
CRC Book

CRC PRESS

Boca Raton Ann Arbor London Tokyo

Contents

1 Effecting Runtime Reconfiguration in Managed Execution Environments
1

Rean Griffith, Giuseppe Valetto, Gail KaiserColumbia University, IBM Thomas J.
Watson Research Center, Columbia University

1.1 Introduction . 2
1.2 Background . 4

1.2.1 Common Language Runtime Basics 4
1.2.2 Common Language Runtime Execution Model 4
1.2.3 The CLR Profiler and Unmanaged Metadata APIs 4

1.3 Adaptation Framework Prototype Overview 5
1.3.1 Model of Operation . 6
1.3.2 Performing an Adaptation 8

1.4 Dynamic Reconfiguration Case Study 8
1.4.1 Alchemi Architecture . 9
1.4.2 Motivation behind Reconfiguring Alchemi 10
1.4.3 Reconfiguring Alchemi . 11
1.4.4 The Reconfiguration Engine and Replacement Scheduler. . 12

1.5 Empirical Evaluation . 13
1.5.1 Experimental Setup . 13
1.5.2 Results . 13

1.6 Related Work . 14
1.7 Conclusions and Future Work . 16
1.8 Acknowledgments . 16

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC i

1

Effecting Runtime Reconfiguration in
Managed Execution Environments

Rean Griffith, Giuseppe Valetto, Gail Kaiser
Columbia University, IBM Thomas J. Watson Research Center,Columbia University

CONTENTS
1.1 Introduction. 1
1.2 Background. 4
1.3 Adaptation Framework Prototype Overview. 5
1.4 Dynamic Reconfiguration Case Study. 8
1.5 Empirical Evaluation. 13
1.6 Related Work . 14
1.7 Conclusions and Future Work. 16
1.8 Acknowledgments. 16

References. 16

Managed execution environments such as Microsoft’s CommonLanguage Runtime
(CLR) and Sun Microsystems’ Java Virtual Machine (JVM) provide a number of
services – including but not limited to application isolation, security sandboxing and
structured exception handling – that are aimed primarily atenhancing the robustness
of managed applications. However, none of these services directly enables perform-
ing autonomic diagnostics, reconfigurations or repairs on the managed applications
and its constituent subsystems and components.

In this paper we examine how the facilities of a managed execution environment
can be leveraged to support autonomic system adaptations, particularly runtime re-
configurations and repairs. We describe a framework we have developed,Kheiron ,
which uses these facilities to dynamically attach/detach an engine capable of per-
forming reconfigurations and repairs on a target system while it continues executing.
Kheiron is lightweight, and transparent to the applicationas well as the managed
execution environment: it does not require recompilation of the application nor spe-
cially compiled versions of the managed execution runtime.Our initial prototype
was implemented for the CLR. To evaluate the prototype beyond toy examples, we
searched on SourceForge for potential target systems already implemented on the
CLR that might benefit from runtime adaptation. We report on our experience using
Kheiron to facilitate runtime reconfigurations in a system that was developed and is
in use by others: the Alchemi Enterprise Grid Computing System developed at the
University of Melbourne, Australia [1].

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 1

2 CRC Book

1.1 Introduction

A self-healing system “...automatically detects, diagnoses and repairs localized hard-
ware and software problems” [2]. Thus we expect a self-healing system to perform
runtime reconfigurations and/or repairs of its components as part of a proactive, pre-
ventative and/or reactive response to conditions arising within its operating environ-
ment. This runtime response contrasts with the traditionalapproach to performing
system adaptations – stop the system, fix it, then restart – which requires scheduled
or unscheduled downtime and incurs costs that cannot alwaysbe expressed strictly
in terms of money [3, 4]. Keeping the system running while adaptations are being
carried out (even if it means operating in a degraded mode [5,6]) is in many cases
more desirable since it maintains some degree of availability.

One software engineering challenge in implementing a self-healing system is man-
aging the degree of coupling between the components that effect system adaptation
(collectively referred to asthe adaptation engine), and the components that realize
the system’s functional requirements (collectively referred to asthe target system).
For new systems being built from scratch, designers can either hardwire adaptation
logic into the target system or separate the concerns of adaptation and target sys-
tem functionality, by means of specialized middleware likeIQ-Services [7] and ACT
[8] or externalized architectures that include a reconfiguration/repair engine, as in
Kinesthetics eXtreme (KX) [9] or Rainbow [10]. For legacy systems – which we
define as any system for which the source code is not available, or for which it is
undesirable to engage in substantial re-design and development – one is limited to
using an externalized adaptation engine.

