Dynamic Adaptation of Temporal Event Correlation

for QoS Management in Distributed Systems

Rean Griffith*, Joseph L. Hellerstein**, Gail Kaiser*, andxtfh Diao**

*Computer Science Department
Columbia University, New York, New York
{kaiser, rg2023@cs.columbia.edu

*IBM Thomas J. Watson Research Center
Hawthorne, New York
{hellers, yixint @us.ibm.com
February 20, 2006

Abstract

Temporal event correlation is essential to managing quality of servicéestriliited systems, especially corre-
lating events from multiple components to detect problems with availability, peafore, and denial of service
attacks. Two challenges in temporal event correlation are: (1) handiisigevents and (2) dealing with inaccurate
clocks. We show that both challenges are related to event propagaton gie difference in the time required
for events to propagate from the event source to the management statidricht correlation takes place (e.qg.,
as a result of variations in resource utilizations). We develop an appréa@djusting the timer values of event
correlation rules based on propagation skew in order to reduce midsecha and false alarms. Our approach has
three parts: an infrastructure for real-time measurement of propagatiaw, a statistical approach to estimating
propagation skew, and a controller that uses estimates of propagatmm gkupdate timer values in temporal
rules. Our approach eliminates the need for manual adjustments of tinhees/aFurther, studies of a prototype
implementation suggest that our approach produces results that dgasttas good as an optimal fixed adjustment

in timer values.

1. Introduction

Maintaining quality of service (QoS) in complex Information Technology @fyironments requires a capabil-
ity for correlation of temporal events. For example, a denial of servicelattay be detected by correlating failed
logins on multiple machines in a short period of time (e.g., under one secartiprablems with multi-server
applications can be detected by the transition times between processingistagesur on different severs. This
paper addresses how to determine timer values for temporal patterns sadasdes issues with lost events and
inaccurate clocks. A central concern is addressing propagation #kewariability in event propagation delays
due to contention for network and server resources and other falterdevelop an approach that uses propaga-
tion skew to dynamically adjust timer values in temporal correlation rules so agtce missed alarms and false
alarms. Our approach consists of: an infrastructure for real-time nezasuat of propagation skew, a statistical
technique that estimates propagation skew, and a controller that uses estihpaitgagation skew to update timer
values in temporal rules. One appeal of this approach is that it eliminatesdlddar manual adjustments of timer
values. Further, studies of a prototype implementation suggest that cwaapproduces results that are at least
as good as an optimal fixed adjustment in timer values.

Traditionally, event correlation is done using if-then rules (also calledtes@ndition-action) that are inter-
preted by an engine in Blanagement Station The if-part of these rules consists of an event pattern and the
then-part specifies an action to be taken (although other approachbs employed as well as in [11]). Herein,
our focus is on the if-part and so we assume that the then-part is an @iioh is the most common case in
practice) such as sending an email, paging an administrator, or creatingketticket.

Managing distributed systems often requires correlation rules that retatesdvom multiple systems. Consider
the illustrative examples below in which the question marks indicate variablearthbund to values based on

the content of events received.

e Rule 1:Ifthere isno Hear t beat event from system ?S1 at location ?L1 within 1 minute of another
Hear t beat event from system ?S2 # ?S1 at location ?L1 and there is a Hear t beat event from

system S3 at location ?L2 # ?L1, then alert the Network Manager for location ?L1.

e Rule 2:Ifthereis a Conpl et edPhasel eventfrom application ?A1 and there is no Conpl et edPhase?2

event from application ?A1 within 5 seconds of the first event, then alert the Application Manager

2

for application ?AL.

e Rule 3:IfthereisaFai | edLogi n event from system ?S1 in cluster ?C1 and there isa Fai | edLogi n
event from system ?S2 in cluster ?C1 within 1 second, then alert the Security Manager for cluster

?C1.

Rule 1 provides a way to distinguish network problems from application prablased on a pattern consisting

of two events from different machines at the same location. Rule 2 checksechealth of a critical business

application that has processing steps that may be executed on diffgstamns. Rule 3 checks for certain kinds
of security intrusions by looking for patterns of failed logins. In all of thesles, the if-part of the rule contains
a pattern that is to be matched by events from multiple nodes. Also, in all casesishatimer value that
constrains the maximum elapsed time between receiving the first and lats ievéine pattern (although in general
more complex temporal patterns may be used [5]). For Rule 1, the timer valateisrdned by the experience of
system administrators with the timing of related events. For Rule 2, the timer véddiesré the time between
processing steps. For Rule 3, the timer value is chosen to distinguish hunractiotes from robots.

