
The Role of Reliability, Availability and Serviceability (RAS) Models in the
Design and Evaluation of Self-Healing Systems

Rean Griffith1 Ritika Virmani 1 Gail Kaiser 1

1 Columbia University

New York, USA
Email: {rg2023; rv2171; kaiser@cs}.columbia.edu

Abstract: In an idealized scenario, self-healing systems
predict, prevent or diagnose problems and take the
appropriate actions to mitigate their impact with minimal
human intervention. To determine how close we are to
reaching this goal we require analytical techniques and
practical approaches that allow us to quantify the
effectiveness of a system’s remediation mechanisms. In this
paper we apply analytical techniques based on Reliability,
Availability and Serviceability (RAS) models to evaluate
individual remediation mechanisms of select system
components and their combined effects on the system. We
demonstrate the applicability of RAS-models to the
evaluation of self-healing systems by using them to analyze
various styles of remediations (reactive, preventative etc.),
quantify the impact of imperfect remediations, identify sub-
optimal (less effective) remediations and quantify the
combined effects of all the activated remediations on the
system as a whole.
Keywords: self-healing evaluation, RAS-models, Kheiron

1. Introduction

Self-healing systems are expected to respond to problems that
arise in their environments with minimal human intervention.
To achieve this, these systems may employ a variety of
remediation strategies including preventative, proactive and
reactive strategies. In the ideal case, such systems will use a
combination of these strategies to predict, prevent or
diagnose and react to problems. To determine how close we
are to realizing this goal we require rigorous analytical tools
that quantify the efficacy of the remediation mechanisms, and
by extension, allow for quantitative evaluations of entire self-
healing systems.
 The most well-understood evaluation tools for general
computing systems however, are performance-centric.
Performance benchmarks, such as those produced by the
National Institute of Science and Technology (NIST) [19],
the Standard Performance Evaluation Corporation (SPEC ®)
[23] and the Transaction Processing Performance Council
(TPC™) [26], are routinely used to demonstrate that an
experimental system prototype is better than the state-of-the-
art because it delivers acceptable or superior performance.
They are also used as reasonable workloads to exercise a
system during experiments.
 Whereas performance benchmarks can also be a source of
reasonable workloads for self-healing systems, performance

numbers, however, do not allow us to draw conclusions about
one system being “better” than another with respect to its
ability to heal itself. Measures concerned with overall system
performance do not adequately capture the details that
distinguish one remediation mechanism from another e.g.
remediation accuracy/success rates, the impact of
remediation failures, the consequences of remediation style,
remediation timings, the impact of remediations on system
manageability and accounting for partially automated
remediations. This deficiency of performance benchmarks
limits our ability to use them as the primary means of
comparing or ranking self-healing systems.
 We posit that analytical tools that can be adapted to study
the many facets of remediations, including but not limited to
those mentioned, will provide greater insights into the design,
development and evaluation of self-healing systems than pure
performance-evaluations.
 In addition to analyzing the details of remediation
mechanisms, there are a number of high-level measures that
also can be used to differentiate self-healing systems.
According to [11], a self-healing system “...automatically
detects, diagnoses and repairs localized software and
hardware problems” [11]. As a result, it is reasonable to
expect that these systems exhibit fewer severe-outages, better
reliability and availability characteristics than vanilla systems
(i.e. systems lacking self-healing capabilities). The system’s
diagnostic capabilities are expected to enhance its
manageability by improving the selection and execution of
(fully or partially automated) repair mechanisms. Where
100% automated repair mechanisms are lacking, effective,
automated diagnosis can guide human operators, reducing the
total time and effort needed for performing repairs. We also
expect these systems to exhibit lower serviceability “costs”
e.g. lower yearly downtimes and a lower frequency of
unexpected servicing/maintenance events.
 In this paper we employ analytical techniques based on
Continuous Time Markov Chains (CTMCs) [12], specifically
Birth-Death processes and Non-Birth-Death processes to
construct Reliability, Availability and Serviceability (RAS)
models, which we use to evaluate a system’s self-healing
mechanisms and its overall self-healing capabilities.
 We study the existing self-healing mechanisms of an
operating system and an application server hosting an N-tier
web-application. These recovery/repair mechanisms are
exercised using focused fault-injection. Based on the
experimental results of our fault-injection experiments we