Externalized adaptation architectures may be preferred for a number of software
engineering reasons. Hardwiring the adaptation logic inside target system compo-
nents limits its generalization and reuse [11]. The mixing of code that realizes
functional requirements and code that meets non-functional requirements (“code
tangling” [12]) complicates the analysis and reasoning about the correctness of the
adaptations being performed. Moreover, it becomes difficult to evolve the adaptation
facilities without affecting the execution and deploymentof the target system. Ex-
ternalized architectures allow the adaptation engine and the target system to evolve
independently, rather than requiring that they be developed and deployed in tandem.

We are concerned with identifying and addressing the interactions between the
adaptation engine and the target system, while still seeking to minimize their cou-
pling. Examples of interaction issues include, but are not limited to:

1. How does the adaptation engine attach to the target systemsuch that it can
effect (i.e., conduct) a reconfiguration or repair?

2. What is the scope of the adaptation actions that can be applied, e.g., can we
perform reconfigurations at the granularity of entire programs, subsystems or
components? Can we repair whole programs, subsystems, individual compo-

Effecting Runtime Reconfiguration in Managed Execution Environments 3

nents, classes, methods or statements? Further, can we add,remove, update,
replace or verify the consistency of elements at the same granularity?

3. What is the impact on the performance of the target system when adaptations
are/are not being performed?

4. How do we control and coordinate the adaptation engine andthe target appli-
cation with respect to the timing of adaptation actions given that application
consistency must be preserved?

In [13] we presented a framework to partially address questions 1, 2 and 3, in the
context of target systems that run in a managed execution environment. Our main
focus there was on evaluating performance overhead, using aset of computationally-
intensive scientific applications written in C#. In this paper we present a case study
geared towards exploring some of the issues associated witheffecting consistency-
preserving reconfigurations (question 4) in a “real-life” system, also augmented us-
ing our framework. We chose Alchemi because it meets our technical criteria, and is
publicly available and apparently actively used.

Our Kheiron prototype uses the profiling facility (accessible via the profiler API)
of Microsoft’s managed execution environment – the Common Language Runtime
(CLR) – to track the application’s execution, and effects changes via bytecode rewrit-
ing and creating/augmenting the metadata associated with modules, types and meth-
ods. Conceptually, our approach could be applied to other managed execution envi-
ronments, e.g., Sun Microsystems’ Java Virtual Machine (JVM). We chose CLR for
our first prototype due to certain technical limitations of most JVM implementations,
which we elaborate in [14]; we are currently developing a version of Kheiron that
targets the JVM and will attempt to work around those limitations.

Kheiron facilitates attaching an externalized adaptationengine to a running appli-
cation. The adaptation engine can then perform target-specific consistency checks,
reconfigurations and/or repairs over individual components and sub-systems before
detaching. Kheiron remains transparent to the application: it is not necessary to mod-
ify the target system’s source code to facilitate attaching/detaching the adaptation
engine or to enable adaptation actions. Further, the adaptations may be fine-grained,
e.g., replacing individual method bodies as well as entire components. When no
adaptations are being performed, Kheiron’s impact on the target system is small,
around∼5% or less runtime overhead (see [13] for details). Finally,the main point
of this paper, it allows adaptations to be enacted at well-understood control points
during target system execution, necessary to maintain semantic consistency.

The remainder of this chapter is organized as follows:§1.2 covers some back-
ground on .NET and the CLR’s execution model.§1.3 explains how Kheiron works.
§1.4 describes the target system we selected for our case study, the Alchemi Enter-
prise Grid Computing System, and outlines the steps involved in reconfiguring that
system at runtime.§1.5 provides detailed performance measurements and evaluates
the impact of Kheiron on the target system.§1.6 briefly discusses related work. Fi-
nally, §1.7 presents our conclusions and directions for future work.

4 CRC Book

1.2 Background

1.2.1 Common Language Runtime Basics

The CLR is the managed runtime environment in which .NET applications execute.
It provides an operating layer between .NET applications and the underlying op-
erating system [15]. The CLR takes on the responsibility of providing services
such as application isolation, security sandboxing and garbage collection. Managed
.NET applications are calledassembliesand managed executables are calledmod-
ules. Within the CLR, assemblies execute inapplication domains, which are logical
constructs used by the runtime to provide isolation from other managed applications.

