maintenance to

avoid low memory conditions (rejuvenation) [21]. Other approaches combine rejuvenation

with redundancy/load-balancing, e.g., VM-Rejuv [173], to mitigate the effects of memory

leaks.

In evaluating the RAS properties of N-tier web-application deployments we investigate the

efficacy of these remediation mechanisms.

5.3.2 Representative Workloads

The workload used to exercise the system during an RAS evaluation must be representative

of realistic uses of the system [113] to provide insights into the impacts of faults and failures

on its operation.

The reference implementation of the TPC-W provided by the PHARM research team at

the University of Wisconsin-Madison includes a workload generation tool that emulates

browser clients for the TPC-W web-application. Remote Browser Emulators (RBEs) act

1Programming-language extensions e.g. SafeDrive [198] are also used to develop recoverable device
drivers.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 146

like users sending requests to the TPC-W web-application, interacting with it according to

one of three strategies (mixes) outlined in the TPC-W benchmark specification – Browsing

mix, Shopping mix or Ordering mix. Different mixes control the proportion of activities

that involve a specific page of the TPC-W web-application (see Table 1 in [119] for further

details on the interaction strategies).

5.3.3 Reproducibility and Portability

Conducting RAS evaluations involves introducing changes into systems, e.g., injecting faults

or inducing failures to evaluate the system’s response (or lack thereof). However, individual

changes must be introduced in a manner that is reproducible on a specific system and

possibly reproducible across different systems if cross-system comparisons are necessary

[3]. In the case of cross-system comparisons an RAS benchmark must be portable if it is to

be used across different platforms. Reproducibility allows evaluations to be repeated, which

can improve the confidence in the measurements [113].

For reproducibility and portability of our benchmark we use target systems and fault-

injection tools that can be deployed on multiple platforms.

Our Kheiron/JVM (§3.8) fault-injection tool can be used on any Java-based application,

which allows us to target a variety of Java-based application servers and/or Java-based

web-applications.

For device driver fault-injection we target the network device drivers on Linux 2.4.18, 2.6.20

and OpenSolaris operating systems. We use a version of the Nooks SWIFI device driver

fault-injection tools [122, 123] developed at the University of Washington for device driver

fault-injection on Linux 2.4.18. We developed a port for these tools that injects faults into

device drivers on Linux 2.6.20

The Linux (2.4 and 2.6) device driver fault-injection tools inject a variety of faults including:



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 147

text faults, stack faults and null pointer faults. Faults injected by the Linux device driver

fault-injection tools can lead to kernel panics if no device driver recovery services are

available or device driver recovery fails.

To evaluate the efficacy of hardened device drivers on OpenSolaris we use the device driver

hardening test harness provided by Sun Microsystems [136] to inject faults into network

device drivers. The test harness operates at the level of data accesses, intercepting data

accesses of the device driver and injecting faults into the device driver, e.g., corrupting data

and interfering with interrupts, simulating faults that occur in the hardware managed by

the device driver. The corruptions performed by the test harness can lead to device driver

crashes, hangs and/or kernel panics if no device driver recovery services are available or if

device driver recovery is unsuccessful.

Device driver fault-injection is inherently not very portable across different operating system

kernels, e.g., Windows, Linux and OpenSolaris, since these kernels differ significantly in the

data structures, components/kernel-objects and component-interactions used to implement

resource management functions, I/O, etc. [115, 39, 155]. Further, porting between major

versions of a specific operating system kernel, e.g., Linux 2.4.x and Linux 2.6.x may require

changes to some of the underlying mechanisms used to support driver fault-injection tools.

For example, accommodating changes to kernel data structures used to represent modules

and processes between Linux 2.4.x and Linux 2.6.x.

5.3.4 Metrics and Scoring

Metrics and scores for an RAS evaluation may be based on direct measurement or calculation

using modeling [113]. The ability to obtain direct measurements is dependent on the

availability of system observation points. Facilities may exist in the system to collect direct

measurements, e.g., logs, or the system may need to be instrumented to facilitate data

collection. Calculating reliability, availability and serviceability metrics require modeling.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 148

These models in turn require input from field experience, e.g., fault probabilities and fault

distributions, which may be difficult to estimate. Overall, the scores obtained should account

for the impact of failures and/or responses on different users (administrators and clients) and

the efficacy of the response.

In our 7U Evaluations, rather than estimate fault properties and distributions, we use fault-

injection tools to control these parameters – estimates of fault properties and distributions

based on field-data from failures can, however, inform and improve the fault-mixes used

in fault-injection experiments. We induce failure conditions in the system under test and

collect data on a number of aspects of system operation, including the occurrence of outages

and degradation events, downtime, and the speed, coverage and success of remediations. We

use this data in our scoring models to estimate RAS properties for a specific scenario.

It is accepted that whereas fault-injection is a powerful tool for validating and evaluating

remediation mechanisms in systems [191, 32], it cannot predict actual availability or mean

time between failure (MTBF) [195, 77]. However, the goal of our 7U benchmark is not to

predict MTBFs and MTTFs in absolute terms 2, but rather to provide a framework for 1)

reproducing and studying specific failures in systems leading to better fault-injection tools;

2) validating the remediation mechanisms available in a system or reasoning about yet-to-be-

added mechanisms and; 3) providing a consistent method of scoring, using simple, reusable

RAS models as templates, which capture failure impacts and/or remediation activities to be

evaluated from the different perspectives of interest.

[179, 142, 14] present some specific metrics that may be used for N-tier web applications

and internet services, including frequency of outages, frequency of degradation events,

downtime from the perspective of the client, downtime from the perspective of the IT

operators and lost revenue, while §4.3.2 discusses other RAS metrics that may also be of

2Predicting MTTFs for software is inherently difficult due to the lack of physical laws governing the opera-
tion software components/systems[21], unlike for hardware/physical systems, whose operation is governed by
the laws of physics. However, MTTF predictions for hardware have recently been called into question [163].



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 149

interest, e.g., frequency of failed remediations, basic steady-state availability, tolerance

availability, capacity-oriented availability, fault-coverage, mean time to system restoration

and expected downtime penalties.

5.4 Evaluation Part 1

In our first evaluation case-study we model, evaluate and compare two deployments of the

TPC-W web-application subjected to memory leaks and device driver faults, which target

the application server and operating system, respectively.

5.4.1 7U Process

System under test. For the system under test we use the TPC-W web-application stack.

The TPC-W stack consists of a (Java-based) TPC-W web-application implementation, the

Resin web/application server [186] and the MySQL [4] database server co-located on a

single operating system instance3.

The two deployments used and compared in our evaluation are shown below:

1. Resin 3.0.22, MySQL 5.0.27, Linux 2.4.18

2. Resin 3.0.22, MySQL 5.0.27, Linux 2.6.20

Fault model. The Resin application server uses automatic restarts to react to memory

leaks, while the device driver recovery framework Nooks protects the Linux 2.4.18 kernel

from the effects of device driver failures. In our evaluations we exercise these remediation

mechanisms and compare against a stack deployed on Linux 2.6.20, which does not have

device driver recovery.

3We use virtual machines for each deployment.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 150

Memory-leak failures in the TPC-W web-application classes hosted in Resin are induced

using Kheiron/JVM [63] and the approach described in §3.8.6. Device-driver faults are

injected into the network device driver (the pcnet32 ethernet device driver) using the Nooks

SWIFI (SoftWare Implemented Fault-Injection) tools [122], which were originally developed

for Linux 2.4.18 by Michael Swift et al. [122] and ported, by us, to Linux 2.6.20.

Fault-remediation relationship. Resin initiates an application server restart under mem-

ory pressure, while the operating system employs device driver recovery (where possible) or

crashes to protect the system.

Micro-measurements. For micro-measurements we collect metrics on application-server

restart times, device driver recovery times, device driver recovery success rates, operating

system restart times and client-side goodput.

Macro-measurements. For macro-measurements we use the four node, five parameter

model shown in Figure 5.1, with parameter descriptions shown below, to describe and

score the failure scenario used in our evaluation. We use this scoring model to quantify the

following facets of reliability, availability and serviceability:

• Reliability – frequency of outages

• Availability – tolerance availability

• Serviceability – expected downtime penalties

The construction of this scoring model is described in §5.4.2 and it is a generalization of the

RAS model shown in Figure 5.7.

The model consists of four states and six parameters:

• S 0 - System working normally.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 151

Figure 5.1: Failure scenario scoring RAS model

• S 1 - System recovering a failed device driver.

• S 2 - Device driver recovery failed and system needs to be rebooted.

• S 3 - Application server restart due to memory exhaustion.

• λdriver f ailure – forced rate of device driver failures.

• µdriver recovery – mean time for device driver recovery.

• c – the coverage factor, success rate of device driver recovery, this allows us to

consider imperfect recovery scenarios.

• µreboot – mean time to reboot the system if device driver recovery is unsuccessful.

• λmemory leak – observed rate of memory-leak related failures.

• µapp server restart – worst-case restart application-server under low-memory conditions.

The goal of our experiments is to inject faults into specific components of the system under

test and study its response. The faults we inject are intended to exercise the remediation

mechanisms of the system. We use the experimental data to mathematically model the

impact of the faults we inject on the system’s reliability, availability and serviceability with

and without the remediation mechanisms.

In our experiments we force/set the rate of memory-leak failures to 1 every 8 hours and the

rate of device driver faults is set to 4 every 8 hours. These rates were chosen arbitrarily,



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 152

and are used to illustrate the modeling and evaluation process; however, additional data on

failure mixes can improve similar evaluation efforts.

Whereas our fault-injection experiments may expose the system to rates of failure well above

what the system may see in a given time period, these artificially high failure rates allow us

to explore the expected and unexpected system responses under stressful fault conditions,

much like performance benchmarks subject the system under test to extreme workloads.

5.4.2 Deployment 1: Resin, MySQL, Linux 2.4.18

In Deployment 1 our test platform uses VMWare GSX virtual machines configured with:

512 MB RAM, 1 GB of swap, a single x86 processor and an 8 GB harddisk running

Redhat 9 on Linux 2.4.18. We use an instance of the TPC-W web-application (based on the

implementation developed at the University of Madison-Wisconsin) running on MySQL

5.0.27, the Resin 3.0.22 application server and webserver, and Sun Microsystems’ Hotspot

Java Virtual Machine (JVM), v1.5. We simulate a load of 20 users using the Shopping

Mix [119] as their web-interaction strategy. User-interactions are simulated using the

Remote Browser Emulator (RBE) software also implemented at the University of Madison-

Wisconsin. Our VMs are hosted on a machine configured with 2 GB RAM, 2 GB of swap,

an Intel Core Solo T3100 Processor (1.66 GHz) and a 51 GB harddisk running Windows

XP SP2.

There are three remediation mechanisms we consider: (manual) system reboots, (automatic)

application server restarts, and Nooks device driver protection and recovery [122] – Nooks

isolates the kernel from device drivers using lightweight protection domains: as a result

driver crashes are less likely to cause a kernel crash. Further, Nooks supports the transparent

recovery of a failed device driver.

Finally, we use the following system-configurations: Configuration A – Fault-free system



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 153

operation, Configuration B – System operation in the presence of memory leaks, Config-

uration C – System operation in the presence of device-driver failures (Nooks disabled),

Configuration D – System operation in the presence of device-driver failures (Nooks en-

abled), and Configuration E – System operation in the presence of memory leaks and driver

failures (Nooks enabled).

In our experiments we measure both client-side and server-side activity. On the client-side

we use the number of web interactions and client-perceived rate of failure to determine

client-side availability.

A typical fault-free run of the TPC-W (Configuration A), takes ∼24 minutes to complete

and records 3973 successful client-side interactions (166 client-side interactions per minute).

Figure 5.2: Client interactions – Configuration B

Figure 5.2 shows the client-side goodput over ∼76 hours of continuous execution (187 runs)

in the presence of an accumulating memory leak – Configuration B. The average number

of client-side interactions over this series of experiments is 4032.3 ± 116.8473. In this

figure there are nine runs where the number of client interactions is 2 or more standard

deviations below the mean. Client-activity logs indicate a number of successive failed HTTP

requests over an interval of ∼1 minute during these runs. Resin’s logs indicate that the server

encounters a low-memory condition, forcing a number of JVM garbage collections before



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 154

restarting the application server. During the restart, requests sent by RBE-clients fail to

complete. A Poisson fit of the time-intervals between these nine runs at the 95% confidence

interval yields a hazard rate of 1 memory-leak related failure (Resin restart) every 8.1593

hours.

Figure 5.3 shows a trace sampling the number of client interactions completed every 60

seconds for a typical run, (Run #2), compared to data from some runs where low memory

conditions cause Resin to restart. Data obtained from Resin’s logs record startup times of

3,092 msecs (initial startup) and restart times of approximately 47,582 msecs.

Figure 5.3: Client-side interaction trace - Configuration B

To evaluate the RAS-characteristics of the system in the presence of the memory leak, we use

the SHARPE RAS-modeling and analysis tool [160] to create the basic 2-node, 2-parameter

RAS-model shown in Figure 5.4. Table 5.1 lists the model’s parameters.

Figure 5.4: Simple RAS model

Whereas the model shown in Figure 5.4 implicitly assumes that the detection of the low

memory condition is perfect and the restart of the application server resolves the problem



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 155

S 0 an UP state where the system services requests
S 1 a DOWN state, no client requests are serviced

while the application server is being restarted
λ f ailure observed rate of failure, 1 failure every 8 hours
µrestart time to restart the application server, ∼47 seconds

Table 5.1: RAS-Model Parameters – Configuration B

100% of the time, in this instance these assumptions are validated by the experiments.

Using the steady-state/limiting availability formula [101]: A =
1
λ

1
λ+

1
µ

the steady state avail-

ability of the system is 99.838%. Further, the system has an expected downtime of 866

minutes per year – given by the formula (1 − Availability) ∗ T where T = 525, 600 minutes

in a year. At best, the system is capable of delivering two 9’s of availability. Table 5.2 shows

the expected penalties per year for each minute of downtime over the allowed limit. As an

additional consideration, downtime may also incur costs in terms of time and money spent

on service visits, parts and/or labor, which add to any assessed penalties.

Availability guarantee Max downtime per year Expected penalties
99.999 ∼5 mins (866 - 5)*$p
99.99 ∼53 mins (866 - 53)*$p
99.9 ∼526 mins (866 - 526)*$p
99 ∼5256 mins $0

Table 5.2: Expected SLA penalties for Configuration B

In Configuration C we inject faults into the pcnet32 device driver with Nooks driver

protection disabled. Each injected fault leads to a kernel panic requiring a reboot to make

the system operational again. For this set of experiments we arbitrarily choose a fault rate of

4 device failures every 8 hours and use the SWIFI tools to achieve this rate of failures in

our system under test. The fact that that the remediation mechanism (the reboot) always

restores the system to an operational state allows us to reuse the basic 2-parameter RAS

model shown in Figure 5.4 to evaluate the RAS-characteristics of the system in the presence

of device driver faults. Table 5.3 shows the parameters of the model.

Using SHARPE, we calculate the steady state availability of the system as 98.873%, with an

expected downtime of 5,924 minutes per year, i.e., under this fault-load the system cannot



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 156

S 0 an UP state where the system services requests
S 1 a DOWN state, no client requests are serviced

while the application server is being restarted
λ f ailure achieved rate of failure, 4 failures every 8 hours
µrestart time to reboot the system, 1 minute 22 seconds

Table 5.3: RAS model parameters – Configuration C

deliver two nines of availability.

Next we consider the case of the system under test enhanced with Nooks device driver

protection enabled – Configuration D. Whereas we reuse the same fault-load and fault-rate,

4 device driver failures every 8 hours, we need to revise the RAS-model used in our analysis

to account for the possibility of imperfect repair, i.e., to handle cases where Nooks is unable

to recover the failed device driver and restore the system to an operational state. To achieve

this we use the RAS-model shown in Figure 5.5; its parameters are listed in Table 5.4.

