
Dynamic Adaptation of Temporal Event Correlation

for QoS Management in Distributed Systems

Rean Griffith*, Joseph L. Hellerstein**, Gail Kaiser*, and Yixin Diao**

*Computer Science Department
Columbia University, New York, New York

{kaiser, rg2023}@cs.columbia.edu

**IBM Thomas J. Watson Research Center
Hawthorne, New York

{hellers, yixin}@us.ibm.com
February 20, 2006

Abstract

Temporal event correlation is essential to managing quality of service in distributed systems, especially corre-

lating events from multiple components to detect problems with availability, performance, and denial of service

attacks. Two challenges in temporal event correlation are: (1) handlinglost events and (2) dealing with inaccurate

clocks. We show that both challenges are related to event propagation skew, the difference in the time required

for events to propagate from the event source to the management station atwhich correlation takes place (e.g.,

as a result of variations in resource utilizations). We develop an approach to adjusting the timer values of event

correlation rules based on propagation skew in order to reduce missed alarms and false alarms. Our approach has

three parts: an infrastructure for real-time measurement of propagationskew, a statistical approach to estimating

propagation skew, and a controller that uses estimates of propagation skew to update timer values in temporal

rules. Our approach eliminates the need for manual adjustments of timer values. Further, studies of a prototype

implementation suggest that our approach produces results that are atleast as good as an optimal fixed adjustment

in timer values.

1

1. Introduction

Maintaining quality of service (QoS) in complex Information Technology (IT)environments requires a capabil-

ity for correlation of temporal events. For example, a denial of service attack may be detected by correlating failed

logins on multiple machines in a short period of time (e.g., under one second), and problems with multi-server

applications can be detected by the transition times between processing stagesthat occur on different severs. This

paper addresses how to determine timer values for temporal patterns so as toaddress issues with lost events and

inaccurate clocks. A central concern is addressing propagation skew, the variability in event propagation delays

due to contention for network and server resources and other factors. We develop an approach that uses propaga-

tion skew to dynamically adjust timer values in temporal correlation rules so as to reduce missed alarms and false

alarms. Our approach consists of: an infrastructure for real-time measurement of propagation skew, a statistical

technique that estimates propagation skew, and a controller that uses estimates of propagation skew to update timer

values in temporal rules. One appeal of this approach is that it eliminates the need for manual adjustments of timer

values. Further, studies of a prototype implementation suggest that our approach produces results that are at least

as good as an optimal fixed adjustment in timer values.

Traditionally, event correlation is done using if-then rules (also called event-condition-action) that are inter-

preted by an engine in aManagement Station. The if-part of these rules consists of an event pattern and the

then-part specifies an action to be taken (although other approaches can be employed as well as in [11]). Herein,

our focus is on the if-part and so we assume that the then-part is an alarm(which is the most common case in

practice) such as sending an email, paging an administrator, or creating a trouble ticket.

Managing distributed systems often requires correlation rules that relate events from multiple systems. Consider

the illustrative examples below in which the question marks indicate variables thatare bound to values based on

the content of events received.

• Rule 1:If there is no Heartbeat event from system ?S1 at location ?L1 within 1 minute of another

Heartbeat event from system ?S2 6= ?S1 at location ?L1 and there is a Heartbeat event from

system S3 at location ?L2 6= ?L1, then alert the Network Manager for location ?L1.

• Rule 2:If there is a CompletedPhase1 event from application ?A1 and there is no CompletedPhase2

event from application ?A1 within 5 seconds of the first event, then alert the Application Manager

2

for application ?A1.

• Rule 3:If there is a FailedLogin event from system ?S1 in cluster ?C1 and there is a FailedLogin

event from system ?S2 in cluster ?C1 within 1 second, then alert the Security Manager for cluster

?C1.

Rule 1 provides a way to distinguish network problems from application problems based on a pattern consisting

of two events from different machines at the same location. Rule 2 checks on the health of a critical business

application that has processing steps that may be executed on different systems. Rule 3 checks for certain kinds

of security intrusions by looking for patterns of failed logins. In all of these rules, the if-part of the rule contains

a pattern that is to be matched by events from multiple nodes. Also, in all cases there is atimer value that

constrains the maximum elapsed time between receiving the first and last events in the pattern (although in general

more complex temporal patterns may be used [5]). For Rule 1, the timer value is determined by the experience of

system administrators with the timing of related events. For Rule 2, the timer value relates to the time between

processing steps. For Rule 3, the timer value is chosen to distinguish human interactions from robots.

