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Abstract: In an idealized scenario, self-healing systems 
predict, prevent or diagnose problems and take the 
appropriate actions to mitigate their impact with minimal 
human intervention. To determine how close we are to 
reaching this goal we require analytical techniques and 
practical approaches that allow us to quantify the 
effectiveness of a system’s remediation mechanisms. In this 
paper we apply analytical techniques based on Reliability, 
Availability and Serviceability (RAS) models to evaluate 
individual remediation mechanisms of select system 
components and their combined effects on the system. We 
demonstrate the applicability of RAS-models to the 
evaluation of self-healing systems by using them to analyze 
various styles of remediations (reactive, preventative etc.), 
quantify the impact of imperfect remediations, identify sub-
optimal (less effective) remediations and quantify the 
combined effects of all the activated remediations on the 
system as a whole. 
Keywords: self-healing evaluation, RAS-models, Kheiron 
 
1. Introduction 
 
Self-healing systems are expected to respond to problems that 
arise in their environments with minimal human intervention. 
To achieve this, these systems may employ a variety of 
remediation strategies including preventative, proactive and 
reactive strategies. In the ideal case, such systems will use a 
combination of these strategies to predict, prevent or 
diagnose and react to problems. To determine how close we 
are to realizing this goal we require rigorous analytical tools 
that quantify the efficacy of the remediation mechanisms, and 
by extension, allow for quantitative evaluations of entire self-
healing systems. 
    The most well-understood evaluation tools for general 
computing systems however, are performance-centric. 
Performance benchmarks, such as those produced by the 
National Institute of Science and Technology (NIST) [19], 
the Standard Performance Evaluation Corporation (SPEC ®) 
[23] and the Transaction Processing Performance Council 
(TPC™) [26], are routinely used to demonstrate that an 
experimental system prototype is better than the state-of-the-
art because it delivers acceptable or superior performance. 
They are also used as reasonable workloads to exercise a 
system during experiments.  
    Whereas performance benchmarks can also be a source of 
reasonable workloads for self-healing systems, performance 

numbers, however, do not allow us to draw conclusions about 
one system being “better” than another with respect to its 
ability to heal itself. Measures concerned with overall system 
performance do not adequately capture the details that 
distinguish one remediation mechanism from another e.g. 
remediation accuracy/success rates, the impact of 
remediation failures, the consequences of remediation style, 
remediation timings, the impact of remediations on system 
manageability and accounting for partially automated 
remediations. This deficiency of performance benchmarks 
limits our ability to use them as the primary means of 
comparing or ranking self-healing systems. 
    We posit that analytical tools that can be adapted to study 
the many facets of remediations, including but not limited to 
those mentioned, will provide greater insights into the design, 
development and evaluation of self-healing systems than pure 
performance-evaluations. 
    In addition to analyzing the details of remediation 
mechanisms, there are a number of high-level measures that 
also can be used to differentiate self-healing systems. 
According to [11], a self-healing system “...automatically 
detects, diagnoses and repairs localized software and 
hardware problems” [11]. As a result, it is reasonable to 
expect that these systems exhibit fewer severe-outages, better 
reliability and availability characteristics than vanilla systems 
(i.e. systems lacking self-healing capabilities). The system’s 
diagnostic capabilities are expected to enhance its 
manageability by improving the selection and execution of 
(fully or partially automated) repair mechanisms. Where 
100% automated repair mechanisms are lacking, effective, 
automated diagnosis can guide human operators, reducing the 
total time and effort needed for performing repairs. We also 
expect these systems to exhibit lower serviceability “costs” 
e.g. lower yearly downtimes and a lower frequency of 
unexpected servicing/maintenance events. 
    In this paper we employ analytical techniques based on 
Continuous Time Markov Chains (CTMCs) [12], specifically 
Birth-Death processes and Non-Birth-Death processes to 
construct Reliability, Availability and Serviceability (RAS) 
models, which we use to evaluate a system’s self-healing 
mechanisms and its overall self-healing capabilities. 
    We study the existing self-healing mechanisms of an 
operating system and an application server hosting an N-tier 
web-application. These recovery/repair mechanisms are 
exercised using focused fault-injection. Based on the 
experimental results of our fault-injection experiments we 



