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Abstract

The most common and well-understood way to evaluate and compare computing systems is via
performance-oriented benchmarks. However, numerous other demands are placed on computing
systems besides speed. Current generation and next generation computing systems are expected
to be reliable, highly available, easy to manage and able to repair faults and recover from failures
with minimal human intervention.

The extra-functional requirements concerned with reliability, high availability, and service-
ability (manageability, repair and recovery) represent an additional set of high-level goals the
system is expected to meet or exceed. These goals govern the system’s operation and are codified
using policies and service level agreements (SLAs).

To satisfy these extra-functional requirements, system-designers explore or employ a number
of mechanisms geared towards improving the system’s reliability, availability and serviceability
(RAS) characteristics. However, to evaluate these mechanisms and their impact, we need some-
thing more than performance metrics.

Performance-measures are suitable for studying the feasibility of the mechanisms i.e. they
can be used to conclude that the level of performance delivered by the system with these mecha-
nisms active does not preclude its usage. However, performance numbers convey little about the
efficacy of the systems RAS-enhancing mechanisms. Further, they do not allow us to analyze
the (expected or actual) impact of individual mechanisms or make comparisons/discuss tradeoffs
between mechanisms.

What is needed is an evaluation methodology that is able to analyze the details of the RAS-
enhancing mechanisms – the micro-view as well as the high-level goals, expressed as policies,
SLAs etc., governing the system’s operation – the macro-view. Further, we must establish a link
between the details of the mechanisms and their impact on the high-level goals. This thesis is
concerned with developing the tools and applying analytical techniques to enable this kind of
evaluation. We make three contributions.

First, we contribute to a suite of runtime fault-injection tools with Kheiron. Kheiron demon-
strates a feasible, low-overhead, transparent approach to performing system-adaptations in a va-
riety of execution environments at runtime. We use Kheiron’s runtime-adaptation capability to
inject faults into running programs. We present three implementations of Kheiron, each target-
ing a different execution environment. Kheiron/C manipulates compiled C-programs running
in an unmanaged execution environment – comprised of the operating system and the underly-
ing processor. Kheiron/CLR manipulates programs running in Microsoft’s Common Language
Runtime (CLR) and Kheiron/JVM manipulates programs running in Sun Microsystems’ Java Vir-
tual Machine (JVM). Kheiron’s operation is transparent to both the application and the execution
environment. Further, the overheads imposed by Kheiron on the application and the execution
environment are negligible, <5%, when no faults are being injected.

Second, we describe analytical techniques based on RAS-models, represented as Markov
chains and Markov reward models, to demonstrate their power in evaluating RAS-mechanisms
and their impact on the high-level goals governing system-operation. We demonstrate the flex-
ibility of these models in evaluating reactive, proactive and preventative mechanisms as well as
their ability to explore the feasibility of yet-to-be-implemented mechanisms. Our analytical tech-
niques focus on remediations rather than observed mean time to failures (MTTF). Unlike hard-
ware, where the laws of physics govern the failure rates of mechanical and electrical parts, there
are no such guarantees for software failure rates. Software failure-rates can however be influenced
using fault-injection, which we employ in our experiments. In our analysis we consider a number
of facets of remediations, which include, but go beyond mean time to recovery (MTTR). For ex-
ample we consider remediation success rates, the (expected) impact of preventative-maintenance
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and the degradation-impact of remediations in our efforts to establish a framework for reasoning
about the tradeoffs (the costs versus the benefits) of various remediation mechanisms.

Finally, we distill our experiences developing runtime fault-injection tools, performing fault-
injection experiments and constructing and analyzing RAS-models into a 7-step process for eval-
uating computing systems – the 7U-evaluation methodology. Our evaluation method succeeds
in establishing the link between the details of the low-level mechanisms and the high-level goals
governing the system’s operation. It also highlights the role of environmental constraints and
policies in establishing meaningful criteria for scoring and comparing these systems and their
RAS-enhancing mechanisms.
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1 Introduction
Measuring a system’s performance is the most well-understood approach to evaluating and compar-
ing computing systems. Researchers routinely use traditional performance benchmarks produced by
organizations including the National Institute of Science and Technology (NIST) [63], the Standard
Performance Evaluation Corporation (SPEC R©) [77] and the Transaction Processing and Performance
Council (TPC) [84], to demonstrate the feasibility of some experimental system prototype. However,
there are a number of other demands placed on computing systems besides being fast. We expect
current and next generation computing systems to be reliable, highly available, easy to manage and
able to repair faults and recover from errors with minimal human intervention.

Extra-functional requirements concerned with reliability, high availability, and serviceability (man-
ageability, repair and recovery) represent additional high-level goals the system is expected to meet
or exceed. These goals are codified in policies and service level agreements (SLAs), which govern
the system’s operation.

In an attempt to satisfy these extra-functional requirements, system designers explore or employ
mechanisms geared towards improving the system’s reliability, availability and serviceability (RAS)
characteristics. However, to reason about tradeoffs between mechanisms or to evaluate these mecha-
nisms and their impact we need something other than performance metrics.

Whereas performance metrics are suitable for studying the feasibility of having RAS-enhancing
mechanisms activated, i.e. to demonstrate that the system provides “acceptable” performance with
these mechanisms enabled, the performance numbers convey little about the efficacy of the mecha-
nisms. Further, performance measures do not allow us to analyze the expected or actual impact of
individual mechanisms on the system’s RAS-profile, compare the efficacy of individual mechanisms
or reason about tradeoffs between individual mechanisms.

What we need is an evaluation methodology, that allows us to analyze the details of RAS-enhancing
mechanisms (the micro-view) as well as the high-level goals governing the system’s operation (the
macro-view). We must establish a link between the details of the mechanisms and their (expected or
actual) impact on the high-level goals. This link serves to justify the addition of the mechanism and
enables us to reason about whether the mechanism is useful to the system i.e. whether the mechanism
helps the system to meet or exceed the high-level goals set for it.

To determine a system’s RAS-characteristics and investigate the impact of its existing (or yet-to-
be-added) RAS-enhancing mechanisms we require two things; runtime fault-injection tools and a
rigorous analytical framework. Runtime fault-injection tools allow us to study the impact of faults
on a system and the system’s failure behavior in its deployed environment. These tools allow us to
exercise any RAS-enhancing mechanisms they system may have. A rigorous analytical framework
allows us to quantify the expected or actual impact of existing or yet-to-be-added RAS-mechanisms
and helps to define objective criteria for comparing mechanisms.

This thesis is concerned with developing the fault-injection tools and applying analytical techniques to
enable the evaluation of the RAS-characteristics of the popular N-tier web-application stack via fault-
injection experiments that target commodity operating systems, application servers and relational
database systems. We make three contributions.

First, we contribute to a suite of runtime fault-injection tools with Kheiron. Kheiron demonstrates
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a feasible, low-overhead, transparent approach to performing system-adaptations in a variety of exe-
cution environments at runtime. We use Kheiron’s runtime-adaptation capability to inject faults into
running programs. We present three implementations of Kheiron, each targeting a different execution
environment. Kheiron/C [27] manipulates compiled C-programs running in an unmanaged execution
environment – comprised of the operating system and the underlying processor. Kheiron/CLR [25, 3]
manipulates programs running in Microsoft’s Common Language Runtime (CLR) and Kheiron/JVM
[27] manipulates programs running in Sun Microsystems’ Java Virtual Machine (JVM). Kheiron’s
operation is transparent to both the application and the execution environment. Further, the overheads
imposed by Kheiron on the application and the execution environment are negligible, <5%, when no
faults are being injected.

Second, we describe analytical techniques based on RAS-models, represented as Markov chains and
Markov reward models, to demonstrate their power in evaluating RAS-mechanisms and their impact
on the high-level goals governing system-operation. We demonstrate the flexibility of these models
in evaluating reactive, proactive and preventative mechanisms as well as their ability to explore the
feasibility of yet-to-be-implemented mechanisms. Our analytical techniques focus on remediations
rather than observed mean time to failures (MTTF). Unlike hardware, where the laws of physics
govern the failure rates of mechanical and electrical parts, there are no such guarantees for software
failure rates. Software failure-rates can however be influenced using fault-injection, which we employ
in our experiments. In our analysis we consider a number of facets of remediations, which include,
but go beyond mean time to recovery (MTTR). For example, we consider remediation success rates,
the (expected) impact of preventative-maintenance and the degradation-impact of remediations in our
efforts to establish a framework for reasoning about the tradeoffs (the costs versus the benefits) of
various remediation mechanisms.

Finally, we distill our experiences developing runtime fault-injection tools, performing fault-injection
experiments and constructing and analyzing RAS-models into a 7-step process for evaluating com-
puting systems – the 7U-evaluation methodology. Our evaluation method succeeds in establishing
the link between the details of the low-level mechanisms and the high-level goals governing the sys-
tem’s operation. It also highlights the role of environmental constraints and policies in establishing
meaningful criteria for scoring and comparing these systems and their RAS-enhancing mechanisms.

2 Problem, Definitions and Requirements

2.1 Definitions

This section formalizes some of the terms used throughout this proposal.

• An error is the deviation of system external state from correct service state [43].

• A fault is the adjudged or hypothesized cause of an error [43].

• The fault hypothesis/fault model is the set of faults a system is expected to be able to respond
to with a reactive, proactive or preventative action [40].

• Remediation is the process of correcting a fault. In this paper remediation spans the activities
of detection, diagnosis and repair since the first step in responding to a fault is detection [40].
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• A failure is an event that occurs when the delivered service violates an environmental/contextual
constraint e.g. a policy or SLA. This definition emphasizes the client-side (end-user’s) perspec-
tive over the server-side perspective [5].

• Reliability is the number (or frequency) of client-side interruptions.

• Availability is a function of the rate of failure/maintenance events and the speed of recovery
[35].

• Serviceability is a function of the number of service-visits and their duration and costs.

• An existing/legacy system is any system for which the source code may not be available or for
which it is undesirable to engage in substantial re-design and development.

• An execution environment is responsible for the preparation for distinguished entities – exe-
cutables – such that they can be run. Preparation in this context involves the loading and laying
out in memory of an executable. The level of sophistication, in terms of services provided by
the execution environment beyond loading, depends largely on the type of executable.

• A managed execution environment, e.g. Sun Microsystems’ Java Virtual Machine (JVM) or
Microsoft’s Common Language Runtime (CLR), is responsible not only for loading and run-
ning managed executables, but for providing additional application services, including but not
limited to: garbage collection, application isolation, security sandboxing and structured excep-
tion handling. These application services are typically geared towards enhancing the robustness
of applications. Managed execution environments are typically implementations of an abstract
machine with its own “specialized” instruction set and rules about the content/packaging of
managed executables [46, 55].

• A managed executable/application is represented in an abstract intermediate form expected by
the managed execution environment. This abstract intermediate form consists of metadata and
managed code. Metadata describes the structural aspects of the application, including classes,
their members and attributes, and their relationships with other classes [45]. Managed code
represents the functionality of the application’s methods encoded in an abstract binary form,
bytecode, conforming to the specialized instruction set expected by the managed execution
environment.

• An unmanaged execution environment consists of the underlying processor (e.g. IA-32/x86)
and the operating system (e.g. Linux).