Figure 5.5: RAS model of a system with imperfect repair

S 0 an UP state where the system services requests
S 1 an UP state, where Nooks is recovering a failed

driver
S 2 a DOWN state, where Nooks’ recovery attempt

fails and the system needs to be rebooted
λdriver f ailure achieved rate of failure, 4 failures every 8 hours
µnooks recovery time for Nooks to successfully recover a failed

device driver, 4,093 microseconds worst case
c the coverage factor, represents the success rate

of Nooks, varying this parameter lets us study
the impact of imperfect recovery

µreboot time to reboot the system, 1 minute 22 seconds

Table 5.4: RAS model Parameters – Configuration D

Figure 5.6 shows the expected impact of Nooks recovery on the system’s RAS-characteristics

as its success rate varies.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 157

Figure 5.6: Availability – Configuration D

Whereas Configuration C of the system under test is unable to deliver two 9’s of availability

in the presence of device driver faults, a modest 20% success rate from Nooks is expected to

promote the system into another availability bracket while a 92% success rate reduces the

expected downtime and SLA penalties by two orders of magnitude (see Figure 5.6) 4.

Thus far we have analyzed the system under test and each fault in isolation, i.e., each

RAS-model we have developed so far considers one fault and its remediations. We now

develop an RAS-model that considers all the faults in our fault-model and the remediations

available, Configuration E – see Figure 5.7.

Figure 5.7: Complete RAS-model – Configuration E

Figure 5.8 shows the expected availability of the complete system. The system’s availability

4In our experiments we were unable to encounter a scenario where Nooks was unable to successfully
recover a failed device driver; however the point of our exercise is to demonstrate how that eventually could be
accounted for in an evaluation of a remediation mechanism.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 158

is limited to two 9’s of availability even though the system could deliver better availability

and downtime numbers – the minimum system downtime is calculated as 866 minutes per

year, the same as for Configuration B, the memory leak scenario. Thus, even with perfect

Nooks recovery, the system’s availability is limited by the reactive remediation for the

memory leak. To improve the system’s overall availability we need to improve the handling

of the memory leak.

Figure 5.8: Availability – Configuration E

5.4.3 Deployment 2: Resin, MySQL, Linux 2.6.20

In Deployment 2 our test platform uses VMWare GSX virtual machines configured with:

512 MB RAM, 1 GB of swap, a single x86 processor and an 8GB harddisk running

OpenSuse 9.2 on Linux 2.6.20. We use an instance of the TPC-W web-application (based

on the implementation developed at the University of Madison-Wisconsin) running on

MySQL 5.0.27, the Resin 3.0.22 application server and webserver, and Sun Microsystems’

Hotspot Java Virtual Machine (JVM), v1.5. We simulate a load of 20 users using the

Shopping Mix [119] as their web-interaction strategy (the same conditions used in §5.4.2).

User-interactions are simulated using the Remote Browser Emulator (RBE) software also

implemented at the University of Madison-Wisconsin. Our VMs are hosted on a machine



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 159

configured with 2GB RAM, 2 GB swap, an Intel Core Duo E6750 Processor (2.67GHz) and

a 228 GB harddisk running Windows XP Media Center Edition SP2.

Unlike Linux 2.4.18 where there is an available device driver recovery framework (Nooks),

there is no equivalent device driver protection framework for Linux 2.6.205. As a result

there are two remediation mechanisms we consider: (manual) system reboots in the case

of device driver crashes and (automatic) application server restarts in the case of memory

exhaustion.

Subjecting Deployment 2 to the same failure conditions as Deployment 1 we collect mea-

surements for: 1) the fault-free system operation, 2) the application server restart times in

the presence of memory leaks and, 3) the system operation in the presence of device driver

failures, and enter these into our scoring model to compare against Deployment 1.

We use the following system-configurations: Configuration A – Fault-free system operation,

Configuration B – System operation in the presence of memory leaks, Configuration C –

System operation in the presence of device-driver failures, and Configuration D – System

operation in the presence of memory leaks and driver failures.

A typical fault-free run of TPC-W (Configuration A) takes 20 minutes to complete and

records 3268 successful client-side interactions (163 client-interactions per minute). During

our experiments we record an average of 3398 ± 67.7209 successful client-side interactions.

In Configuration B, the normal restart time for Resin is 1,499 ms while the restart time

under low-memory conditions is 16,117 ms. Using the simple RAS model (Figure 5.4)

with parameters λ f ailure = 1 every 8 hours and µrestart = 16, 117 msecs we calculate the

steady-state availability for this configuration as 99.944%, with expected yearly downtime

of 294 minutes, i.e., this system is able to deliver 3 9’s of availability under these conditions.

In Configuration C we inject faults into the pcnet32 device driver at the same rate as

5We only ported the Nooks device driver fault-injection tools from Linux 2.4.18 to Linux 2.6.20, not the
Nooks device driver recovery framework.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 160

we did in Deployment 1 – 4 faults every 8 hours. Without device driver recovery, each

injected fault leads to a kernel panic requiring a system reboot to restore system operation

(1 minute 28 seconds). For this configuration we calculate the steady-state availability for

this configuration as 98.781% with expected yearly downtime of 6,407 minutes.

In Configuration D we consider the combination of memory-leak related failures and

device driver failures. Using the scoring model in Figure 5.1 we calculate the steady-state

availability of the full system as 98.725% availability, with expected yearly downtime

of 6,700 minutes, i.e., overall we expect this configuration to deliver less than 2 9’s of

availability under these conditions.

5.4.4 Deployment Comparisons

Table 5.5 compares the performance and RAS characteristics of Deployments 1 and 2. For

the failure scenario involving memory leak failures observed once every eight hours and

device driver failures injected four times every eight hours (Figure 5.1), Deployment 1 with

device driver recovery enabled is better than Deployment 2. Further, modest success rates

(30%) for the device driver recovery framework on Deployment 1 are expected to move the

configuration into a higher availability bracket (Figure 5.8).

Deployment 1 Deployment 2

Performance Interactions/min 166 163

Measures Normal Resin restart (msec) 3,092 1,499
Low memory Resin restart (msec) 47,582 16,117
OS restart (min:secs) 1:22 1:28
Device driver recovery 4,093 µ secs n/a

RAS UP states S UP={S 0, S 1} S UP={S 0}

Measures DOWN states S DOWN={S 2, S 3} S DOWN={S 2, S 3}

S S avail(memory leak only) 99.838% 99.944%
S S avail(driver f ailure only) no recovery 98.873% 98.781%
S S avail(memory leak, driver f ailure) 98.712%→99.835% 98.725%
Downtime(memory leak only)/yr 866 mins 294 mins
Downtime(driver failure only)/yr no recovery 5,924 mins 6,407 mins
Downtime(memory leak,driver failure)/yr 6, 771→866 mins 6,700 mins

Table 5.5: TPC-W Deployment 1 and Deployment 2 Results



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 161

Using our scoring model and the experimental results we can identify a weakness in

the deployments evaluated – reactive handling of memory leaks – and consider possible

mitigations.

Whereas the application server used in the experiments (Resin) automatically restarts itself

under low-memory conditions, the reactive strategy built into the application server may

be complemented (or superseded) by a preventative maintenance scheme that performs a

periodic early restart of the application server.

Preventative maintenance actions may be carried out on a fixed schedule or an adaptive

schedule. For preventative maintenance to be an option the system’s failure distribution

must be hypoexponential (Increasing Failure Rate/IFR §4.2.1), which allows us to divide the

system’s lifetime into two stages. Further, it must be possible to create detection mechanisms

that accurately identify/predict the transition from the first stage of the system’s lifetime to

the second stage.

We use the RAS-model shown in Figure 5.9 in our analysis. Its parameters are listed in

Table 5.6 and are based on the application server restart times of Deployment 1.

Figure 5.9: Preventative maintenance RAS-model

Using these parameters we plot the graph shown in Figure 5.10, which shows the expected

availability of the system as λinspect varies. For the failure conditions/model-parameters

supplied performing a free-memory check a modest number of times per hour and performing

a preventative maintenance action is expected to improve the system’s availability.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 162

S 0 an UP state, 1st stage of system lifetime
S 1 an UP state, 2nd stage of system lifetime
S 2 a DOWN state, application server is restarted
S 3 an UP state, free-memory inspection occurs

during the 1st stage of the system’s lifetime
S 4 an UP state, free-memory inspection occurs

during the 2nd stage of the system’s lifetime.
A preventative restart is carried out returning
the system to the first stage of its lifetime

S 5 a DOWN state, preventative restart occurs
λ2ndstage rate of transition into 2nd stage of its lifetime,

once every six hours
λ f ailure rate of transition into low-memory condition

state, once in either the 7th or 8th hour
µrestart resin worst time to restart Resin under

low-memory conditions, ∼47 seconds
λinspect rate of free-memory trend-checks
µinspect time to conduct free-memory check,

21,627 microseconds
µrestart resin pm best-case time to restart application,

server 3,092 milliseconds

Table 5.6: Preventative maintenance model parameters

5.5 Evaluation Part 2

In our second case-study we model and experimentally evaluate the efficacy of VM-Rejuv –

a prototype implementation of a virtual machine (VM) based software rejuvenation scheme

for application servers and internet sites [173] developed at the Universitat Politècnica de

Catalunya (UPC) in Barcelona.

Software rejuvenation is the concept of gracefully terminating an application and imme-

diately restarting it in a clean internal state [78]. This technique has been implemented as

a form of preventative/proactive maintenance in a number of systems, e.g., AT&T billing

applications [78]6, telecommunications switching software [10], online transaction process-

ing (OLTP) servers [27], middleware applications [15] and web/application-servers [109],

as an approach to mitigate the effects of software aging – the degradation of the state of

a software system, which may eventually lead to system performance degradation and/or

crash/hang failure [1].
6The original proposal of the software rejuvenation technique by Huang et al.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 163

Figure 5.10: Expected impact of preventative maintenance

Strategies for rejuvenation can be divided into two classes: time-based rejuvenation and

prediction-based rejuvenation [1]. With time-based rejuvenation state-restoration activities

are preformed at regular deterministic intervals, whereas with prediction-based rejuvenation

the time to rejuvenate is based on the collection and analysis of system data, e.g., resource

metrics.

State-restoration activities may include one or more of: garbage collection, preemptive

rollback, memory defragmentation, therapeutic reboots, flushing and/or reinitializing data

structures [27].

VM-Rejuv employs a prediction-based rejuvenation strategy for mitigating the effects

of software aging and transient failures on web/application-servers. Software aging and

transient failures are detected through continuous monitoring of system data and performance

metrics of the application-server; if some anomalous behavior is identified the system triggers

an automatic rejuvenation action [173]. Rejuvenation actions in VM-Rejuv take the form of

preventative application-server restarts.

To minimize the disruption to clients due to an application-server restart, VM-Rejuv employs

redundancy and load-balancing.

Web-application servers are deployed under VM-Rejuv in multiple virtual machines logically



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 164

organized in a cluster. Hosting multiple virtual machines on a single physical machine

allows it to be treated like a cluster as shown in Figure 5.11.

Figure 5.11: VM-Rejuv framework

VM-Rejuv uses three virtual machines for a hosted web-application: one VM to run a

software load-balancer (VM1), one VM to be the main/“active” application server and one

VM to be a hot-standby replica of the main application server (VMs 2 and 3).

The first virtual machine, VM1, runs:

• A load-balancer – the VM-Rejuv prototype uses Linux Virtual Server (LVS) as its

load-balancer [151]. LVS is a layer-4 load-balancer, which provides IP-failover and a

number of load-balancing policies (round-robin, weighted round-robin, etc.).

• An Aging detector – module for forecasting aging-related failures. In the current

VM-Rejuv prototype the Aging detector uses simple threshold techniques concerned

with memory utilization [173].

• An Anomaly detector – module that detects anomalies in VM2 and VM3 using

threshold violations as indicators of anomalies, e.g., throughput falling below a preset

threshold or response time exceeding a preset threshold (SLA violations).

• A Data collector – module that collects statistics from VMs 2 and 3 for analysis.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 165

• A Watchdog – module that detects server outages. VM-Rejuv uses the ldirectord tool,

which is used to monitor and administer real servers in an LVS cluster [156].

• Software Rejuvenation Agent (SRA) coordinator – module that directs SRAs on VMs

2 and 3 to initiate an application-server restart.

While virtual machines 2 and 3 run:

• The web-application server – the resource being load-balanced and periodically

rejuvenated.

• Software rejuvenation agents – modules that initiate rejuvenation actions.

• A set of probes – modules that collect statistics from various sources including log

files, (guest) operating system kernel (e.g., CPU utilization, memory usage, swap

space, etc.) and application-server proxies (e.g., the P-probe module sits in front of

the application-server collecting statistics on throughput and latency).

Figure 5.12: VM-Rejuv deployment7



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 166

An example deployment of a web-application using VM-Rejuv is shown in Figure 5.12.

During its operation, client requests to the web-application are routed by the LVS load-

balancer on VM1 to the application server on the active VM, while the standby VM (and its

application-server) remains ready but inactive as a hot replica until a rejuvenation is signaled

by the SRA coordinator.

When a rejuvenation action is signaled, the active VM and standby VM switch roles. New

client requests are routed to the application server on the standby VM (old standby VM

marked as the “new” active VM); the application-server on the old active VM finishes

processing any outstanding requests before the local SRA agent restarts the application

server. The interval of time the old active VM spends processing client requests that are

in-flight/outstanding when a rejuvenation is signaled is referred to as the pre-rejuvenation

delay-window.

The use of redundancy in VM-Rejuv and coordinated switch-overs between the active

VM and the standby VM support application-server restarts that minimize the loss of

in-flight client-requests during rejuvenation. These elements combined with application-

specific technologies like session migration/replication (e.g., as found in the Apache Tomcat

web/application server [173]) allow rejuvenations to be performed without disrupting clients,

which potentially improves the client-perceived availability of the web-application.

Deploying a web-application under a prediction-based rejuvenation scheme like VM-Rejuv

has a number of implications for its reliability, availability and serviceability.

Rejuvenation activities can be used as preventative maintenance to avoid certain kinds of

failures, e.g., memory-leaks as shown in [173]. The use of redundancy and IP failover allow

clients to be shielded from the failure of the active VM and minimizes disruptions due

to preventative restarts. These aspects of VM-Rejuv’s operation potentially improve the

7Server icons by Fast Icon Studio (http://www.fasticon.com) designed by Dirceu Veiga. Client/workstation
icons by Layered System Icons designed by BogdanGC (http://bogdangc.deviantart.com/). Database icon by
DryIcons (http://dryicons.com).



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 167

web-application reliability, availability and serviceability. However, the efficacy of problem

detection/prediction mechanisms, the frequency of rejuvenation actions, the success rate of

rejuvenation actions, and the size of the pre-rejuvenation delay-window are all elements that

can negatively affect the RAS properties of an application deployed under VM-Rejuv.

Problem detection/prediction mechanisms influence the rate at which rejuvenation actions

are initiated. Imperfect detection/predictions can result in too many or too few rejuvenation

actions. Whereas too many rejuvenations may not disrupt clients (due to the redundancy and

fail-over) time spent waiting to rejuvenate (the pre-rejuvenation delay-window) represents a

period of vulnerability during which a failure of the active VM can affect clients. Further,

frequent rejuvenations may put the system in a state where the active and standby VMs are

constantly switching roles, indicating that the thresholds used to trigger rejuvenations may

be inappropriate or may make the system unstable. Finally, rejuvenation actions may also

fail, e.g., application servers could fail to restart or node-failover may be unsuccessful, in

which case some other mechanism would need to be in place to rectify the situation.

On the other hand, too few rejuvenations may result in failures/unplanned downtime, which

could have been avoided and may indicate inadequate fault/failure coverage for the system.

In our evaluation of VM-Rejuv we wish to quantify the effects of:

• the rejuvenation frequency

• the success rate of rejuvenation actions (node-failover and application-server-restart)

• the size of the pre-rejuvenation delay-window

on its reliability, availability and serviceability.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 168

5.5.1 7U Process

System under test. For the system under test we use the TPC-W web-application hosted

on two Apache Tomcat web/application servers [53] under VM-Rejuv. Tomcat is a Java-

based web/application server developed by The Apache Foundation. Apache Tomcat is

used as the web-application server in the VM-Rejuv experiments since a P-probe designed

specifically for communicating performance statistics from Tomcat to the SRA coordinator

is included in the VM-Rejuv prototype 8.