 

construct a set of RAS-models, evaluate each remediation 
mechanism individually, and then study the combined impact 
of the remediation mechanisms on the system. 
     This paper makes two contributions. First, we show the 
flexibility of simple RAS-models as they easily address two 
of the challenges of evaluating self-healing systems – 
quantifying the impact of imperfect remediation scenarios 
and analyzing the various styles of remediations (reactive, 
preventative and proactive). This flexibility positions RAS-
models as a practical analysis tool for aiding in the 
development of a comprehensive, quantitative benchmark for 
self-healing systems. 
    Second, we demonstrate that it is possible to analyze fault-
injection experiments under simplifying Markovian 
assumptions about fault distributions and system-failures and 
still glean useful insights about the efficacy of a system’s 
self-healing mechanisms. Further, we show that the metrics 
obtained from RAS-models – remediation success rates, 
limiting availability, limiting reliability and expected yearly 
downtime – allow us to identify sub-optimal remediation 
mechanisms and reason about the design of improved 
remediation mechanisms. 
    The remainder of this paper is organized as follows; §2 
defines some key terms. §3 describes the setup of the fault-
injection experiments conducted on our N-tier web 
application’s components. §4 analyzes and discusses the 
results. §5 covers related work and §6 presents our 
conclusions and describes future work. 
 
2. Terminology 
 
In this section we formalize some of the terms used 
throughout this paper. 
• Error – the deviation of system external state from correct 

service state [14]. 
• Fault – the adjudged or hypothesized cause of an error 

[14]. 
• Fault Hypothesis/Fault Model – the set of faults a self-

healing system is expected to be able to heal [13]. 
• Remediation – the process of correcting a fault. In this 

paper remediation spans the activities of detection, 
diagnosis and repair since the first step in responding to a 
fault is detection [13]. 

• Failure – an event that occurs when the delivered service 
violates an environmental/contextual constraint e.g. a 
policy or SLA. This definition emphasizes the client-side 
(end-user’s) perspective over the server-side perspective 
[1]. 

• Reliability – the number (or frequency) of client-side 
interruptions. 

• Availability – a function of the rate of failure/maintenance 
events and the speed of recovery [10]. 

• Serviceability – a function of the number of service-visits 
and their duration and costs.  

 
3. Experiments 
 
The goal of our experiments is to inject faults into specific 
components of the system under test and study its response. 
The faults we inject are intended to exercise the remediation 
mechanisms of the system. We use the experimental data to 
mathematically model the impact of the faults we inject on 

the system’s reliability, availability and serviceability with 
and without the remediation mechanisms.  
    Whereas our fault-injection experiments may expose the 
system to rates of failure well above what the system may see 
in a given time period, these artificially high failure rates 
allow us to explore the expected and unexpected system 
responses under stressful fault conditions, much like 
performance benchmarks subject the system under test to 
extreme workloads. 

To conduct our experiments we need: a test-platform, i.e. a 
hardware/software stack executing a reasonable workload, a 
fault model, fault-injection tools, a set of remediation 
mechanisms and a set of system configurations.     

For our test platform we use VMWare GSX virtual 
machines configured with: 512 MB RAM, 1 GB of swap, an 
Intel x86 Core Solo processor and an 8 GB harddisk running 
Redhat 9 on 2.4.18 kernels. We use an instance of the TPC-
W web-application (based on the implementation developed 
at the University of Madison-Wisconsin) running on MySQL 
5.0.27, the Resin 3.0.22 application server and webserver, 
and Sun Microsystems’ Hotspot Java Virtual Machine 
(JVM), v1.5. We simulate a load of 20 users using the 
Shopping Mix [16] as their web-interaction strategy. User-
interactions are simulated using the Remote Browser 
Emulator (RBE) software also implemented at the University 
of Madison-Wisconsin. Our VMs are hosted on a machine 
configured with 2 GB RAM, 2 GB of swap, an Intel Core 
Solo T3100 Processor (1.66 GHz) and a 51 GB harddisk 
running Windows XP SP2. 
    Our fault model consists of device driver faults targeting 
the Operating System and memory leaks targeting the 
application server. We chose device driver faults because 
device drivers account for ~70% of the Linux kernel code 
and have error rates seven times higher than the rest of the 
kernel [4] – faulty device drivers easily compromise the 
integrity and reliability of the kernel. While memory leaks 
and general state corruption (dangling pointers and damaged 
heaps) are highlighted as common bugs leading to system 
crashes in large-scale web deployments [3]. 
    We identified the operating system and the application 
server as candidate targets for fault-injection. Given the 
operating system’s role as resource manager [25] and part of 
the native execution environment for applications [8] its 
reliability is critical to the overall stability of the applications 
it hosts. Similarly, application servers act as containers for 
web-applications responsible for providing a number of 
services, including but not limited to, isolation, transaction 
management, instance management, resource management 
and synchronization. These responsibilities make application-
servers another critical link in a web-application’s reliability 
and another prime target for fault-injection. Database servers 
are also reasonable targets for fault-injection; however 
database fault-injection experiments are outside the scope of 
this work but will be the focus of future work. 
    We use a version of the SWIFI device driver fault-injection 
tools [17, 18] (University of Washington) and a tool based on 
our own Kheiron/JVM [8] implementation for application-
server fault-injection.  
    There are three remediation mechanisms we consider: 
(manual) system reboots, (automatic) application server 
restarts and Nooks device driver protection and recovery [17] 
– Nooks isolates the kernel from device drivers using 