• An unmanaged/native executable also contains metadata, albeit not as rich as their managed
counterparts. Compiled C/C++ programs may contain symbol information, however there is
neither a guarantee nor requirement that it be present. Further, unmanaged/native executables
contain instructions that can be directly executed on the underlying processor (hence the use
of the term native) whereas the bytecode found in managed executables must be interpreted
or Just-In-Time (JIT) compiled into processor instructions by a component of the managed
execution environment.
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2.2 Problem Statement

Performance-metrics and performance-oriented benchmarks are not the most effective way to evalu-
ate systems given the extra-functional demands concerning reliability, availability and serviceability
placed on them. As a result, we require an evaluation methodology that allows for the analysis of the
existing (or yet-to-be-added) RAS-enhancing mechanisms and their impact on the high-level goals
(expressed as policies and SLAs) governing the system’s operation.

To study the RAS-characteristics of computing systems, we require runtime fault-injection tools and a
rigorous analytical framework to evaluate and compare RAS-enhancing mechanisms. Existing/legacy
systems may not have (any or all of the) built-in fault-injection mechanisms needed to conduct an
evaluation, as a result we may be required to retro-fit these mechanisms – which is preferable to
rebuilding and redeploying specialized versions of target systems. The analytical techniques should
be capable of evaluating reactive, proactive and preventative RAS-enhancing mechanisms.

2.3 Requirements

Based on the above definitions and initial problem statement, we establish a set of requirements
needed to effectively solve the problem.

1. Support fault-injection in a variety of target systems. The approach to fault-injection should
not restrict the choice of target system or execution environment. Further, we must be able to
collect information on the target system’s execution such that it enables a basic understanding of
the target system’s operation and informs planning the introduction, modification, replacement
or removal of fault-injection mechanisms dynamically.

2. Support the efficient and transparent introduction of fault-injection mechanisms into ex-
isting/legacy systems. No changes to the application’s source code and/or the execution envi-
ronment where it runs should be necessary. Neither should specialized execution environments
or runtimes be required. Where necessary, existing extension mechanisms in both the applica-
tions and the execution environments may be used. This transparency allows us to study the
failure behavior in the released/deployed version of the system, rather than a specially built
version of the system.

3. Support the flexible modification/reversal of the dynamic adaptations that insert fault-
injection mechanisms. This flexibility allows us to dynamically improve or remove the fault-
injection mechanisms present in the system. New fault-injection mechanisms may complement
or replace existing fault-injection mechanisms.

4. Support the analysis of existing and yet-to-be-implemented reactive, proactive and pre-
ventative RAS-enhancing mechanisms. Objective and quantitative measures should be de-
vised such that mechanisms can be compared and evaluated.

5. Support evaluating the impact of individual and combined RAS-enhancing mechanisms
on the system’s high-level goals. Establish a link between the mechanisms and the policies
and SLAs that govern the system’s operation and constrains the choice of mechanisms.
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2.4 Hypotheses

This thesis investigates the following hypotheses:

1. Runtime adaptation is a reasonable technology for implementing efficient and flexible fault-
injection tools.

2. Continuous Time Markov Chains (CTMCs) and Markov Reward Models are a reasonable
framework for analyzing system failures, remediation mechanisms and their impact on system
operation.

3. RAS-models and fault-injection experiments can be used together to model and measure the
RAS-characteristics of computing systems. This combination links the details of the mech-
anisms to the high-level goals governing the systems operation, supporting comparisons of
individual or combined mechanisms.

3 Dynamic Fault-Injection via Runtime Adaptations

3.1 Introduction

The need for software to evolve as its usage and operational goals change has added the non-functional
requirement of adaptation to the list of facilities expected in systems. Example system-adaptations
include, but are not limited to, the ability to support reconfigurations, repairs, self-diagnostics or
user-directed evaluations driven by fault-injection.

However, not all systems have the built-in facilities to support many of the desired system-adaptations.
System designers have two alternatives when it comes to realizing software systems capable of adap-
tation. Adaptation mechanisms can be static i.e. built into the system, as is done in the K42 operating
system [8], or such functionality can be dynamically added i.e. retro-fitted onto them using external-
ized architectures like KX [23] or Rainbow [72].

While arguments can be made for either approach, the retrofit approach provides more flexibility.
Static system-adaptations force the system to be taken offline, rebuilt and restarted/redeployed to add,
modify or remove mechanisms whereas dynamic adaptations allow mechanisms to be added, modified
or removed while the system executes. The ability to keep the system running while adaptations occur
make dynamic adaptations preferable to their static counterparts [74, 40, 70]. Further, “baked-in”
adaptation mechanisms restrict the analysis and reuse of said mechanisms.

With any system there is a spectrum of adaptations that can be performed. Frameworks like KX
perform coarse-grained adaptations e.g. re-writing configuration files and restarting/terminating op-
erating system processes. However, in this proposal, we focus on fine-grained adaptations, those
interacting with individual components, sub-systems or methods e.g. augmenting these elements at
runtime to support reconfigurations, repairs, self-diagnostics or user-directed evaluations driven by
fault-injection.

In this section we describe the technologies underlying Kheiron, a framework for facilitating adapta-
tions in running programs in a variety of execution environments with low-overhead, upon which we
build the dynamic fault-injection tools used in Chapter 4. The fault-injection tools we build are one
example of software-implemented fault-injection tools [33].
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For software-implemented fault-injection tools there are a number of benefits realized by building
them on top of a dynamic-adaptation framework like Kheiron.

1. Unlike FAUMachine [76], Ferrari [36] and Ftape [85], which are limited to injecting bit flips in
CPU registers, memory addresses and emulating disk I/O errors, using Kheiron’s capabilities
we build fault-injection tools that can inject more fine-grained faults targeting individual com-
ponents, subsystems, methods and data structures e.g. removing components, inserting delays
or hangs, modifying specific fields of data structures/objects or inducing resource leaks.

2. Unlike Doctor [30], which uses compile-time program modifications to insert the fault-injection
mechanisms, Kheiron’s ability to dynamically add and remove mechanisms allows us the flexi-
bility to manage the performance overhead of persistent fault-injection mechanisms by dynam-
ically removing them. Further, new fault-injection mechanisms can be added on-the-fly.

3. Unlike Xception [48], which depends on the low-level facilities of the PowerPC processor,
Kheiron’s ability to support the insertion of fault-injection mechanisms does not rely on specific
debugging or performance monitoring facilities of the x86 processor.

4. Unlike FIST (Fault Injection System for Study of Transient Fault Effect) [29] and MARS (Main-
tainable Real-Time System) [37], fault-injection tools built using Kheiron we do not require
special hardware to induce faults. FIST and MARS use hardware that generates ion radiation
and electromagnetic fields to induce faults in target systems.

5. Holodeck [71] interposes between the application and the operating system. As a result, it
induces faults in the application indirectly. For example, it can corrupt files, corrupt network
packets, intercept/redirect system calls etc. However, fault-injection tools built on top of Khe-
iron can inject faults directly into the application itself as well as its environment (i.e. the
operating system or managed execution environment), thereby expanding the set of potential
targets for fault-injection.

6. Jaca [50] is a fault-injection tool intended to validate Java applications. Jaca injects high-level
faults affecting attributes, and methods of an object’s public interface via load-time bytecode
rewriting. The faults injected by Jaca include corrupting method attributes, parameters and
return values. In addition to performing load-time bytecode changes like Jaca, fault-injection
tools built using Kheiron are also able to perform runtime changes that add, augment or remove
fault-injection mechanisms. Further, Kheiron supports the adaptations of applications written
in a broader set of languages including C, Java and languages targeting Microsoft’s CLR e.g.
C#, VB .NET etc.

Kheiron supports a variety of application-types and execution environments. It manipulates com-
piled C-programs running in an unmanaged execution environment as well as programs running in
Microsoft’s Common Language Runtime and Sun Microsystems’ Java Virtual Machine. We present
case-studies and experiments that demonstrate the feasibility of using Kheiron to support fine-grained
runtime system-adaptations. We also describe the concepts and techniques used to retro-fit adapta-
tions onto existing systems in the various execution environments.

Managing the performance impact of the mechanisms used to effect fine-grained adaptations in the
running system presents an additional challenge. Since we are interacting with individual methods
or components we must be cognizant of the performance impact of effecting the adaptations e.g.
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inserting instrumentation into individual methods may slow down the system; but being able to selec-
tively add/remove instrumentation allows the performance impact to be tuned throughout the system’s
execution.

This section is primarily concerned with addressing the challenges of efficiently retro-fitting fine-
grained adaptation mechanisms onto existing software systems and managing the performance im-
pacts associated with retro-fitting these adaptation mechanisms. We posit that we can leverage the
unmodified execution environment to transparently facilitate the adaptations of existing/legacy sys-
tems. We describe three systems we have developed for this purpose. Kheiron/C manipulates running
compiled C programs on the Linux platform, Kheiron/CLR manipulates running .NET applications
and finally Kheiron/JVM manipulates running Java applications.

Our contribution is the ability to transparently retro-fit new functionality onto existing software sys-
tems. The techniques used to facilitate the retro-fit exhibit negligible performance overheads on the
running systems. Finally, our techniques address effecting adaptations in a variety of contemporary
execution environments. New functionality, packaged in separate modules, collectively referred to as
an adaptation engine, is loaded by Kheiron. At runtime, Kheiron can seamlessly transfer control over
to the adaptation engine, which effects the desired adaptations in the running application.

3.2 Motivation

The ability to adapt is critical for systems [38]. However, not every system is designed or constructed
with all the adaptation mechanisms it will ever need. As a result, there needs to some way to enable
existing applications to introduce and employ new mechanisms.

There are a number of specific fine-grained adaptations that can be retro-fitted onto existing systems
including, but not limited to, adding fault-injection, problem detection, diagnosis and in some cases
remediation mechanisms.

In this section we describe how our Kheiron implementations can be used to facilitate a number of
fine-grained adaptations in running systems via leveraging facilities and properties of the execution
environments hosting these systems. These adaptations include (but are not limited to): Inserting
or removing system instrumentation [62] to discover performance bottlenecks in the application or
detect (and where possible repair) data-structure corruption. The ability to remove instrumentation
can decrease the performance impact on the system associated with collecting information. Periodic
refreshing of data-structures, components and subsystems done using micro-reboots, which could be
performed at a fine granularity e.g., restarting individual components or sub-systems, or at a coarse
granularity e.g., restarting entire processes periodically. Replacing failed, unavailable or suspect
components and subsystems (where possible) [28]. Input filtering/audit to detect misused APIs.
Inserting faults or initiating ghost transactions against select components or subsystems and col-
lecting the results to obtain more details about a problem or investigate a system response. Selective
emulation of functions – effectively running portions of computation in an emulator, rather than on
the raw hardware to detect errors and prevent them from crashing the application.
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3.3 Challenges of Runtime Adaptation via the Execution Environment

There are a number of properties of execution environments that make them attractive for effecting
adaptations on running systems. They represent the lowest level (short of the hardware) at which
changes could be made to a running program. Some may expose (reasonably standardized) facilities
(e.g. profiling APIs [57, 60]) that allow the state of the program to be queried and manipulated. Fur-
ther, other facilities (e.g. metadata APIs [56]) may support the discovery, inspection and manipulation
of program elements e.g. type definitions and structures. Finally, there may be mechanisms which
can be employed to alter to the execution of the running system.

However, the low-level nature of execution environments also makes effecting adaptations a risky
(and potentially arduous) exercise. Injecting and effecting adaptations must not corrupt the execution
environment nor the system being adapted. The execution environment’s rules for what constitutes
a “valid” program must be respected while guaranteeing consistency-preserving adaptations in the
target software system. Causing a crash in the execution environment typically has the undesirable
side-effect of crashing the target application and any other applications being hosted.