Fault model. VM-Rejuv’s main detection mechanisms use the violation of response

time and/or throughput thresholds to indicate that a rejuvenation action is required. We

identify faults that can be used to trigger these detection mechanisms. Severe memory leaks

affect both throughput and response time, degrading these performance metrics [173] in

application servers. We use Kheiron/JVM to inject memory leaks into the web-application

servers deployed under VM-Rejuv.

Fault-remediation relationship. VM-Rejuv initiates a node-failover and signals a re-

juvenation (application-server restart) action in response to throughput or response time

violations or application server crashes.

Micro-measurements. For micro-measurements we collect metrics on: the time for node-

failover, the frequency of rejuvenation actions, the success of a rejuvenation, the size of

the pre-rejuvenation delay-window, and application-server restart, server-side estimates

of request throughput, and response time client-side goodput via instrumenting parts of

VM-Rejuv (specifically the SRA agent coordinator and the SRA agents), and parsing

application-server logs and parsing TPC-W client logs (client-side goodput is reported as

8The Tomcat P-probe is a Java class that is installed as a filter [129] in the pipeline that processes requests
received by the application-server.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 169

the number of web-interactions performed by TPC-W clients).

Macro-measurements. For macro-measurements we use the seven node, six parameter

scoring model shown in Figure 5.13, with parameter descriptions in Table 5.7, to quantify

the following the following facets of reliability, availability and serviceability:

• Reliability – frequency of rejuvenations, frequency of active VM failures during

rejuvenation.

• Availability – basic steady state availability and tolerance availability.

• Serviceability – mean time to system restoration.

Figure 5.13: VM-Rejuv RAS model

Workload and metric collectors. Scripts that parse TPC-W client logs, Tomcat logs,

SRA coordinator logs and SRA agent logs are used to gather micro-measurement data.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 170

S 0 state where active VM services requests and standby VM ready

S 1

state where VM-Rejuv prepares to rejuvenate the
active VM and the standby VM becomes the
new active VM servicing new client requests

S 2 state where old active VM is ready to rejuvenate
S 3 state where the active VM has failed during normal operation
S 4 state where the failure of the active VM has been detected

S 5
state where the new active VM (the old standby VM)
has failed while the old active VM is rejuvenating

S 6 state where the failure of the active VM during rejuvenation has been detected
λre juv rate of rejuvenation
λ f ailure forced/induced rate of failure of the active VM
µpre re juv delay size of pre-rejuvenation delay-window
µapp svr restart mean time to restart/rejuvenate the application server on the active VM
µdetect active vm f ailure mean time to detect that the active VM has failed/crashed
µnode f ail over mean time to failover to the standby VM

Table 5.7: VM-Rejuv RAS model

5.5.2 VM-Rejuv Evaluation

We create a test deployment of VM-Rejuv consisting of three virtual machines co-located

on a single physical machine. VM1 is configured with 640 MB RAM, 1GB swap, 2 virtual

CPUs and an 8GB harddisk. VM2 and VM3 are each configured with 384 MB RAM, 512

MB swap, 2 virtual CPUs and 8GB harddisks. All three VMs run Centos 5.0 with a Linux

2.6.18-8.el5 SMP kernel.

To enable LVS load-balancing, the network interface on VM1 is configured with two IP

addresses, one public IP address and one private IP address (192.168.1.xxx). Our LVS

configuration is based on LVS-NAT [150]. VM2 and VM3 are configured with private IP

addresses only (192.168.1.xxx). VM2 and VM3 can route to VM1 only, whereas VM1 can

route to VMs 2 and 3 and the internet.

The physical machine hosting the VMs is configured with 2 GB RAM, 2 GB swap, an Intel

Core Duo E6750 Processor (2.67 GHz) and a 228 GB harddisk running Windows XP Media

Center Edition SP2.

Figure 5.14 shows our VM-Rejuv configuration. We install Apache Tomcat v5.5.20 and Sun



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 171

Microsystems’ Hotspot Java Virtual Machine v1.5 on VMs 2 and 3 as well as instances of

the TPC-W web-application. We use the MySQL 5.0.27 database server to store the TPC-W

web-application data, and this is installed on VM1. The TPC-W web-application instances

on VMs 2 and 3 are configured to access the database server on VM1. The LVS tools

(IPVS v1.2.1 and ipvsadm v1.24) are installed on VM1 [150]. The following VM-Rejuv

components are installed on the three VMs: the SRA coordinator, ldirectord watchdog,

response time and throughput monitors are installed on VM1 while the SRA agents are

installed on VM2 and VM3.

Figure 5.14: VM-Rejuv configuration9

The VM-Rejuv prototype works with the Apache Tomcat web/application server [173].

Whereas the components of VM-Rejuv are written in Java, operations such as rejuvenating

application servers and updating LVS tables for failover are facilitated by shell scripts

called from Java using the java.lang.Runtime::exec() API. To restart/rejuvenate Tomcat,
9Server icons by Fast Icon Studio (http://www.fasticon.com) designed by Dirceu Veiga. Client/workstation

icons by Layered System Icons designed by BogdanGC (http://bogdangc.deviantart.com/).



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 172

VM-Rejuv’s SRA agents invoke the shutdown.sh and startup.sh scripts in the bin directory

under the Tomcat installation directory, while updates to the LVS table to designate the

new active VM are performed via calls to the Linux Virtual Server Administration utility,

ipvsadm.

We simulate a client load of 50 TPC-W clients using the Shopping Mix as their web-

interaction strategy.

During 15 failure-free runs, each lasting 22 minutes, the average number of client-side

interactions recorded is 7745.2 ± 748.9. Figures 5.15 and 5.16 show a 10 minute sample of

the throughput and response time data reported by VM probes during one of our failure-free

runs. From our failure-free runs the average throughput is ∼13 requests per second and

the average response time is ∼11 ms. We use the server-side throughput and response time

numbers reported to set the SLA violation thresholds for VM-Rejuv and inject faults that

result in the violation of these thresholds, triggering rejuvenation actions so we can estimate

the parameters for our scoring model.

Figure 5.15: VM-Rejuv baseline throughput
sample

Figure 5.16: VM-Rejuv baseline response
time sample

To estimate the size of the rejuvenation window, we set VM-Rejuv’s response time violation



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 173

threshold at mean response time (11 ms) and re-run the workload of 50 clients. VM-Rejuv

triggers rejuvenations after four consecutive SLA violations. During three 22 minute runs we

observe an average of 4 rejuvenation actions per run. During rejuvenation actions, the mean

failover time is 25.62 msecs ± 3.46 msecs (see Figure 5.17) with a mean pre-rejuvenation

delay window size of 14,769 msecs ± 5,420 msecs (see Figure 5.18).

Figure 5.17: VM-Rejuv VM failover time
Figure 5.18: VM-Rejuv rejuvenation window

size (50 clients)

In our fault-injection experiments we subject both Tomcat application servers deployed

under VM-Rejuv to memory leaks that result in resource exhaustion within 5.53 minutes

(332.017 seconds) of running the 50 client TPC-W workload (see Figure 5.19 for example

resource exhaustion traces). We set VM-Rejuv’s response time violation threshold to

the mean response time of the failure-free runs (11 ms) and measure the frequency of

rejuvenations, and the size of the pre-rejuvenation delay window. Introducing memory leaks

in the Tomcat application servers increases the response time and delays the rejuvenation of

the old active VM after the standby server is brought online, since the old active VM must

service outstanding requests before it rejuvenates. Table 5.8 summarizes the results from

five 22 minute memory-leak experiments.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 174

Figure 5.19: Tomcat resource exhaustion trace

Run # Rejuvenation Rejuvenation Failover time Pre-rejuvenation
actions interval (secs) (msecs) delay window (msecs)

1 8 155.47 33.88 34,657.63
2 9 142.13 31.63 18,321.38
3 6 155.76 27.20 16,175.60
4 7 149.08 24.71 37,538.57
5 8 167.86 27.29 30,314.43
Avg 7.6 154.06 28.94 27,401.52

Table 5.8: VM-Rejuv subjected to memory leaks

Using a mean rejuvenation interval of 154.06 seconds, mean rejuvenation window size of

27,401.52 msecs and mean failover time of 28.94 msecs, we score the VM-Rejuv deployment

using the RAS model in Figure 5.13. The mean time to restart Tomcat during the memory

leak experiments is 3 seconds and the mean time to detect a server outage (via the ldirectord

watchdog) is 5 seconds.

π0 0.824673
π1 0.135495
π2 0.023510
π3 0.012419
π4 0.000072
π5 0.002395
π6 0.001437

Table 5.9: VM-Rejuv steady state probabilities – memleak scenario



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 175

The steady-state probabilities of the VM-Rejuv model are shown in Table 5.9 and model

analysis results are shown in Table 5.10.

Using the scoring model we can estimate the number of active VM failures expected during

rejuvenation actions per day, i.e., the frequency of transitions from S 1 to S 5 (FS 1→S 5) plus

the frequency of transitions from S 2 to S 5 (FS 2→S 5). This we estimate at 41 per day under

the failure conditions used in our experiments (1 memory-leak failure every 5.53 minutes).

From the steady-state probabilities of the model we estimate that the deployment spends

∼82% of the time in its normal operating mode/configuration, π0, and ∼16% of its time

rejuvenating (π1 + π2). While rejuvenations are taking place clients-requests are serviced by

the standby VM; as a result the system would be considered UP from the client’s perspective

in states {S 0, S 1, S 2} – UP 1416.5 minutes per day (98.37%) and DOWN 23.5 minutes per

day (1.63%). Administrators on the other hand may consider the system to be UP if it is in

state S 0 since states S 1 and S 2 represent a window of vulnerability. From the administrator’s

perspective the system is UP 1187.5 minutes per day (82.47%) and DOWN 252.5 minutes

per day (17.53%), of which 229 minutes are spent performing rejuvenation actions.

In state S 1 clients still connected to the old active VM may experience some performance

degradation and even lose requests if the degree of resource depletion on the old active

VM is so severe that it cannot clear its backlog before the other VM needs rejuvenating.

Further, increasing the size of the pre-rejuvenation delay window (either through missing

rejuvenation opportunities or imperfect prediction) increases the time spent in S 1 where the

overall system is vulnerable to failures of the current active VM.

5.6 Evaluation Part 3

In our final case-study we model and experimentally evaluate the efficacy of hardened device

drivers in OpenSolaris.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 176

Measure Metrics Results

Reliability
Frequency of active VM failures during 41.377455
rejuvenation per day FS 1→S 5 + FS 2→S 5

Availability
Basic steady-state availability (UPadmin = {S 0}) 0.824673
Tolerance availability (UPclient = {S 0, S 1, S 2}) 0.983678

Serviceability
Mean-time to system restoration (UPadmin = {S 0}) 22,373 msecs
Mean-time to system restoration(UPclient = {S 0, S 1, S 2}) 5,509 msecs

Table 5.10: Summary of VM-Rejuv RAS model analysis results

OpenSolaris is a fully functional Solaris operating system release built from open source

[155]. Solaris is a UNIX operating system developed by Sun Microsystems. Under the

OpenSolaris initiative the Solaris kernel source was made available under an open license

(circa June 2005). The most recent release of OpenSolaris is based on the Solaris 10

operating system. In the remainder of this section all references to OpenSolaris pertain to

the release based on Solaris 10.

OpenSolaris includes a number of technologies designed to improve the reliability, availabil-

ity and serviceability of the operating system, one of which is the Solaris Fault Manager.

The Solaris Fault Manager is a software architecture for fault management that incorporates

several software components: an event protocol for sending and recording error and fault

information, a fault-diagnosis engine and a set of programming interfaces that improve

diagnosis, isolation, recovery and dynamic deactivation of faulty hardware [155]. This

collection of software components is referred to as the Fault Management Architecture

(FMA) [136]. A fault-centric software model correlates error reports into a binary telemetry

flow and dispatches the telemetry stream to an appropriate diagnosis engine. Diagnosis

engines can generate specific information about the fault for use by maintenance personnel

and cause corrective actions to be automatically taken if possible, e.g., taking a faulty

hardware component offline.

The FMA I/O Fault Services enable device driver developers to integrate fault management

capabilities into I/O device drivers [136]. The Solaris I/O fault services framework defines a



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 177

set of interfaces that enable device drivers to coordinate and perform basic error handling

tasks and activities. Hardened device drivers make use of the I/O fault services framework

for error handling and diagnosis.

5.6.1 7U Process

System under test. In our evaluation of hardened device drivers we use the Broadcom

Gigabit Ethernet (bge) device driver as a test subject. TPC-W web-application stack

components are deployed on OpenSolaris and the web-application and database components

are bound to a network interface managed by the bge device driver.

Fault model. We use the bus ops fault injection tool (bofi) [135] to inject faults into the

bge device driver. bofi is part of the device driver hardening test harness provided by Sun

Microsystems [136]. bofi facilitates controlled corruption of programmed I/O (PIO) and

DMA requests and interference with interrupts, thus simulating faults that occur in the

hardware managed by the driver [136]. These faults, when injected, can lead to service

loss due to corrupted PIO/DMA operations, service loss due to stuck interrupts, service

degradations and unresponsive drivers.

In our fault-injection experiments we script bofi’s fault-injection operations using utilities in

the driver hardening test harness. These utilities are used to run a specific workload, log the

accesses made by the device driver while the workload is run, generate specifications on

how to corrupt the driver’s accesses to its hardware and generate test scripts that re-run the

workload while injecting faults that corrupt specific device driver accesses.

Fault-remediation relationship. Hardened device drivers are required to respond imme-

diately to detected errors by attempting recovery, retrying an I/O transaction, attempting

fail-over, reporting the error to the calling application/stack or panicking if the error cannot



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 178

be constrained in any other way. Detected errors are communicated to the Fault Manager

as an ereport – a structured event defined by the FMA event protocol specification [136].

The event protocol specifies a common set of data fields that must be used to describe

error and fault events, and a list of suspected faults. ereports may be used to indicate a

number of events including, but not limited to, reporting that a device has: entered an invalid

state, self-corrected an internal error, encountered an uncorrectable internal error, detected a

stalled data transfer, detected an unresponsive device or detected that a device has raised too

many consecutive invalid interrupts.

In addition to detecting and reporting errors, hardened device drivers must indicate whether

or not an error has impacted the services provided by a device. Service impacts are reported

as one of:

1. Service lost – service provided by the device is unavailable.

2. Service degraded – driver can provide a partial or degraded level of service.

3. Service unaffected – an error was detected but the services provided by the device are

unaffected.

4. Service restored – all the device’s services have been restored.

Micro-measurements. For micro-measurements we collect metrics on: driver recovery

times, driver recovery success and the frequency of service losses or degradation.

Macro-measurements. For macro-measurements and scoring we use the model shown in

Figure 5.20 to quantify the following facets of reliability, availability and serviceability:

• Reliability – frequency of service losses that escalate to the driver being marked as

unresponsive, frequency of partial service restorations (degradation of service).

• Availability – basic steady-state availability, tolerance availability.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 179

Figure 5.20: Hardened device driver RAS model

• Serviceability – mean time to system restoration.

The model consists of six states and ten parameters:

• S 0 – driver/device working normally.

• S 1 – service loss due to stuck interrupts.

• S 2 – service loss due to corrupted PIO operations.

• S 3 – driver/device status reported as unresponsive.

• S 4 – service recovery not reported after service loss due to corrupted PIO operations.

• S 5 – service reported as degraded.

• λ f ailure – forced rate of device driver failures.

• pbadint limit – proportion of failures that result in stuck interrupts.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 180

• psvc loss – proportion of corrupted PIO operations that lead to service loss.

• µbadint limit – mean time for recovery from stuck interrupts.

• µsvc lost – mean time to recover from service losses due to corrupted PIO operations.

• µreset – mean time until a response is received from the driver/device in lieu of a

service recovery report.