Implementing temporal event correlation requires an appropriate runtimestnfcture. Centeral to this is
the concept of gartial correlation instance, the context created while correlation matching is underway for a
rule. A partial correlation instance is created on the arrival of the fueshtethat matches an event type in a rule.
Additional events are included in the partial correlation instance if they gati&f kinds of constraints. First,
the event must match the ruladsita constraints such as ?S2 ?S1 in Rule 1. Second, the event must comply
with the rule’stemporal constraints, such as arriving within 1 minute of another event. If all events specified in
the rule are instantiated, then the partial correlation instance becomes a ahgulerelation instance, at which
time the rule’s action is executed and the correlation instance is removedalfiial porrelation instance remains
uncompleted for a sufficiently long time (e.g., as specified by a time-out vaheesjpartial correlation instance is

discarded.

There are two challenges in managing the lifecycle of partial correlatiomicessa The first is dealing with lost
events. This requires a good choice for the value of the time-out of thialpgaorrelation instance. If the time-out
value is too small, then there will be undetected alarms since partial correlatiandes will be discarded before

all the matching events arrive. On the other hand, if the time-out value is tge, ldrere may be considerable

memory and processing overheads due to long-lived partial correlastanices.

The second challenge in managing the lifecycle of partial correlation iressdacompensating for inaccurate
timestamps due to unsynchronized and/or inaccurate clocks. Our parsgesre is based on a business model
used by many organizations in which the management of the IT infrastrustousourced tdlanagement Ser-
vice Providers (MSPs) The MSP could be an external organization such as IBM, EDS, andndeoe. Or, the
MSP could be a corporate IT organization. In either case, the MSP s@atanagement infrastructure consisting
of a Management Station and associated MSP (e.g., agents, probeskngtiffers) in which timestamps are
accurate. Since the MSP typically has little control over software runningustomer-managed elements (e.qg.,
application servers and desktops), events generated by customegedai@ment may contain inaccurate times-
tamps. Indeed, the customer-managed element could be infected with aniwasno that affects the accuracy
of event timestamps. The impact of inaccurate event timestamps is to reduaetinacy with which temporal
constraints can be evaluated, which in turn can result in undetected alafatsecalarms.

We assume that timestamps are correctly synchronized within MSP elementsisingeso is central part
of the MSP responsibilities. Our strategy for obtaining accurate event timpsti to replace the timestamps
provided by customer-managed elements with the arrival time of the eversRtédéments. These arrival times
are affected by the delay to propagate the event from its source (ingladinsoftware overheads in the node from
which the event originated). If propagation delays are the same forait®in a completed correlation instance,
the true elapsed time of event pattern is the same as the elapsed time of theattegntgs measured by the MSP
infrastructure. Unfortunately, there may be substamiiapagation skew a term we use to refer to the variation
in propagation delays within an event pattern. Experiments we condueteal propagation skews that are within
50% of the pattern elapsed time, a fact that can greatly increase the ratesefirmlarms and false alarms. Among
the reasons for propagation skews are transients in resource ughgerdgention with administrative tasks (e.qg.,
Java garbage collection).

It turns out that lost events also can be addressed by correctly ceatpanfor propagation skew. For example,
the left-hand side of Rule 1 is satisfied if no secéfdr t beat event arrives within a minute of the first. Thus,
the time-out value of the event pattern should be at least one minute pluspagption skew.

There are three parts to our approach to compensating for propagk¢ian measurement, estimation, and

correction. Our approach to measurement is to incorporate into the M&Rtiniftture a capability to generate

calibration events that are representative of events generated bgneunstanaged elements. Estimation is accom-
plished by developing a statistical technique that is applied to the timestamps oatalikevents. Correction is
achieved by including in the Management Station (or other parts of the M&Rinfcture) mechanisms whereby
timer values specified in rules are updated based on estimated propagation sk

In terms of related work, event correlation has been widely used to momitbaalyze networks, systems,
and applications for the last twenty years (e.g., [8]). Commonly addressees include correlation speed and
accuracy [4, 11, 9] and the expressiveness of correlation pattéonshe latter, there has been particular interest
in non-rule based approaches [11], probabilistic correlation [6], tamtboral patterns [7, 1, 5]. Others have
recognized the importance of temporal relationships in detecting securlijeprs [12], but have not addressed
the specifics of propagation skew. Our work relates to temporal pattedistiibbuted systems. In particular, none
of the systems in [7, 1, 5] mention propagation skew. Hence, none of sggtems provide the architectural or
algorithmic support needed to compensate for propagation skew.