At the level of the execution environment the programming-model used to specify adaptations may
be quite different from the one used to implement the original system. For example, to effect changes
via an execution environment, those changes may have to be specified using assembly instructions
(moves and jump statements), or bytecode instructions where applicable, rather than higher level
language constructs. This disconnect may limit the kinds of adaptations which can be performed
and/or impact the mechanism used to inject adaptations.

3.4 Hypothesis

The main hypotheses investigated in this section are:

1. The execution environment is a feasible target for efficiently and transparently effecting
adaptations in the applications they host. All software systems run in an execution environ-
ment, as a result we can target the execution environment as the lowest common denominator
for adapting live systems.

2. Existing facilities in execution environments can be leveraged to effect runtime adapta-
tions in software systems. Built-in facilities for profiling, execution control and any avail-
able APIs for metadata querying or manipulation allow for a transparent and sufficiently low-
overhead approach to adapting running programs. Two adaptations of interest for the purposes
of this thesis are: the insertion of monitoring/instrumentation, and the insertion of faults/disturbances
to measure their effects on systems with/without appropriate remediation mechanisms.

3. Any guarantees on application integrity/consistency are a function of the execution envi-
ronment, the execution environment’s operation and the amount of knowledge we have
about the application’s operation. The ability to perform adaptations on running systems al-
lows for a great degree of flexibility. On-the-fly adaptations allow the system to remain available
(even if it operates in a degraded mode) during these changes. However, the greatest challenge
is preserving the integrity/consistency during and after adaptations. We posit that properties
of the execution environment and working knowledge of the target system’s operation can be
combined to guarantee that the application’s integrity is preserved during and after adaptations.
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3.5 Execution Environments

At a bare minimum, an execution environment is responsible for the preparation of distinguished
entities – executables – such that they can be run. Preparation, in this context involves the loading and
laying out in memory of an executable. The level of sophistication, in terms of services provided by
the execution environment beyond loading, depends largely on the type of executable.

We distinguish between two types of executables, managed and unmanaged executables, each of
which require or make use of different services provided by the execution environment. A managed
executable, e.g. a Java bytecode program, runs in a managed execution environment such as Sun
Microsystems’ JVM whereas an unmanaged executable, e.g. a compiled C program, runs in an un-
managed execution environment which consists of the operating system and the underlying processor.
Both types of executables consist of metadata and code. However the main differences are the amount
and specificity of the metadata present and the representation of the instructions to be executed.

Managed executables/applications are represented in an abstract intermediate form expected by the
managed execution environment. This abstract intermediate form consists of two main elements,
metadata and managed code. Metadata describes the structural aspects of the application including
classes, their members and attributes, and their relationships with other classes [45]. Managed code
represents the functionality of the application’s methods encoded in an abstract binary format known
as bytecode.

The metadata in unmanaged executables is not as rich as the metadata found in managed executables.
Compiled C/C++ programs may contain symbol information, however there is neither a guarantee
nor requirement that it be present. Finally, unmanaged executables contain instructions that can be
directly executed on the underlying processor unlike the bytecode found in managed executables,
which must be interpreted or Just-In-Time (JIT) compiled into native processor instructions.

Managed execution environments differ substantially from unmanaged execution environments1. The
major differentiation points are the metadata available in each execution context and the facilities
exposed by the execution environment for tracking program execution, receiving notifications about
important execution events including; thread creation, type definition loading and garbage collec-
tion. In managed execution environments built-in facilities also exist for augmenting program entities
such as type definitions, method bodies and inter-module references whereas in unmanaged execution
environments such facilities are not as well-defined.

3.6 Model

The key observation behind our approach for effecting runtime adaptations (via Kheiron) in exist-
ing/legacy systems is that all software systems run in a software execution environment. This fact
makes the software execution environment an appealing target, as the lowest common denominator,
for adapting live systems. Further, since we cannot assume anything about the types of applications
being hosted, we are forced to develop general techniques for effecting adaptations via the execution
environment.

1The JVM and CLR also differ considerably even though they are both managed execution environments.
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Our techniques for adapting live systems are based on four key facilities exposed by contemporary
execution environments:

1. Ability to trace program execution

2. Ability to control program execution

3. Access to metadata in the units of execution

4. Ability to add/edit metadata at load time or runtime

Table 1 summarizes the facilities exposed by three contemporary execution environments – the un-
managed/native execution environment comprising of the (Linux) operating system and the raw cpu
(Intel x86), Sun Microsystems’ Java Virtual Machine (JVM) v5.x and Microsoft’s Common Language
Runtime (CLR) v1.1 – that we use to effect and manage runtime adaptations in systems.

Unmanaged
Execution
Environment

Managed Execution Environment

ELF Binaries JVM 5.x CLR 1.1

Program tracing ptrace, /proc JVMTI callbacks + API
ICorProfiler
ICorProfilerCallback

Program control
Trampolines +
Dyninst Bytecode rewriting MSIL rewriting

Execution Unit
Metadata

.symtab, .debug
sections

Classfile constant-
pool + bytecode

Assembly, type &
method metadata + MSIL

Metadata
augmentation

N/A for compiled
C-programs

Custom classfile
parsing & editing APIs +
JVMTI RedefineClasses

IMetaDataImport
IMetaDataEmit APIs

Table 1: Execution Environment Facilities

Kheiron/CLR and Kheiron/JVM perform runtime adaptations in the Common Language Runtime
and Java Virtual machine managed execution environments respectively. Conceptually, their approach
to facilitating adaptations is the same. Kheiron/CLR and Kheiron/JVM perform operations on type
definitions, object instances and various stages of the execution cycle to make them capable of in-
teracting with an adaptation engine. To enable an adaptation engine to interact with a class instance,
these Kheiron prototypes augment type definitions to add the necessary “hooks”. Augmenting the
type definition is a two-step operation.

Step 1 occurs when managed executables (assemblies in .NET and classfiles in JAVA) are loaded. At
load-time the execution environment has obtained the execution-unit data but has not yet constructed
the in-memory representation of the class. Kheiron/CLR and Kheiron/JVM add what we call shadow
methods for each of the original public and/or private methods. A shadow method shares most of
the properties – including a subset of the attributes, signature, implementation flags and the method
descriptor – of the original method. However, a shadow method gets a unique name. Figure 2,
transition A to B, shows an example of adding a shadow method SampleMethod for the original
method SampleMethod.
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Figure 1: Kheiron Conceptual Architecture

Extending the metadata of a type by adding new methods must be done before the type definition
is installed in the CLR or JVM. Once a type definition is installed, the execution environment will
reject the addition or removal of methods or fields. Similarly, changing method signatures, method
modifiers or inheritance relationships is also not allowed.

Figure 2: Preparing and Creating a Shadow Method

Step 2 of type augmentation occurs after the shadow method has been added. Kheiron/CLR and
Kheiron/JVM use bytecode-rewriting techniques to convert the implementation of the original method
into a thin wrapper that calls the shadow method, as shown in Figure 2, transition B to C.

Wrappers and shadow methods facilitate the adaptation of class instances. In particular, the regular
structure and single return statement of the wrapper method, see Figure 3, enables Kheiron/CLR and
Kheiron/JVM to easily inject adaptation instructions into the wrapper as prologues and/or epilogues
to shadow method calls.

To add a prologue to a method new bytecode instructions must prefix the existing bytecode instruc-
tions. The level of difficulty is the same whether we perform the insertion in the wrapper or the
original method. Adding epilogues, however, presents more challenges. Intuitively, we want to insert
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Figure 3: Conceptual Diagram of a Wrapper

instructions before control leaves a method. In the simple case, a method has a single return statement
and the epilogue can be inserted right before that point. However, for methods with multiple return
statements or exception handling routines, finding every possible return point can be an arduous task
[61]. Using wrappers thus delivers a cleaner approach since we can ignore all of the complexity in
the original method.

To initiate an adaptation, Kheiron/CLR and Kheiron/JVM augment wrappers to insert jumps into an
adaptation engine at the control point(s) before and/or after a shadow method call. This allows an
adaptation engine or suitable self-healing mechanism to be able to take control before and/or after a
method executes.

Kheiron/C relies on the Dyninst API [7] (v4.2.1) to interact with target applications while they ex-
ecute. Dyninst presents an API for inserting new code into a running program. The program being
modified is able to continue execution and does not need to be recompiled or relinked. Uses for
Dyninst include, but are not limited to, runtime code-patching and performance steering in large/long-
running applications.

Dyninst employs a number of abstractions to shield clients from the details of the runtime assembly
language insertion that takes place behind the scenes. The main abstractions are points and snippets.
A point is a location in a program where instrumentation can be inserted, whereas a snippet is a repre-
sentation of the executable code to be inserted. Examples of snippets include BPatch funcCallExpr,
which represents a function call, and BPatch variableExpr, which represents a variable or area of
memory in a thread’s address space.

To use the Dyninst terminology, Kheiron/C is implemented as a mutator (Figure 4), which uses the
Dyninst API to attach to, and modify a running program. On the Linux platform, where we conducted
our experiments, Dyninst relies on ptrace and the /proc filesystem facilities of the operating system to
interact with running programs.

Figure 4: Kheiron/C

Kheiron/C uses the Dyninst API to search for global or local variables/data structures (in the scope of
the insertion point) in the target program’s address space, read and write values to existing variables,
create new variables, load new shared libraries into the address space of the target program, and inject
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function calls to routines in loaded shared libraries as prologues/epilogues (at the points shown in
Figure 4) for existing function calls in the target application. As an example, Kheiron/C could search
for globally visible data structures e.g. the head of a linked list of abstract data types, and insert
periodic checks of the list’s consistency by injecting new function calls passing the linked-list head
variable as a parameter.

To initiate an adaptation Kheiron/C attaches to a running application (or spawns a new application
given the command line to use). The process of attaching causes the thread of the target application to
be suspended. It then uses the Dyninst API to find the existing functions to instrument (each function
abstraction has an associated call-before instrumentation point and a call-after instrumentation point).
The target application needs to be built with symbol information for locating functions and variables
to work – with stripped binaries Dyninst reports ∼95% accuracy locating functions and an ∼87%
success rate instrumenting functions. The disparity between the percentage of functions located and
the percentage of functions instrumented is attributed to difficulties in instrumenting code rather than
failures in the analysis of stripped binaries [31]. Kheiron/C uses the Dyninst API to locate any “in-
teresting” global structures or local variables in the scope of the intended instrumentation points. It
then loads any external library/libraries that contain the desired adaptation logic and uses the Dyninst
API to find the functions in the adaptation libraries, for which calls will be injected into the target
application. Next, Kheiron/C constructs function call expressions (including passing any variables)
and inserts them at the instrumentation points. Finally, Kheiron/C allows the target application to
continue its execution.

3.7 Feasibility

The techniques used by Kheiron to effect system-adaptations in running programs are elaborated
further in [26] and [27]. Here we summarize the experiments and results evaluating the feasibility of
using Kheiron for system adaptation.

Our first set of experiments were designed to evaluate the feasibility of using Kheiron/CLR, Khe-
iron/JVM and Kheiron/C in live systems. Kheiron/CLR and Kheiron/JVM impose a modest impact
(∼5% and ∼2% respectively) on the performance of a target system when no adaptations, repairs or
reconfigurations are active.