construct a set of RAS-models, evaluate each remediation
mechanism individually, and then study the combined impact
of the remediation mechanisms on the system.
 This paper makes two contributions. First, we show the
flexibility of simple RAS-models as they easily address two
of the challenges of evaluating self-healing systems –
quantifying the impact of imperfect remediation scenarios
and analyzing the various styles of remediations (reactive,
preventative and proactive). This flexibility positions RAS-
models as a practical analysis tool for aiding in the
development of a comprehensive, quantitative benchmark for
self-healing systems.
 Second, we demonstrate that it is possible to analyze fault-
injection experiments under simplifying Markovian
assumptions about fault distributions and system-failures and
still glean useful insights about the efficacy of a system’s
self-healing mechanisms. Further, we show that the metrics
obtained from RAS-models – remediation success rates,
limiting availability, limiting reliability and expected yearly
downtime – allow us to identify sub-optimal remediation
mechanisms and reason about the design of improved
remediation mechanisms.
 The remainder of this paper is organized as follows; §2
defines some key terms. §3 describes the setup of the fault-
injection experiments conducted on our N-tier web
application’s components. §4 analyzes and discusses the
results. §5 covers related work and §6 presents our
conclusions and describes future work.

2. Terminology

In this section we formalize some of the terms used
throughout this paper.
• Error – the deviation of system external state from correct

service state [14].
• Fault – the adjudged or hypothesized cause of an error

[14].
• Fault Hypothesis/Fault Model – the set of faults a self-

healing system is expected to be able to heal [13].
• Remediation – the process of correcting a fault. In this

paper remediation spans the activities of detection,
diagnosis and repair since the first step in responding to a
fault is detection [13].

• Failure – an event that occurs when the delivered service
violates an environmental/contextual constraint e.g. a
policy or SLA. This definition emphasizes the client-side
(end-user’s) perspective over the server-side perspective
[1].

• Reliability – the number (or frequency) of client-side
interruptions.

• Availability – a function of the rate of failure/maintenance
events and the speed of recovery [10].

• Serviceability – a function of the number of service-visits
and their duration and costs.

3. Experiments

The goal of our experiments is to inject faults into specific
components of the system under test and study its response.
The faults we inject are intended to exercise the remediation
mechanisms of the system. We use the experimental data to
mathematically model the impact of the faults we inject on

the system’s reliability, availability and serviceability with
and without the remediation mechanisms.
 Whereas our fault-injection experiments may expose the
system to rates of failure well above what the system may see
in a given time period, these artificially high failure rates
allow us to explore the expected and unexpected system
responses under stressful fault conditions, much like
performance benchmarks subject the system under test to
extreme workloads.

To conduct our experiments we need: a test-platform, i.e. a
hardware/software stack executing a reasonable workload, a
fault model, fault-injection tools, a set of remediation
mechanisms and a set of system configurations.

For our test platform we use VMWare GSX virtual
machines configured with: 512 MB RAM, 1 GB of swap, an
Intel x86 Core Solo processor and an 8 GB harddisk running
Redhat 9 on 2.4.18 kernels. We use an instance of the TPC-
W web-application (based on the implementation developed
at the University of Madison-Wisconsin) running on MySQL
5.0.27, the Resin 3.0.22 application server and webserver,
and Sun Microsystems’ Hotspot Java Virtual Machine
(JVM), v1.5. We simulate a load of 20 users using the
Shopping Mix [16] as their web-interaction strategy. User-
interactions are simulated using the Remote Browser
Emulator (RBE) software also implemented at the University
of Madison-Wisconsin. Our VMs are hosted on a machine
configured with 2 GB RAM, 2 GB of swap, an Intel Core
Solo T3100 Processor (1.66 GHz) and a 51 GB harddisk
running Windows XP SP2.
 Our fault model consists of device driver faults targeting
the Operating System and memory leaks targeting the
application server. We chose device driver faults because
device drivers account for ~70% of the Linux kernel code
and have error rates seven times higher than the rest of the
kernel [4] – faulty device drivers easily compromise the
integrity and reliability of the kernel. While memory leaks
and general state corruption (dangling pointers and damaged
heaps) are highlighted as common bugs leading to system
crashes in large-scale web deployments [3].
 We identified the operating system and the application
server as candidate targets for fault-injection. Given the
operating system’s role as resource manager [25] and part of
the native execution environment for applications [8] its
reliability is critical to the overall stability of the applications
it hosts. Similarly, application servers act as containers for
web-applications responsible for providing a number of
services, including but not limited to, isolation, transaction
management, instance management, resource management
and synchronization. These responsibilities make application-
servers another critical link in a web-application’s reliability
and another prime target for fault-injection. Database servers
are also reasonable targets for fault-injection; however
database fault-injection experiments are outside the scope of
this work but will be the focus of future work.
 We use a version of the SWIFI device driver fault-injection
tools [17, 18] (University of Washington) and a tool based on
our own Kheiron/JVM [8] implementation for application-
server fault-injection.
 There are three remediation mechanisms we consider:
(manual) system reboots, (automatic) application server
restarts and Nooks device driver protection and recovery [17]
– Nooks isolates the kernel from device drivers using