This paper makes the following contributions:

1. description of the problem of propagation skew for temporal eveméledion in distributed systems, in-

cluding measurements of propagation skew for a testbed system;

2. an architecture that includes Calibration Probes, Probe Monitors @aditroller that collaborate to adjust

timer values in order to compensate for propagation skew; and

3. an adaptive control algorithm for dynamically adjusting timer values to cosgte for propagation skew

and an assessment of the algorithm in terms of the probability of a coreeidt. re

One appeal of our approach is that it eliminates the need for manual adpistofi¢imer values. Further, our
studies of a prototype implementation suggest that our approach proescdts that are at least as good as an
optimal fixed adjustment in timer values.

The remainder of the paper is organized as follows. Section 2 describesdfitecture we propose. Section
3 details our adaptive control algorithm that compensates for propagiows. Section 4 assesses our approach

using data from a testbed system. Our conclusions are presented in $ection

Event
Source

(3) Management Station
LAN <
Eorp]

L Alarms
—»
Network Timer Value

Matched
(@) Ei: Event

Event
Source

Figure 1. Figure 1: Architecture of a Management Station that supggernporal event correlation.

2. Architecture

This section describes the architecture of a system that compensatesdagation skews in temporal event
correlation for distributed systems.

Figure 1 illustrates the characteristics of existing approaches to temporelation of events in distributed
systems [7, 1, 5] as they relate to the problem of propagation skew. Bwentes generate events (the solid
circles) that traverse one or more networks. There are two types of swarces. The first are events generated
by customer-managed elements for which we have no assurance that ateckynchronized and so timestamps
may be inaccurate. The second, which will be described shortly, are &tSfents that are assured to have
synchronized clocks and hence accurate timestamps. In the sequel, Viéysimapters by assuming that MSP
timestamps are applied at the Management Station, although clearly this caméeldewhere as well. The
Management Station queues a copy of the event for each partially instdr&ttern for which there is a match
with the incoming event (indicated by dotted circles). When a pattern is firtstritiated for a rule, a timeout is
specified with duration equal to the timer value for the rule. If the timeout sdoefore matching the last event
in the pattern, an alarm is generated.

Figure 2 illustrates the dynamics of correlating a temporal pattern consistitig @fvo eventsf'1 and £2.
E1is generated by Event Source 1 at timg..;, andE£'2 is generated by Event Source 2 at titpg;. Thus, the

pattern generation time B;c,, = tiast — first-

Event Management Event
Source 1 Station Source 2

tirst

Telp = Tgen +T
T = TprpJast — Tprp/first IS the propagation skew

Figure 2. Figure 2: Interaction diagram for temporal event correkatiTimer values are specified based on the time

to generate a pattetfy,.,,, but the estimate of this at the Management Statidnis

Administrators write rules for temporal correlation based on pattern gaemetane. As in rules R1-R3, con-
sider a timer valudy,,, that is chosen so that an alarm is be generat@(.if > Ti,,-. Since the Management
Station does not knoWje,, it usesly;, instead. From Figure Z;, = tj,;, — ;.54 = Tyen + 7, Wherer is the
propagation skew. Propagation skew is computed as follows. The @tipagelay of the first and last events are
Tprp, first = Upipse — pirst @NATprp 1ast = gy — tiast- SOT = Tprpiast — Tprp, first-

The elapsed time of a pattefiy, as seen at the Management Station differs from the pattern generation time by
7, the propagation skew.), 105t = Tprp, first thent = 0 and sol, = Ty.,, Which is the ideal case. However,
in our experiments; varies considerably.

Figure 3 depicts the ways in which we extend the architecture in Figure 1 toecmae for propagation

skew. This compensation is achieved by regulasiiagk time, the time added to timer values to compensate for

propagation skew. There are four considerations.

1. instrumentation that creates events so that there are known patteratgengmes for one or more Cali-

bration Patterns;
2. a way to measure the propagation skew of the events generated in (1);
3. amechanism for computing slack times that compensate for propagatves; sl

4. rules that use slack times to adjust timer values.

Calibration
Probe

Synchronized
Clocks

Calibration
Probe

Event voe
Source

Management Station

?