The Kheiron/CLR and Kheiron/JVM experiments were run on a single Pentium III Mobile Proces-
sor, 1.2 GHz with 1 GB RAM. The platform was Windows XP SP2 running the .NET Framework
v1.14322 and the Java HotspotVM v1.5 update 4. In our evaluation we used the C# and Java versions
of the SciMark 2 3 and Linpack 4 5 computation-intensive benchmarks.

SciMark is a benchmark for scientific and numerical computing. It includes five (5) computation
kernels: Fast Fourier Transform (FFT), Jacobi Successive Over-relaxation (SOR), Monte Carlo inte-
gration (Monte Carlo), Sparse matrix multiply (Sparse MatMult) and dense LU matrix factorization
(LU).

2http://rotor.cs.cornell.edu/SciMark/
3http://math.nist.gov/scimark2/
4http://www.shudo.net/jit/perf/Linpack.cs
5http://www.shudo.net/jit/perf/Linpack.java

13



Linpack is a benchmark that uses routines for solving common problems in numerical linear algebra
including linear systems of equations, eigenvalues and eigenvectors, linear least squares and singular
value decomposition. In our tests we used a problem size of 1000.

Kheiron/CLR uses the CLR Profiler API [57] to intercept module load, unload and module attached
to assembly events, Just-In-Time (JIT) compilation events and function entry and exit events. As
expected, running an application in the profiler imposes some overhead on the application. Figure
5 shows the runtime overhead for running the benchmarks with and without profiling enabled. We
performed five (5) test runs for SciMark and Linpack each with and without profiling enabled. All
executables under test and our profiler implementation were optimized release builds. For each bench-
mark, the bar on the left shows the performance normalized to one, of the benchmark running without
profiling enabled. The bar on the right shows the normalized performance with our profiler enabled.

Our measurements show that Kheiron/CLR contributes ∼5% runtime overhead when no repairs are
active, which we consider negligible.

Figure 5: Kheiron/CLR overheads when no repair
active

Figure 6: Kheiron/JVM overheads when no repair
active

Kheiron/JVM uses the JVMTI interface to interact with running Java applications. Running an appli-
cation under the JVMTI profiler imposes some overhead on the application. Also, the use of shadow
methods and wrappers converts one method call into two. Figure 6 shows the runtime overhead for
running the benchmarks with and without profiling enabled. We performed five test runs for SciMark
and Linpack each with and without profiling enabled. Our Kheiron/JVM DLL profiler implementa-
tion was compiled as an optimized release build. For each benchmark, the bar on the left shows the
performance normalized to one, of the benchmark running without profiling enabled. The bar on the
right shows the normalized performance with our profiler enabled.

Our measurements show that Kheiron/JVM contributes ∼2% runtime overhead when no adaptations
are active, which we consider negligible. Note that we do not ask the Java HotspotVM to notify us
on method entry/exit events since this can result in a slow down in some cases in excess of 5X. If
adaptations were actually being performed then we expect the overheads measured to depend on the
specifics of the adaptations.
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By implementing Kheiron/CLR and Kheiron/JVM we are able to show that our conceptual approach
of leveraging facilities exposed by the execution environment, specifically profiling and execution
control services, and combining these facilities with metadata APIs that respect the verification rules
for types, their metadata and their method implementations (bytecode) is a feasible, sufficiently low-
overhead approach for adapting running programs in contemporary managed execution environments.

Effecting adaptations in unmanaged applications is markedly different from effecting adaptations in
their managed counterparts, since they lack many of the characteristics and facilities that make run-
time adaptation qualitatively easier, in comparison, in managed execution environments. Unmanaged
execution environments store/have access to limited metadata, no built-in facilities for execution trac-
ing, and less structured rules on well-formed programs.

Next we focus on using Kheiron/C to facilitate adaptations in running compiled C programs, built
using standard compiler toolkits like gcc and g++, packaged as Executable and Linking Format (ELF)
[83] object files, on the Linux platform.

We carry out a simple experiment to measure the performance impact of Kheiron/C on a target
system. Using the C version of the SciMark v2.0 benchmark we compare the time taken to execute the
un-instrumented program, to the time taken to execute the instrumented program – we instrumented
the SOR execute and SOR num flops functions such that a call to a function (AdaptMe) in a custom
shared library is inserted. The AdaptMe function is passed an integer indicating the instrumented
function that was called. Our experiment was run on a single Pentium 4 Processor, 2.4 GHz with 1
GB RAM. The platform was SUSE Linux 9.2 running a 2.6.8-24.18 kernel and using Dyninst v4.2.1.
All source files used in the experiment (including the Dyninst v4.2.1 source tree) were compiled using
gcc v3.3.4 and glibc v2.3.3.

Figure 7: Kheiron/C Simple Instrumentation Overheads

As shown in Figure 7 the overhead of the inserted function call is negligible, ∼1%. This is expected
since the x86 assembly generated behind the scenes effects a simple jump into the adaptation library
followed by a return before executing the bodies of SOR execute and SOR num flops. We expect
that the overhead on overall program execution would depend largely on the operations performed
while inside the adaptation library. Further, the time the SciMark process spends suspended while
Kheiron/C performs the instrumentation is sub-second, ∼684 msecs ± 7.0686.

Our second set of experiments using Kheiron are concerned with practical uses of Kheiron. In [28] we
explore consistency-preserving runtime adaptations in a non-trivial target system. Our case study uses
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Kheiron to perform a dynamic reconfiguration in the Alchemi Enterprise Grid Computing System [3]
while ensuring that the integrity of Alchemi and the execution environment are not compromised.
We demonstrate the hot-swapping of the grid’s job scheduler. Our experimental setup and results are
described in Appendix A.

Finally, in [27] we describe using Kheiron/C to effect an example of a sophisticated system adaptation
(see Appendix B for details). To enable applications to detect low-level faults and recover at the
function level or, to enable portions of an application to be run in a computational sandbox, we use
Kheiron/C to allow portions of an executable to be run under the STEM x86 emulator. Kheiron/C
dynamically loads the emulator into the target process’ address space and configures it to emulate
individual functions. STEM (Selective Transactional EMulation) is an instruction-level emulator –
developed by Locasto et al. [75] – that can be selectively invoked for arbitrary segments of code.

3.8 Related Work

Our Kheiron prototypes are concerned with facilitating very fine-grained adaptations in existing/legacy
systems, whereas systems such as KX [23] and Rainbow [72] are concerned with coarser-grained
adaptations. However, the Kheiron prototypes could be used as low-level mechanisms orchestrated/directed
by these larger frameworks.

JOIE [13] is a toolkit for performing load-time transformations on Java classfiles. Unlike Khe-
iron/JVM, JOIE uses a modified classloader to apply transformations to each class brought into the
local environment [12]. Further, since the goal of JOIE is to facilitate load-time modifications, any
applied transformations remain fixed throughout the execution-lifetime of the class whereas Khe-
iron/JVM can undo/modify some of its load-time transformations at runtime e.g. removing instrumen-
tation and modifying instrumentation and method implementations via bytecode rewriting. Finally,
Kheiron/JVM can also perform certain runtime modifications to metadata, e.g. adding new references
to external classes such that their methods can be used in injected instrumentation.

FIST [41] is a framework for the instrumentation of Java programs. The main difference between
FIST and Kheiron/JVM is that FIST works with a modified version of the Jikes Research Virtual
Machine (RVM) [4] whereas Kheiron/JVM works with unmodified Sun JVMs. FIST modifies the
Jikes RVM Just-in-Time compiler to insert a breakpoint into the prologue of method to generate an
event when a method is entered to allow a response on the method entry event. Control transfer to
instrumentation code can then occur when the compiled version of the method is executed. The Jikes
RVM can be configured to always JIT-compile methods, however the unmodified Sun JVMs, v1.4x
and v1.5x, do not support this configuration. As a result, Kheiron/JVM relies on bytecode rewriting
to transfer control to instrumentation code as a response to method entry and/or method exit – transfer
of control will occur with both the interpreted and compiled versions of methods.

A popular approach to performing fine-grained adaptations in managed applications is to use Aspect
Oriented Programming (AOP). AOP is an approach to designing software that allows developers to
modularize cross-cutting concerns [24] that manifest themselves as non-functional system require-
ments. In the context of self-managing systems AOP is an approach to designing the system such that
the non-functional requirement of having adaptation mechanisms available is cleanly separated from
the logic that meets the system’s functional requirements. An AOP engine is still necessary to realize
the final system. Unlike Kheiron, which can facilitate adaptations in existing systems at the execution
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environment-level, the AOP approach is a design-time approach, mainly relevant for new systems.

AOP engines weave together the code that meets the functional requirements of the system with
the aspects that encapsulate the non-functional system requirements. There are three kinds of AOP
engines: those that perform weaving at compile time (static weaving) e.g. AspectJ [22], Aspect C#
[32], those that perform weaving after compile time but before load time, e.g. Weave .NET [17],
which pre-processes managed executables, operating directly on bytecode and metadata and those
that perform weaving at runtime (dynamic weaving) using facilities of the execution environment,
e.g. A dynamic AOP-Engine for .NET [21] and CLAW [42]. Kheiron/JVM is similar to the dynamic
weaving AOP engines only in its use of the facilities of execution environment to effect adaptations
in managed applications while they run.

Adaptation concepts such as Micro-Reboots [9] and adaptive systems such as the K42 operating sys-
tem [8] require upfront design-time effort to build in adaptation mechanisms. Our Kheiron implemen-
tations do not require special designed-in hooks, but they can take advantage of them if they exist. In
the absence of designed-in hooks, our Kheiron implementations could refresh components/data struc-
tures or restart components and sub-systems, provided that the structure/architecture of the system is
amenable to it, i.e., reasonably well-defined APIs exist.

Georgia Tech’s ‘service morphing’ [64] involves compiler-based techniques and operating system
kernel modifications for generating and deploying special code modules, both to perform adaptation
and to be selected amongst during dynamic reconfigurations. A service that supports service morphing
is actually comprised of multiple code modules, potentially spread across multiple machines. The
assumption here is that the information flows and the services applied to them are well specified and
known at runtime. Changes/adaptations take advantage of meta-information about typed information
flows, information items, services and code modules. In contrast, Kheiron operates entirely at runtime
rather than compile time. Further, Kheiron does not require a modified execution environment, it uses
existing facilities and characteristics of the execution environment whereas service morphing makes
changes to a component of the unmanaged execution environment – the operating system.

Trap/J [68], Trap.NET [67] produce adapt-ready programs (statically) via a two-step process. An
existing program (compiled bytecode) is augmented with generic interceptors called “hooks” in its
execution path, wrapper classes and meta-level classes. These are then used by a weaver to produce
an adapt-ready set of bytecode modules. Kheiron/JVM, operates entirely at runtime and could use
function call replacement (or delegation) to forward invocations to specially produced adapt-ready
implementations via runtime bytecode re-writing.

For performing fine-grained adaptations on unmanaged applications, a number of toolkits are avail-
able, however many of them, including EEL [44] and ATOM [78], operate post-link time but before
the application begins to run. As a result, they cannot interact with systems in execution and the
changes they make cannot be modified without rebuilding/re-processing the object file on disk. Using
Dyninst as the foundation under Kheiron/C we are able to interact with running programs – provided
they have been built to include symbol information.