lightweight protection domains, as a result driver crashes are
less likely to cause a kernel crash. Further, Nooks supports
the transparent recovery of a failed device driver.
 Finally, we use the following system-configurations:
Configuration A – Fault-free system operation,
Configuration B – System operation in the presence of
memory leaks, Configuration C – System operation in the
presence of device-driver failures (Nooks disabled),
Configuration D – System operation in the presence of
device-driver failures (Nooks enabled), and Configuration E
– System operation in the presence of memory leaks and
driver failures (Nooks enabled).

4. Results and Analysis

In our experiments we measure both client-side and
server-side activity. On the client-side we use the number
of web interactions and client-perceived rate of failure to
determine client-side availability.
 A typical fault-free run of the TPC-W (Configuration
A), takes ~24 minutes to complete and records 3973
successful client-side interactions.
 Figure 1 shows the client-side goodput over ~76 hours
of continuous execution (187 runs) in the presence of an
accumulating memory leak – Configuration B. The average

Figure 1. Client interactions - Configuration B

number of client-side interactions over this series of
experiments is 4032.3 ± 116.8473. In this figure there are
nine runs where the number of client interactions is 2 or more
standard deviations below the mean. Client-activity logs
indicate a number of successive failed HTTP requests over an
interval of ~1 minute during these runs. Resin’s logs indicate
that the server encounters a low-memory condition, forces a
number of JVM garbage collections before restarting the
application server. During the restart, requests sent by RBE-
clients fail to complete. A poisson fit of the timeintervals
between these nine runs at the 95% confidence interval yields
a hazard rate of 1 memory-leak related failure (Resin restart)
every 8.1593 hours.
 Figure 2 shows a trace sampling the number of client
interactions completed every 60 seconds for a typical run,
(Run #2), compared to data from some runs where low
memory conditions cause Resin to restart. Data obtained

Figure 2. Client-side Interaction Trace - Configuration B

from Resin’s logs record startup times of 3,092 msecs (initial
startup) and restart times of approximately 47,582 msecs.
 To evaluate the RAS-characteristics of the system in the
presence of the memory leak, we use the SHARPE RAS-
modeling and analysis tool [20] to create the basic 2-node,
2-parameter RAS-model shown in Figure 3. Table 1 lists
the model’s parameters.

Figure 3. Simple RAS Model

Table 1. RAS-Model Parameters - Configuration B

 Whereas the model shown in Figure 3 implicitly assumes
that the detection of the low memory condition is perfect and
the restart of the application server resolves the problem
100% of the time, in this instance these assumptions are
validated by the experiments.
 Using the steady-state/limiting availability formula [12]:
A = the steady state availability of the system is 99.838%.
Further, the system has an expected downtime of 866 minutes
per year – given by the formula (1 − Availability)*T where T
= 525, 600 minutes in a year. At best, the system is capable
of delivering two 9’s of availability. Table 2 shows the
expected penalties per year for each minute of downtime over
the allowed limit. As an additional consideration, downtime
may also incur costs in terms of time and money spent on
service visits, parts and/or labor, which add to any assessed
penalties.