• µno response – mean time to report restoration of services after driver/device marked as

unresponsive.

• µdegraded – mean time to report return to normal operation after service degradation.

• psvc lost f allthru – proportion of service losses that lead to the driver/device being marked

as unresponsive.

• pno response f allthru – proportion of unresponsive driver events that are partially restored

to degraded level of service.

Workload and metric collectors. Fault-injection activities, device driver diagnosis, de-

vice driver service impact reports, and driver recovery actions are timestamped and stored in

the fault-management logs – accessible via the fmdump utility. We use data recorded in this

log to estimate parameters used in our scoring model.

5.6.2 Evaluating Hardened Network Device Drivers on OpenSolaris

Our test platform uses a Sun Ultra40 Workstation configured with 4 GB RAM, 6 GB swap,

1 AMD Opteron Dual Core Processor and a 500 GB harddisk running OpenSolaris. The

Ultra 40 Workstation is equipped with three network interface cards (NICs), two on board

and one on an PCI Express (PCI-E) expansion card. The two onboard NICs are managed

by the unhardened nVidia 1Gb Ethernet v1.15 device driver (nge), while the PCI-E NIC



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 181

uses the hardened Broadcom Gigabit Ethernet v0.57 device driver (bge). One nge interface

and the bge interface are assigned static IP addresses while the remaining nge interface is

un-used.

We configure bofi to target the FMA-aware/hardened bge device driver. For the workload

we use an instance of the TPC-W web-application, running on MySQL 5.0.27, Resin

3.0.22 and Sun Microsystems v1.5 Hotspot Java Virtual Machine. The database server and

web/application server components of the TPC-W web-application stack receive requests

from 20 Remote Browser Emulator (RBE) clients using the Shopping Mix as their web-

interaction strategy. The MySQL database server and Resin web/application server are

bound to the bge interface, while RBE clients submit requests using the available nge and

bge interfaces.

Accesses to/from the bge interface are logged during the execution of a 23 minute TPC-W

run and used to create fault-injection test-scripts for the bge device driver. The fault-injection

test-scripts re-run the TPC-W workload multiple times injecting one or more faults during

each run. Between runs the database server and web/application server are restarted.

Over the course of 39 fault-injection runs (15 hours, 23 minutes) the following fault/failure

data was retrieved from the fault-management logs: a total of 100 faults are injected, 83

of which result in corrupted PIO operations, 1 stuck interrupt and 16 unresponsive driver

events 10.

67 of the 83 corrupted PIOs led to service loss, the stuck interrupt failure led to service

loss and the 16 unresponsive driver/device events result in periodic, but short lived, service

interruptions – a total of 84 faults/failures during 923 minutes (λ f ailure) leading to service

loss or interruptions with 79.76% attributed to corrupted PIO operations (psvc loss), 1.19%

attributed to stuck interrupts (pbadint limit) and 19.05% attributed to unresponsive driver/device

events. Of the 67 service lost events due to corrupted PIO operations, recovery was re-
10The failure mix was a consequence of the workload being run and the accesses that occur during the

workload.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 182

ported for 55 of them (psvc restored = 82.09%), 1 resulted in an unresponsive driver/device

(psvc lost f allthru = 1.49%) and there were 11 unreported recoveries11. µreset was set to 556.9

msecs for the unreported recoveries based on the inter-fault injection times during runs

where this behavior was observed.

Of the 16 unresponsive driver/device events, 15 were reported as restored while 1 lead to

degradation before complete service restoration was reported (pno response f allthru = 6.25%).

Recovery from service loss due to stuck interrupts (µbadint limit) was reported as 1085.2 msecs,

recovery from service loss due to corrupted PIO operations (µsvc lost) was 576.9 msecs and

recovery from degraded operations (µdegraded) was 173.5 msecs.

Using these parameter values in our scoring model (Figure 5.20 we obtain the steady-state

probabilities shown in Table 5.11, which we use to calculate the reliability, availability

and serviceability metrics shown in Table 5.12. From the steady-sate probabilities of the

model we estimate that the bge device driver experiences 1.6 service losses that escalate

to the driver being marked as non-responsive (FS 2→S 3) per day, 17.1 un-reported device

driver recovery events (FS 2→S 4) per day, and 1.7 service losses that lead to partial/degraded

service restorations (FS 3→S 5) per day. We also estimate that the driver spends 99.92%

of its time servicing requests, UP ∼1438 minutes per day and DOWN ∼2 minutes per

day considering both steady-state availability (π0 = 99.9169%) and tolerance availability

(π0+π5 = 99.9173%). Mean time to service restoration for the bge device driver is estimated

at ∼550 msecs.
11Situations where service impacts were reported but no log entry for service restoration was reported even

though the workload continued to run. The bge device driver subsequently responded to new fault-injections
and report service impacts with no further follow-up.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 183

π0 0.99916919
π1 0.00001957
π2 0.00069735
π3 0.00000003
π4 0.00011054
π5 0.00000333

Table 5.11: Hardened bge device driver steady-state probabilities

Measure Metrics Results

Reliability

Service loss to unresponsive driver fall-throughs (FS 2→S 3) 1.6 a day
Service loss to unreported recovery fall-throughs (FS 2→S 4) 17.1 a day
No response to degraded-service fall-throughs (FS 3→S 5) 1.7 a day

Availability
Basic steady-state availability (UPadmin = {S 0}) 0.999169
Tolerance availability (UPclient = {S 0, S 5}) 0.999173

Serviceability
Mean-time to system restoration (UPadmin = {S 0}) 548.2 ms
Mean-time to system restoration(UPclient = {S 0, S 5}) 546.0 ms

Table 5.12: Summary of hardened bge driver RAS model analysis results

5.7 Related Work

Our approach to benchmarking reliability, availability and serviceability combines run-

time fault-injection tools with the models of failure scenarios used to describe and score

fault-injection experiments. The models used for scoring can be used to capture different

perspectives on the failure and recovery behavior of systems.

In [77], [25] and [32] the authors discuss the importance of fault-injection tools in evaluat-

ing the reliability of systems and compare the tradeoffs between different approaches for

hardware fault-injection and software-implemented fault-injection (SWIFI). Two classes

of hardware fault-injection (injection with contact, e.g., pin/chip-level fault injection and

injection without contact, e.g., exposure to heavy ion radiation) and two classes of soft-

ware fault-injection (compile-time fault-injection and runtime fault-injection) are presented.

Compared to hardware fault-injection, software-implemented fault-injection has a number

of benefits including: the ability to emulate a variety of faults/failures, lower cost since dedi-

cated hardware is not needed, convenience, portability to other platforms and extensibility to



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 184

include new classes of faults. In our 7U evaluations we use SWIFI tools capable of runtime

fault-injection to allow us the flexibility to interact with different target systems without the

need for re-compilation and/or re-linking.

[96] presents a framework for benchmarking the reliability, availability and serviceability

characteristics of systems and discusses three classes of benchmarks: measurement-based,

model-based and hybrid – combinations of measurements and modeling where models guide

experiments and/or are validated/refined by experiments. Our 7U evaluation method is an

example of the hybrid benchmark approach. In our 7U benchmark RAS models are used to

guide fault-injection experiments; however, we expect these models to evolve over time as

different failure scenarios are considered and/or more insights about the failure and recovery

behavior of the system under test are obtained from fault-injection experiments.

[89], [16], [87], [117] and [17] are examples of measurement-based evaluations of reliability

and availability.

[89] proposes the R-Cubed (R3) – Rate, Robustness, and Recovery – framework for avail-

ability benchmarking that evaluates availability as a function of three attributes: the rate

of failures and maintenance events, robustness and recovery. Whereas our 7U benchmark

considers the failure-rates, failure handling and recovery it does not consider maintenance-

induced failures/faults. However, analytical models can be constructed to reason about

maintenance-induced failures/faults, their impacts and their resolutions. [16] conducts a

measurement-based study of availability and maintainability benchmarks using software

RAID systems. In evaluating availability, the authors emphasize 1) capturing the perspective

of the end-user and 2) the need for availability metrics that capture the spectrum of avail-

ability, i.e., taking into consideration degraded modes of operation as well as the normal

mode of operation. In our 7U benchmark we demonstrate how the models used for scoring

can quantify different facets of availability, e.g., basic steady-state availability, tolerance

availability and capacity-oriented availability of a system.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 185

[87] describes the DBench-OLTP dependability benchmark. DBench-OLTP is a measurement-

based dependability benchmark for online transaction processing systems (database systems).

The fault-model used in DBench emulates operator faults, e.g., deleting a database table,

deleting a user schema, abrupt transaction system shutdown, etc. The DBench benchmark is

composed of three sets of measures – baseline performance measures, performance measures

in the presence of the faultload and dependability measures. Baseline performance mea-

sures are reported in terms of transactions per minute (tpmC) and price per tpmC ($/tpmC).

Performance measures in the presence of the faultload are reported in terms of number of

transactions executed per minute in the presence of faults and the price per transaction in

the presence of faults. Finally, the dependability measures reported are: the number of data

errors detected by consistency tests, availability from the point of view of the system under

test (SUT) and the availability from the client’s point of view. We differ from this work in

our choice faults, choice of metrics and our use of models for describing failures and scoring

recovery activities by computing multiple facets of reliability, availability and serviceability.

[117] describes the System Recovery Benchmark. The authors propose measuring system

recovery on a non-clustered standalone system. The focus of the work is on detailed

measurements of system startup, restart and recovery events. Our work is complementary

to this, relying on measuring startup, restart and recovery times at varying granularity.

We consider these measurements at node-granularity as well as application/component

granularity. Further, we relate these micro-measurements to the impact on the high-level

objectives guiding the system’s recovery decisions.

[17] describes work towards a self-healing benchmark. The authors identify a number of

challenges to benchmarking self-healing capabilities including: quantifying healing effec-

tiveness (identifying different metrics to quantify the impact of disturbances), accounting for

incomplete healing and accounting for healing specific resources (spare disks, hot standbys,

etc.). In our 7U benchmark RAS models based on Markov Chains and Markov reward



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 186

networks can be used to capture different facets of reliability, availability and serviceability,

model imperfect recovery/repair scenarios and consider spare/redundant resources. Further,

our use of models allows us to make a connection between the mechanisms used by a system

to accomplish healing and their relation to the high-level system goals, dictated by SLAs

and policies, governing the system’s operation. Finally, we can also use models to analyze

the effects of individual or combined remediation mechanisms on the overall efficacy of the

system’s healing capabilities.

[168] makes a case for application-specific benchmarks; the application of our 7U approach

to web-application stacks and their components is an example of an application-specific

benchmark. Further, the use of tailored models for scoring allow us to focus on specific

aspects of the system under test being evaluated.

Our work is complementary to the work done on robustness benchmarking [43] and fault-

tolerant benchmarking [191]. However, we focus less on the robustness of individual

component interfaces for our fault-injection and more on system recovery in the presence of

component-level faults, i.e., resource leaks, delays or hangs in components and component-

removals.

[47] is an example of a model-based approach to RAS evaluation. In this paper the authors

build a RAS model to explore the expected impact of Memory Page Retirement (MPR)

on hardware faults associated with failing memory modules on systems running Solaris

10. MPR removes a physical page of memory from use by the system in response to

error correction code (ECC) errors associated with that page. Using their models the

authors investigate the expected impact of MPR on yearly downtime, the number of service

interruptions and the number of servicing visits due to hardware permanent faults. Unlike

our experiments, which focus on software and rely on fault injection experiments to collect

data, the authors focus on hardware failures and use field data from deployed low-end and

mid-range server systems to build and evaluate their models.



CHAPTER 5. THE 7U-EVALUATION BENCHMARK 187

5.8 Summary

In this chapter we discussed and presented a model-based and measurement-based approach

to evaluating the reliability, availability and serviceability properties of web-application

stacks and their components. We use runtime fault-injection tools to insert faults/induce

failures into three target systems (§5.4, §5.5 and §5.6), developed analytical models for

describing the failure scenarios and scoring system responses, and demonstrated the mea-

sures that can be computed to evaluate or compare systems based on their responses (or lack

thereof) to different failure scenarios.

Using RAS models we identify different facets of reliability, availability and serviceability,

which can be quantified via fault-injection experiments, and link the details of remediation

mechanisms (recovery time, recovery success rates, etc.) to high-level RAS-metrics that

govern the system’s operation.



Chapter 6

Contributions, Future Work and

Conclusion

6.1 Thesis Contributions

The contributions of this thesis include the following:

1. A generalized approach to effecting runtime adaptations in applications hosted in

managed and unmanaged execution environments. In developing our runtime adapta-

tion techniques, we identify facilities in contemporary execution environments (e.g.,

Microsoft’s Common Language Runtime, Sun Microsystems’ Java Virtual Machine

and the Linux operating system on the Intel x86 processor) that can be used to ef-

fect dynamic modifications to the applications they host. The runtime adaptation

techniques we develop facilitate in-situ and in-vivo interactions with systems and are

transparent to both the application being modified and the execution environment.

2. A suite of runtime fault-injection tools, Kheiron, that targets multiple execution

environments and applications written in multiple languages. Kheiron uses our

188



CHAPTER 6. CONTRIBUTIONS, FUTURE WORK AND CONCLUSION 189

runtime adaptation techniques to interact with application elements (data-structures,

functions/methods, data-types, classes, type-instances/object-instances, etc.).

3. Identification of analytical tools – Markov Chains, Markov Reward Networks, Feed-

back Control – and techniques that can be used to reason quantitatively about different

facets of the reliability, availability and serviceability properties of systems. In our

work towards an RAS benchmark we identified analytical tools (models) that can

describe and score the failure scenarios used to evaluate systems. We discuss the RAS

measures and metrics that can be computed using these models and present examples

based on real systems to illustrate their use.

4. A model-based and measurement-based approach to evaluating the RAS characteris-

tics of systems, which combines runtime fault-injection with the analytical models.

We describe and demonstrate how these evaluations are conducted and scored, identify

the data sources used to estimate parameters of analytical/scoring models, identify run-

time fault-injection tools (some developed by us, and some developed by third-parties)

that can be used in the system-evaluations, and discuss the results.

6.2 Research Accomplishments

In addition to the contributions listed above, the following practical accomplishments have

already been completed to date:

• Published papers, including [44], [196], [62], [64], [63], [65], [66] and an invited talk

[67].

• Equipment donations from Sun Microsystems and StackSafe Inc. supporting our

RAS-benchmarking work.



CHAPTER 6. CONTRIBUTIONS, FUTURE WORK AND CONCLUSION 190

6.3 Practical Concerns

There are a number of practical concerns that need to be addressed when conducting a 7U

evaluation:

Sourcing or creating RAS models. RAS models are used to describe the failure scenarios

used in the evaluations and to score the system’s responses. However, the issue of who

creates these models is an important one. System vendors have an important role to play in

this process. Whereas vendors may have detailed knowledge about (parts of) the system

and are well-placed to discuss failure modes and scoring responses, end users rely on

these systems for their business’ day-to-day and/or mission-critical activities and also have

opinions on whether the system has failed. Discrepancies between what vendors consider

failures and what clients/end-users consider failures can, and have, occurred [163]. As a

result, considering both perspectives in the evaluation process is key to increasing confidence

in the systems being developed and deployed. We expect that more than one RAS model

will be used in the evaluation of a system and over time, models contributed by both vendors

and end-users (customers, researchers, etc. ) will result in a set of standardized failure

scenarios and scoring criteria as has occurred with performance benchmarks (e.g, SPEC,

NIST, TPC) [177, 140, 190]. Vendors may use RAS models to conduct their own internal

evaluations, compare against other systems and/or demonstrate compliance with agreed

upon standards, while end-users can use these RAS models to verify/validate vendor claims.

Incremental evaluations. During a system’s lifetime the fault-model used in its RAS

evaluations will be modified and/or expanded. New faults may be added to augment the

existing faults in the model and/or RAS-enhancing mechanisms may be added or improved

in the system. These modifications to the fault-model and/or system may require new or

refined RAS models to describe and score the failure scenarios used in the RAS evaluations.