Our Kheiron implementations specifically focus on facilitating fine-grained adaptations in applica-
tions rather than in the operating system itself. KernInst [81] enables a user to dynamically instru-
ment an already-running unmodified Solaris kernel in a fine-grained manner. KernInst can be seen as
implementing some autonomic functionality, i.e., kernel performance measurement and consequent
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runtime optimization, while applications continue to run. DTrace [10] dynamically inserts instrumen-
tation code into a running Solaris kernel by implementing a simple virtual machine in kernel space
that interprets bytecode generated by a compiler for the ‘D’ language, a variant of C specifically for
writing instrumentation code. TOSKANA [20] takes an aspect-oriented approach to deploying before,
after and around advice for in-kernel functions into the NetBSD kernel. They describe some examples
of self-configuration (removal of physical devices while in use), self-healing (adding new swap files
when virtual memory is exhausted), self-optimization (switching free block count to occur when the
free block bitmap is updated rather than read), and self-protection (dynamically adding access control
semantics associated with new authentication devices).

3.9 Conclusions and Future Work

In this section we describe the retro-fitting of fine-grained adaptation mechanisms onto existing/legacy
systems by leveraging the facilities and characteristics of unmodified execution environments. We
describe two classes of execution environments – managed and unmanaged – and compare the per-
formance overheads of adaptations and the techniques used to effect adaptations in both contexts. We
demonstrate the feasibility of performing adaptations using Kheiron/CLR, Kherion/JVM and Khe-
iron/C. We present a summary of a case study using Kheiron/CLR to perform a runtime adaptation in
a non-trivial target system – the Alchemi Enterprise Grid Computing system. Finally, we describe a
sophisticated adaptation, injecting the selective emulation of functions into compiled C-applications.
Given that few legacy systems are written in managed languages (e.g. Java, C# etc.) whereas a sub-
stantial number of systems are written in C/C++, our techniques and approaches for effecting the
adaptation of native systems may prove useful for retro-fitting new functionality onto these systems.

For future work, we are interested in conducting more sophisticated case studies where we can explore
the effects of (and system response to) injecting faults into managed and unmanaged applications,
which have/have not been dynamically modified with appropriate remediation (detection, diagnosis
and repair/recovery) mechanisms. This last set of experiments is part of an effort to further the devel-
opment of a methodology for evaluating the efficacy of these added RAS-enhancing mechanisms and
benchmarking the capabilities [1, 6] of the resulting system.

4 Performing RAS-Evaluations for Computing Systems

4.1 Introduction

In this section we use a case study of an operating system and application server enhanced with
recovery/repair mechanisms to show how the combination of dynamic fault-injection experiments and
RAS-modeling provides us with tools we can use to assess the impact of the system’s mechanisms on
the environmental constraints governing the system’s operation.

We make four contributions. First, we describe a set of fault-injection tools and experiments designed
to exercise the recovery mechanisms of the system under test and obtain measurements for the rates
of failure and time to recover.

Second, we use this experimental data to build RAS models of the system illustrating how they can be
used to reason about the impact of the system’s recovery mechanisms on high-level constraints such
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as its reliability, availability and serviceability.

Third, we show how RAS models can be constructed to account for systems that employ fuzzy detec-
tion, diagnosis or repair (i.e. systems where detection, diagnosis or repair may not be 100% accurate
or effective) and degraded modes of operation.

Finally, we distill our experiences and experimental results into a general recipe (the 7U-evaluation
method) for evaluating and comparing self-healing systems. Our 7U-evaluation methodology high-
lights the role of the environmental/contextual constraints in establishing a meaningful scoring and
comparison criteria.

4.2 Motivation

During its execution, a system’s operation is typically governed by a number of environmental/contextual
constraints, including but not limited to; policies set by administrators, service level agreements
(SLAs) specifying the high-level reliability, availability and serviceability (RAS) goals the system
is expected to meet or exceed. In addition to these high-level goals, the system is also expected to
make decisions about which mechanisms to employ as a proactive, reactive or preventative response
to changes in its environment. These decisions also impact the system’s reliability, availability and
serviceability. As a result, benchmarking the efficacy of the system requires evaluating both the mech-
anisms the system possesses (the micro-view) and their impact on the high-level goals governing the
system’s operation (the macro-view).

4.3 Hypothesis

The main hypotheses investigated in this section are:

1. Continuous Time Markov Chains (CTMCs) and Markov Reward Models provide a rea-
sonable framework for analyzing system failures, remediations and their impact on system
operation.

2. RAS-models, represented as CTMCs, are flexible analysis tools. They can be used to ana-
lyze reactive, proactive and preventative RAS-enhancing mechanisms. Further, they can be used
to study both existing mechanisms and and those yet-to-be-implemented, making CTMCs ap-
plicable in both the post-deployment and design stages of the system and/or its RAS-enhancing
mechanisms.

3. RAS-models and fault-injection experiments can be used to evaluate the details of individ-
ual and combined mechanisms on real systems and quantify their impact on the high-level
goals governing the system’s operation.

4.4 Model

Our first step in developing our evaluation techniques is to define the role of metrics using a thought-
experiment based on five extreme types of systems to discuss the expected outcomes 6:

6Due to the dependencies between detection and diagnosis and between diagnosis and repair we only consider four
(Types 1 – 4) of the eight combinations of the detection, diagnosis and repair variables.
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• Type 1: A system with no detection capabilities. It blunders on regardless of the carnage it fails
to detect.

• Type 2: A system with perfect detection capabilities, but no diagnosis or repair mechanisms.

• Type 3: A system with perfect detection and diagnosis capabilities but no repair mechanisms.

• Type 4: A system that detects everything, diagnoses and repairs them perfectly.

• Type 5: A system that can detect everything, but has all of its detectors turned off.

We expect the metrics to punish a Type 1 system. Assuming the system never fails (or takes longer
than the other systems to fail), it exhibits better availability, however, its goodput (the number of
correct results returned per time interval) should decrease over time. Metrics should reward a Type 2
system for its detection capabilities (accuracy), but it should be penalized for failing. Type 3 systems,
should be rewarded for its detection and diagnosis capabilities, under the assumption that it is easier
for a human to repair the system using the results/log of the automated diagnosis, while the Type 2
system has to be manually diagnosed and repaired. Type 4 systems represent the ideal, we expect
metrics to reward them for their detection, diagnosis and repair capabilities (accuracy). Finally, Type
5 systems should be credited for having detection mechanisms but penalized for turning them off. The
main differentiator between Type 5 and Type 1 systems is the former’s potential fault-model coverage
– under the assumption that activating the mechanisms on a Type 5 system is easier than retro-fitting
or acquiring them for a Type 1 system. Distinguishing between Type 1 and Type 5 systems is part of
the qualitative analysis of the systems.

Based on these expectations, a ranking of these systems based on the self-healing benchmark results
should be: Type 1 < Type 5 < Type 2 < Type 3 < Type 4. This ranking guides the choice of
metrics used to differentiate among the four types of systems. Example metrics are shown in Table 2,
categorized into macro-measurements and micro-measurements.

macro-view goodput reliability, fault-model
availability and coverage
serviceability (expected vs

actual)
micro-view accuracy of speed of

detection, detection,
diagnosis and diagnosis and

repair repair

Table 2: Example Metrics

Under the simplifying assumptions of exponentially distributed failure rates, a RAS-model, repre-
sented as a time-homogeneous continuous-time Markov chain (CTMC), can be used to relate the
micro-measurements concerned with the accuracy and speed of detection, diagnosis and repair mech-
anisms to their impact on the macro-measurements concerned with system reliability, availability and
serviceability, goodput and fault-model coverage.

Figure 8 shows a basic, 2-node, 2-parameter, RAS-model. The implicit assumptions of this simple
model are; perfect problem detection and perfect (reactive) problem remediation strategies, however,
more sophisticated RAS-models can be used to evaluate the impact of imperfect detection, diagnosis
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and repair mechanisms. Further, they can also be used to evaluate proactive or preventative reme-
diation mechanisms, under the assumption that the failure distribution is hypoexponential – divided
into sequential stages where the time spent in each phase is independent and exponentially distributed
[39].

Figure 8: Basic RAS Model (2-stage Markov Chain)

Unlike hardware, where the laws of physics govern the failure rates of mechanical and electrical
parts and materials, failure rates for software can be determined experimentally using fault-injection.
Similarly, remediation times and accuracy of remediations can be determined experimentally and/or
modeled mathematically to allow “what-if” scenarios to be considered.

Whereas fault-injection experiments may expose the system to rates of failure well above what the
system may see in a given time period, these artificially high failure rates allow evaluators to explore
the expected and unexpected system responses under stressful fault conditions, much like performance
benchmarks subject the system under test to extreme workloads.

4.5 Feasibility

The goal of our experiments is to inject specific faults in the system under test and study the system’s
response. The faults we inject are intended to exercise the remediation mechanisms of the system. We
use the experimental data to mathematically model the impact of the faults we inject on the system’s
reliability, availability and serviceability with and without the remediation mechanisms. Further, we
consider the impact of imperfect repair on these macro-measurements. Our experiments and our
models establish a link between the details of the remediation mechanisms and the high-level goals
set for the system. This link is a key step in evaluating the efficacy of a system based on its remediation
mechanisms. We first demonstrate how each fault and associated remediation mechanism(s) can be
evaluated in isolation and then we evaluate the system taking into consideration all the faults and their
associated remediation mechanisms.

To conduct our experiments we need: a test-platform, i.e. a hardware/software stack executing a
reasonable workload, a fault model, fault-injection tools, a set of remediation mechanisms and a set
of system configurations.

For our test platform we use VMWare GSX virtual machines configured with: 512 MB RAM, 1 GB
of swap, an Intel x86 Core Solo processor and an 8 GB harddisk running Redhat 9 on 2.4.18 kernels.
We use an instance of the TPC-W web-application (based on the implementation developed at the
University of Madison-Wisconsin) running on MySQL 5.0.27, the Resin 3.0.22 application server
and webserver, and Sun Microsystems’ Hotspot Java Virtual Machine (JVM), v1.5. We simulate a
load of 20 users using the Shopping Mix [52] as their web-interaction strategy. User-interactions are
modeled using the Remote Browser Emulator (RBE) software also implemented at the University of
Madison-Wisconsin. Our VMs are hosted on a machine configured with 2 GB RAM, 2 GB of swap,
an Intel Core Solo T3100 Processor (1.66 GHz) and a 51 GB harddisk running Windows XP SP2.
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Our fault model consists of device driver faults targeting the Operating System and memory leaks
targeting the application server. We chose device driver faults because device drivers account for
∼70% of the Linux kernel code and have error rates seven times higher than the rest of the kernel
[11]. While memory leaks and general state corruption (dangling pointers and damaged heaps) are
highlighted as common bugs leading to system crashes in large-scale web deployments [9].

We identified the operating system and the application server as candidate targets for fault-injection.
Given the operating system’s role as resource manager [82] and part of the native execution environ-
ment for applications [27] its reliability is critical to the overall stability of the applications it hosts.
Similarly, application servers act as containers for web-applications responsible for providing a num-
ber of services, including but not limited to, isolation, transaction management, instance management,
resource management and synchronization. These responsibilities make application-servers another
critical link in a web-application’s reliability and another prime target for fault-injection.

We use a version of the SWIFI tools [53, 54] and a tool based on Kheiron/JVM [27] for device driver
and application-server fault-injection respectively.

There are three remediation mechanisms we consider: system reboots, application server restarts and
Nooks device driver protection and recovery [53] – Nooks isolates the kernel from device drivers
using lightweight protection domains, as a result driver crashes are less likely to cause a kernel crash.
Further, Nooks supports the transparent recovery of a failed device driver.