 

lightweight protection domains, as a result driver crashes are 
less likely to cause a kernel crash. Further, Nooks supports 
the transparent recovery of a failed device driver. 
    Finally, we use the following system-configurations: 
Configuration A – Fault-free system operation, 
Configuration B – System operation in the presence of 
memory leaks, Configuration C – System operation in the 
presence of device-driver failures (Nooks disabled), 
Configuration D – System operation in the presence of 
device-driver failures (Nooks enabled), and Configuration E 
– System operation in the presence of memory leaks and 
driver failures (Nooks enabled).  
 
4. Results and Analysis 
 
In our experiments we measure both client-side and 
server-side activity. On the client-side we use the number 
of web interactions and client-perceived rate of failure to 
determine client-side availability.  
    A typical fault-free run of the TPC-W (Configuration 
A), takes ~24 minutes to complete and records 3973 
successful client-side interactions. 
    Figure 1 shows the client-side goodput over ~76 hours 
of continuous execution (187 runs) in the presence of an 
accumulating memory leak – Configuration B. The average 
 

 
Figure 1. Client interactions - Configuration B 

 
number of client-side interactions over this series of 
experiments is 4032.3 ± 116.8473. In this figure there are 
nine runs where the number of client interactions is 2 or more 
standard deviations below the mean. Client-activity logs 
indicate a number of successive failed HTTP requests over an 
interval of ~1 minute during these runs. Resin’s logs indicate 
that the server encounters a low-memory condition, forces a 
number of JVM garbage collections before restarting the 
application server. During the restart, requests sent by RBE-
clients fail to complete. A poisson fit of the timeintervals 
between these nine runs at the 95% confidence interval yields 
a hazard rate of 1 memory-leak related failure (Resin restart) 
every 8.1593 hours. 
    Figure 2 shows a trace sampling the number of client 
interactions completed every 60 seconds for a typical run, 
(Run #2), compared to data from some runs where low 
memory conditions cause Resin to restart. Data obtained 

 
Figure 2. Client-side Interaction Trace - Configuration B 

 
from Resin’s logs record startup times of 3,092 msecs (initial 
startup) and restart times of approximately 47,582 msecs. 
    To evaluate the RAS-characteristics of the system in the 
presence of the memory leak, we use the SHARPE RAS-
modeling and analysis tool [20] to create the basic 2-node, 
2-parameter RAS-model shown in Figure 3. Table 1 lists 
the model’s parameters. 
 

 
Figure 3. Simple RAS Model 

 

 
Table 1. RAS-Model Parameters - Configuration B 

 
    Whereas the model shown in Figure 3 implicitly assumes 
that the detection of the low memory condition is perfect and 
the restart of the application server resolves the problem 
100% of the time, in this instance these assumptions are 
validated by the experiments. 
    Using the steady-state/limiting availability formula [12]: 
A = the steady state availability of the system is 99.838%.  
Further, the system has an expected downtime of 866 minutes 
per year – given by the formula (1 − Availability)*T where T 
= 525, 600 minutes in a year. At best, the system is capable 
of delivering two 9’s of availability. Table 2 shows the 
expected penalties per year for each minute of downtime over 
the allowed limit. As an additional consideration, downtime 
may also incur costs in terms of time and money spent on  
service visits, parts and/or labor, which add to any assessed 
penalties. 
 