CHAPTER 6. CONTRIBUTIONS, FUTURE WORK AND CONCLUSION 191

RAS evaluations may employ one or more failure scenarios; depending on the changes made

to the fault-model or the system some (or in the worst case all) of the failure scenarios may

have to be re-run to obtain updated information on the system’s RAS capabilities under the

selected failure scenarios. The number of failure-scenarios re-run may be influenced by the

importance placed on each failure scenario by the evaluator.

System accessibility to collect model parameters. Collecting the data used to estimate

parameters in the RAS models may necessitate observation points/hooks in systems. Exam-

ple observation points include: log files, console output, and compiled-in or dynamically

added instrumentation points. Logging APIs/toolkits, e.g., log4j, log4cxx and log4net [52]

may be used by the original system developers to produce data about the system’s operation,

data may be collected from the execution environments where the system runs or dynamic

instrumentation tools like DTrace [24], Dyninst [18] and Kheiron [63, 62] may be employed

to collect data from the system and/or execution environment. These data-collection strate-

gies are applicable to both closed-source and open-source software systems. In the case of

closed-source systems, third-party evaluators may rely on existing instrumentation points

or employ dynamic instrumentation tools, whereas for open-source systems third-party

evaluators can augment the system with compiled-in instrumentation and/or use dynamic

instrumentation tools. Whereas it is unlikely that vendors and end-users will agree on every

observation point, access to the source and/or runtime instrumentation tools allow parties

the flexibility to obtain the data they are interested in from the system being studied.

Managing the costs of running the benchmark. Running a 7U evaluation may incur a

number of costs, which may be expressed in terms of time, money and/or effort concerned

with: setting up or configuring the infrastructure used in the evaluations, e.g., obtaining

physical and/or virtual machines to create evaluation testbeds, installing and configuring

target systems and their dependencies, identifying (obtaining) or developing fault-injection



CHAPTER 6. CONTRIBUTIONS, FUTURE WORK AND CONCLUSION 192

tools and workload generators. Virtualization technologies, e.g., VMWare [83], Xen [183],

Kernel-based Virtual Machines [80], Solaris Zones [155], etc.) can be used to create

evaluation testbeds, specialized testing/staging environments, e.g., StackSafe’s Test Center

[81]1, VMWare ESX [85], etc., can be used to clone existing physical or virtual machines

and import them into the testbed. Fault-injection tools and workload generators may need

to be developed; some may be provided by vendors, e.g., bofi [135] while others may be

open-source, e.g., TPC-W [119].

Limitations. With respect to evaluating the RAS capabilities of a system, difficulties in

coercing the system into specific failure modes and reproducing specific failure scenarios or

classes of failures represent the major limitation of our RAS-benchmarking approach. Our

evaluation approach is based on a combination of modeling and measurement, where both

elements rely on re-creating specific failures in systems. If the failures under consideration

are reproducible, e.g., by using specific fault-injection tools, generating specific workloads

or capturing and replaying requests/events, then they can more readily be packaged into

scenarios and distributed with an RAS benchmarking suite. However, failures that are

difficult to reproduce or induce are hard to include in the set of failure-scenarios distributed

in such a suite. The distinction between reproducible failures and hard-to-reproduce failures

is analogous to the distinction between repeatable bugs (Bohrbugs) and non-repeatable bugs

(Heisenbugs) [60]2.

6.4 Future Work

The work in this thesis has been focused on developing an approach to benchmarking

reliability, availability and serviceability. As a result there are a number of interesting

1See §A for details on our experience using the Test Center.
2We do not claim that the failures to be studied as part of an RAS benchmark are necessarily manifestations

of software defects. This perspective on failures is illustrated in our definition of failures presented in §3.1.



CHAPTER 6. CONTRIBUTIONS, FUTURE WORK AND CONCLUSION 193

possibilities for future work.

6.4.1 Immediate Future Applications

Near-term research directions based off the work done in this thesis include:

Selecting fault-injection targets. Improving the selection of fault-injection targets in in-

ternet applications and cost-estimates of failure impacts using path-based request-tracing

[30]. In our current work injecting failures into web-application stacks and their compo-

nents, we considered each failure/failed request to have equal consequences. However, in an

E-commerce web-application, like the TPC-W online book store, some failed requests are

more costly than others. For example, failed operations on shopping carts or failed payment

processing activities can be more costly than failed item-search operations, and as a result

evaluators may want to focus on failures that affect “high-value” requests and re-produce

these failures in benchmark runs. To classify/identify high-value requests we need to trace

client-interactions from the initial contact with the web-application through to a specific

target operation, e.g., client-interactions that lead to a payment submission.

Employing a path-based tracing toolkit like X-Trace [51] is one possible option. X-Trace

is a network diagnostic tool designed to provide users and network operators with better

visibility into Internet applications. It annotates network requests with metadata that can

be used to reconstruct requests (including requests that make use of multiple network

layers). Request-reconstruction is facilitated by X-Trace identifiers used to record the path

requests take through a network. Currently components are X-Trace-enabled via source-code

augmentations (Java and C++ applications are supported [154]); however, we envision using

the runtime adaptation techniques developed in this thesis to dynamically inject X-Trace

support into applications/components.



CHAPTER 6. CONTRIBUTIONS, FUTURE WORK AND CONCLUSION 194

Evaluating other web-application deployments. Applying our RAS evaluation approach

to more sophisticated web-applications, which mirror enterprise web-application deploy-

ments, e.g., J2EE web-applications or .NET web-applications using component services.

Component services include: transaction management (Java Transaction API/JTA, COM+

transactions), messaging (Java Message Service/JMS, COM+ queued components), object

pooling, remoting services (Java Remote Method Invocation/RMI, .NET Remoting) and

directory services (Java Naming and Directory Interface/JNDI, COM+ catalog). These ser-

vices represent key elements that are intended to improve the web-application’s performance

and reliability.

The TPC-W web-application used in our evaluation experiments does not use any component

services, however, applying our evaluation approach to the SPECjAppServer2004 [176]

would allow us to interact with a J2EE web-application. SPECjAppServer is a multi-

tier benchmark for measuring the performance of J2EE application servers that exercises

all major J2EE technologies implemented by compliant application servers including:

transaction management, messaging services and object pooling.

Workload generator tools and strategies. Using different workload generator tools and

strategies to study system behavior. Workload generators fall into two major classes: those

that use a closed system model and those that use an open system model. In a closed

system model, new job arrivals are only triggered by job completions (followed by think

time), whereas in an open model new jobs arrive independently of job-completions [164].

The TPC-W workload generator (RBE client emulator) used in our evaluation experiments

follows a closed system model. [164] shows that closed and open system models yield

significantly different results when both models are run with the same load and service

demands. Further, they posit that many applications exhibit behavior that is “in-between”

the extremes of closed and open system models – described as partly open system models.

An important part of RAS evaluations involves quantifying the impacts of failures and



CHAPTER 6. CONTRIBUTIONS, FUTURE WORK AND CONCLUSION 195

the impacts of remediations under typical operating conditions. As a result using flexible

workload generators will allow evaluators to create environments that are closer to normal

operating conditions, which will facilitate a better understanding of typical system behavior

and the behavior of the system when subjected to faults/failures. Further, whereas workloads

may be viewed as activities conducted while faults are injected, they may also be crafted to

induce failures in systems. Advances in problem diagnoses, e.g., use of statistical machine

learning [35, 28, 29] may identify a vector of attributes that reasonably predict the failure of

a system (e.g., specific fluctuations of system resources). Designing fault-injection tools that

are capable of re-creating all of necessary conditions (reproducing the failure vector) may

be challenging; however, specific workloads or workload variations, e.g., targeted surges,

may be used to reproduce the necessary conditions for system failure.

Evaluating classes of systems other than web-applications. Modeling and injecting

failures in other classes of systems besides web-applications, e.g., multimedia stream-

ing/delivery platforms and studying their responses (or lack thereof). Recent work [38]

looks at studying the effects of failures and repairs in a peer-to-peer video delivery network

(GolP2P) using Markov chains. Failures are described as the loss of peer-nodes transmitting

video (and the subsequent depletion of play buffers), while repairs/reconfigurations occur

when receiving nodes identify suitable replacements for lost transmitter-nodes before user

experience suffers. In [38] the authors devise quality of experience metrics (QoE) for the

video and audio streams received, which are a function of the loss rates, delays, reliability,

availability, etc. of transmitting peers.

Flexible work generation strategies and tools, models of failure scenarios, fault-injection/failure-

inducing tools and RAS metrics can be used to evaluate the RAS properties of stream-

ing/delivery platforms.



CHAPTER 6. CONTRIBUTIONS, FUTURE WORK AND CONCLUSION 196

6.4.2 Future Directions

Longer-term research directions based off the work done in this thesis include:

Programming language and execution environment support for runtime modification

of applications. As discussed in this thesis a number of contemporary execution environ-

ments provide facilities that can be used to dynamically modify running systems, however,

there are few guarantees of the safety of runtime changes. The ability to manipulate pro-

grams in execution is a powerful yet risky facility. However, stakeholders will be wary

of using runtime adaptation facilities in production systems without stronger guarantees

on their safety. The form and the degree to which we can express and codify such guar-

antees is still an open question, but the increasing sophistication of system-construction

tools (high-level languages, modeling tools, integrated development environments/IDEs3,

etc.) and application execution environments (managed execution environments, e.g., the

JVM and CLR and unmanaged execution environments, e.g., operating systems, processors,

Xen, VMWare, hypervisors etc.) may provide insights into additional support for realizing

adaptive systems and the development of runtime adaptation toolkits.

Developing runtime fault-injection/failure-inducing tools for systems. Injecting faults

and inducing failures in systems are important activities in evaluating system reliability,

availability and serviceability, and the development of fault-injection tools and fault-load

generators is currently an open area of research. Tools that inject faults and induce failures

in systems can be used to study how systems fail and benchmark system responses. Sys-

tem administrators/operators can use these tools to develop pre-canned failure-scenarios

(workloads and fault-loads) to benchmark their systems. Further, they can also be used to

train system operators, familiarizing them with system failure-modes and/or the (manual or

3Contemporary development environments already make use of runtime code updates during debugging,
e.g., Hot Code Replacement (HCR) in Eclipse [54] and Edit-and-Continue in Visual Studio .Net 2005 [36].



CHAPTER 6. CONTRIBUTIONS, FUTURE WORK AND CONCLUSION 197

automated) mechanisms available to mitigate or address these failures.

Familiarizing operators with system failure-modes and the mechanisms available to address

failures is an important tool in combating automation irony [153] and has implications for the

development of self-managing/autonomous systems. As systems become more autonomous,

they assume more responsibility over their management activities – configuration, healing,

optimization and protection. Whereas this allows operators to focus on other tasks, reduced

contact with the (autonomous) system limits the amount of hands-on control experience

they get and inhibits their ability to construct mental models and rules of system operation

used for resolving problems. In essence, system automation may potentially make system

administration harder, e.g., resulting in cases where automation takes care of the majority of

management tasks, leaving administrators to deal only with the exceptional states that occur

when automation fails and/or complex management tasks. Restoring system operation from

these exceptional states may require detailed knowledge of the system’s operation and the

operation of the automated mechanisms the system employed unsuccessfully.

As a result, the development of these runtime fault-injection tools can be used to increase

operator-confidence in the system’s failure handling mechanisms while allowing them an

opportunity to get hands on control experience with the system in different failure modes.

Facilities for familiarizing operators with the system’s failure-modes and failure handling

capabilities can be enhanced by mechanisms that provide a degree of transparency into the

activities of the system, e.g., providing descriptions and/or justifications for system (failure

and recovery) actions [180].

Creating specialized testing environments for conducting RAS evaluations. Whereas

we can create tools that are able to interact with systems “in-situ” and “in-vivo” to make

modifications and/or inject faults, enterprises are likely to be wary of allowing runtime

fault-injection experiments on production systems (stronger safety guarantees for runtime

modifications and high confidence in remediation mechanisms may reduce, but not eliminate



CHAPTER 6. CONTRIBUTIONS, FUTURE WORK AND CONCLUSION 198

their concerns). As a result, RAS evaluations may occur in testing/staging environments.

Testing/staging environments require infrastructure and management, e.g., sourcing, in-

stalling, configuring and maintaining multiple machines (including keeping production

systems and staging systems in sync). The use of virtualization technologies may reduce the

physical hardware resources needed; however, they do not eliminate the management over-

head concerned with installing, configuring and updating these copies of production systems.

Tools that support the cloning/import of production systems into virtualized containers,

where they can be organized into application stacks, may reduce some of the management

overheads concerned with setting up the infrastructure needed to perform RAS evaluations.

The inclusion of RAS benchmarking tools in these virtualized staging environments may be

a reasonable compromise between the need to evaluate production systems and the desire to

evaluate the reliability, availability and serviceability capabilities of systems. Examples of

such virtualized staging environments include the StackSafe Test Center [81] and VMWare’s

ESX [85]4.

Inducing failures via security vulnerabilities, e.g., system corruptions, crashes, denial

of service (DoS) attacks, worm outbreaks/ propagation, etc. Tools that exploit security

vulnerabilities in controlled ways, e.g., those provided by the Open Web Application Security

Project (OWASP) [55], may be used in RAS evaluations of systems where the fault-model

of interest is focused on specific attack vectors. The objectives of the RAS evaluations

may include: threat-modeling, penetration testing, understanding how applications and

systems are affected by exploiting specific security vulnerabilities, designing or validating

threat/attack responses and/or hardening systems against specific attack vectors.

4Using VMWare Converter [84] to convert physical machines into virtual machines.



CHAPTER 6. CONTRIBUTIONS, FUTURE WORK AND CONCLUSION 199

6.5 Conclusion

In this thesis, we develop a measurement-based and model-based evaluation methodology for

evaluating the reliability, availability and serviceability properties of systems. In developing

our RAS evaluation methodology we:

• Develop a generalized approach to effecting runtime adaptations in applications hosted

in managed and unmanaged execution environments.

• Implement runtime fault-injection tools capable of in-situ and in-vivo interactions

with systems.

• Identify analytical tools that can be used to quantify multiple facets of reliability,

availability and serviceability. These analytical tools are used to construct RAS

models, which describe failure scenarios and score system responses to these failure

scenarios.

• Combine runtime fault-injection experiments with RAS models to demonstrate the

evaluation process.

As the future work above demonstrates, this thesis enables the beginning of new research

areas, especially in the areas of realizing systems capable of runtime adaptations and

improving fault-injection tools and environments used for RAS evaluations. Further, this

thesis presents a framework for developing RAS benchmarks for systems that combines

practical tools with rigorous analytical techniques. Ultimately, we hope the work done here

bridges the gap between practical and analytical approaches for studying and understanding

the failure behavior of systems and reasoning about mechanisms that improve the reliability,

availability and serviceability of current and next-generation (self-managing) systems.



Chapter 7

Bibliography

[1] A comprehensive model for software rejuvenation. IEEE Trans. Dependable Secur. Comput., 2(2):124–
137, 2005. Member-Kalyanaraman Vaidyanathan and Fellow-Kishor S. Trivedi.

[2] A. Goyal and S.S. Lavenberg and K.S. Trivedi. Probabilistic modeling of computer system availability.
In Annals of Operation Research, pages 285–306, 1987.

[3] Aaron Brown et al. Benchmarking Autonomic Capabilities: Promises and Pitfalls. In 1st International
Conference on Autonomic Computing, 2004.

[4] MySQL AB. Mysql open source database. http://www.mysql.com.

[5] Akshay Luther et al. Alchemi: A .net-based enterprise grid system and framework, user guide for
alchemi 1.0, july 2005. http://www.alchemi.net/files/1.0.beta/docs/AlchemiManualv.1.0.htm.

[6] Akshay Luther et al. Alchemi: A .NET-Based Enterprise Grid Computing System. In 6th International
Conference on Internet Computing, June 2005.

[7] Algirdas Avizienis Fellow IEEE. The N-Version Approach to Fault-Tolerant Software. In Proceedings
of IEEE Transactions on Software Engineering Vol. SE-11 No. 12, December 1985.