Finally, we use the following system-configurations: Configuration A – Fault-free system operation,
Configuration B – System operation in the presence of memory leaks, Configuration C – System
operation in the presence of device-driver failures (Nooks disabled), Configuration D – System op-
eration in the presence of device-driver failures (Nooks enabled), and Configuration E – System
operation in the presence of memory leaks and driver failures (Nooks enabled).

4.6 Results and Analysis

In our experiments we measure both client-side and server-side activity. On the client-side we use the
number of web interactions and client-perceived rate of failure to determine client-side availability.
On the server-side we use the number of resource (memory, process/thread creation, storage reads,
writes, open and close) requests made and granted to determine the server-side availability. We collect
server-side statistics via a kernel module that hooks the system call table entries underlying the malloc,
fork, clone, read, write, open and close operations.

Each TPC-W run takes ∼24 minutes to complete. Table 3 shows the client-side goodput and server-
side resource requests for Configuration A, a typical fault-free TPC-W baseline run.

Figure 9 shows the client-side goodput over the first forty runs (∼16 hours of continuous execution) in
the presence of an accumulating memory leak – Configuration B. The average number of client-side
interactions over this series of experiments is 3874.225 ± 94.760. In this figure there are two runs
approximately 8 hours apart, runs 20 and 39 (circled), where the number of client interactions is 2 or
more standard deviations below the mean (3626 and 3530 interactions respectively). Client-activity
logs indicate a number of successive failed HTTP requests over an interval of ∼1 minute. Resin’s
logs indicate that the server encountered a low-memory condition, forces a number of JVM garbage
collections before restarting the application server.
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client-side server-side success rate
number of memory requests : 1848 memory : 100%

interactions: memory requests granted : 1848
3973 fork requests : 0 execution : n/a

forks performed : 0
read requests : 3,498,678 reads : 99.5563%

reads preformed : 3,483,154
write requests : 22,369 writes : 100%

writes performed : 22,369
open requests : 18,476 opens : 100%

opens performed : 18,476
close requests : 18,560 closes : 100%

closes performed : 18,560

Table 3: Metrics for Configuration A, Fault-Free Run

Figure 9: Client interactions over first 40 runs (16 hrs)
- Configuration B, Memory Leak Scenario

Figure 10: Client-side Interaction Trace -
Configuration B, Memory Leak Scenario

Figure 10 shows a trace sampling the number of client interactions completed every 60 seconds for
a typical run, (Run #2), compared to data from Runs 20 and 39 where low memory conditions cause
Resin to restart. Restart times obtained from Resin’s logs record startup times of: 3,092 msecs (initial
startup), 47,034 msecs (restart 1) and 47,582 msecs (restart 2).

To evaluate the RAS-characteristics of the system in the presence of the memory leak, we use the
SHARPE tool [69] to create the basic 2-node, 2-parameter RAS-model shown in Figure 11.

Figure 11: Simple RAS Model

State S0 represents an UP state i.e. the system is servicing requests, and state S1 represents the
application server being restarted. Since no client requests are being serviced while the application
server is being restarted (as shown in Figure 10), S1 is a DOWN state. λfailure is the observed rate of
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failures; 1 failure every 8 hours and µrestart is the time to restart the application server, ∼47 seconds.
Whereas this model implicitly assumes that the detection of the low memory condition is perfect and
the restart of the application server resolves the problem 100% of the time, in this instance our model
assumptions are validated by the experiments.

Using the steady-state/limiting availability formula [39]: A =
1
λ

1
λ
+ 1

µ

the steady state availability of the

system is 99.838%. Further, the system has an expected downtime of 866 minutes per year – given
by the formula (1 − Availability) ∗ T where T = 525, 600 minutes in a year. At best, the system is
capable of delivering two 9’s of availability. Table 4 shows the expected penalties per year for each
minute of downtime over the allowed limit. As an additional consideration, downtime may also incur
costs in terms of time and money spent on service visits, parts and/or labor, which add to any assessed
penalties.

Availability Guarantee Max Downtime Per Year Expected Penalties
99.999 ∼5 mins (866 - 5)*$p
99.99 ∼53 mins (866 - 53)*$p
99.9 ∼526 mins (866 - 526)*$p
99 ∼5256 mins $0

Table 4: Expected SLA Penalties for Configuration B

In Configuration C we inject faults into the pcnet32 device driver with Nooks driver protection
disabled. Each injected fault leads to a kernel panic requiring a reboot to make the system operational
again. Using the experimentally achieved fault rate, λfailure, of 4 device driver faults every 8 hours
and system reboot time, µrestart, of 1 minute 22 seconds and the fact that rebooting the system always
resolves the device driver fault condition we can again use the simple RAS-model shown in Figure 11
to evaluate the RAS-characteristics of the system under test. Using SHARPE, we calculate the steady
state availability of the system as 98.87%, with an expected downtime of 5924 minutes per year i.e.
this system cannot deliver two nines of availability under these conditions.

Next we consider the case of the system under test enhanced with Nooks device driver protection
enabled – Configuration D. Whereas we reuse the same fault-load and fault-rate, 4 device driver fail-
ures every 8 hours we need to revise the RAS-model used in our analysis to account for the possibility
of imperfect repair i.e. to handle cases where Nooks is unable to recover the failed device driver and
restore the system to an operational state. To achieve this we use the RAS-model shown in Figure 12.

Figure 12 is a 3-node, 4-parameter model. State S0 is an UP state where the system services client
requests. In state S1, Nooks is recovering a failed device driver. Since it is possible for the system to
continue to service requests during recovery, S1 is also considered an UP state. State S2 represents
a failure that requires a hard reboot to restore the system to an operational state. Since the system is
unable to service requests while it reboots, S2 is a DOWN state.

In the model λdriver failure is the rate at which device driver failures occur, 4 failures every 8 hours.
µnooks recovery is the time for Nooks to successfully recover a failed device driver, experimentally ob-
served as 4093 microseconds in the worst case for our configuration. c is the coverage factor, it repre-
sents the probability that the driver fault can be successfully recovered by Nooks. The coverage factor
can also be interpreted as the success rate of Nooks recovery – varying this parameter in our RAS
model allows us to investigate the impact of imperfect recovery on the system’s RAS-characteristics.
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Figure 12: RAS-Model of a system with imperfect
repair

Figure 13: Availability Versus Nooks Coverage –
Configuration D

Finally, µreboot is the time to reboot the machine, 1 minute 22 seconds. Figure 13 shows the expected
impact Nooks recovery on the system’s RAS-characteristics as its success rate varies.

Whereas Configuration C of the system under test is unable to deliver two 9’s of availability in the
presence of device driver faults, we can see from Figure 13 that a modest 20% success rate of Nooks
in Configuration D is expected to promote the system into another availability bracket (reducing the
expected downtime and SLA penalties by an order of magnitude) while a 92% success rate reduces
the expected downtime and SLA penalties by two orders of magnitude 7.

Thus far we have analyzed the system under test and each fault in isolation i.e. each RAS-model
we have developed so far considers one fault and its remediations. We now develop a RAS-model
that considers all the faults in our fault-model and the remediations available, Configuration E – see
Figure 14.

Figure 15 shows the expected availability of the complete system. The system’s availability is lim-
ited to two 9’s of availability even though the system could deliver better availability and downtime
numbers – the minimum system downtime is calculated as 866 minutes per year, the same as for
Configuration B, the memory leak scenario. Thus, even with perfect Nooks recovery, the system’s
availability is limited/determined by the reactive remediation for the memory leak. To improve the
system’s overall availability we need to improve the handling of the memory leak.

One option for improvement is to explore the possible benefits of preventative maintenance. For
preventative maintenance to be an option we have to assume that the system’s failure distribution is
hypoexponential. We divide the system’s lifetime into into two stages, where the time spent in each
state is exponentially distributed.

We use the RAS-model shown in Figure 16 in our analysis. This model consists of six states; state S0

is an UP state representing the first stage of the system’s lifetime, state S1 is an UP state representing
the second stage of the system’s lifetime. Stage S2 is a DOWN state where the application server is

7In our experiments we were unable to encounter a scenario where Nooks was unable to successfully recover a failed
device driver however the point of our exercise is to demonstrate how that eventually could be accounted for in an evalu-
ation of a remediation mechanism.
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Figure 14: Complete RAS-model – Configuration E Figure 15: Availability Versus Nooks Coverage For
the Full System – Configuration E

being restarted, state S3 is an UP state representing an inspection of the memory conditions, since this
check occurs from state S0, the first stage of the system’s lifetime, no preventative maintenance actions
are carried out. State S4 is an UP state representing an inspection of the memory conditions, since
this check occurs from state S1, the second stage of the system’s lifetime, a preventative maintenance
action is carried out. State S5 represents the preventative maintenance action, which restores the
system into the first stage of its lifetime.

There are six parameters in our preventative maintenance model. λ2ndstage is the rate of transition
from the first stage of the system’s lifetime into the second stage of the systems lifetime, from our
observation this rate of transition is once every six hours. λfailure is the rate of transition into a state
indicative of a low-memory condition, after 6 continuous hours in S0 the system is expected to fail
once in the next two hours. µrestart resin worst is the time to restart Resin under low-memory condi-
tions, ∼47 seconds. λinspect is the rate at which we check for a decreasing trend in the amount of free
memory available, µinspect is the time necessary for the check, 21,627 microseconds. µrestart resin pm

is the time to restart Resin when the system is not under severe memory pressure, 3,092 milliseconds.

Using these parameters we plot the graph shown in Figure 17, which shows the expected availability
of the system as λinspect varies. We see that performing a check 6 times every hour and conditionally
performing a preventative maintenance is expected to allow the system to deliver better availability,
however, actually implementing a preventative maintenance scheme and running more experiments is
the only way to determine if the scheme has the desired effect.

4.7 7U-Evaluation

Based on our experiments, RAS-model construction and analysis we distill our steps into a 7-step pro-
cess for evaluating a self-healing system and its self-healing mechanisms, the 7U-evaluation method-
ology. Our evaluation method establishes a link between the individual self-healing mechanisms and
their impact on the high-level goals governing the system’s operation. Further, it highlights the role
of environmental constraints/policies governing the system’s operation as the main criteria for com-
paring self-healing systems as well as determining their efficacy. The seven steps are shown in Figure
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Figure 16: Preventative Maintenance RAS-model Figure 17: Expected impact of preventative
maintenance

18.

Figure 18: 7U-evaluation methodology
The 7U-evaluation method derives its utility from the relationship between faults and the environ-
ment where the system will be deployed. The fault-environment relationship quantifies the effect of
errors in a given context. It is influenced by data from policies, servicing/technician records, service-
level agreements (SLAs), trouble tickets, system logs, customer-service call-center operation-logs,
etc. These data sources can be used to establish a fault-model/hypothesis [40] of interest for conduct-
ing experiments, design fault-injection experiments to investigate existing or potential remediation
mechanisms, guide the selection of micro-measurements (measurements concerned with the details
of a remediation mechanism) and macro-measurements (measurements codifying system goals). This
relationship can also be used to reason about symptoms, occurrence characteristics, error-severity,
time and money spent on parts and labor for servicing. SLAs estimate the potential business impact
of a compromised macro-measurement e.g. availability. Most of these measures have meaning only
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within a given organization. As a result, the determination of whether one system is better than an-
other must be decided in relation to the environmental/contextual constraints and policies that govern
the system’s operation.