Table 2. Expected SLA Penalties for Configuration B

 In Configuration C we inject faults into the pcnet32 device

driver with Nooks driver protection disabled. Each injected
fault leads to a kernel panic requiring a reboot to make the
system operational again. For this set experiments we
arbitrarily choose a fault rate of 4 device failures every 8
hours and use the SWIFI tools to achieve this rate of failures
in our system under test. The fact that that the remediation
mechanism (the reboot) always restores the system to an
operational state allows us to reuse the basic 2-parameter
RAS-model shown in Figure 3 to evaluate the RAS-
characteristics of the system in the presence of device driver
faults. Table 3 shows the parameters of the model.

Table 3. RAS-Model Parameters - Configuration C

 Using SHARPE, we calculate the steady state availability
of the system as 98.87%, with an expected downtime of 5924
minutes per year i.e. under this fault-load the system cannot
deliver two nines of availability.
 Next we consider the case of the system under test
enhanced with Nooks device driver protection enabled –
Configuration D. Whereas we reuse the same fault-load and
fault-rate, 4 device driver failures every 8 hours, we need to
revise the RAS-model used in our analysis to account for the
possibility of imperfect repair i.e. to handle cases where
Nooks is unable to recover the failed device driver and
restore the system to an operational state. To achieve this we
use the RAS-model shown in Figure 4, its parameters are
listed in Table 4.

Figure 4. RAS-Model of a system with imperfect repair

Table 4. RAS-model Parameters - Configuration D

 Figure 5 shows the expected impact of Nooks recovery on
the system’s RAS-characteristics as its success rate varies.
 Whereas Configuration C of the system under test is
unable to deliver two 9’s of availability in the presence of
device driver faults, a modest 20% success rate from Nooks

Figure 5. Availability - Configuration D

is expected to promote the system into another availability
bracket while a 92% success rate reduces the expected
downtime and SLA penalties by two orders of magnitude
(see Figure 5)1.
 Thus far we have analyzed the system under test and each
fault in isolation i.e. each RAS-model we have developed so
far considers one fault and its remediations. We now develop
a RAS-model that considers all the faults in our fault-model
and the remediations available, Configuration E (Figure 6).

Figure 6. Complete RAS-model - Configuration E

 Figure 7 shows the expected availability of the complete
system. The system’s availability is limited to two 9’s of
availability even though the system could deliver better
availability and downtime numbers – the minimum system
downtime is calculated as 866 minutes per year, the same as
for Configuration B, the memory leak scenario. Thus, even
with perfect Nooks recovery, the system’s availability is
limited by the reactive remediation for the memory leak. To
improve the system’s overall availability we need to improve
the handling of the memory leak.
 One option for improvement is to consider preventative
maintenance. For this to be an option we assume that the
system’s failure distribution is hypoexponential. We divide
the system’s lifetime into two stages, where the time spent in

1 In our experiments we were unable to encounter a scenario where Nooks
was unable to successfully recover a failed device driver; however the point
of our exercise is to demonstrate how that eventually could be accounted for
in an evaluation of a remediation mechanism.

Figure 7. Availability - Configuration E

each state is exponentially distributed.
 We use the RAS-model shown in Figure 8 in our
analysis. Its parameters are listed in Table 5.

Figure 8. Preventative Maintenance RAS-model

Table 5. Preventative maintenance model parameters

 Using these parameters we plot the graph shown in Figure
9, which shows the expected availability of the system as
λinspect varies. We see that performing a check 6 times every
hour and performing preventative maintenance is expected to
improve the system’s availability; however, actually
implementing this scheme and running more experiments is
the only way to validate this model.

Figure 9. Expected impact of preventative maintenance

 In summary, our analysis of existing remediations and a
yet-to-be-added preventative maintenance scheme produce
artifacts (measurements and models) that can validate or
justify system (re)design decisions.