.NET applications, as generated by the various compilers that target the CLR, are
represented in an abstract intermediate form. This representation is comprised of two
main elements,metadataandmanaged code. Metadata is “...a system of descrip-
tors of all structural items of the application – classes, their members and attributes,
global items...and their relationships” [15].Tokensare handles to metadata entries,
which can refer to types, methods, members, etc. Tokens are used instead of point-
ers so that the abstract intermediate representation is memory-model independent.
Managed code “...represents the functionality of the application’s methods...encoded
in an abstract binary format known as Microsoft Intermediate Language (MSIL)”
[15]. MSIL, also referred to as bytecode, is a set of abstractinstructions targeted at
the CLR. .NET applications written in different languages can interoperate closely,
calling each other’s functions and leveragingcross-language inheritance, since they
share the same abstract intermediate representation.

1.2.2 Common Language Runtime Execution Model

Two major components of the CLR interact with metadata and bytecode during exe-
cution, theloaderand thejust-in-time (JIT) compiler. The loader reads the assembly
metadata and creates an in-memory representation and layout of the various classes,
members and methods on demand as each class is referenced. The JIT compiler uses
the results of the loader and compiles the bytecode for each method into native as-
sembly instructions for the target platform. JIT compilation normally occurs only
the first time the method is called in the managed application. Compiled methods
remain cached in memory, and subsequent method calls jump directly into the native
(compiled) version of the method, skipping the JIT compilation step, see Figure 1.1.

1.2.3 The CLR Profiler and Unmanaged Metadata APIs

The CLR Profiler APIs allow an interested party (a profiler) tocollect information
about the execution and memory usage of a running application. There are two rel-
evant interfaces:ICorProfilerCallback, which a profiler must implement, andICor-
ProfilerInfo, which is implemented by the CLR. Implementors of ICorProfilerCall-
back (also referred to as thenotifications API[16]) can receive notifications about
assembly loads and unloads, module loads and unloads, classloads and unloads,
function entry and exit, and JIT compilations of method bodies. The ICorProfiler-

Effecting Runtime Reconfiguration in Managed Execution Environments 5

// Other code

SampleClass s = new SampleClass();

s.doSomethingUseful();

// More code

Find member

doSomethingUseful()

in memory

Jump to JIT
-
Compiled

native assembly version

of the method

Method

body JIT

Compiled?

Do JIT
-
Compile

of MSIL

Execute

Yes

No

FIGURE 1.1
Overview of the CLR Execution Cycle

Info interface is used by the profiler to obtain details aboutparticular events; for
example, when a module has finished loading, the CLR will callthe ICorProfiler-
Callback::ModuleLoadFinished implementation provided by the profiler, passing
themoduleID. The profiler can then useICorProfilerInfo::GetModuleInfo to get
the module’s name, path and base load address.

The unmanaged metadata APIs are low-level interfaces that provide fast access to
metadata, allowing users to emit/import data to/from the CLR [17]. There are two
such interfaces of interest,IMetaDataEmitand IMetaDataImport. IMetaDataEmit
generates new metadata tokens as metadata is written, whileIMetaDataImport re-
solves the details of a supplied metadata token.

1.3 Adaptation Framework Prototype Overview

Our Kheiron prototype for CLR is implemented as a single dynamic linked library
(DLL), which includes a profiler that implements ICorProfilerCallback. It consists
of 3157 lines of C++ code, and is divided into four main components:

• TheExecution Monitor receives “module load”, “module unload” and “mod-
ule attached to assembly” events, JIT compilation events, and function entry
and exit events from the CLR.

• TheMetadata Helper wraps the IMetaDataImport interface and is used by the
Execution Monitor to resolve metadata tokens to less cryptic method names
and attributes.

• Internal book-keeping structures store the results of metadata resolutions
and method invocations, as well as JIT compilation times.

• TheByte-code and Metadata Transformerwraps the IMetaDataEmit inter-
face to write new metadata, e.g., adding new methods to a typeand adding
references to external assemblies, types and methods. It also generates, inserts

6 CRC Book

and replaces bytecode in existing methods as directed by theExecution Mon-
itor. Bytecode changes are committed by causing the CLR to JIT-compile the
modified methodsagain(referred to hereafter asre-JIT).