Considering the environment also influences the scoring of each system and its mechanisms. For ex-
ample, deciding whether to assess a system a bonus or penalty for using redundancy depends on the
environmental constraints. In some contexts, having a system do more with less (i.e. no redundant
parts) may be considered a good thing, especially when compared to the monetary and intangible
costs of redundancy, however in other contexts a highly redundant system may be assessed a bonus.
We posit that unlike performance benchmarks, which are universally comparable provided that the
hardware configuration, software configuration and workload are kept constant, self-healing bench-
mark results are meaningful and comparable if the workload, fault-load and environmental constraints
are kept constant. We expect there to be some flexibility in the hardware and software configurations
insofar as class substitutions may be made e.g. substituting one relational database system for another.
However, hardware configuration parameters, e.g. the amount of installed memory remain fixed.

4.8 Related Work

The work most similar to ours is [19]. In this paper the authors build a RAS model to explore the ex-
pected impact of Memory Page Retirement (MPR) on hardware faults associated with failing memory
modules on systems running Solaris 10. MPR removes a physical page of memory from use by the
system in response to error correction code (ECC) errors associated with that page. Using their mod-
els the authors investigate the expected impact of MPR on yearly downtime, the number of service
interruptions and the number of servicing visits due to hardware permanent faults. Unlike our exper-
iments, which focus on software and rely on fault injection experiments to collect data, the authors
focus on hardware failures and use field data from deployed low-end and mid-range server systems to
build models.

In [18] the authors study the availability of the Sun Java System Application Server, Enterprise Edi-
tion 7. The authors use hierarchical Markov reward models to model and obtain average system
availability estimates. In a distributed load-balanced deployment, including two application server
instances, 2 pairs of Highly Available Databases (HADBs) – used as http session state stores –, an
Oracle database and a Sun Java System Directory Server, the authors induce faults concerned with
whole-node removal to investigate the system’s (session) fail-over and recovery mechanisms. Our
experiments differ in the granularity of our fault-injection, rather than remove entire nodes, we focus
on injecting faults in the individual components of a single node. Further, whereas we do not focus on
evaluating remediation mechanisms that rely on whole-node redundancy or failover, RAS-modeling
techniques can be adapted for this [39].

[34] describes the DBench-OLTP dependability benchmark. We differ from this work in our choice
of metrics. The measures prescribed in the DBench-OLTP specification are analogous to our macro-
measurements, some of which include but are not limited to: transactions per minute (tpmC), price
per transaction ($/tpmC), availability from the system under test and remote terminal emulator points
of view. We focus less on performance-related measures and present ways to analyze the impact of
the system’s remediation mechanisms on the macro-measurements of interest.

FAUMachine [76] (formerly UMLinux) is a virtualization platform supporting fault-injection. The
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faults that can be injected include, but are not limited to; bit flips in memory and CPU registers,
block device failures and network failures. For our experiments we required more fine-grained con-
trol over the faults injected. Further, the faults that could be injected using FAUMachine would not
appropriately exercise the remediation mechanisms of our target system.

Our work is complementary to the work done on robustness benchmarking [16] and fault-tolerant
benchmarking [85]. However, we focus less on the robustness of individual component interfaces
for our fault-injection and more on system recovery in the presence of component-level faults i.e.
resource leaks, delays or hangs in components and component-removals.

[5] conducts a study of availability and maintainability benchmarks using software RAID systems. In
addition to studying availability from the end-user perspective as these authors do, we also include the
use of mathematical models to assist in the analysis of existing and potential remediation-mechanisms.

[51] describes the System Recovery Benchmark. The authors propose measuring system recovery
on a non-clustered standalone system. The focus of the work is on detailed measurements of system
startup, restart and recovery events. Our work is complementary to this, relying on measuring startup,
restart and recovery times at varying granularity. We consider these measurements at node-granularity
as well as application/component granularity. Further, we relate these micro-measurements to the
impact on the high-level objectives guiding the system’s recovery decisions.

[6] describes work towards a self-healing benchmark. In our work we analyze the the individual
mechanisms that impact the quality of service metrics of interest. Our focus on how the system
accomplishes healing and its relation to the high-level system goals, dictated by SLAs and policies,
ties together the micro and macro views of the system in the evaluation of the target system.

4.9 Conclusions and Future Work

In this section we use reliability, availability and serviceability (RAS) metrics and models, coupled
with fault-injection experiments, to analyze the impact of self-healing mechanisms on these high-
level (RAS) metrics of interest. We also demonstrate how we can account for imperfect remediations
and preventative maintenance in our analysis. We identify RAS-metrics as reasonable gauges of the
efficacy of a self-healing system since the intended goal of self-healing systems is to improve system
reliability and availability and reduce the management burden on human administrators. We distill
our experiences into a 7-step process for evaluating self-healing systems, the 7U-evaluation method.
This methodology highlights the role of environmental constraints/policies governing the system’s
operation as the main criteria for comparing self-healing systems as well as determining their efficacy.

For future work, we are interested in conducting our experiments on other operating system platforms,
most notably Solaris 10, which has been designed with a number of self-healing mechanisms [79, 73].
We will also continue our work developing practical fault-injection tools.

5 Research Plan and Schedule
The fault-injection tools and testbed described in section 4.5 have been completed. However, there
are still enhancements to the fault-injection tools and additional fault-injection experiments to be
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conducted. My objective is to conduct a study of the impact of faults and any existing or yet-to-be-
added RAS-enhancing mechanisms on the various components of N-tier web applications.

The study is guided by the following goals.

The first goal is to move the testbed (TPC-W + Resin + MySQL) over to the Linux 2.6, Solaris 10 and
Windows XP SP2 operating systems so that I can re-run our reliability, availability and serviceability
experiments. My objective is to investigate the impact of faulty device drivers on these operating
system kernels. Device drivers account for 70% of Linux kernel code, with error rates seven times
higher than the rest of the kernel [11], whereas in Windows XP device driver faults account for 85%
of recent failures [53]. Failure information for Solaris is not available but Solaris 10 is purported
to include an IO Fault Services infrastructure to isolate the OS from some hardware and software
defects, our intent is to evaluate the impact of this infrastructure.

To facilitate device driver fault-injection on Linux 2.6, I am working on porting the SWIFI tools over
to Linux 2.6. To facilitate device driver fault-injection on Solaris 10, I have to develop a tool for this,
based on my experience with the SWIFI tools and Unix-kernel development.

To facilitate device driver fault-injection on Windows XP SP2, I will be using Microsoft’s Installable
File Systems (IFS) kit [58] and my past experience developing Windows Device Drivers [15]. The
IFS kit is Microsoft’s kernel driver development toolkit. Details about the interactions between device
drivers and core Windows kernel components can be found in [49].

The second goal is to explore database fault-injection on MySQL 5.0.27 using Kheiron/C’s ability to
dynamically adapt compiled C-programs and the MySQL Internals Manual [2], which describes the
internal structure and operation of the database engine core. The objective is to focus on injecting
faults in the database engine core that potentially affect the operation of the engine rather than inject-
ing faults affecting the data being managed – the DBench OLTP benchmark [34] is concerned with
faults that drop tables or delete schemas. My preliminary tests show that the latest version of Dyninst
(v5.0) is able to interact with MySQL 5.0.27 at runtime.

The third goal is to extend the existing fault-model with more software faults. Via Kheiron/JVM we
have the ability to inject delays, hangs and remove components, I now want to experiment injecting
these faults into Resin and one other application server for comparison.

The fourth goal is to use our ability to inject fine-grained faults at runtime to study the behavior of
the system in the presence of near-coincident faults. Near-coincident faults occur when a second fault
occurs while the system is processing the previous fault [39]. Further, I will construct RAS-models
for the systems under test to facilitate their analysis and comparison.

Table 5 shows my plan for completion of the research.

6 Expected Contributions
The contributions of this thesis are anticipated to include:

1. Contributions towards a representative fault-model for computing systems that can be
induced/injected using fault-injection tools. One major requirement of fault-injection tools is
that they be able to induce representative faults so we can reproduce the failure behavior of the
system and accurately evaluate any mechanisms proposed to mitigate these failures.
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Timeline Work Progress
Develop initial Kheiron (CLR,JVM,C) prototypes completed

Jan. 2006 Submitted Kheiron paper to ICAC 2006 accepted
Sep. 2006 Build GUI front-end for Kheiron/JVM ongoing
Oct. 2006 Build self-healing benchmark simulator completed
Nov. 2006 Build Linux-based testbed for RAS-benchmark experiments completed
Dec. 2006 Run preliminary RAS-benchmarking experiments completed
Jan. 2007 Submit paper on initial RAS-benchmark results to ICAC 2007 completed
Feb. 2007 Write Proposal Document completed
Mar. 2007 Port Linux 2.4 device driver fault-injection tools (SWIFI tools) to Linux 2.6 ongoing
Mar. 2007 Write device driver fault-injection tools for Windows XP SP2 using IFS kit ongoing
May. 2007 Write proof-of-concept database fault-injection tools using Kheiron/C ongoing
Jun. 2007 Write (or acquire under NDA) fault-injection tools for Solaris 10 ongoing
Jul. 2007 Build machine for hardware and software fault-injection RAS-experiments ongoing
Aug. 2007 Start next round of RAS-experiments using Linux 2.6, Solaris 10 and Windows XP SP2 ongoing
Jan. 2008 Thesis writing
Aug. 2008 Thesis defense

Table 5: Plan for completion of my research

2. A suite of runtime fault-injection tools. The suite of tools will support injecting a range of
fine-grained faults into commodity operating systems, non-trivial compiled C-programs (e.g.
RDBMS), Java and .NET applications (e.g. application servers). The tools we develop are
complementary to existing software-based and hardware-based fault-injection tools.

3. A survey of RAS-enhancing mechanisms (or lack thereof) in contemporary operating systems
and application servers.

4. Analytical techniques that can be used at design-time or post-deployment time.

5. A RAS-benchmarking methodology, suite and report for computing systems. A methodol-
ogy for evaluating and analyzing the RAS-mechanisms of computing systems and their impact
on the policies and SLAs the govern that system’s operation. In the analysis I highlight the
various facets of the mechanisms that can be modeled and analyzed. I also compare individual
mechanisms and complete systems enhanced with these mechanisms.

In addition to the contributions listed above, at the time of this writing the following practical accom-
plishments have already been made:

• Published papers on dynamic system-adaptations using Kheiron; [26], [3] and [27].

• Submitted a paper on using RAS Models and Metrics to evaluate Self-Healing systems to the
IEEE International Conference on Autonomic Computing (ICAC) 2007.

7 Future Work and Conclusion
This thesis has focused on developing a general approach to runtime fault-injection to enable the study
the impact of faults and any remediation mechanisms. However, there are a number of interesting
future work possibilities.

7.1 Immediate Future Work Possibilities

• Work towards a benchmark for self-healing systems. The 7U-evaluation approach emphasizes
the link between the micro-view of the system (its mechanisms) and the macro-view of the
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system (its goals). For self-healing systems, we expect the repair mechanisms of the system
to impact the system’s reliability, availability, serviceability and overall manageability. The
rigorous analytical techniques and experimental studies of the impact of faults and remediations
will help define a foundation for a self-healing benchmark.

• Further explore and compare fault-injection frameworks for software systems. As of this writ-
ing some operating systems are being developed with built-in fault-injection mechanisms. For
example the Linux 2.6.19 (and later) kernels include facilities for injecting memory allocation
faults and causing occasional disk I/O operations to fail [47]. Whereas, these facilities have
been implemented to assist in exercising error paths during kernel and filesystem development,
they are complementary to runtime fault-injection tools. Further, we expect their use to result
in more robust remediation mechanisms.