Implementing temporal event correlation requires an appropriate runtime infrastructure. Centeral to this is

the concept of apartial correlation instance, the context created while correlation matching is underway for a

rule. A partial correlation instance is created on the arrival of the first event that matches an event type in a rule.

Additional events are included in the partial correlation instance if they satisfy two kinds of constraints. First,

the event must match the rule’sdata constraints, such as ?S26= ?S1 in Rule 1. Second, the event must comply

with the rule’stemporal constraints,such as arriving within 1 minute of another event. If all events specified in

the rule are instantiated, then the partial correlation instance becomes a completed correlation instance, at which

time the rule’s action is executed and the correlation instance is removed. If a partial correlation instance remains

uncompleted for a sufficiently long time (e.g., as specified by a time-out value),the partial correlation instance is

discarded.

There are two challenges in managing the lifecycle of partial correlation instances. The first is dealing with lost

events. This requires a good choice for the value of the time-out of the partial correlation instance. If the time-out

value is too small, then there will be undetected alarms since partial correlation instances will be discarded before

all the matching events arrive. On the other hand, if the time-out value is too large, there may be considerable

3

memory and processing overheads due to long-lived partial correlation instances.

The second challenge in managing the lifecycle of partial correlation instances is compensating for inaccurate

timestamps due to unsynchronized and/or inaccurate clocks. Our perspective here is based on a business model

used by many organizations in which the management of the IT infrastructureis outsourced toManagement Ser-

vice Providers (MSPs). The MSP could be an external organization such as IBM, EDS, and Accenture. Or, the

MSP could be a corporate IT organization. In either case, the MSP creates a management infrastructure consisting

of a Management Station and associated MSP (e.g., agents, probes, network sniffers) in which timestamps are

accurate. Since the MSP typically has little control over software running oncustomer-managed elements (e.g.,

application servers and desktops), events generated by customer-managed element may contain inaccurate times-

tamps. Indeed, the customer-managed element could be infected with a virus or worm that affects the accuracy

of event timestamps. The impact of inaccurate event timestamps is to reduce the accuracy with which temporal

constraints can be evaluated, which in turn can result in undetected alarms or false alarms.

We assume that timestamps are correctly synchronized within MSP elements sincedoing so is central part

of the MSP responsibilities. Our strategy for obtaining accurate event timestamps is to replace the timestamps

provided by customer-managed elements with the arrival time of the event at MSP elements. These arrival times

are affected by the delay to propagate the event from its source (including any software overheads in the node from

which the event originated). If propagation delays are the same for all events in a completed correlation instance,

the true elapsed time of event pattern is the same as the elapsed time of the event pattern as measured by the MSP

infrastructure. Unfortunately, there may be substantialpropagation skew, a term we use to refer to the variation

in propagation delays within an event pattern. Experiments we conducted reveal propagation skews that are within

50% of the pattern elapsed time, a fact that can greatly increase the rate of missed alarms and false alarms. Among

the reasons for propagation skews are transients in resource usage and contention with administrative tasks (e.g.,

Java garbage collection).

It turns out that lost events also can be addressed by correctly compensating for propagation skew. For example,

the left-hand side of Rule 1 is satisfied if no secondHeartbeat event arrives within a minute of the first. Thus,

the time-out value of the event pattern should be at least one minute plus the propagation skew.

There are three parts to our approach to compensating for propagation skew: measurement, estimation, and

correction. Our approach to measurement is to incorporate into the MSP infrastructure a capability to generate

4

calibration events that are representative of events generated by customer-managed elements. Estimation is accom-

plished by developing a statistical technique that is applied to the timestamps of calibration events. Correction is

achieved by including in the Management Station (or other parts of the MSP infrastructure) mechanisms whereby

timer values specified in rules are updated based on estimated propagation skew.

In terms of related work, event correlation has been widely used to monitor and analyze networks, systems,

and applications for the last twenty years (e.g., [8]). Commonly addressedissues include correlation speed and

accuracy [4, 11, 9] and the expressiveness of correlation patterns. For the latter, there has been particular interest

in non-rule based approaches [11], probabilistic correlation [6], andtemporal patterns [7, 1, 5]. Others have

recognized the importance of temporal relationships in detecting security problems [12], but have not addressed

the specifics of propagation skew. Our work relates to temporal patterns indistributed systems. In particular, none

of the systems in [7, 1, 5] mention propagation skew. Hence, none of thesesystems provide the architectural or

algorithmic support needed to compensate for propagation skew.