1.3.1 Model of Operation

Application/

Module

Load

Class Load

Method

Invoke

JIT Compile

if necessary

Function

Exit

Function

Enter

1
 2
 3
 4
 5
 6

FIGURE 1.2
First Method Invocation in a Managed Application

Kheiron performs operations on types and methods at variousstages in the method
invocation cycle, shown in Figure 1.2, to make them capable of interacting with an
adaptation engine. In particular, to enable an adaptation engine to interact with a
class instance, Kheiron augments the type definition to add the necessary “hooks”.
Augmenting the type definition is a two-step operation.

Step 1occurs at the end of Stage 1, module load time, in Figure 1.2. When the
loader loads a module, the bytecode for the method bodies of the module’s types
is laid out in memory. The starting address of the first bytecode instruction in a
method body is referred to as theRelative Virtual Address(RVA) of the method.
Once the method bodies have been laid out in memory, Kheiron adds what we call
shadow methods, using IMetaDataEmit::DefineMethod , for each of the original
public and/or private methods of the type. A shadow method shares all the properties
(attributes, signature, implementation flags and RVA) of the corresponding original
method – except the name. By sharing (borrowing) the RVA of the original method,
the shadow method thus points at the method body of the original method. Figure 1.3,
transition A to B, shows an example of adding a shadow method,SampleMethod,
for an original methodSampleMethod.

It should be noted that extending the metadata of a type by adding new meth-
ods must be done before the type definition is installed in theCLR – signaled by a
ClassLoadFinished event. Once a type definition is installed its list of methods and
members becomes read-only: further requests to define new methods or members
are silently ignored even though the call to the API apparently “succeeds”.

Step 2of type augmentation occurs the first time an original methodis JIT-compiled,
Stage 4 in Figure 1.2. Kheiron uses bytecode-rewriting to convert the original method
body into a thinwrapperthat calls the shadow method, as shown in Figure 1.3, tran-
sition B to C. Kheiron allocates space for a new method body, uses the Byte-code &
Metadata Transformer to generate the sequence of bytecode instructions to call the
shadow method, and sets the new RVA for the original method topoint at its new

Effecting Runtime Reconfiguration in Managed Execution Environments 7

SampleMethod

RVA

MSIL

Method

body

SampleMethod

RVA

MSIL

Method

body

_
SampleMethod

RVA

SampleMethod

RVA

New

MSIL

Method

Body

Call

_Sample

Method

_
SampleMethod

RVA

MSIL

Method

body

A
 B
 C

Prepare

Shadow

Create

Shadow

FIGURE 1.3
Preparing and Creating a Shadow Method

method body.

SampleMethod
(
args
)

<room for prolog>

push
args

call _
SampleMethod
(
args
)

<room for epilog>

return value/void

FIGURE 1.4
Conceptual Diagram of a Wrapper

Kheiron’s wrappers and shadow methods facilitate the adaptation of class in-
stances. In particular, the regular structure and single return statement of the wrapper
method, see Figure 1.4, enables Kheiron to easily inject adaptation instructions into
the wrapper as prologues and/or epilogues to shadow method calls.

Adding a prologue to a method requires that new bytecode instructions prefix the
existing bytecode instructions. The level of difficulty is the same whether we aug-
ment the bytecode of the wrapper or the original method. Adding epilogues, how-
ever, presents more challenges. Intuitively, we wish to insert new instructions before
control leaves a method. In the simple case, a method has a single return statement
and the epilogue can be inserted just before that point. However, for methods with
multiple return statements and/or exception handling routines, finding every possi-
ble return point can be an arduous task [18]. Further, the layout and packing of the
bytecode for methods that contain exception handling routines is considered a spe-
cial case that can be complicated to augment correctly [18].Using wrappers thus
delivers a cleaner approach since we can ignore all of the complexity in the original
method.

8 CRC Book

1.3.2 Performing an Adaptation

To initiate an adaptation, Kheiron augments the wrapper to insert a jump into an
adaptation engine at thecontrol point(s)before and/or after a shadow method call.
Effecting the jump into the adaptation engine is a four-stepprocess.

1. Extend the metadata of the assembly currently executing in the CLR such that
a reference to the assembly containing the adaptation engine is added using
IMetaDataEmit::DefineAssemblyRef.

2. UseIMetaDataEmit::DefineTypeRef to add references to the adaptation en-
gine type (class).

3. Add references to the subset of the adaptation engine’s methods that we wish
to insert calls to, usingIMetaDataEmit::DefineMemberRef.