[8] Jean Arlat, Alain Costes, Yves Crouzet, Jean-Claude Laprie, and David Powell. Fault injection and
dependability evaluation of fault-tolerant systems. IEEE Transactions on Computers, 42(8):913–923,
1993.

[9] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive Optimization in the Jalapeno JVM.
In Object Oriented Programming Systems, Languages and Applications, 2000.

[10] Alberto Avritzer and Elaine J. Weyuker. Monitoring smoothly degrading systems for increased
dependability. Empirical Softw. Engg., 2(1):59–77, 1997.

[11] Robert Balzer and Neil M. Goldman. Mediating connectors: A non-bypassable process wrapping
technology. In DARPA Information Survivability Conference and Exposition Volume 2, 2002.

[12] Guruduth Banavar, Marc Kaplan, Kelly Shaw, Robert E. Strom, Daniel C. Sturman, and Wei Tao.
Information flow based event distribution middleware. In Middleware Workshop at the International
Conference on Distributed Computing Systems (ICDCS), 1999.

[13] Yujuan Bao, Xiaobai Sun, and Kishor S. Trivedi. A workload-based analysis of software aging, and
rejuvenation. IEEE Transactions on Reliability, 54(3):541–548, 2005.

[14] J.B. Bowles and J.G. Dobbins. High-availability transaction processing: practical experience in
availability modeling and analysis. Reliability and Maintainability Symposium, 1998. Proceedings.,
Annual, pages 268–273, Jan 1998.

200



CHAPTER 7. BIBLIOGRAPHY 201

[15] T. Boyd and P. Dasgupta. Preemptive module replacement using the virtualizaing operating system
realizing multi-dimensional software adaptation. citeseer.ist.psu.edu/boyd02preemptive.html, 2002.

[16] Aaron Brown. Towards availability and maintainability benchmarks: A case study of software raid
systems. Masters dissertation, University of California, Berkeley, 2001. UCB//CSD011132.

[17] Aaron Brown and Charlie Redlin. Measuring the Effectiveness of Self-Healing Autonomic Systems. In
2nd International Conference on Autonomic Computing, 2005.

[18] Bryan Buck and Jeffrey K. Hollingsworth. An API for Runtime Code Patching. The International
Journal of High Performance Computing Applications, 14(4):317–329, Winter 2000.

[19] C. Soules et. al. System Support for Online Reconfiguration. In USENIX Annual Technical Conference.,
2003.

[20] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot–a technique for cheap
recovery. citeseer.ist.psu.edu/candea04microreboot.html, 2004.

[21] George Candea, James Cutler, and Armando Fox. Improving Availability with Recursive Micro-Reboots:
A Soft-State Case Study. In Dependable systems and networks - performance and dependability
symposium, 2002.

[22] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando Fox. A microre-
bootable system – design, implementation, and evaluation. CoRR, cs.OS/0406005, 2004.

[23] George Candea, Emre Kiciman, Shinichi Kawamoto, and Armando Fox. Autonomous recovery in
componentized internet applications. Cluster Computing, 9(2):175–190, 2006.

[24] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic Instrumentation of Production Systems.
In USENIX Annual Technical Conference, pages 15–28, 2004.

[25] J.V. Carreira, D. Costa, and J.G. Silva. Fault injection spot-checks computer system dependability.
Spectrum, IEEE, 36(8):50–55, Aug 1999.

[26] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems, 19(3):332–383, 2001.

[27] K.J. Cassidy, K.C. Gross, and A. Malekpour. Advanced pattern recognition for detection of complex
software aging phenomena in online transaction processing servers. Dependable Systems and Networks,
2002. DSN 2002. Proceedings. International Conference on, pages 478–482, 2002.

[28] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem determination in large,
dynamic, internet services. citeseer.ist.psu.edu/chen02pinpoint.html, 2002.

[29] Mike Chen, Alice X. Zheng, Jim Lloyd, Michael I. Jordan, and Eric A. Brewer. Failure diagnosis using
decision trees. In Proceedings of the 1st International Conference on Autonomic Computing 17-19 May
2004 New York NY USA, 2004.

[30] Mike Y. Chen, Anthony Accardi, Emre K?c?man, Jim Lloyd, Dave Patterson, O Fox, and Eric Brewer.
Path-based failure and evolution management. In In NSDI, pages 309–322. USENIX Association, 2004.

[31] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson R. Engler. An empirical study
of operating system errors. In Symposium on Operating Systems Principles, pages 73–88, 2001.

[32] J.A. Clark and D.K. Pradhan. Fault injection: a method for validating computer-system dependability.
Computer, 28(6):47–56, Jun 1995.

[33] Geoff Cohen and Jeff Chase. An Architecture for Safe Bytecode Insertion. Software–Practice and
Experience, 34(7):1–12, 2001.

[34] Geoff Cohen, Jeff Chase, and David Kaminsky. Automatic program transformation with JOIE. In 1998
USENIX Annual Technical Symposium, pages 167–178, 1998.



CHAPTER 7. BIBLIOGRAPHY 202

[35] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jeffrey S. Chase. Correlating
instrumentation data to system states: a building block for automated diagnosis and control. In OSDI’04:
Proceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation,
pages 16–16, Berkeley, CA, USA, 2004. USENIX Association.

[36] Micorsoft Corporation. Using the Edit and Continue Feature in C# 2.0. http://msdn.microsoft.com/en-
us/library/ms379578(VS.80).aspx, 2004.

[37] Diamantino Costa, Tiago Rilho, and Henrique Madeira. Joint evaluation of performance and robustness
of a cots dbms through fault-injection. In DSN ’00: Proceedings of the 2000 International Conference
on Dependable Systems and Networks (formerly FTCS-30 and DCCA-8), pages 251–260, Washington,
DC, USA, 2000. IEEE Computer Society.

[38] Ana Paula Couto da Silva, Pablo Rodriguez-Bocca, and Gerardo Rubino. Coupling qoe with depend-
ability through models with failures. Proceedings of the 8th International Workshop on Performability
Modeling of Computer and Communication Systems, 2007.

[39] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel 2nd Edition. O’Reilly, 2002.

[40] DARPA. Dasada (dynamic assembly for system adaptability, dependability, and assurance) project.
http://www.schafercorp-ballston.com/dasada/index2.html, 2000.

[41] DARPA. Dynamic assembly for system adaptability, dependability, and assurance semi-annual review
november 2000. http://www.schafercorp-ballston.com/dasada/DASADANov00PADw obudget.ppt,
2000.

[42] Edmundo de Souza e Silva and H. Richard Gail. Calculating availability and performability measures
of repairable computer systems using randomization. J. ACM, 36(1):171–193, 1989.

[43] John DeVale. Measuring operating system robustness. Master’s thesis, Carnegie Mellon University.

[44] Yixin Diao, Joseph L. Hellerstein, Sujay Parekh, Rean Griffith, Gail Kaiser, and Dan Phung. Self-
managing systems: A control theory foundation. In Proceedings of 2nd IEEE International Workshop
on Engineering of Autonomic Systems, 2005.

[45] Yixin Diao, Joseph L. Hellerstein, Adam J. Storm, Maheswaran Surendra, Sam Lightstone, Sujay
Parekh, and Christian Garcia-Arellano. Using mimo linear control for load balancing in computing
systems. In Proceedings of the American Control Conference, 2004.

[46] Donal Lafferty et al. Language Independent Aspect-Oriented Programming. In 18th ACM SIGPLAN
conference on Object-Oriented Programming, Systems, Languages and Applications, October 2003.

[47] Dong Tang et al. Assessment of the Effect of Memory Page Retirement on System RAS Against
Hardware Faults. In International Conference on Dependable Systems and Networks, 2006.

[48] Michael Engel and Bernd Freisleben. Supporting Autonomic Computing Functionality via Dynamic
Operating System Kernel Aspects. In 4th International Conference on Aspect-Oriented Software
Development, pages 51–62, 2005.

[49] R.S. Fabry. How to design a system in which modules can be changed on the fly. In Proceedings of
International Conference on Software Engineering, 1976.

[50] P. Folkesson, S. Svensson, and J. Karlsson. A comparison of simulation based and scan chain im-
plemented fault injection. In FTCS ’98: Proceedings of the The Twenty-Eighth Annual International
Symposium on Fault-Tolerant Computing, page 284, Washington, DC, USA, 1998. IEEE Computer
Society.

[51] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. X-trace: A pervasive
network tracing framework. In NSDI. USENIX, 2007.

[52] The Apache Foundation. Welcome to apache logging services. http://logging.apache.org/, 2003.

[53] The Apache Software Foundation. Apache tomcat. http://tomcat.apache.org/.



CHAPTER 7. BIBLIOGRAPHY 203

[54] The Eclipse Foundation. Faq what is hot code replace?
http://wiki.eclipse.org/FAQ What is hot code replace

[55] The OWASP Foundation. The open web application security project (owasp).
http://www.owasp.org/index.php/About OWASP, 2007.

[56] Andreas Frei, Patrick Grawehr, and Gustavo Alonso. A Dynamic AOP-Engine for .NET. Tech Rep.
445, Dept. of Comp Sci. ETH Zurich, 2004.

[57] G. Kiczales et al. An Overview of AspectJ. In European Conference on Object-Object Programming,
June 2001.

[58] Peter W. Gill. Probing for a continual validation prototype. Masters dissertation, Worcester Polytechnic
Institute, 2001. http://www.wpi.edu/Pubs/ETD/Available/etd-0826101-235008/.

[59] Swapna S. Gokhale and Kishor S. Trivedi. Analytical models for architecture-based software reliability
prediction: A unification framework. IEEE Transactions on Reliability, 55(4):578–590, 2006.

[60] Jim Gray. Why do computers stop and what can be done about it? In Symposium on Reliability in
Distributed Software and Database Systems, pages 3–12, 1986.

[61] Gregor Kiczales et. al. Aspect-Oriented Programming. In Proceedings European Conference on
Object-Oriented Programming, volume LNCS 1241. Springer-Verlag, 1997.

[62] Rean Griffith and Gail Kaiser. Manipulating managed execution runtimes to support self-healing
systems. In DEAS ’05: Proceedings of the 2005 workshop on Design and evolution of autonomic
application software, pages 1–7, New York, NY, USA, 2005. ACM Press.

[63] Rean Griffith and Gail Kaiser. A Runtime Adaptation Framework for Native C and Bytecode Applica-
tions. In 3rd International Conference on Autonomic Computing, 2006.

[64] Rean Griffith, Giuseppe Valetto, and Gail Kaiser. Effecting Runtime Reconfiguration in Managed Exe-
cution Environments. In Manish Parishar and Salim Hariri, editors, Autonomic Computing: Concepts,
Infrastructure, and Applications,. CRC, 2006.

[65] Rean Griffith, Ritika Virmani, and Gail Kaiser. RAS-Models: A Building Block for Self-Healing Bench-
marks. In 8th International Workshop on Performability Modeling of Computer and Communication
Systems (PMCCS-8), 2007.

[66] Rean Griffith, Ritika Virmani, and Gail Kaiser. The Role of Reliability, Availability and Serviceability
(RAS) Models in the Design and Evaluation of Self-Healing Systems. In International Conference on
Self-Organization and Autonomous Systems (SOAS) in Computing and Communications, 2007.

[67] Rean Griffith, Ritika Virmani, and Gail Kaiser. Tools and
techniques for designing and evaluating self-healing systems.
http://www1.cs.columbia.edu/ rg2023/pubs/Tools%20and%20Techniques%20for%20Designing
%20and%20Evaluating%20Self-Healing%20Systems.pdf, 2007.

[68] Ulf Gunneflo, Johan Karlsson, and Jan Torin. Evaluation of error detection schemes using fault injection
byheavy-ion radiation. In Nineteenth International Symposium on Fault-Tolerant Computing, 1989.

[69] Gunter Bolch and Stefan Greiner and Herman de Meer and Kishor S. Trivedi. Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications 2nd
Edition. Wiley, 2006.

[70] S. Han, K. Shin, and H. Rosenberg. Doctor: An integrated software fault injection environment for
distributed real-time systems. citeseer.ist.psu.edu/han95doctor.html, 1995.

[71] Laune Harris and Barton Miller. Practical Analysis of Stripped Binary Code. In Workshop on Binary
Instrumentation and Applications, 2005.

[72] David I. Heimann, Nitin Mittal, and Kishor S. Trivedi. Availability and reliability modeling for
computer systems. pages 175–233, 1990.



CHAPTER 7. BIBLIOGRAPHY 204

[73] George T. Heineman. A model for designing adaptable software components. In Proceedings of the
22nd Annual International Computer Software and Applications Conference, 1998.

[74] George T. Heineman, Paul Calnan, and Ben Kurtz. Active interface development environment (aide).
http://web.cs.wpi.edu/ heineman/dasada/, 2001.

[75] Michael W. Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic software updating. In Proceedings of
the 2001 ACM SIGPLAN Conference on Programming Language Design and Implementation Snowbird
Utah USA June 20-22 2001. SIGPLAN Notices 36(5) (May 2001) ACM 2001 ISBN 1581134142, pages
13 – 23, 2001.

[76] Howard Kim. AspectC#: An AOSD implementation for C#. Technical Report TCD-CS-2002-55,
Department of Computer Science Trinity College, 2002.

[77] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and tools. Computer, 30(4):75–
82, 1997.

[78] Yennun Huang, Chandra Kintala, Nick Kolettis, and N. Dudley Fulton. Software rejuventation:
Analysis, module and applications. In Proceedings of the 25th International Symposium on Fault-
Tolerant Computing Pasadena CA June 1995, pages 381 – 390, 1995.

[79] IBM. Autonomic Computing: IBM’s Perspective on the State of Information Technology, October
2001.

[80] Qumranet Inc. Kernel based virtual machines. http://kvm.qumranet.com/kvmwiki, 2007.

[81] StackSafe Inc. Improve Business Uptime and Resiliency through a New Model for Software Infrastruc-
ture Testing by IT Operations. http://www.stacksafe.com/uploads/PDFs/StackSafe White Paper.pdf,
2007.

[82] StackSafe Inc. Improving Uptime and Resiliency Through Software Infrastructure Testing for IT Oper-
ations: StackSafe R© Test Center. http://www.stacksafe.com/uploads/PDFs/StackSafe Product Brief.pdf,
2007.

[83] VMWare Inc. http://www.vmware.com/.

[84] VMWare Inc. Convert physical machines to virtual machines – free.
http://www.vmware.com/products/converter/get.html, 2007.

[85] VMWare Inc. Vmware esx server. http://www.vmware.com/products/esxi/, 2008.

[86] Ingo Rammer. Advanced .NET Remoting (C# Edition) (Paperback). Apress, 2002.

[87] Information Society Technologies (IST). Dependability benchmarking project final report.
http://www.laas.fr/DBench/Final/DBench-complete-report.pdf, 2004.

[88] Philip Gross Janak Parekh, Gail Kaiser and Giuseppe Valetto. Retrofitting autonomic capabilities onto
legacy systems. Journal of Cluster Computing, April 2006.

[89] Ji Zhu et al. R-Cubed: Rate, Robustness and Recovery An Availability Benchmark Framework.
Technical Report SMLI TR-2002-109, Sun Microsystems, 2002.

[90] Joseph L. Hellerstein et al. Feedback Control of Computing Systems. Wiley-Interscience, 2004.

[91] E.G. Coffman Jr., Z. Ge, Vishal Misra, and Don Towsley. Network resilience: Exploring cascading
failures within bgp. In Allerton Conference on Communication, Control and Computing, October 2002.

[92] G. KAISER and A. DOSSICK. A mobile agent approach to lightweight process workflow. cite-
seer.ist.psu.edu/kaiser99mobile.html, 1999.

[93] G. Kaiser, P. Gross, G. Kc, J. Parekh, and G. Valetto. An approach to autonomizing legacy systems.
citeseer.ist.psu.edu/kaiser02approach.html, 2002.



CHAPTER 7. BIBLIOGRAPHY 205

[94] Gail Kaiser, Janak Parekh, Phil Gross, and Giuseppe Valetto. Kinesthetics extreme: An external
infrastructure for monitoring distributed legacy systems. In Proceedings of the Autonomic Computing
Workshop 5th Workshop on Active Middleware Services, June 2003.