This paper makes the following contributions:

1. description of the problem of propagation skew for temporal event correlation in distributed systems, in-

cluding measurements of propagation skew for a testbed system;

2. an architecture that includes Calibration Probes, Probe Monitors, anda Controller that collaborate to adjust

timer values in order to compensate for propagation skew; and

3. an adaptive control algorithm for dynamically adjusting timer values to compensate for propagation skew

and an assessment of the algorithm in terms of the probability of a correct result.

One appeal of our approach is that it eliminates the need for manual adjustments of timer values. Further, our

studies of a prototype implementation suggest that our approach producesresults that are at least as good as an

optimal fixed adjustment in timer values.

The remainder of the paper is organized as follows. Section 2 describes the architecture we propose. Section

3 details our adaptive control algorithm that compensates for propagationskews. Section 4 assesses our approach

using data from a testbed system. Our conclusions are presented in Section5.

5

Event
Source

Event
Source

Network

E2

E3

E1

Alarms

Management Station

Rule
E3

E3

Rule
E2

E1

E1

LAN

LAN

Matched

Timer Value

Event

Figure 1. Figure 1: Architecture of a Management Station that supports temporal event correlation.

2. Architecture

This section describes the architecture of a system that compensates for propagation skews in temporal event

correlation for distributed systems.

Figure 1 illustrates the characteristics of existing approaches to temporal correlation of events in distributed

systems [7, 1, 5] as they relate to the problem of propagation skew. Eventsources generate events (the solid

circles) that traverse one or more networks. There are two types of event sources. The first are events generated

by customer-managed elements for which we have no assurance that clocks are synchronized and so timestamps

may be inaccurate. The second, which will be described shortly, are MSPelements that are assured to have

synchronized clocks and hence accurate timestamps. In the sequel, we simplify matters by assuming that MSP

timestamps are applied at the Management Station, although clearly this can be done elsewhere as well. The

Management Station queues a copy of the event for each partially instantiated pattern for which there is a match

with the incoming event (indicated by dotted circles). When a pattern is first instantiated for a rule, a timeout is

specified with duration equal to the timer value for the rule. If the timeout occurs before matching the last event

in the pattern, an alarm is generated.

Figure 2 illustrates the dynamics of correlating a temporal pattern consisting ofthe two events,E1 andE2.

E1 is generated by Event Source 1 at timetfirst, andE2 is generated by Event Source 2 at timetlast. Thus, the

pattern generation time isTgen = tlast − tfirst.

6

Event
Source 1

Management
Station

E1

Event
Source 2

E2

tfirst

tlast

t*last

t*first

{Telp

{

{
Tprp,first

Tprp,last

} Tgen

Telp = Tgen + τ

Ttmr

τ = Tprp,last − Tprp,first is the propagation skew

Figure 2. Figure 2: Interaction diagram for temporal event correlation. Timer values are specified based on the time

to generate a patternTgen, but the estimate of this at the Management Station isTelp.

Administrators write rules for temporal correlation based on pattern generation time. As in rules R1-R3, con-

sider a timer valueTtmr that is chosen so that an alarm is be generated ifTgen > Ttmr. Since the Management

Station does not knowTgen, it usesTelp instead. From Figure 2,Telp = t∗last − t∗first = Tgen + τ , whereτ is the

propagation skew. Propagation skew is computed as follows. The propagation delay of the first and last events are

Tprp,first = t∗first − tfirst andTprp,last = t∗last − tlast. So,τ = Tprp,last − Tprp,first.

The elapsed time of a patternTelp as seen at the Management Station differs from the pattern generation time by

τ , the propagation skew. IfTprp,last = Tprp,first thenτ = 0 and soTelp = Tgen, which is the ideal case. However,

in our experiments,τ varies considerably.

Figure 3 depicts the ways in which we extend the architecture in Figure 1 to compensate for propagation

skew. This compensation is achieved by regulatingslack time, the time added to timer values to compensate for

propagation skew. There are four considerations.