4. Augment the bytecode and metadata of the wrapper functionto insert bytecode
instructions to make calls into the adaptation engine before and/or after the
existing bytecode that calls the shadow method.

To persist the bytecode changes made to the method bodies of the wrappers, the
Execution Monitor causes the CLR to re-JIT the wrapper method the next time the
method is called (i.e., JIT-compileagain). See [14] for details on CLR re-JITs.

To transfer control to an adaptation engine, Kheiron leverages the control-points
before and/or after calls to shadow methods. The adaptationengine can then per-
form any number of operations, such as performing consistency checks over class
instances and components, or reconfigurations and diagnostics of components.

1.4 Dynamic Reconfiguration Case Study

We selected the Alchemi Enterprise Grid Computing System [19], from the Univer-
sity of Melbourne, Australia. Alchemi has several appealing characteristics, relevant
for our case study purposes: It was developed and is currently maintained by others,
whom we do not know and have not contacted, hence we regard it as a legacy system
upon which runtime adaptations can be carried out only via anexternalized engine.
It is publicly available on SourceForge [20], which makes itpossible for other auto-
nomic computing researchers to “repeat” our experiment employing their own tech-
nology for comparison purposes. Alchemi is also well-documented, which makes it
feasible to construct plausible scenarios, where performing runtime reconfigurations
and/or repairs on the system could result in real benefits forits real-world users.
Alchemi is apparently being used in a number of scientific andcommercial grid
applications, including an application for distributed, parallel environmental simu-
lations at Commonwealth Scientific and Industrial ResearchOrganisation (CSIRO)
Land and Water, Australia, and a micro-array data processing application for early

Effecting Runtime Reconfiguration in Managed Execution Environments 9

detection of breast cancer developed by Satyam Computers Applied Research Lab-
oratory in India.∗ Finally, Alchemi is implemented as a .NET application on topof
the CLR, which is a prerequisite for our current prototype. Alchemi is written in C#,
and leverages a number of technologies provided by the .NET Framework, including
.NET Remoting [21], multi-threading and asynchronous programming.

1.4.1 Alchemi Architecture

FIGURE 1.5
Alchemi Architecture – Source: User Guide for Alchemi 1.0 [22]

The Alchemi Grid follows a master-worker parallel programming paradigm, where
a central component (the Manager) dispatches independent units of parallel execu-
tion (grid threads) to be executed on grid nodes (Executors), see Figure 1.5. The
Manager is responsible for providing the services associated with the execution of
grid applications and their constituent grid threads. It monitors the status of the Ex-
ecutors registered with it, and schedules grid threads to run on them. Executors ac-
cept grid threads from the Manager, execute them, and returnthe completed threads
to the Manager. An Executor can be configured as eitherdedicated, i.e., managed
centrally where the Manager “pushes” a computation to an idle, dedicated Executor
whenever its scheduling requires, ornon-dedicated, where the Executor instead polls
the Manager and hence “pulls” some computational work only during idle periods,
e.g., when a screen saver is active.

∗A list of projects using Alchemi can be found at http://www.alchemi.net/projects.html.

10 CRC Book

1.4.2 Motivation behind Reconfiguring Alchemi

The Alchemi Manager is clearly a key subsystem and, within the Manager, the sched-
uler – which makes all the grid work allocation decisions – isa key component. As in
any resource allocation scenario, the scheduling strategyis critical to the overall effi-
cacy of the system. Further, the efficacy of any particular scheduling algorithm may
depend on factors that can vary quite dynamically within thegrid, such as the arrival
times and rate of jobs submitted for execution, the computational weight of individ-
ual work units, the set of currently available Executors, and the overall workload
placed on Executors at any point in time. The current versionof Alchemi (v1.0 beta)
provides a default scheduler, embodied in itsDefaultSchedulerclass, that schedules
grid threads on a Priority and First Come First Served (FCFS)basis, in that order.
This scheduling algorithm is fixed at compile-time and used throughout the execu-
tion lifetime. However, Alchemi conveniently provides a scheduling API that allows
custom schedulers to be written.