Probe Monitor

CZ Propagation
Slack Skew T(k)

Times
Controller

Timer Value
AV

Alarms
[—>

Figure 3. Figure 3: Architecture that supports compensation for agagion skews by having: (1) Calibration Probes

that create Calibration Patterns that have a known patteneration time; (2) rules that use slack times to adjust

timer values; (3) a Probe Monitor that computes propagatkaws for Calibration Patterns; and (4) a Controller that

computes values of slack time.

Figure 4. Figure 4: Operation of the Probe Monitor in the Managemeati&t.

Initialize calibration pattern ¢
1. SendSt art message to calibration probe

First event in calibration pattern i
1. Ti me(Event Recei ved) = NOW.
3. StartExcessi vel nt r af r ane timer.

On receipt of last event in calibration pattern i
1.Ti me(Event Recei ved) = NOW.
2. InvokeCont r ol | er with
7;(k;) = Ti me(Last Event)
- Time(FirstEvent).
3. Delete all matched events.

Timeout for calibration pattern .
1. Delete all matched events.

Item (1) is addressed by the Calibration Probes. Calibration Probeswrapstems that are part of the man-
agement infrastructure and so their clocks are reliable and synchiddieize, using the Network Timer Protocol).
Calibration Probes generate Calibration Events that include the timestampslapitie event source. Calibration
Events also have a timestamp corresponding to the time of their arrival at thegélament Station. For example,
once EventC?2 in Figure 2 arrives at the Management Station, it has timestamps corrésgaod,,,; andt;, .
Calibration Events are selected so as to create a Calibration Pattern thatisdlatehe Management Station.

Item (2) is handled by the Probe Monitor on the Management Station. The Rfonitor measures propagation
skews for Calibration Patterns based on information in the Calibration EvEigsre 4 details the operation of

the Probe Monitor.

Item (3) is addressed by the controller, which dynamically updates slack mpsopagation skews are re-
ceived. We discuss the controller at length in the next section.

Item (4) is handled by including a slack time for each partially instantiated pa#srbefore, the timer value is
specified by administrators based on their insights into the temporal pattexislaidk time is used to compensate
for propagation skew. The operation of the system in Figure 1 is changbdt when the first event of a pattern
is matched, the Management Station specifies a timeout equal suthef the timer value and the slack time
We note in passing that our architecture can readily be generalized torhdtiele timer values and slack times

if more complex temporal patterns are used.

3. Control Algorithm

This section develops the adaptive control algorithm that updates slackttncesnpensate for propagation
skew. The algorithm is based on a simple technique from statistical hypotbsigy that uses non-parameteric
statistics, a class of approaches that do not assume a particular prolhsitityution.

We want the control algorithm to choose slack times that maximize the probabilifgtiahg a correct result.
There are two cases. In the first, pattern generation fipag; (k) for the k-th pattern of the-th rule is larger
than the timer valuéi,,,; of i-th rule. Under these circumstances, the correct result is that an algenesated.

In the second casd,., (k) is less tharil},,,;. Here, no alarm should be generated. In statistical hypothesis
testing, these cases are expressed using negative logic. That ispaeéhecesult in the first case is a undetected

alarm, and an incorrect result in the second case is a false alarm. Heeesmplify matters by focusing on the

9

probability of a correct result.

We now show how the probability of a correct result relates to slack time.inipli§y matters, we consider
a single Calibration Pattern with generation tiffig,,. We study the probability of a correct result for theh
correlation rule whose if-part is satisfied by the Calibration Pattern. Theshas timer valud,,,.;. We define
thetimer offset for this rule to b&); = T3,,.; — Tyen- Note that Rule produces a correct result if it generates an
alarm whery; < 0, and it does not generate an alarm whgp- 0.

The concept of the timer offset turns out to be central to the theory tlikgrlies the selection of slack times.