1. instrumentation that creates events so that there are known pattern generation times for one or more Cali-

bration Patterns;

2. a way to measure the propagation skew of the events generated in (1);

3. a mechanism for computing slack times that compensate for propagation skews; and

4. rules that use slack times to adjust timer values.

7

C1

C2

Controller

Alarms

Management Station

Rule
E1

E2

∆1(k)+

Rule
E3

E3

E1

Probe MonitorC1

C2

∆2(k)+

Propagation
Skew τ(k)Slack

Times

Event
Source

Event
Source

Network

E2

E3
E1

Calibration
Probe

Calibration
Probe

Synchronized
Clocks

LAN

LAN

Timer Value

Matched
Event

Figure 3. Figure 3: Architecture that supports compensation for propagation skews by having: (1) Calibration Probes

that create Calibration Patterns that have a known pattern generation time; (2) rules that use slack times to adjust

timer values; (3) a Probe Monitor that computes propagationskews for Calibration Patterns; and (4) a Controller that

computes values of slack time.

Figure 4. Figure 4: Operation of the Probe Monitor in the Management Station.

Initialize calibration pattern i

1. SendStart message to calibration probei.

First event in calibration pattern i

1. Time(EventReceived) = NOW.
2. ki = ki + 1.
3. StartExcessiveIntraframe timer.

On receipt of last event in calibration pattern i

1. Time(EventReceived) = NOW.
2. InvokeController with

τi(ki) = Time(LastEvent)
- Time(FirstEvent).

3. Delete all matched events.

Timeout for calibration pattern i.
1. Delete all matched events.

8

Item (1) is addressed by the Calibration Probes. Calibration Probes run on systems that are part of the man-

agement infrastructure and so their clocks are reliable and synchronized (e.g., using the Network Timer Protocol).

Calibration Probes generate Calibration Events that include the timestamps applied at the event source. Calibration

Events also have a timestamp corresponding to the time of their arrival at the Management Station. For example,

once EventC2 in Figure 2 arrives at the Management Station, it has timestamps corresponding to tlast andt∗last.

Calibration Events are selected so as to create a Calibration Pattern that is detected at the Management Station.

Item (2) is handled by the Probe Monitor on the Management Station. The Probe Monitor measures propagation

skews for Calibration Patterns based on information in the Calibration Events.Figure 4 details the operation of

the Probe Monitor.

Item (3) is addressed by the controller, which dynamically updates slack timesas propagation skews are re-

ceived. We discuss the controller at length in the next section.

Item (4) is handled by including a slack time for each partially instantiated pattern. As before, the timer value is

specified by administrators based on their insights into the temporal pattern. The slack time is used to compensate

for propagation skew. The operation of the system in Figure 1 is changedin that when the first event of a pattern

is matched, the Management Station specifies a timeout equal to thesum of the timer value and the slack time.

We note in passing that our architecture can readily be generalized to havemultiple timer values and slack times

if more complex temporal patterns are used.

3. Control Algorithm

This section develops the adaptive control algorithm that updates slack timesto compensate for propagation

skew. The algorithm is based on a simple technique from statistical hypothesistesting that uses non-parameteric

statistics, a class of approaches that do not assume a particular probabilitydistribution.

We want the control algorithm to choose slack times that maximize the probability ofgetting a correct result.

There are two cases. In the first, pattern generation timeTgen,i(k) for the k-th pattern of thei-th rule is larger

than the timer valueTtmr,i of i-th rule. Under these circumstances, the correct result is that an alarm isgenerated.

In the second case,Tgen,i(k) is less thanTtmr,i. Here, no alarm should be generated. In statistical hypothesis

testing, these cases are expressed using negative logic. That is, an incorrect result in the first case is a undetected

alarm, and an incorrect result in the second case is a false alarm. Herein,we simplify matters by focusing on the

9

probability of a correct result.

We now show how the probability of a correct result relates to slack time. To simplify matters, we consider

a single Calibration Pattern with generation timeTgen. We study the probability of a correct result for thei-th

correlation rule whose if-part is satisfied by the Calibration Pattern. This rule has timer valueTtmr,i. We define

the timer offset for this rule to beδi = Ttmr,i − Tgen. Note that Rulei produces a correct result if it generates an

alarm whenδi < 0, and it does not generate an alarm whenδi > 0.

The concept of the timer offset turns out to be central to the theory that underlies the selection of slack times.