[95] Ghani Kanawati, Nasser Kanawati, and Jacob Abraham. Ferrari: A tool for the validation of system
dependability properties. In Twenty-second International Symposium on Fault-Tolerant Computing,
1992.

[96] K. Kanoun and H. Madeira. A framework for dependability benchmarking. cite-
seer.ist.psu.edu/kanoun02framework.html, 2002.

[97] Karama Kanoun, Mohamed Kaâniche, and Jean-Claude Laprie. Qualitative and quantitative reliability
assessment. IEEE Softw., 14(2):77–87, 1997.

[98] Heinz Kantz and Kishor S. Trivedi. Reliability modeling of the mars system: A case study in the use of
different tools and techniques. In PNPM, pages 268–277, 1991.

[99] Johan Karlsson, Jean Arlat, and Gunther Leber. Application of three physical fault injection techniques
to the experimental assessment of the mars architecture. In Fifth Annual IEEE Working Conference on
Dependable Computing for Critical Applications, 1995.

[100] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer magazine,
pages 41–50, January 2003.

[101] Kishor S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer Science Applica-
tions 2nd Edition. Wiley, 2002.

[102] Philip Koopman. Elements of the self-healing problem space. In Proceedings of the ICSE Workshop on
Architecting Dependable Systems, 2003.

[103] J. Kramer and J. Magee. A model for change management. Distributed Computing Systems in the
1990s, 1988. Proceedings., Workshop on the Future Trends of, pages 286–295, 14-16 Sep 1988.

[104] Jeff Kramer and JeffMagee. The evolving philosophers problem: Dynamic change management. In
Proceedings of IEEE Transactions on Software Engineering November 1990 Vol. 16 No. 11, pages
1293 – 1306, 1990.

[105] Naveen Kumar, Jonathan Misurda, Bruce Childers, and Mary Lou Soffa. Instrumentation in Software
Dynamic Translators for Self-Managed Systems. In Workshop on Self-Healing Systems, 2004.

[106] John Lam. CLAW: Cross-Language Load-Time Aspect Weaving on Microsoft’s CLR.
http://www.iunknown.com/000092.html, 2002.

[107] Jean-Claude Laprie and Brian Randell. Basic concepts and taxonomy of dependable and secure
computing. IEEE Trans. Dependable Secur. Comput., 1(1):11–33, 2004. Fellow-Algirdas Avizienis
and Senior Member-Carl Landwehr.

[108] James R. Larus and Eric Schnarr. EEL: machine-independent executable editing. In ACM SIGPLAN
1995 conference on Programming language design and implementation, pages 291–300, 1995.

[109] Lei Li, K. Vaidyanathan, and K.S. Trivedi. An approach for estimation of software aging in a web
server. Empirical Software Engineering, 2002. Proceedings. 2002 International Symposium n, pages
91–100, 2002.

[110] Serge Lidin. Inside Microsoft .NET IL Assembler. Microsoft Press, 2002.

[111] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification Second Edition.
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html, 1999.

[112] H. Madeira, J. Carreira, and J. Silva. Injection of faults in complex computers. cite-
seer.ist.psu.edu/madeira95injection.html, 1995.

[113] H. Madeira and P. Koopman. Dependability benchmarking: making choices in an n-dimensional
problem space. citeseer.csail.mit.edu/madeira01dependability.html, 2001.



CHAPTER 7. BIBLIOGRAPHY 206

[114] Manish Malhotra and Kishor S. Trivedi. Reliability analysis of redundant arrays of inexpensive disks.
J. Parallel Distrib. Comput., 17(1-2):146–151, 1993.

[115] Mark E. Russinovich and David A. Solomon. Microsoft Windows Internals 4th Edition. Microsoft
Press, 2005.

[116] Eliane Martins, Cecilia M. F. Rubira, and Nelson G. M. Leme. Jaca: A reflective fault injection tool
based on patterns. In DSN ’02: Proceedings of the 2002 International Conference on Dependable
Systems and Networks, pages 483–482, Washington, DC, USA, 2002. IEEE Computer Society.

[117] James Mauro, Ji Zhu, and Ira Pramanick. The system recovery benchmark. In 10th IEEE Pacific Rim
International Symposium on Dependable Computing, 2004.

[118] Julie McCann and Marcus Huebscher. Evaluation issues in autonomic computing. In International
Workshop on Agents and Autonomic Computing and Grid Enabled Virtual Organizations, 2004.

[119] Daniel Menasce. TPC-W A Benchmark for E-Commerce.
http://ieeexplore.ieee.org/iel5/4236/21649/01003136.pdf, 2002.

[120] J.F. Meyer. On evaluating the performability of degradable computing systems. IEEE Transactions on
Computers, 29(8):720–731, 1980.

[121] M.H.A. Davis. Markov Models and Optimization. Chapman & Hall, 1993.

[122] Michael M. Swift et al. Improving the Reliability of Commodity Operating Systems. In International
Conference Symposium on Operating Systems Principles, 2003.

[123] Michael M. Swift et al. Recovering Device Drivers. In 6th Symposium on Operating System Design
and Implementation, 2004.

[124] Microsoft. Common Language Infrastructure (CLI) Partition I: Concepts and Architecture, 2001.

[125] Microsoft. Common Language Runtime Metadata Unmanaged API, 2002.

[126] Microsoft. Common Language Runtime Profiling, 2002.

[127] microsoft.public.dotnet.framework.clr. Icorprofilerinfo::setfunctionrejit causes deadlock.
http://www.dotnet247.com/247reference/msgs/58/290727.aspx.

[128] Sun Microsystems. Java 2 platform, enterprise edition (j2ee) overview.
http://java.sun.com/j2ee/overview.html, 1999.

[129] Sun Microsystems. The essentials of filters. http://java.sun.com/products/servlet/Filters.html, 2001.

[130] Sun Microsystems. Java platform debugger architecture - architecture overview.
http://java.sun.com/j2se/1.4.2/docs/guide/jpda/architecture.html, 2001.

[131] Sun Microsystems. The java hotspot virtual machine v1.4.1, d2.
http://java.sun.com/products/hotspot/docs/ whitepaper/Java Hotspot v1.4.1/JHS 141 WP d2a.pdf,
2002.

[132] Sun Microsystems. The Java Native Interface Programmer’s Guide and Specification.
http://java.sun.com/docs/books/jni/html/titlepage.html, 2002.

[133] Sun Microsystems. Introduction to jmx technology. http://java.sun.com/j2se/1.5.0/docs/guide/jmx/
overview/intro.html#wp5529, 2004.

[134] Sun Microsystems. The JVM Tool Interface Version 1.0.
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html, 2004.

[135] Sun Microsystems. Driver hardening test harness. http://docs.sun.com/app/docs/doc/819-3196/gemgi,
2008.

[136] Sun Microsystems. Writing device drivers. http://dlc.sun.com/pdf/819-3196/819-3196.pdf, 2008.



CHAPTER 7. BIBLIOGRAPHY 207

[137] Aleksandr Mikunov. Rewrite MSIL Code on the Fly with the .NET Framework Profiling API.
http://msdn.microsoft.com/msdnmag/ issues/03/09/NETProfilingAPI/, 2003.

[138] Alexander V. Mirgorodskiy and Barton P. Miller. Autonomous Analysis of Interactive Systems with
Self-Propelled Instrumentation. In 12th Multimedia Computing and Networking, January 2005.

[139] Vishal Misra. Stochastic Models for Network Traffic. Ph.D. dissertation, University of Massachusetts
Amherst, 2000.

[140] NIST. National institute of standards and technology (nist) website. http://www.nist.gov/.

[141] ObjectWeb. Rubis: Rice university bidding system project web page. http://rubis.objectweb.org/, 2002.

[142] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do internet services fail, and what can be done
about it. citeseer.ist.psu.edu/oppenheimer03why.html, 2003.

[143] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory Johnson, Nenad
Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L. Wolf. An architecture-based
approach to self-adaptive software. In Proceedings of IEEE Intelligent Systems archive Volume 14,
Issue 3 (May 1999), pages 54 – 62, 1999.

[144] Peyman Oreizy, Nenad Medovic, and Richard N. Taylor. Architecturebased runtime software evolution.
In Proceedings of the International Conference on Software Engineering 1998, pages 177 – 186, 1998.

[145] Sujay Parekh, Kevin Rosey, Yixin Diao, Victor Changy, Joseph Hellerstein, Sam Light-
stoney, and Matthew Huras. Throttling utilities in the ibm db2 universal database server.
http://www.research.ibm.com/PM/rc23163.pdf, 2004.

[146] Paul Pazandak and David Wells. Probemeister: Distributed runtime software instrumentation. In First
International Workshop on Unanticipated Software Evolution, 2002.

[147] PHARM research team University of Wisconsin-Madison. Java tpc-w implementation distribution.
http://www.ece.wisc.edu/ pharm/tpcw.shtml, 2003.

[148] Christian Poellabauer, Karsten Schwan, Sandip Agarwala, Ada Gavrilovska, Greg Eisenhauer, Santosh
Pande, Calton Pu, and Matthew Wolf. Service Morphing: Integrated System- and Application-
Level Service Adaptation in Autonomic Systems. In Autonomic Computing Workshop, Fifth Annual
International Workshop on Active Middleware Services, June 2003.

[149] The Apache Jakarta Project. Bcel - byte code engineering library (bcel).
http://jakarta.apache.org/bcel/manual.html, 2006.

[150] The Linux Virtual Server Project. The linux virtual server project. http://www.austintek.com/LVS/LVS-
HOWTO/mini-HOWTO/LVS-mini-HOWTO.html, 2001.

[151] The Linux Virtual Server Project. The linux virtual server project. http://www.linuxvirtualserver.org/,
2002.

[152] B. Randell. System structure for software fault tolerance. In Proceedings of the International Conference
on Reliable Software, pages 437 – 449, 1975.

[153] James Reason. Human Error. Cambridge University Press, 1990.

[154] UC Berkeley Reliable Adaptive Distribued (RAD) Systems Lab. X-trace wiki. http://www.x-
trace.net/wiki/doku.php, 2008.

[155] Richard McDougall and Jim Mauro. Solaris Internals - Solaris 10 and OpenSolaris Kernel Architecture,
2nd Edition. Prentice Hall, 2006.

[156] Jacob Rief and Simon Horman. ldirectord. http://www.vergenet.net/linux/ldirectord/, 1999.

[157] R. C. Cheung S. S. Yau. Design of self-checking software. In Proceedings of the International
Conference on Reliable Software, pages 450 – 455, 1975.



CHAPTER 7. BIBLIOGRAPHY 208

[158] S. M. Sadjadi and P. K. McKinley. Using Transparent Shaping and Web Services to Support Self-
Management of Composite Systems. In Second IEEE International Conference on Autonomic Comput-
ing, June 2005.

[159] S. M. Sadjadi, P. K. McKinley, B. H. C. Cheng, and R. E. K. Stirewalt. TRAP/J: Transparent Generation
of Adaptable Java Programs. In International Symposium on Distributed Objects and Applications,
October 2004.

[160] A R Sahner and S K Trivedi. Reliability modeling using sharpe. Technical report, Durham, NC, USA,
1986.

[161] Willaim H. Sanders and John F. Meyer. Stochastic activity networks: formal definitions and concepts.
pages 315–343, 2002.

[162] Bradley Schmerl and David Garlan. Exploiting Architectural Design Knowledge to Support Self-
Repairing Systems. In 14th International Conference of Software Engineering and Knowledge Engi-
neering, 2002.

[163] Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: what does an mttf of 1,000,000
hours mean to you? In FAST ’07: Proceedings of the 5th USENIX conference on File and Storage
Technologies, page 1, Berkeley, CA, USA, 2007. USENIX Association.

[164] Bianca Schroeder and Adam Wierman. Open versus closed: A cautionary tale. cite-
seer.ist.psu.edu/751284.html, 2006.

[165] Security Innovation. Holodeck Enterprise Edition Features and Benefits.
http://www.securityinnovation.com/holodeck/features.shtml, 2007.

[166] Mark E. Segal and Ophir Frieder. On-The-Fly Program Modification Systems for Dynamic Updating.
IEEE Software, 10(2), March 1993.

[167] B. SEGALL, D. ARNOLD, J. BOOT, M. HENDERSON, and T. PHELPS. Content based routing with
elvin. citeseer.ist.psu.edu/segall00content.html, 2000.

[168] Margo I. Seltzer, David Krinsky, Keith A. Smith, and Xiaolan Zhang. The case for application-specific
benchmarking. In Workshop on Hot Topics in Operating Systems, pages 102–, 1999.

[169] Shang-Wen Cheng et al. Rainbow: Architecture-based self-adaptation with reusable infrastructure.
IEEE Computer, 37(10), October 2004.

[170] Charles Shelton and Philip Koopman. Using Architectural Properties to Model and Measure System-
wide Graceful Degradation. In Workshop on Architecting Dependable Systems, 2002.

[171] Stelios Sidiroglou, Michael E. Locasto, Stephen W. Boyd, and Angelos D. Keromytis. Building a
Reactive Immune System for Software Services. In USENIX Annual Technical Conference, pages
149–161, April 2005.

[172] Volkmar Sieh and Kerstin Buchacker. Umlinux – a versatile swifi tool. In Proceedings of the Fourth
European Dependable Computing Conference, 2002.

[173] Luis Silva, Javier Alonso, Paulo Silva, Jordi Torres, and Artur Andrzejak. Using virtualization to
improve software rejuvenation. 2007.

[174] SourceForge.Net. The world’s largest Open Source software development web site.
http://www.sourceforge.net.

[175] SourceForge.NET. Alchemi [.NET Grid Computing Framework]: Summary.
http://sourceforge.net/projects/alchemi/, 2004.

[176] SPEC. Specjappserver2004 (java application server). http://www.spec.org/jAppServer2004/.

[177] SPEC. Standard performance evaluation corporation (spec) website. http://www.spec.org/.



CHAPTER 7. BIBLIOGRAPHY 209

[178] Amitabh Srivastava and Alan Eustace. ATOM: a system for building customized program analysis
tools. In ACM SIGPLAN 1994 conference on Programming language design and implementation, pages
196–205, 1994.

[179] Stacksafe. It ops research report: Downtime and other top concerns. www.stacksafe.com, 2007.

[180] L. Stojanovic, J. Schneider, A. Maedche, S. Libischer, R. Studer, Th. Lumpp, A. Abecker, G. Breiter,
and J. Dinger. The role of ontologies in autonomic computing systems. IBM Systems Journal –
Unstructured Information Management, 43(3), 2004.

[181] David Stutz, Ted Neward, and Geoff Shilling. Shared Source CLI. O’Reilly & Associates Inc., 2003.

[182] Neeraj Suri and Purnendu Sinha. On the use of formal techniques for validation. In Symposium on
Fault-Tolerant Computing, pages 390–399, 1998.

[183] Citrix Systems. What is xen? http://www.xen.org/, 2005.

[184] A. Tamches and B. P. Miller. Fine-Grained Dynamic Instrumentation of Commodity Operating System
Kernels. In 3rd Symposium on Operating Systems Design and Implementation, pages 117–130, 1999.

[185] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 1992. TAN a 92:1 2.Ex.

[186] Caucho Technology. Resin high performance, open source application server. http://www.caucho.com/.

[187] Toby J. Teorey and Wee Teck Ng. Dependability and performance measures for the database practitioner.
IEEE Trans. on Knowl. and Data Eng., 10(3):499–503, 1998.

[188] The University of Melbourne. Alchemi – plug & play grid computing. http://www.alchemi.net/, 2004.

[189] Tool Interface Standards (TIS) Committee. Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification Version 1.2. http://www.x86.org/ftp/manuals/tools/elf.pdf, 1995.

[190] TPC. Transaction processing performance council (tpc) website. http://www.tpc.org/.

[191] Timothy K. Tsai, Ravishankar K. Iyer, and Doug Jewitt. An approach towards benchmarking of
fault-tolerant commercial systems. In Symposium on Fault-Tolerant Computing, pages 314–323, 1996.