For the case in which an alarm should be generated, we have
P(CorrectAlarm should be generatgd
= P(Correctd; < 0)
= P(Teip,i(k) > Timri + Ai(k)|0; < 0)
= P(Tyen,i + 7i(k) > Tymri + Ai(k)]6; < 0)
= P(7;(k) > Ai(k) + 6;]6; < 0)
Observe that we increase the probability of a correct result if eitherlélo §me is close to zero or the timer
offset is more negative. The latter case means that we are more likely t@ragarm if the pattern generation
time is much smaller than the timer value. The case of when an alarm should neh&eigd is addressed in
analogous manner.
P(CorrectAlarm should not be generated
= P(Correcté; > 0)
= P(Tepi(k) < Tymri + Ai(k)|6; > 0)
= P(Tyeni + 7i(k) < Timri + Ai(k)|6; > 0)
= P(ri(k) < Ai(k) + 6i[6; > 0)
Here, we increase the probability of a correct result if either slack tim#éisestimer offset are large. The latter

case means that the pattern generation time is much larger than the timer valas/eQbat in both cases, when

skew is close to zero, then the magnitude of slack time need not be large toayedet result.

10

unloaded, A=0 loaded, A=0 loaded, A=200

MAPC=0.97 MAPC=0.44 MAPC=0.75
1 i 14 T] 14 T]
0.9} lo.o} ﬁ oot
= 08} lo.sl lo.s
>
3
g o7t {07} {07
B
© 06 {06} {06
3
© 05¢ los} {0.5
> 0.4} 0.4} 04}
3 03} {03} {03
3
a 0.2f {0.2} 10.2
0.1} {01} foaf
ok . Job . Job__.
705 0 05 qimer offset (5) Timer Offset (5)

Timer Offset (6i)

Figure 5. Figure 5: Probability of a correct result for loaded and aaled testbed configurations and different fixed
settings of slack timeX). The horizontal axis is the timer offset, which is the diffiece between the timer value of a

rule and the pattern generation time.

Figure 5 plots the probability of a correct result versus the timer offgeddta we collected using the experi-
mental setup described in the next section. There are three plots. Theffioen an experiment in which no load
was placed on the systems or network. Here, propagation skew is closklém@e, there is a high probability of
a correct result since slack time is 0. The second and third plots of theolivgiresent data collected when there
was substantial load. In the second plot, slack time is 0. We see that théititglmd a correct result is larger for
negative timer offsets; (i.e., when an alarm should be generated), but the probability of a toesdt is small
whend; > 0, at least untib; becomes fairly large. The reason for this asymmetry can be explained ttieudisn
of propagation skews. Its mean is approximately 0.2 second. As a rehj(/j = 0, then a largep; is needed
so thatr;(k) < §;. We can compensate for this by setting(k) to 0.2 second. which is done in the third plot.
This results in a larger probability of a correct result when- 0. However, it also reduces the probability of a
correct result fop; < 0.

The foregoing demonstrates a fundamental trade-off between falsesatard undetected alarms. We are

assured of a correct result in the case whgre< 0 by using a very large\;(k). However, doing so results

11

in poor performance whe#) > 0. The reverse applies as well.

We now introduce our metric for quantifying the performance of an agprtacomputing slack times. A way
to take into account the trade-off just mentioned is to consider the minimumiglibpaf a correct result for the
two cases. That isnin{ P(Correct Alarm should be generatgd®(CorrectAlarm should not be generatgd=
min{P(Correct é; < 0), P(Correctd; > 0)}.

In our studies, we approximate the minimum probability of a correct resulvésaging across multiple values
of §; (both negative and positive) for known pattern generation times. We t@fihis as theminimum aver-
age probability of a correct result (M APC). M APC' is based on a set of timer valué$,,,;, € S< such
that T}, ; < Tgen (in Which case an alarm should be generated), and a set of timer VBlygs < S- for
which Ty, ; > Tyen (and hence no alarm should be generated). Wedugg~orrect ., to denote the average

probability of a correct result in the first case, aftdgCorrect,4en to denote this metric in the second case.
MAPC = min[AvgCorrectgen, AvgCorrectpogen) (1)

Here, AvgCorrectye, = Average; {ri(k + 1) > Ai(k)}, AvgCorrectpogen = Average;p{mj(k + 1) <
Aj(k)}, and{z < y} € {0,1} depending on whether the inequality is false or true. Note that sihde”C'is an
average of probabilities) < M APC < 1, with M APC = 1 being a perfect control algorithm.

Figure 5 displays MAPC values in the titles of the three plots. In the first pigforrec) ~ 1 except ab = 0,
in which caseP(Correc) ~ 0.5. Consistent with this, tha/ APC is 0.97 ~ 1. In the second plotP(Correc)
is low for 6; > 0. As a result, itsM APC = 0.44. In the third plot, slack time is adjusted to better balance
P(CorrectAlarm should be generatednd P(CorrectAlarm should not be generatedHere, M/ APC = 0.75.