 
Table 2. Expected SLA Penalties for Configuration B 

     
    In Configuration C we inject faults into the pcnet32 device 



 

driver with Nooks driver protection disabled. Each injected 
fault leads to a kernel panic requiring a reboot to make the 
system operational again. For this set experiments we 
arbitrarily choose a fault rate of 4 device failures every 8 
hours and use the SWIFI tools to achieve this rate of failures 
in our system under test. The fact that that the remediation 
mechanism (the reboot) always restores the system to an 
operational state allows us to reuse the basic 2-parameter 
RAS-model shown in Figure 3 to evaluate the RAS-
characteristics of the system in the presence of device driver 
faults. Table 3 shows the parameters of the model. 
 

 
Table 3. RAS-Model Parameters - Configuration C 

 
    Using SHARPE, we calculate the steady state availability 
of the system as 98.87%, with an expected downtime of 5924 
minutes per year i.e. under this fault-load the system cannot 
deliver two nines of availability. 
    Next we consider the case of the system under test 
enhanced with Nooks device driver protection enabled – 
Configuration D. Whereas we reuse the same fault-load and 
fault-rate, 4 device driver failures every 8 hours, we need to 
revise the RAS-model used in our analysis to account for the 
possibility of imperfect repair i.e. to handle cases where 
Nooks is unable to recover the failed device driver and 
restore the system to an operational state. To achieve this we 
use the RAS-model shown in Figure 4, its parameters are 
listed in Table 4. 
 

 
Figure 4. RAS-Model of a system with imperfect repair 

 

 
Table 4. RAS-model Parameters - Configuration D 

 
    Figure 5 shows the expected impact of Nooks recovery on 
the system’s RAS-characteristics as its success rate varies. 
    Whereas Configuration C of the system under test is 
unable to deliver two 9’s of availability in the presence of 
device driver faults, a modest 20% success rate from Nooks  

 
Figure 5. Availability - Configuration D 

     
is expected to promote the system into another availability 
bracket while a 92% success rate reduces the expected 
downtime and SLA penalties by two orders of magnitude 
(see Figure 5)1. 
    Thus far we have analyzed the system under test and each 
fault in isolation i.e. each RAS-model we have developed so 
far considers one fault and its remediations. We now develop 
a RAS-model that considers all the faults in our fault-model 
and the remediations available, Configuration E (Figure 6). 
 

 
Figure 6. Complete RAS-model - Configuration E 

 
    Figure 7 shows the expected availability of the complete 
system. The system’s availability is limited to two 9’s of 
availability even though the system could deliver better 
availability and downtime numbers – the minimum system 
downtime is calculated as 866 minutes per year, the same as 
for Configuration B, the memory leak scenario. Thus, even 
with perfect Nooks recovery, the system’s availability is 
limited by the reactive remediation for the memory leak. To 
improve the system’s overall availability we need to improve 
the handling of the memory leak. 
    One option for improvement is to consider preventative 
maintenance. For this to be an option we assume that the 
system’s failure distribution is hypoexponential. We divide 
the system’s lifetime into two stages, where the time spent in  

                                                 
1 In our experiments we were unable to encounter a scenario where Nooks 
was unable to successfully recover a failed device driver; however the point 
of our exercise is to demonstrate how that eventually could be accounted for 
in an evaluation of a remediation mechanism. 



 

 
Figure 7. Availability - Configuration E 

 
each state is exponentially distributed.  
        We use the RAS-model shown in Figure 8 in our 
analysis. Its parameters are listed in Table 5. 
 

 
Figure 8. Preventative Maintenance RAS-model 

 

 
Table 5. Preventative maintenance model parameters 

     
    Using these parameters we plot the graph shown in Figure 
9, which shows the expected availability of the system as 
λinspect varies. We see that performing a check 6 times every 
hour and performing preventative maintenance is expected to 
improve the system’s availability; however, actually 
implementing this scheme and running more experiments is 
the only way to validate this model. 

 
Figure 9. Expected impact of preventative maintenance 

     
    In summary, our analysis of existing remediations and a 
yet-to-be-added preventative maintenance scheme produce 
artifacts (measurements and models) that can validate or 
justify system (re)design decisions. 
 