For the case in which an alarm should be generated, we have

P (Correct|Alarm should be generated)

= P (Correct|δi < 0)

= P (Telp,i(k) > Ttmr,i + ∆i(k)|δi < 0)

= P (Tgen,i + τi(k) > Ttmr,i + ∆i(k)|δi < 0)

= P (τi(k) > ∆i(k) + δi|δi < 0)

Observe that we increase the probability of a correct result if either the slack time is close to zero or the timer

offset is more negative. The latter case means that we are more likely to raisean alarm if the pattern generation

time is much smaller than the timer value. The case of when an alarm should not be generated is addressed in

analogous manner.

P (Correct|Alarm should not be generated)

= P (Correct|δi > 0)

= P (Telp,i(k) < Ttmr,i + ∆i(k)|δi > 0)

= P (Tgen,i + τi(k) < Ttmr,i + ∆i(k)|δi > 0)

= P (τi(k) < ∆i(k) + δi|δi > 0)

Here, we increase the probability of a correct result if either slack times orthe timer offset are large. The latter

case means that the pattern generation time is much larger than the timer value. Observe that in both cases, when

skew is close to zero, then the magnitude of slack time need not be large to get acorrect result.

10

−0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
 a

 C
or

re
ct

 R
es

ul
t

Timer Offset (δ
i
)

unloaded, ∆=0
MAPC= 0.97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timer Offset (δ
i
)

loaded, ∆=0
MAPC= 0.44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timer Offset (δ
i
)

loaded, ∆=200
MAPC= 0.75

Figure 5. Figure 5: Probability of a correct result for loaded and unloaded testbed configurations and different fixed

settings of slack time (∆). The horizontal axis is the timer offset, which is the difference between the timer value of a

rule and the pattern generation time.

Figure 5 plots the probability of a correct result versus the timer offset for data we collected using the experi-

mental setup described in the next section. There are three plots. The first is from an experiment in which no load

was placed on the systems or network. Here, propagation skew is close to 0. Hence, there is a high probability of

a correct result since slack time is 0. The second and third plots of the firstrow present data collected when there

was substantial load. In the second plot, slack time is 0. We see that the probability of a correct result is larger for

negative timer offsetsδi (i.e., when an alarm should be generated), but the probability of a correct result is small

whenδi > 0, at least untilδi becomes fairly large. The reason for this asymmetry can be explained the distribution

of propagation skews. Its mean is approximately 0.2 second. As a result, if∆i(k) = 0, then a largerδi is needed

so thatτi(k) < δi. We can compensate for this by setting∆i(k) to 0.2 second. which is done in the third plot.

This results in a larger probability of a correct result whenδi > 0. However, it also reduces the probability of a

correct result forδi < 0.

The foregoing demonstrates a fundamental trade-off between false alarms and undetected alarms. We are

assured of a correct result in the case whereδi < 0 by using a very large∆i(k). However, doing so results

11

in poor performance whenδi > 0. The reverse applies as well.

We now introduce our metric for quantifying the performance of an approach to computing slack times. A way

to take into account the trade-off just mentioned is to consider the minimum probability of a correct result for the

two cases. That is,min{P (Correct| Alarm should be generated), P (Correct|Alarm should not be generated)} =

min{P (Correct| δi < 0), P (Correct|δi > 0)}.

In our studies, we approximate the minimum probability of a correct result by averaging across multiple values

of δi (both negative and positive) for known pattern generation times. We refer to this as theminimum aver-

age probability of a correct result (MAPC). MAPC is based on a set of timer valuesTtmr,i ∈ S< such

that Ttmr,i < Tgen (in which case an alarm should be generated), and a set of timer valuesTtmr,j ∈ S> for

which Ttmr,j > Tgen (and hence no alarm should be generated). We useAvgCorrectgen to denote the average

probability of a correct result in the first case, andAvgCorrectnogen to denote this metric in the second case.

MAPC = min[AvgCorrectgen, AvgCorrectnogen] (1)

Here, AvgCorrectgen = Averagei,k{τi(k + 1) > ∆i(k)}, AvgCorrectnogen = Averagej,k{τj(k + 1) <

∆j(k)}, and{x < y} ∈ {0, 1} depending on whether the inequality is false or true. Note that sinceMAPC is an

average of probabilities,0 ≤ MAPC ≤ 1, with MAPC = 1 being a perfect control algorithm.