7.2 Long Term Future Work Possibilities

• Explore the integration of RAS-modeling tools into integrated development environments (IDEs).
Given the interest in system reliability, high-availability and manageability (serviceability, re-
pair and recovery) and the ability to use RAS-models to explore the expected impact of RAS-
enhancing mechanisms, incorporating them into the IDE e.g. via add-on toolkits and declarative
language annotations [59, 80] may be a viable way to satisfy these extra-functional requirements
early in the development cycle.

7.3 Conclusion

In this thesis I describe techniques for runtime fault-injection into commodity operating systems and
applications as well as the analysis of computing systems based on their failure-behavior, (existing or
lacking) remediation mechanisms and the policies, SLAs etc. that guide the system’s operation. The
end goal of this thesis is to improve the study, development and design of reliable, highly available
and more manageable software systems through the use of rigorous analytical tools.
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8 Appendix A – Alchemi Experiments
Our experimental testbed was an Alchemi cluster consisting of two Executors (Pentium-4 3GHz desk-
top machines each with 1GB RAM running Windows XP SP2 and the .NET Framework v1.1.4322),
and a Manager (Pentium-III 1.2GHz laptop with 1GB RAM running Windows XP SP2 and the same
.NET Framework version). We ran the PiCalculator sample grid application, which ships with Al-
chemi, multiple times while requesting that the scheduler implementation be changed during the
application’s execution. The PiCalculator application computes the value of Pi to n decimal digits. In
our tests we used the default n=100.

One thing we measured was the time taken to swap the scheduler. We requested scheduler swaps
between runs of the PiCalculator application. The time taken to replace the scheduler instance was
about 500 ms, on average; however, that time was dominated by the time spent waiting for the sched-
uler thread to exit. In the worst case, a scheduler-swap request arrived while the scheduler thread was
sleeping (as it is programmed to do for up to 1000 ms on every loop iteration), causing the request to
wait until the thread resumes and exits before it is honored. As a result we consider the time taken to
actually effect the scheduler swap (modulo the time spent waiting for the scheduler thread to exit) to
be negligible.

Table 6 compares the job completion times when no scheduler swap requests are submitted during
execution of the PiCalculator grid application, with job completion times when one or more scheduler
swap requests are submitted. As expected, the difference in job completion times is negligible, ∼1%,
since the scheduler implementations are functionally equivalent. Further, swapping the scheduler had
no impact on on-going execution of the Executors, as an Executor is not assigned an additional work
unit (grid thread) until it is finished executing its current work unit.

run# Job Completion time (ms) w/o swap Job Completion time (ms) w/swap #Swaps
1 18.3063232 17.2748400 2
2 18.3163376 18.4665536 1
3 18.3363664 17.3148976 4
4 18.3463808 17.3148976 2
5 18.3063232 17.4150416 2
6 17.4250560 18.2662656 2
7 18.3463808 18.3163376 4
8 17.5352144 18.5266400 1
9 17.5252000 18.4965968 2
10 18.3363664 18.3463808 2
Avg 18.07799488 17.97384512 2.2

Table 6: PiCalculator.exe Job Completion Times

Thus we were able to demonstrate that Kheiron can be used to facilitate a consistency-preserving
reconfiguration of the Alchemi Grid Manager without compromising the integrity of the CLR or
the Alchemi Grid Manager, and by extension the Alchemi Grid and jobs actively executing in the
grid. The combination of ensuring that the augmentations made by Kheiron to insert hooks for the
adaptation engine respect the CLR’s verification rules for type and method definitions (see [65] for
details on how we guarantee this) and relying on human analysis to determine what transformations
Kheiron should perform, and when they should be performed, can guarantee that the operation of the
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target system is not compromised. Human analysis leverages the consistency-guarantees of Kheiron
with respect to the CLR, allowing the designers of adaptations to focus on preserving the consistency
of the target system (at the application level) based on knowledge of its operation.

9 Appendix B – Dynamic Selective Emulation or Compiled C-
Applications

To enable applications to detect low-level faults and recover at the function level or, to enable portions
of an application to be run in a computational sandbox, we describe an approach that allows portions
of an executable to be run under the STEM x86 emulator. We use Kheiron/C to dynamically load the
emulator into the target process’ address space and emulate individual functions. STEM (Selective
Transactional EMulation) is an instruction-level emulator – developed by Locasto et al. [75] – that can
be selectively invoked for arbitrary segments of code. The emulator can be used to monitor applica-
tions for specific types of failure prior to executing an instruction, to undo any memory changes made
by the function inside which the fault occurred (by having the emulator track memory modifications)
and, simulate an error return from the function (error virtualization)[75].

Figure 19: Inserting STEM via source code

The original implementation of STEM works at the source-code level i.e. a programmer must insert
the necessary STEM “statements” around the portions of the application’s source code expected to run
under the emulator (Figure 19). In addition, the STEM library is statically linked to the executable. To
inject STEM into a running, compiled C application, we need to be able to: load STEM dynamically
into a process’ address-space, manage the CPU-to-STEM transition as well as the STEM-to-CPU
transition.

To dynamically load STEM we change the way STEM is built. The original version of STEM is
deployed as a GNU AR archive of the necessary object files; however, the final binary does not contain
an ELF header – this header is required for executables and shared object (dynamically loadable) files.
A cosmetic change to STEM’s makefile suffices – using gcc with the -shared switch at the final link
step. Once the STEM emulator is built as a true shared object, it can then be dynamically loaded into
the address space of a target program using the Dyninst API.

Next, we focus on initializing STEM once it has been loaded into the target process’ address space.
The original version of STEM requires two things for correct initialization. First, the state of the
machine before emulation begins must be saved – at the end of emulation STEM either commits its
current state to the real CPU registers and applies the memory changes or STEM performs a rollback
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of the state of the CPU, restoring the saved register state, and undoes the memory changes made
during emulation. Second, STEM’s instruction pipeline needs to be correctly setup, including the
calculation of the address of the first instruction to be emulated.

To correctly initialize our dynamically-loadable version of STEM we need to be able to effect the
same register saving and instruction pipeline initialization as in the source-scenario. In the original
version of STEM register saving is effected via the emulate init macro, shown in Figure 19. This
macro expands into inline assembly, which moves the CPU (x86) registers (eax, ebx, ecx, edx, esi,
edi, ebp, esp, eflags) and segment registers (cs, ds, es, fs, gs, ss) into STEM data structures.

Whereas Kheiron/C can use Dyninst to dynamically load the shared-object version of STEM into a
target process’ address-space and inject a call to the emulate begin function, the same cannot be done
for the emulate init macro, which must precede a call to emulate begin. Macros cannot be injected by
Dyninst since they are intended to be expanded inline by the C/C++ preprocessor before compilation
begins. This issue is resolved by modifying the trampoline – a small piece of code constructed on-
the-fly on the stack – Dyninst sets up for inserting prologues, code (usually function calls) executed
before a function is invoked.

Dyninst instrumentation via prologues works as follows: the first five bytes after the base address8

of the function to be instrumented are replaced with a jump (0xE9 [32-bit address] ) to the
beginning of the trampoline. The assembly instructions in the trampoline save the CPU registers on
the stack, execute the prologue instrumentation code, restore the CPU registers and branches to the
instructions displaced by the jump instruction into the trampoline. Then another jump is made to
the remainder of the function body before control is finally transferred to the instruction after the
instrumented function call [7].

We modify this trampoline such that the contents of the CPU general purpose registers and segment
registers are saved at a memory address (register storage area) accessible by the process being in-
strumented. This modification ensures that the saved register data can be passed into STEM and used
in lieu of the emulate init macro. In addition, we modify Dyninst such that the instructions affected
by the insertion of the five-byte jump into the trampoline are saved at another memory address (code
storage area) accessible by the process being instrumented. Since the x86 processor uses variable-
length instructions, there is no direct correlation between number of instructions displaced and the
number of bytes required to store them. However, Dyninst has an internal function getRelocatedIn-
structionSz, which it uses to perform such calculations. We use this internal function to determine
the size of the code storage area where the affected instructions are copied.

The entire CPU-to-STEM transition using our dynamically-loadable version of STEM is as follows:
Kheiron/C loads the STEM emulator shared library and a custom library (dynamically linked to the
STEM shared library) that has functions (RegisterSave and EmulatorPrime). Next, Kheiron/C uses
the Dyninst API to find the functions to be run under the emulator. Kheiron/C uses Dyninst functions
which support its BPatch thread::malloc API to allocate the areas of memory in the target process’
address-space where register data and relocated instructions are saved. The addresses of these storage
areas are set as fields added to the BPatch point class – the concrete implementation of Dyninst’s
point abstraction. RegisterSave is passed the address of the storage area and copies data over from
the storage area into STEM registers – so that a subsequent call to emulate begin will work. Em-

8The location in memory of the first assembly instruction of the function.
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ulatorPrime is passed the address of the code storage area, its size and the number of instructions it
contains. Kheiron/C injects calls to the RegisterSave, EmulatorPrime and emulate begin functions (in
this order) as prologues for the functions to be emulated and allows the target program to continue. A
modification to STEM’s emulate begin function causes STEM to begin its instruction fetch from the
address of the code storage area.

At the end of this process, the instrumented function, when invoked, will cause the STEM emulator
to be loaded and initialized with CPU and segment register values as well as enough information
to cause our dynamically-loadable version of STEM to alter its instruction pointer after executing
the relocated instructions and continue the emulation of the remaining instructions of the function.
After the initialization, the injected call to emulate begin will cause STEM to begin its instruction
fetch-decode-execute loop thus running the function under the emulator.

The final modification to STEM addresses the STEM-to-CPU transition, which occurs when the em-
ulator needs to unload and allow the real CPU to continue from the address after the function call
run under the emulator. Rather than inject calls to emulate end, we modify STEM’s emulate begin
function such that it keeps track of its own stack-depth. Initially, this value is set to 0, if the function
being emulated contains a call (0xE8) instruction, the stack-depth is incremented, when it returns the
stack-depth is decremented. STEM marks the end of emulation by the detection of a leave (0xC9)
or return/ret (0xC2/0xC3) at stack-depth 0. At this point, the emulator either commits or restores the
CPU registers and, using the address stored in the saved stack pointer register (esp), causes the real
CPU to continue its execution from the instruction immediately after the emulated function call.

As a comparison, performing STEM injection using Pin 2.0 [66] would call for less machinations
with respect to initializing STEM (i.e. the CPU-to-STEM transition). Pin maintains two copies of
the program text in memory, the original program text and the instrumented version of the program
text (generated just-in-time by Pin) hence, there is no need for trampolines, nor any need to save
instructions dislocated by jumps into the trampoline as in the Dyninst case. Once STEM is loaded, its
instruction pointer can simply be set to the base address of the function which will mark the beginning
of the original un-instrumented version of the function. Further, Pin 2.0 guarantees that analysis
code – code executed at instrumentation points – will be inlined into the instrumented version of the
function, as long as the analysis code contains no branches [14]. This inlining guarantee should allow
the CPU state-capture assembly instructions needed to initialize STEM’s registers to be emitted inline
in the instrumented version of the function, as occurs at the source level with the original version of
STEM. However, we need to verify that inlining actually occurs and devise an appropriate strategy
for the STEM-to-CPU transition.
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