5. Related Work

The work most similar to ours is [7]. In this paper the authors
build a RAS model to explore the expected impact of
Memory Page Retirement (MPR) on hardware faults
associated with failing memory modules on systems running
Solaris 10. MPR removes a physical page of memory from
use by the system in response to error correction code (ECC)
errors associated with that page. Using their models the
authors investigate the expected impact of MPR on yearly
downtime, the number of service interruptions and the
number of servicing visits due to hardware permanent faults.
Unlike our experiments, which focus on software and rely
on fault injection experiments to collect data, the authors
focus on hardware failures and use field data from deployed
low-end and mid-range server systems to build models.
 In [6] the authors study the availability of the Sun Java
System Application Server, Enterprise Edition 7. The authors
use hierarchical Markov reward models to model and obtain
average system availability estimates. In a distributed load-
balanced deployment, including two application server
instances, 2 pairs of Highly Available Databases (HADBs) –
used as http session state stores – an Oracle database and a
Sun Java System Directory Server, the authors induce faults
concerned with whole-node removal to investigate the
system’s (session) fail-over and recovery mechanisms. Our
experiments differ in the granularity of our fault-injection;
rather than remove entire nodes, we focus on injecting faults
in the individual components of a single node. Further,
whereas we do not focus on evaluating remediation
mechanisms that rely on whole-node redundancy or failover,
RAS-modeling techniques can be adapted for this [12].
 [9] describes the DBench-OLTP dependability benchmark.
We differ from this work in our choice of metrics. The
measures prescribed in the DBench-OLTP specification
include but are not limited to: transactions per minute
(tpmC), price per transaction ($/tpmC), availability from the
system under test and remote terminal emulator points of
view. We focus less on performance-related measures and

present ways to analyze the impact of the system’s
remediation mechanisms on the system’s reliability,
availability and serviceability.
 FAUMachine [22] (formerly UMLinux) is a virtualization
platform supporting fault-injection. The faults that can be
injected include, but are not limited to: bit flips in memory
and CPU registers, block device failures and network
failures. For our experiments we required more fine-grained
control over the faults injected. Further, the faults that could
be injected using FAUMachine would not appropriately
exercise the remediation mechanisms of our target system.
 Our work is complementary to the work done on
robustness benchmarking [5] and fault-tolerant benchmarking
[27]. However, we focus less on the robustness of individual
component interfaces for our fault-injection and more on
system recovery in the presence of component-level faults
i.e. resource leaks or delays.
 [1] conducts a study of availability and maintainability
benchmarks using software RAID systems. In addition to
studying availability from the end-user perspective as these
authors do, we also include the use of mathematical models
to assist in the analysis of existing and potential remediation-
mechanisms.
 [15] describes the System Recovery Benchmark. The
authors propose measuring system recovery on a non-
clustered standalone system. The focus of the work is on
detailed measurements of system startup, restart and recovery
events. Our work is complementary to this, relying on
measuring startup, restart and recovery times at varying
granularity. We consider these measurements at node-
granularity as well as application/component granularity.
 [2] describes work towards a self-healing benchmark. In
our work we analyze the individual mechanisms that impact
the quality of service metrics of interest. Our focus on how
the system accomplishes healing and its relation to the high-
level system goals, dictated by SLAs and policies.

6. Conclusions & Future Work

In this paper we use reliability, availability and serviceability
(RAS) metrics and models, coupled with fault-injection
experiments, to analyze the impact of self-healing
mechanisms on these high-level (RAS) metrics of interest.
We also highlight the versatility of these models by
employing them to briefly study and design various styles of
remediations, analyze the impact of failed remediations and
identify sub-optimal remediations. Based on our experiments
and the metrics obtained we conclude that RAS-models are
reasonable, rigorous, analytical tools for evaluating self-
healing systems and their mechanisms.
 For future work, we are interested in conducting additional
fault-injection experiments and analytical studies on different
operating system platforms, including Solaris 10, which has
been designed with a number of self-healing mechanisms [24,
21]. We will also continue our work developing practical
fault-injection tools.

7. Acknowledgments

The Programming Systems Laboratory is funded in part by NSF grants CNS-
0627473, CNS-0426623 and EIA-0202063, NIH grant 1U54CA121852-
01A1, and Consolidated Edison Company of New York. We would like to
thank Dan Phung, Prof. Jason Nieh, Prof. Angelos Keromytis (all of

Columbia University), Gavin Maltby, Dong Tang, Cynthia McGuire and
Michael Shapiro (all of Sun Microsystems) for their insightful comments and
feedback. We would also like to thank Prof. Michael Swift (formerly a
member of the Nooks project) for his assistance configuring and running
Nooks. Finally, we wish to thank Dr. Kishor Trivedi (Duke University) for
granting us permission to use SHARPE.