The goal of our adaptive control algorithm is to maximized PC'. Our intuition from Figure 5 is that this is
achieved if slack time is chosen so as to balaR¢€orrect|Alarm should be generated) adit{ Correct| Alarm
should not be generated). More specifically, from the first and third pid=igure 5, we wanP(Correc) = 0.5 if
d; = 0. This observation allows us to characterize slack times. Specifically, weM@n(k) > A;(k) + 0;|6; =
0) = 0.5. And soP(r;(k) > A;(k)|d; = 0) = 0.5. That is, slack time should be chosen to be the median of the
distribution of propagation skews. We note in passing that it may be thatagtdd alarms are more costly than

false alarms, or the reverse. Hence, we might want to adjust the desdgabgity of an alarm when; = 0. This

12

Figure 6. Figure 6: Operation of the Adaptive Control Algorithm.

1. Add;(k;) to the buffer for calibration patteri
2. Remover;(k; — N) from bufferi

(N is the size of the buffer.)

3. A;(k;) = middle value of buffes.

in turn means that the control algorithm estimates a different percentile okéedistribution to compute slack

time.

We compute slack time by using a hon-parameteric procedure for estimating diennoé the distribution of
propagation skews [10]. By non-parameteric, we mean that the prnazathkes no assumption about the distri-
bution of the propagation skews (which is clearly an advantage for d@roanvent that experiences considerable
change). However, the procedure does assume that propagaticnasieeindependent and identically distributed.
Figure 6 provides the details. Our algorithm retains the Mgiropagation skews in a buffer. The median is the

middle value of the sorted list.

The only parameter of the adaptive control algorithm is the buffer Siz&or stationary skew distributions, a
larger N reduces the variance of the estimate of the median and hence results inrapnadiebility of a correct
result. However, non-stationarities arise if a file transfer is started theases network delays or administrative
tasks begin execution on the management station. In these cases alasgedisadvantage in that it takes longer

for the buffer to be populated entirely by observations from the new disioi.

4. Experimental Results

We developed a testbed system based on the architecture depicted inFHigureich the Management Station
extends the Event Distiller [5] and the event transport is the Siena PuhltstgBbe bus [3]. We study a situation in
which there are two event sources, both on the same system (so thateweehpaccurate measurements of pattern
generation times), and the Management Station is on the same LAN as theaweeiss Two configurations are
considered. In thenloaded configuration there are separate machines for Event Distiller and Siena. In the
loaded configuration, Event Distiller and Siena are co-located on the same machine. In the experimgorted

here, the pattern generation time is 2 seconds, and the Calibration Pralmsan AMD Anthlon XP 1800 with

13

AutoCorr

2
e 1
915 unloaded
< 08
03) 1
® o6l [liaxa £
§%° ' Y
S 0 [ndppmnrappioapy 0.4
g -0.5
£05 0.2
-1 0
CDF AutoCorr
2
1
215 loaded
K + o+
% 1 0.8 e, |
% 06 rendebrpr s
<05
o BAMNSEEREES |/ 0 |
g o 0.4 | ety e it
= -0.5 *
o5 0.2
-1 0 -1
0 250 0 0.5 1 0 50

Observation Propagation Skew (sec) Lags

Figure 7. Figure 7: Characteristics of the propagation skew data fdwaded and loaded configurations. CDF is
the empirical cumulative distribution, and AutoCorr is thigocorrelation for a stationary segment of the propagatio

skews.

1 GB RAM. The management station is a 3 GHz P4 running Windows XP with 1 GBIRA the unloaded
configuration, Siena runs on a 1 GHz P3 with 512MB RAM and RedHat Lih4x20.

Figure 7 reports data from two runs on our testbed, one for an unleadéiduration and the second for a loaded
configuration. In the unloaded case, we see that the propagation akewightly clustered around 0, although
there are a few large spikes. The second plot in the top row is the cumudétvibution function (CDF), which
reinforces the view that values are tightly clustered. Also plotted are the@utations between propagation
skews. Note that all autocorrelations lie within the dashed lines, indicatinthénaare not statistically significant
as determined by the Bartlett Test [2]. This fact bodes well for our fis@m-parameteric statistics that require
independent observations.

The bottom row of Figure 7 reports results from a loaded configuratiene Hbropagation skews are much more
variable and considerably larger, a fact that is reflected in the CDF pletal¥é see substantial autocorrelations
(possibly due to periodic activities), a fact that undermines the assumgtiodependence of the propagation

skews that the controller algorithm relies on.