[192] G. Valetto, G. Kaiser, and D. Phung. A uniform programming abstraction for effecting autonomic
adaptations onto software systems. Autonomic Computing, 2005. ICAC 2005. Proceedings. Second
International Conference on, pages 286–297, 13-16 June 2005.

[193] Giuseppe Valetto, Gail E. Kaiser, and Gaurav S. Kc. A mobile agent approach to process-based dynamic
adaptation of complex software systems. In EWSPT ’01: Proceedings of the 8th European Workshop
on Software Process Technology, pages 102–116, London, UK, 2001. Springer-Verlag.

[194] Wikipedia. Write once, run anywhere. http://en.wikipedia.org/wiki/Write once, run anywhere, 1996.

[195] Don Wilson, Brendan Murphy, and Lisa Spainhower. Progress on defining standardized classes for
comparing the dependability of computer systems. citeseer.ist.psu.edu/wilson02progress.html, 2002.

[196] Yixin Diao et al. A control theory foundation for self-managingcomputing systems. IEEE Journal on
Selected Areas in Communications AUTONOMIC COMMUNICATION SYSTEMS, December 2005.

[197] Stanley B. Zdonik. Maintaining consistency in a database with changing types. In Proceedings of the
1986 SIGPLAN workshop on Object-oriented programming Yorktown Heights, New York, United States,
pages 120 – 127, 1986.

[198] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals, Matthew Harren, George
Necula, and Eric Brewer. Safedrive: safe and recoverable extensions using language-based techniques.
In OSDI ’06: Proceedings of the 7th symposium on Operating systems design and implementation,
pages 45–60, Berkeley, CA, USA, 2006. USENIX Association.



Appendix A

Experience with StackSafe’s Test Center

The StackSafe Test Center is a pre-production staging, testing and analysis platform targeted

at IT Operations teams [81]. The Test Center establishes a virtualized sandbox (see Figure

A.1) in which end users (IT Operations staff) can test and analyze systems in a representative

production environment. Included in the Test Center are tools that allow end-users to create

copies of the production servers that make up a software infrastructure stack. System images

can be imported from physical and/or virtual machines; further, the Test Center’s use of

virtualization allows imported images to be networked into a working software infrastructure

stack, which mirrors a production configuration.

The Test Center is intended to support testing activities that cover a number of areas

including, but not limited to: application assembly and validation, performance tuning,

security/risk assessments, patch testing, continuity and disaster recovery (playing what-

if scenarios with production), diagnostics and root cause analysis, and reliability testing

[81]. In this chapter we familiarize ourselves with the Test Center, using it as a testbed

environment for conducting RAS evaluations. We re-create the VM-Rejuv deployment

used in §5.5 (the load-balanced TPC-W web-application stack), discuss the Test Center

configuration used, measure the failure-free performance of the system and re-run our

210



APPENDIX A. EXPERIENCE WITH STACKSAFE’S TEST CENTER 211

Figure A.1: StackSafe Test Center – source Improve Business Uptime and Resiliency
through a New Model for Software Infrastructure Testing by IT Operations [81]

fault-injection experiments inside the Test Center.

A.1 Experimental Setup

Our experimental platform uses a Test Center configured with 8 GB RAM, 512 MB swap,

4 Intel Xeon E5345 Dual Core 64-bit 2.33 GHz CPUs and a 1.5 TB disk array running

StackSafeTM Test Center release 5 on a Linux 2.6.18 SMP kernel. Test Center release 5 uses

Xen v3.1.0 [183] to provide virtualization services. Outbound network access is enabled in

the Test Center to allow imported machines (guest hosts) to connect to resources on the same

network as the Test Center, e.g., database servers, Lightweight Directory Access Protocol

(LDAP) servers, etc. Enabling outbound network access is also a prerequisite for allowing

inbound connections to individual guest hosts, i.e., assigning an externally visible static IP

address to a guest host.

Our original VM-Rejuv deployment (§5.5) consists of three VMWare GSX virtual machines:

VM1, the Linux Virtual Server (LVS) load-balancer (IPVS v1.2.1 and ipvsadm v1.24) and

database server (MySQL 5.0.27), and VMs 2 and 3, the Apache Tomcat web/application

servers (Apache Tomcat v5.5.20) hosting the TPC-W web-application classes. All three



APPENDIX A. EXPERIENCE WITH STACKSAFE’S TEST CENTER 212

VMs run Centos 5.0 on Linux 2.6.18-8.el5 (see [82] for a list of operating systems that can

be imported into the Test Center as guest hosts).

Using the Test Center’s Import CD we boot these three VMs from the import CD and clone

them into the Test Center 1. We enable outbound connections on each VM and we assign

a static IP address to the imported VM1 guest host and enable inbound connections to it

so that the TPC-W workload generator (remote browser emulators/RBEs) can access the

TPC-W web-application from IP addresses external to the Test Center. We assemble VMs 1,

2 and 3 into an Infrastructure Stack inside the Test Center, which allows us to treat these

three VMs as a single logical unit, e.g, issuing start/stop commands or running tests and

reports against all components.

Since the Test Center is configured with 8GB of RAM, each imported VM is allocated 1 GB

of RAM, instead of the 512 MB, 384 MB and 384 MB allocations used in §5.5 for VMs 1,

2 and 3 respectively 2. The LVS load-balancer in the VM1 guest host is configured to direct

web-requests to the VM2 and VM3 guest hosts using LVS-NAT3 as before and we test the

failure-free operation of the TPC-W web-application deployed under VM-Rejuv inside the

Test Center.

We simulate a load of 50 TPC-W clients using the Shopping Mix as their web-interaction

strategy.

During ten failure free runs each lasting 22 minutes the average number of client-side

interactions recorded is 9315.9 ± 120.6. Figures A.2 and A.3 show a 16 minute sample of

the throughput and response time data reported by VM probes during one of our failure-free

runs. The average throughput is ∼6 requests per second and the average response time is

∼27 ms.
1The import of each 8 GB VM harddisk takes ∼20 mins to complete on our network.
2The current release of the Test Center limits the RAM allocated to each imported guest host to 2GB.
3The Test Center uses the 10.216.71.x and 172.30.8.x networks internally to provide IP addresses for guest

hosts. In our experiments we also assigned 192.168.1.x IP addresses to the guest host network interfaces using
OS-level configuration files.



APPENDIX A. EXPERIENCE WITH STACKSAFE’S TEST CENTER 213

Figure A.2: Test Center: VM-Rejuv baseline
throughput sample

Figure A.3: Test Center: VM-Rejuv baseline
response time sample

Setting VM-Rejuv’s response time violation threshold at the mean response time (27 ms)

and re-running the workload of 50 clients we observe an average of 2 rejuvenation actions

per run over 10 runs. The mean failover time is 86 ms and the average pre-rejuvenation

delay window size is 19,778 msecs.

In our fault-injection experiments we subject both Tomcat application servers deployed under

VM-Rejuv to memory leaks that result in resource exhaustion within 11.1 minutes (666.271

seconds) of running the 50 client TPC-W workload. We set VM-Rejuv’s response time

violation threshold to the mean response time of the failure free runs (27 ms) and measure the

frequency of rejuvenations, the VM failover time and the size of the pre-rejuvenation delay

window. Over five fault-injection runs, each lasting 22 minutes, we record an average of 5

rejuvenations per run (mean rejuvenation interval of 256.69 seconds) with mean switchover

time of 68 ms and mean pre-rejuvenation delay window size of 30,202 ms (Table A.1).

Using a mean rejuvenation interval of 256.69 seconds, mean rejuvenation window size

of 30,202.37 msecs and a mean failover time of 68.10 msecs we score this VM-Rejuv

deployment using the RAS model in Figure 5.13 (see Table 5.7 for parameter descriptions).



APPENDIX A. EXPERIENCE WITH STACKSAFE’S TEST CENTER 214

Run # Rejuvenation Rejuvenation Failover time Pre-rejuvenation
actions interval (secs) (msecs) delay window (msecs)

1 5 257.85 64.60 36,090.60
2 5 263.11 64.40 24,775.60
3 4 242.92 140.50 38,625.25
4 5 238.78 27.40 21,859.20
5 5 280.78 43.60 29,661.20
Avg 4.8 256.69 68.10 30,202.37

Table A.1: Test Center: VM-Rejuv subjected to memory leaks

The mean time to restart Tomcat during the memory leak experiments is 2 seconds and the

mean time to detect a server outage (via the ldirectord watchdog) is 5 seconds.

The steady-state probabilities of the VM-Rejuv model are shown in Table A.2 and model

analysis results are shown in Table A.3.

π0 0.883192
π1 0.099412
π2 0.009533
π3 0.006628
π4 0.000090
π5 0.000818
π6 0.000327

Table A.2: Test Center: VM-Rejuv steady state probabilities – memleak scenario

Using the scoring model we can estimate the number of active VM failures expected during

rejuvenation actions per day, i.e., the frequency of transitions from S 1 to S 5 (FS 1→S 5) plus

the frequency of transitions from S 2 to S 5 (FS 2→S 5). This we estimate at 14 per day under

the failure conditions used in our experiments (1 memory-leak failure every 11.1 minutes).

From the steady-state probabilities of the model we estimate that the deployment spends

∼88% of the time in its normal operating mode/configuration, π0, and ∼11% of its time

rejuvenating (π1 + π2). While rejuvenations are taking place client-requests are serviced by

the standby VM; as a result the system would be considered UP from the client’s perspective

in states {S 0, S 1, S 2} – UP 1428.7 minutes per day (99.21%) and DOWN 11.3 minutes per



APPENDIX A. EXPERIENCE WITH STACKSAFE’S TEST CENTER 215

day (0.79%). Administrators on the other hand may consider the system to be UP if it is in

state S 0 since states S 1 and S 2 represent a window of vulnerability. From the administrator’s

perspective the system is UP 1271.8 minutes per day (88.32%) and DOWN 168.2 minutes

per day (11.68%), of which 157 minutes are spent performing rejuvenation actions.

Measure Metrics Results

Reliability
Frequency of active VM failures during 14.127668
rejuvenation per day FS 1→S 5 + FS 2→S 5

Availability
Basic steady-state availability (UPadmin = {S 0}) 0.883192
Tolerance availability (UPclient = {S 0, S 1, S 2}) 0.992137

Serviceability
Mean-time to system restoration (UPadmin = {S 0}) 24,507 msecs
Mean-time to system restoration(UPclient = {S 0, S 1, S 2}) 5,280 msecs

Table A.3: Test Center: Summary of VM-Rejuv RAS model analysis results

A.2 Summary

In this chapter we use StackSafe’s Test Center as a platform/environment for conducting RAS

evaluations. We import and configure a load-balanced TPC-W web-application (deployed

under VM-Rejuv[173]) in the Test Center to use as our target system. The guest hosts used

for the load-balancer, and the two application server components are imported from the

VMWare GSX virtual machines created for the experiments in §5.5.

In preparing for our fault-injection experiments we rely on the Test Center’s ability to

clone/import existing production systems and assemble them into infrastructure stacks.

Further, we use Test Center’s support for incoming and outgoing network connections

(between guest hosts and resources on the same network as the Test Center, e.g., load

generators, database servers or directory services) to create a testing environment that

closely mirrors the production environment. Our cloned environment differs from the

environment in §5.5 only in the amount of resources (RAM) assigned to the virtual machines

– we were able to allocate more memory to the VMs imported into the Test Center since it is



APPENDIX A. EXPERIENCE WITH STACKSAFE’S TEST CENTER 216

configured with 8 GB of RAM in contrast to the 2 GB of RAM installed on the physical

machine hosting the three VM-Rejuv virtual machines in §5.5.

We combine our runtime fault-injection tools and RAS models with the testing environ-

ment/infrastructure provided by the Test Center (physical/virtual machine cloning, the

virtualization of systems and networks, support for network connections between imported

guest hosts and external resources) to demonstrate a practical approach to performing RAS

evaluations, where the requirement that RAS evaluations be carried out on production sys-

tems may be satisfied via sophisticated testing/staging tools capable of replicating portions

of production environments. Further, runtime instrumentation tools, runtime fault-injection

tools and RAS modeling tools/environments (probe placement, failure-scenario design

interfaces, etc.) can be included in the set of tools/services provided by virtualized staging

environments for integrated reliability, availability and serviceability testing and evaluation.

Finally, the ability to integrate supporting tools/services for RAS evaluations (e.g., runtime

fault-injection tools, RAS modeling environments, etc.) directly into a virtualized test-

ing/staging environment like the Test Center represent an opportunity to reduce the number

of disparate stand-alone tools/interfaces that evaluators need to content with when preparing

to conduct a set of RAS evaluations.


	List of Figures
	List of Tables
	Introduction
	Definitions
	Problem statement
	Requirements
	Hypotheses
	Thesis outline

	Motivation
	DASADA Overview
	Kinesthetics eXtreme (KX)
	Probing Technologies used in KX
	Effector Technologies used in KX

	Short-term Research Objectives after KX
	Long-term Research Objectives
	Scoping the Self-Management Capabilities to be Evaluated
	Expanding the Classes of Systems to be Evaluated

	Revised Research Agenda
	Summary of Contributions

	I Runtime Adaptation and Fault-Injection
	Runtime Modification of Systems
	Definitions
	Overview
	Motivation
	Background on Execution Environments
	Challenges of Runtime Adaptation via the Execution Environment
	Hypotheses
	Kheiron/CLR: Runtime Adaptation in the Common Language Runtime
	Common Language Runtime Execution Model
	The CLR Profiler and Unmanaged Metadata APIs
	Kheiron/CLR Architecture
	Model of Operation
	Performing an Adaptation
	Forcing Multiple JIT Compilations (re-JITs)
	Evaluation Part 1: Kheiron/CLR Performance Impact
	Evaluation Part 2: Kheiron/CLR Dynamic Reconfiguration Case Study

	Kheiron/JVM: Runtime Adaptation in the Java Virtual Machine
	Java Virtual Machine Execution Model (Java HotspotVM)
	JVM Profiler and Metadata APIs
	Kheiron/JVM Architecture
	Model of Operation
	Evaluation Part 1: Kheiron/JVM Performance Impact
	Evaluation Part 2: Kheiron/JVM Web-Application Fault-Injection

	Kheiron/C: Runtime Adaptation of Compiled-C Programs
	Native Execution Model
	Kheiron/C Model of Operation
	Evaluation Part 1: Kheiron/C Performance Impact
	Evaluation Part 2: Kheiron/C Injecting Selective Emulation

	Integrity/Consistency-preserving Adaptations
	Related Work
	Runtime Adaptation
	Software Implemented Fault-Injection Tools

	Summary


	II RAS Evaluations via Runtime Adaptation and RAS Modeling
	Evaluating RAS Capabilities
	Hypotheses
	Analytical Tools
	Continuous Time Markov Chains (CTMCs)
	Markov Reward Networks
	Feedback Control Models

	Analysis Techniques
	Microreboot RAS Model
	Model Analysis -- RAS Measures and Metrics
	Reliability Measures
	Availability Measures
	Serviceability Measures
	Analysis Results

	Related Work
	Summary

	The 7U-Evaluation Benchmark
	Introduction
	The 7U RAS Benchmarking Methodology
	RAS Benchmarking Challenges
	Selecting reasonable or representative faults
	Representative Workloads
	Reproducibility and Portability
	Metrics and Scoring

	Evaluation Part 1
	7U Process
	Deployment 1: Resin, MySQL, Linux 2.4.18
	Deployment 2: Resin, MySQL, Linux 2.6.20
	Deployment Comparisons

	Evaluation Part 2
	7U Process
	VM-Rejuv Evaluation

	Evaluation Part 3
	7U Process
	Evaluating Hardened Network Device Drivers on OpenSolaris

	Related Work
	Summary

	Contributions, Future Work and Conclusion
	Thesis Contributions
	Research Accomplishments
	Practical Concerns
	Future Work
	Immediate Future Applications
	Future Directions

	Conclusion

	Bibliography
	Experience with StackSafe's Test Center
	Experimental Setup
	Summary