5. Related Work 
 
The work most similar to ours is [7]. In this paper the authors 
build a RAS model to explore the expected impact of 
Memory Page Retirement (MPR) on hardware faults 
associated with failing memory modules on systems running 
Solaris 10. MPR removes a physical page of memory from 
use by the system in response to error correction code (ECC) 
errors associated with that page. Using their models the 
authors investigate the expected impact of MPR on yearly 
downtime, the number of service interruptions and the 
number of servicing visits due to hardware permanent faults. 
Unlike our experiments, which focus on software and rely 
on fault injection experiments to collect data, the authors 
focus on hardware failures and use field data from deployed 
low-end and mid-range server systems to build models. 
    In [6] the authors study the availability of the Sun Java 
System Application Server, Enterprise Edition 7. The authors 
use hierarchical Markov reward models to model and obtain 
average system availability estimates. In a distributed load-
balanced deployment, including two application server 
instances, 2 pairs of Highly Available Databases (HADBs) – 
used as http session state stores – an Oracle database and a 
Sun Java System Directory Server, the authors induce faults 
concerned with whole-node removal to investigate the 
system’s (session) fail-over and recovery mechanisms. Our 
experiments differ in the granularity of our fault-injection; 
rather than remove entire nodes, we focus on injecting faults 
in the individual components of a single node. Further, 
whereas we do not focus on evaluating remediation 
mechanisms that rely on whole-node redundancy or failover, 
RAS-modeling techniques can be adapted for this [12]. 
    [9] describes the DBench-OLTP dependability benchmark. 
We differ from this work in our choice of metrics. The 
measures prescribed in the DBench-OLTP specification 
include but are not limited to: transactions per minute 
(tpmC), price per transaction ($/tpmC), availability from the 
system under test and remote terminal emulator points of 
view. We focus less on performance-related measures and 



 

present ways to analyze the impact of the system’s 
remediation mechanisms on the system’s reliability, 
availability and serviceability. 
    FAUMachine [22] (formerly UMLinux) is a virtualization 
platform supporting fault-injection. The faults that can be 
injected include, but are not limited to: bit flips in memory 
and CPU registers, block device failures and network 
failures. For our experiments we required more fine-grained 
control over the faults injected. Further, the faults that could 
be injected using FAUMachine would not appropriately 
exercise the remediation mechanisms of our target system. 
    Our work is complementary to the work done on 
robustness benchmarking [5] and fault-tolerant benchmarking 
[27]. However, we focus less on the robustness of individual 
component interfaces for our fault-injection and more on 
system recovery in the presence of component-level faults 
i.e. resource leaks or delays. 
    [1] conducts a study of availability and maintainability 
benchmarks using software RAID systems. In addition to 
studying availability from the end-user perspective as these 
authors do, we also include the use of mathematical models 
to assist in the analysis of existing and potential remediation-
mechanisms. 
    [15] describes the System Recovery Benchmark. The 
authors propose measuring system recovery on a non-
clustered standalone system. The focus of the work is on 
detailed measurements of system startup, restart and recovery 
events. Our work is complementary to this, relying on 
measuring startup, restart and recovery times at varying 
granularity. We consider these measurements at node-
granularity as well as application/component granularity. 
    [2] describes work towards a self-healing benchmark. In 
our work we analyze the individual mechanisms that impact 
the quality of service metrics of interest. Our focus on how 
the system accomplishes healing and its relation to the high-
level system goals, dictated by SLAs and policies. 
 
6. Conclusions & Future Work 
 
In this paper we use reliability, availability and serviceability 
(RAS) metrics and models, coupled with fault-injection 
experiments, to analyze the impact of self-healing 
mechanisms on these high-level (RAS) metrics of interest. 
We also highlight the versatility of these models by 
employing them to briefly study and design various styles of 
remediations, analyze the impact of failed remediations and 
identify sub-optimal remediations. Based on our experiments 
and the metrics obtained we conclude that RAS-models are 
reasonable, rigorous, analytical tools for evaluating self-
healing systems and their mechanisms.  
    For future work, we are interested in conducting additional 
fault-injection experiments and analytical studies on different 
operating system platforms, including Solaris 10, which has 
been designed with a number of self-healing mechanisms [24, 
21]. We will also continue our work developing practical 
fault-injection tools. 
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