14

unloaded 1 unloaded 2

1 1
‘o a
08f o 08f o
‘o, ‘o,
o 0.6 o 0.6 o
2 o o
= a . o
0.4 ° 0.4 °
o, C
0.2 o Fixed o, 0.2 ‘o,
—— Adaptive ! ‘
0 0
0 0.2 0.4 0 0.2 0.4
loaded 1 loaded 2
1 1
0.8 —0—o- 0.8
.© ‘0 o0
© "o, .0
o 0.6 . o o 0.6 o°
< o o
= 04 0.4 o
N o '
0.2 0.2
0 0
0 0.2 0.4 0 0.2 0.4
Fixed Slack Time (sec) Fixed Slack Time (sec)

Figure 8. Figure 8: Evaluation of fixed slack times (dashed line) aredataptive control algorithm festationary
propagation skews. The horizontal axis is the value of thedfiglack time, and the vertical axis is the minimum
average probability of a correct test reslf APC'). The adaptive control algorithm consistently does as agthe

best fixed slack time.

15

Figure 8 assesses the effectiveness of using fixed slack times folltlaelad and loaded configurations reported
in Figure 7. In all of the plots, the horizontal axis is the slack tiwand the vertical axis is Minimum Average
Probability of a Correct result\{ APC'). We see that largé/ APC values are achieved with a fixed slack time
near O in the unloaded cases. However, for the loaded configuralibA$,C' is maximized at larger fixed slack
times. This can be explained by looking at the distribution of propagation siefay example, the “unloaded 1”
plot corresponds to the data plotted in the top row of Figure 7. We see thattiian of this distribution (the skew
value corresponding to the 50-th percentile) is approximately 0, which isxbe $lack time at whicB/ APC' is
maximized. Similarly, the “loaded 1" plot corresponds to the bottom row of EigurHere, the median of the
skew distribution is a little more than 0.2 seconds, which is wiéréPC' is maximized for these data.

The solid line in Figure 8 plots th&/ APC values achieved by our adaptive control algorithsh£ 5) that is
described in Figure 6. We see that in all cases, the adaptive contratlafgselects slack times that are very close
to the value of fixed slack time that maximiz&SA PC'. This is impressive in two respects. First, we did not have
to parameterize or train the controller. That is, slack times are selected inma®diging way. Second, we achieve
near optimal results in the loaded configuration even though the data haifecaigt autocorrelations, a situation
that violates the independence assumption of the technique we use to estinmagelidue of the propagation skew
distribution in the adaptive control algorithm.

Next, we consider situations in which the distribution of propagation skeassgegs. The data we use are syn-
thesized by alternating between propagation skews obtained in our testlbealded and unloaded configurations.
Figure 9 consists of six plots organized into two columns with three rows. Pldis first column are propagation
skews used to drive a simulated Management Station. The second coluonts idpA PC for both fixed slack
times and the adaptive control algorithm. We see that the adaptive algoritisistemtly does better than the best
setting of fixed slack time.

Last, we evaluate the impact on MAPC of the controller buffer $¥ze~igure 10 contains ten plots organized
into two columns with five rows. As in Figure 9, the first column are synthesiaegs of propagation skews from
our experimental runs that are constructed by alternating blocks of etadifferent experiments. In case A,
there are many changes in the distribution of propagation skew. Hereptihgabbuffer size is small. The reason
for this is that a smaller buffer size means there is less history and heng@@ola occurs faster. On the other

hand, when changes in the skew distribution are infrequent (i.e., CasleeEQptimal buffer size is larger. The

16

Figure 9. Figure 9: Evaluation of fixed slack times (dashed line) arddtiaptive control algorithm foron-stationary

propagation skews. The plots in the first column are the mafian skews. The second column are plots that evaluate

Case 1

MAPC in the same way as Figure 8.