References
[1] A. Brown. Towards availability and maintainability benchmarks: A case
study of software raid systems. Masters thesis, University of California,
Berkeley, 2001. UCB//CSD011132.
[2] A. Brown and C. Redlin. Measuring the Effectiveness of Self-Healing
Autonomic Systems. In 2nd International Conference on Autonomic
Computing, 2005.
[3] G. Candea, J. Cutler, and A. Fox. Improving Availability with Recursive
Micro-Reboots: A Soft-State Case Study. In Dependable Systems and
Networks - performance and dependability symposium, 2002.
[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An empirical
study of operating system errors. In Symposium on Operating Systems
Principles, pages 73–88, 2001.
[5] J. DeVale. Measuring operating system robustness. Masters thesis,
Carnegie Mellon University
[6] D. Tang et al. Availability Measurement and Modeling for an
Application Server. In International Conference on Dependable Systems and
Networks, 2004.
[7] D. Tang et al. Assessment of the Effect of Memory Page Retirement on
System RAS Against Hardware Faults. In International Conference on
Dependable Systems and Networks, 2006.
[8] R. Griffith and G. Kaiser. A Runtime Adaptation Framework for Native
C and Bytecode Applications. In 3rd International Conference on Autonomic
Computing, 2006.
[9] I. S. T. (IST). Dependability benchmarking project final report.
http://www.laas.fr/DBench/Final/DBench-completereport.pdf.
[10] J. Zhu et al. R-Cubed: Rate, Robustness and Recovery An Availability
Benchmark Framework. Technical Report SMLI TR-2002-109, Sun
Microsystems, 2002.
[11] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer magazine, pages 41–50, January 2003.
[12] Kishor S. Trivedi. Probability and Statistics with Reliability, Queuing
and Computer Science Applications 2nd Edition. Wiley, 2002.
[13] P. Koopman. Elements of the self-healing problem space. In
Proceedings of the ICSE Workshop on Architecting Dependable Systems,
2003.
[14] J.-C. Laprie and B. Randell. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Secur. Comput.,
1(1):11–33, 2004.
[15] J. Mauro, J. Zhu, and I. Pramanick. The system recovery benchmark. In
10th IEEE Pacific Rim International Symposium on Dependable Computing,
2004.
[16] D. Menasce. TPC-W A Benchmark for E-Commerce.
http://ieeexplore.ieee.org/iel5/4236/21649/01003136.pdf, 2002.
[17] M. Swift et al. Improving the Reliability of Commodity
Operating Systems. In International Conference Symposium on Operating
Systems Principles, 2003.
[18] M. Swift et al. Recovering Device Drivers. In 6th
Symposium on Operating System Design and Implementation, 2004.
[19] NIST. National institute of standards and technology (NIST) website.
http://www.nist.gov/.
[20] A. R. Sahner and S. K. Trivedi. Reliability modeling using SHARPE.
Technical report, Durham, NC, USA, 1986.
[21] M. Shapiro. Self-healing in modern operating systems.
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid
=242.
[22] V. Sieh and K. Buchacker. Umlinux – a versatile swifi tool. In
Proceedings of the Fourth European Dependable Computing Conference,
2002.
[23] SPEC. Standard performance evaluation corporation (SPEC) website.
http://www.spec.org/.
[24] Sun Microsystems. Predictive self-healing in the solaris 10 operating
system. http://www.sun.com/software/whitepapers/solaris10/self_
healing.pdf.
[25] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, 1992.
TAN a 92:1 2.Ex.
[26] TPC. Transaction processing performance council (TPC) website.
http://www.tpc.org/.
[27] T. K. Tsai, R. K. Iyer, and D. Jewitt. An approach towards
benchmarking of fault-tolerant commercial systems. In Symposium on Fault-
Tolerant Computing, pages 314–323, 1996.