Figure 5 displays MAPC values in the titles of the three plots. In the first plot,P (Correct) ≈ 1 except atδ = 0,

in which caseP (Correct) ≈ 0.5. Consistent with this, theMAPC is 0.97 ≈ 1. In the second plot,P (Correct)

is low for δi > 0. As a result, itsMAPC = 0.44. In the third plot, slack time is adjusted to better balance

P (Correct|Alarm should be generated) andP (Correct|Alarm should not be generated). Here,MAPC = 0.75.

The goal of our adaptive control algorithm is to maximizeMAPC. Our intuition from Figure 5 is that this is

achieved if slack time is chosen so as to balanceP (Correct|Alarm should be generated) andP (Correct| Alarm

should not be generated). More specifically, from the first and third plots in Figure 5, we wantP (Correct) ≈ 0.5 if

δi = 0. This observation allows us to characterize slack times. Specifically, we want P (τi(k) > ∆i(k) + δi|δi =

0) = 0.5. And soP (τi(k) > ∆i(k)|δi = 0) = 0.5. That is, slack time should be chosen to be the median of the

distribution of propagation skews. We note in passing that it may be that undetected alarms are more costly than

false alarms, or the reverse. Hence, we might want to adjust the desired probability of an alarm whenδi = 0. This

12

Figure 6. Figure 6: Operation of the Adaptive Control Algorithm.

1. Addτi(ki) to the buffer for calibration patterni.
2. Removeτi(ki − N) from bufferi
(N is the size of the buffer.)
3. ∆i(ki) = middle value of bufferi.

in turn means that the control algorithm estimates a different percentile of the skew distribution to compute slack

time.

We compute slack time by using a non-parameteric procedure for estimating the median of the distribution of

propagation skews [10]. By non-parameteric, we mean that the procedure makes no assumption about the distri-

bution of the propagation skews (which is clearly an advantage for an environment that experiences considerable

change). However, the procedure does assume that propagation skews are independent and identically distributed.

Figure 6 provides the details. Our algorithm retains the lastN propagation skews in a buffer. The median is the

middle value of the sorted list.

The only parameter of the adaptive control algorithm is the buffer sizeN . For stationary skew distributions, a

largerN reduces the variance of the estimate of the median and hence results in a higher probability of a correct

result. However, non-stationarities arise if a file transfer is started that increases network delays or administrative

tasks begin execution on the management station. In these cases a largerN is a disadvantage in that it takes longer

for the buffer to be populated entirely by observations from the new distribution.

4. Experimental Results

We developed a testbed system based on the architecture depicted in Figure3 in which the Management Station

extends the Event Distiller [5] and the event transport is the Siena Publish/Subscribe bus [3]. We study a situation in

which there are two event sources, both on the same system (so that we have very accurate measurements of pattern

generation times), and the Management Station is on the same LAN as the event sources. Two configurations are

considered. In theunloaded configuration, there are separate machines for Event Distiller and Siena. In the

loaded configuration, Event Distiller and Siena are co-located on the same machine. In the experiments reported

here, the pattern generation time is 2 seconds, and the Calibration Probes run on an AMD Anthlon XP 1800 with

13

−1

−0.5

0

0.5

1

1.5

2

unloaded

P
ro

pa
ga

tio
n

S
ke

w
 (

se
c)

0

0.2

0.4

0.6

0.8

1

CDF

−1

−0.5

0

0.5

1
AutoCorr

0 250
−1

−0.5

0

0.5

1

1.5

2

loaded

Observation

P
ro

pa
ga

tio
n

S
ke

w
 (

se
c)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

CDF

Propagation Skew (sec)

0 50
−1

−0.5

0

0.5

1

Lags

AutoCorr

Figure 7. Figure 7: Characteristics of the propagation skew data for unloaded and loaded configurations. CDF is

the empirical cumulative distribution, and AutoCorr is theautocorrelation for a stationary segment of the propagation

skews.

1 GB RAM. The management station is a 3 GHz P4 running Windows XP with 1 GB RAM. In the unloaded

configuration, Siena runs on a 1 GHz P3 with 512MB RAM and RedHat Linux2.4.20.