1
00 .o
°., o
0.5 05 ‘o o
o Fixed
0 . —— Adaptive
Case 2
1 1
.0 0
o © %5 o
0.5 05 "o,
0 0
s Case 3
2 1 1
o
2 o
) 09 0.4
< .
v 05 £ 056 9° °.
c < .
S =
©
[=2)
[
g 0 0
& 0 200 400 0 0.2 0.4
Observation Fixed Slack Time (sec)

1 Case A 0.9

0.5 0.8\\

0 0.7

1 Case B 0.9

0.5 0.8\

0 0.7

1 Case C 0.9

05 0'8\
g0 0.7
; 1 Case D 0.9
g
7]
- 05 0.8 \
Qo
% ’ Case E o7

ase

o 1 0.9
LR TTYY 17T T poe—

0.5 & 0.8

=
Buiali st 1k I
0 200 400 10 20 30 40 50
Observation Buffer Size (N)

Figure 10. Figure 10: Effect on MAPC oN, the size of the buffer used in the adaptive control algoritiThe plots

in the first column are the propagation skews, and the seaglacha plotsM APC for different buffer sizes.

17

insight here is that a larger buffer size provides a lower variance estoh#fie median of the skew distribution.
However, the reduction in variance itself declines rapidiywaisicreases. As a result, there is little value in having

a buffer size much larger than 5 or 7, even for stationary data.

5. Conclusions

Achieving QoS in distributed systems often requires that events be codr&late multiple systems using tem-
poral patterns. This paper addresses how to specify timer values footangatterns so as to reduce missed
alarms and false alarms caused by lost events and unsynchronizes. cfockntral concern is addressing prop-
agation skew, the variability in event propagation times due to contention faorieand server resources and
other factors. We develop a three part approach to adjusting timer vadsesd bn propagation skew: (1) an in-
frastructure for real-time measurement of propagation skew, (2) a statisfiproach to estimating propagation
skew, and (3) a controller that uses estimates of propagation skew tteuder values in temporal rules.

Our results are in three areas. First, we describe the problem of @tipagkew for temporal event correlation
in distributed systems, including measurements of propagation skew for adestbtem. These measurements
show that propagation skews can be substantial, on the order of 50% édtiern generation time in our testbed
experiments. Second, we introduce an architecture that uses dynamaalbuted slack times to compensate
for propagation skews. The architecture includes Calibration Probaise RMonitors, and a Controller. Last, we
develop an adaptive control algorithm for computing slack times, and vessske algorithm in terms of the
probability of a correct result in that there is no missed alarm or false aléestbed measurements suggest that
our algorithm adapts well to changes in propagation skews, typically deitigriihan the best result achieved by

a fixed slack time.

Our future work will involve more extensive measurements of propagakiewsand extensions to more com-

plex temporal patterns.

Acknowledgments

Kaiser's Programming Systems Lab is funded in part by National Sciengedation grants CNS-0426623,

CCR-0203876 and EIA-0202063.

18

References

[1] A.Adi, A. Biger, D. Botzer, O. Etzion, and Z. Sommer. Cextawareness in amit. kutonomic Computing Workshop,
2003 pages 160-166. IEEE Press, June 2003.

[2] G. E. P.Box and G. M. Jenkingime Series Analysis Forecasting and Conttentice Hall, 1976.

[3] A.Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design aunaleation of a wide-area event notification servied€m
Trans. Comput. Syst19(3):332—-383, 2001.

[4] G. Jiang and G. Cybenko. Temporal and spatial distritheteent correlation for network security.

[5] G. E. Kaiser, J. Parekh, P. Gross, and G. Valetto. Kiretgth extreme: An external infrastructure for monitoring
distributed legacy systems. Active Middleware Servicepages 22—-31, 2003.

[6] A. Konstantinou, D. Florissi, and Y. Yemini. Towards sebnfiguring networks. IlDARPA Active Networks Confer-
ence and Exposition (DANCHEEE Press, 2002.

[7] D. Luckham.The Power of EventsAddison—Wesley, 75 Arlington Street,Suite 300, Bostor, 82116, first edition,

2002.
[8] K. Milliken, A. Cruise, R. Ennis, A. Finkel, J. Hellerdte D. Loeb, D. Klein, M. Masullo, H. V. Woerkom, and

N. Waite. YES/MVS and the autonomation of operations fogdacomputer complexe$BM Systems JournaP5(2),
1986.

[9] O. C. O. Systems. Rootcause: Using a flight recorder tedpemote debugging and problem resolution.
[10] A. Walker. A note on the asymptotic distribution of sampuantilesJournal of the Royal Statistical SocieB0:570—
575, 1968.
[11] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsidigh speed and robust event correlati®lBEE Commu-
nications Magazing34(5):82—90, 1996.

[12] Y. Zhang and V. Paxson. Detecting stepping stoneStHiUSENIX Security Symposiupages 171-184, August 2000.

19