Figure 7 reports data from two runs on our testbed, one for an unloadedconfiguration and the second for a loaded

configuration. In the unloaded case, we see that the propagation skewsare tightly clustered around 0, although

there are a few large spikes. The second plot in the top row is the cumulativedistribution function (CDF), which

reinforces the view that values are tightly clustered. Also plotted are the autocorrelations between propagation

skews. Note that all autocorrelations lie within the dashed lines, indicating thatthey are not statistically significant

as determined by the Bartlett Test [2]. This fact bodes well for our use of non-parameteric statistics that require

independent observations.

The bottom row of Figure 7 reports results from a loaded configuration. Here, propagation skews are much more

variable and considerably larger, a fact that is reflected in the CDF plot. We also see substantial autocorrelations

(possibly due to periodic activities), a fact that undermines the assumption of independence of the propagation

skews that the controller algorithm relies on.

14

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
unloaded 1

M
A

P
C

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
unloaded 2

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
loaded 1

M
A

P
C

Fixed Slack Time (sec)

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
loaded 2

Fixed Slack Time (sec)

Fixed
Adaptive

Figure 8. Figure 8: Evaluation of fixed slack times (dashed line) and the adaptive control algorithm forstationary

propagation skews. The horizontal axis is the value of the fixed slack time, and the vertical axis is the minimum

average probability of a correct test result (MAPC). The adaptive control algorithm consistently does as wellas the

best fixed slack time.

15

Figure 8 assesses the effectiveness of using fixed slack times for the unloaded and loaded configurations reported

in Figure 7. In all of the plots, the horizontal axis is the slack time∆ and the vertical axis is Minimum Average

Probability of a Correct result (MAPC). We see that largeMAPC values are achieved with a fixed slack time

near 0 in the unloaded cases. However, for the loaded configurations,MAPC is maximized at larger fixed slack

times. This can be explained by looking at the distribution of propagation delays. For example, the “unloaded 1”

plot corresponds to the data plotted in the top row of Figure 7. We see that themedian of this distribution (the skew

value corresponding to the 50-th percentile) is approximately 0, which is the fixed slack time at whichMAPC is

maximized. Similarly, the “loaded 1” plot corresponds to the bottom row of Figure 7. Here, the median of the

skew distribution is a little more than 0.2 seconds, which is whereMAPC is maximized for these data.

The solid line in Figure 8 plots theMAPC values achieved by our adaptive control algorithm (N = 5) that is

described in Figure 6. We see that in all cases, the adaptive control algorithm selects slack times that are very close

to the value of fixed slack time that maximizesMAPC. This is impressive in two respects. First, we did not have

to parameterize or train the controller. That is, slack times are selected in a self-managing way. Second, we achieve

near optimal results in the loaded configuration even though the data have significant autocorrelations, a situation

that violates the independence assumption of the technique we use to estimate themedian of the propagation skew

distribution in the adaptive control algorithm.

Next, we consider situations in which the distribution of propagation skews changes. The data we use are syn-

thesized by alternating between propagation skews obtained in our testbed for loaded and unloaded configurations.

Figure 9 consists of six plots organized into two columns with three rows. Plots inthe first column are propagation

skews used to drive a simulated Management Station. The second column reportsMAPC for both fixed slack

times and the adaptive control algorithm. We see that the adaptive algorithm consistently does better than the best

setting of fixed slack time.

Last, we evaluate the impact on MAPC of the controller buffer sizeN . Figure 10 contains ten plots organized

into two columns with five rows. As in Figure 9, the first column are synthesizedtraces of propagation skews from

our experimental runs that are constructed by alternating blocks of data from different experiments. In case A,

there are many changes in the distribution of propagation skew. Here, the optimal buffer size is small. The reason

for this is that a smaller buffer size means there is less history and hence adaptation occurs faster. On the other

hand, when changes in the skew distribution are infrequent (i.e., Case E), the optimal buffer size is larger. The

16

0

0.5

1
Case 1

0

0.5

1

0

0.5

1
Case 2

0

0.5

1

0 200 400

0

0.5

1

Observation

P
ro

pa
ga

tio
n

S
ke

w
 (

se
c)

 Case 3

0 0.2 0.4
0

0.5

1

M
A

P
C

Fixed Slack Time (sec)

Fixed
Adaptive

Figure 9. Figure 9: Evaluation of fixed slack times (dashed line) and the adaptive control algorithm fornon-stationary

propagation skews. The plots in the first column are the propagation skews. The second column are plots that evaluate

MAPC in the same way as Figure 8.

0

0.5

1 Case A

0.7

0.8

0.9

0

0.5

1 Case B

0.7

0.8

0.9

0

0.5

1 Case C

0.7

0.8

0.9

0

0.5

1

P
ro

pa
ga

tio
n

S
ke

w
 (

se
c)

Case D

0.7

0.8

0.9

0 200 400
0

0.5

1

Observation

Case E

10 20 30 40 50
0.7

0.8

0.9

Buffer Size (N)

M
A

P
C

Figure 10. Figure 10: Effect on MAPC ofN , the size of the buffer used in the adaptive control algorithm. The plots

in the first column are the propagation skews, and the second column plotsMAPC for different buffer sizes.

17

insight here is that a larger buffer size provides a lower variance estimateof the median of the skew distribution.

However, the reduction in variance itself declines rapidly asN increases. As a result, there is little value in having

a buffer size much larger than 5 or 7, even for stationary data.

5. Conclusions

Achieving QoS in distributed systems often requires that events be correlated from multiple systems using tem-

poral patterns. This paper addresses how to specify timer values for temporal patterns so as to reduce missed

alarms and false alarms caused by lost events and unsynchronized clocks. A central concern is addressing prop-

agation skew, the variability in event propagation times due to contention for network and server resources and

other factors. We develop a three part approach to adjusting timer values based on propagation skew: (1) an in-

frastructure for real-time measurement of propagation skew, (2) a statistical approach to estimating propagation

skew, and (3) a controller that uses estimates of propagation skew to update timer values in temporal rules.

Our results are in three areas. First, we describe the problem of propagation skew for temporal event correlation

in distributed systems, including measurements of propagation skew for a testbed system. These measurements

show that propagation skews can be substantial, on the order of 50% of the pattern generation time in our testbed

experiments. Second, we introduce an architecture that uses dynamically computed slack times to compensate

for propagation skews. The architecture includes Calibration Probes, Probe Monitors, and a Controller. Last, we

develop an adaptive control algorithm for computing slack times, and we assess the algorithm in terms of the

probability of a correct result in that there is no missed alarm or false alarm.Testbed measurements suggest that

our algorithm adapts well to changes in propagation skews, typically doing better than the best result achieved by

a fixed slack time.

Our future work will involve more extensive measurements of propagation skews and extensions to more com-

plex temporal patterns.

Acknowledgments

Kaiser’s Programming Systems Lab is funded in part by National Science Foundation grants CNS-0426623,

CCR-0203876 and EIA-0202063.

18

References

[1] A. Adi, A. Biger, D. Botzer, O. Etzion, and Z. Sommer. Context awareness in amit. InAutonomic Computing Workshop,

2003, pages 160–166. IEEE Press, June 2003.

[2] G. E. P. Box and G. M. Jenkins.Time Series Analysis Forecasting and Control. Prentice Hall, 1976.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-area event notification service.ACM

Trans. Comput. Syst., 19(3):332–383, 2001.

[4] G. Jiang and G. Cybenko. Temporal and spatial distributed event correlation for network security.

[5] G. E. Kaiser, J. Parekh, P. Gross, and G. Valetto. Kinesthetics extreme: An external infrastructure for monitoring

distributed legacy systems. InActive Middleware Services, pages 22–31, 2003.

[6] A. Konstantinou, D. Florissi, and Y. Yemini. Towards self-configuring networks. InDARPA Active Networks Confer-

ence and Exposition (DANCE). IEEE Press, 2002.

[7] D. Luckham.The Power of Events. Addison–Wesley, 75 Arlington Street,Suite 300, Boston, MA 02116, first edition,

2002.

[8] K. Milliken, A. Cruise, R. Ennis, A. Finkel, J. Hellerstein, D. Loeb, D. Klein, M. Masullo, H. V. Woerkom, and

N. Waite. YES/MVS and the autonomation of operations for large computer complexes.IBM Systems Journal, 25(2),

1986.

[9] O. C. O. Systems. Rootcause: Using a flight recorder to speed remote debugging and problem resolution.

[10] A. Walker. A note on the asymptotic distribution of sample quantiles.Journal of the Royal Statistical Society, 30:570–

575, 1968.

[11] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High speed and robust event correlation.IEEE Commu-

nications Magazine, 34(5):82–90, 1996.

[12] Y. Zhang and V. Paxson. Detecting stepping stones. In9th USENIX Security Symposium, pages 171–184, August 2000.

19