We do not address whether a one-size-fits-all scheduling algorithm could be im-
plemented to take into account all operating conditions andall kinds of submitted
application mixes, but instead intend to enable the AlchemiManager to switch auto-
nomically among different scheduling algorithms, each potentially tuned for specific
conditions and workloads, as the state of the system changes. The same scheduler-
swapping provisions could also be used to avert or alleviatesituations in which (a
subset of) Executors misbehave – for reasons varying from misconfiguration, to the
occasional bug in the code of grid threads for some applications, to malicious inter-
ference by rogue Executor nodes – in ways that cannot be immediately detected by
the monitoring capabilities of the Manager. (In Alchemi, only Executor liveness is
currently considered).

In the next section we describe a proof-of-concept experimental case study that
demonstrates how Kheiron can be used to facilitate runtime reconfiguration, specifi-
cally replacement of the Alchemi scheduler, without any modifications to the source
code of the target system nor the underlying CLR managed execution environment.
We show how our adaptation engine attached via Kheiron is able to transparently
swap scheduler implementations on the fly, which would enable existing Alchemi
installations to take advantage of multiple alternative scheduling algorithms without
having to re-compile and re-install any system components.We also discuss how
the reconfigurations are carried out in a way that preserves the consistency of the
running grid application, as well as the overall distributed grid system.

We should stress that our case study focuses on the feasibility of effecting such
consistency-preservingreconfigurations of a legacy software system like Alchemi
running in a managed execution environment. We do not at all address the optimiza-
tion issues implied by the concept of dynamic scheduler replacement. We claim only
that Kheiron facilitates the development of specific remedies such as optimization:
for instance, our approach could enable an adaptive scheduler-swapping scheme that
could ensure the grid’s performance across a vast range of applications and condi-
tions, which remains an open and interesting research issue. We also do not address
here other plausible applications of runtime adaptation, such as patching potential

Effecting Runtime Reconfiguration in Managed Execution Environments 11

security vulnerabilities as in [38], although we anticipate that the same basic frame-
work should work.

1.4.3 Reconfiguring Alchemi

To swap the grid scheduler in a running instance of the Alchemi grid, we need to
implement the reconfiguration engine that interacts with Alchemi’s Manager com-
ponent. Using Kheiron, our CLR profiler described in Section1.3, we can dynam-
ically attach/detach such an adaptation engine implemented as a separate assembly
to/from a running managed application in a fairly mechanical way. However, a first
important step is to carefully plan the interactions between the running application,
the reconfiguration engine and the CLR, in such a way that theydo not compromise
the integrity of either the managed application or the CLR.

Consequently, we – as the developers of the adaptation engine to be attached by
Kheiron – must gather some knowledge about the system. Specifically, we need
details about how the Alchemi Manager component works, particularly the execution
flow in the Manager from startup to shutdown. That enables us to identify potential
“safe” control points where reconfiguration actions can take place. We also need to
identify those classes the adaptation engine must interactwith to effect the scheduler
swap. The final step is to implement the special-purpose reconfiguration engine
based on what we learn about the system.

In particular, we learned that when the Alchemi Manager is started (by running the
Alchemi.Manager.exeassembly), an instance of theManagerContainerclass, from
theAlchemi.Core.dll assembly), is created. The instance of the ManagerContainer
class represents the Manager proper. On startup, theManagerContainer::Start()
routine performs a set of initialization tasks:

1. An object is registered with the .NET Remoting services, allowing Executors
to interact with the Manager instance.

2. A singleton instance of theInternalSharedclass is created, holding a refer-
ence to the scheduler implementation being used (among other things). The
concrete scheduler implementation is referenced as an implementation of the
Alchemi.Core.Manager.ISchedulerinterface, which standardizes the sched-
uler API [19].

3. Two threads, the scheduler thread and the watchdog thread, are started. The
scheduler thread runs theManagerContainer::ScheduleDedicated()method,
which loops “forever” on a flag member variable,stopScheduler. It period-
ically retrieves the scheduler implementation from the InternalShared single-
ton instance and queries it for aDedicatedSchedule. A DedicatedSchedule is
a <Grid Thread ID, Executor ID> tuple specifying where the selected grid
thread should be scheduled to run. The watchdog thread runs the Manager-
Container::Watchdog() method, which loops “forever” on thestopWatchdog
flag member variable, periodically checking the status of dedicated Executors.

Based on this Manager startup sequence, we outline below thetasks involved in
performing a scheduler swap:

12 CRC Book

1. Use Kheiron to insert a prologue into theManagerContainer::Start() method
such that it jumps into the reconfiguration engine assembly where the instance
of the ManagerContainer can be cached.

2. Use Kheiron to insert a prologue into the constructor for the InternalShared
class such that it jumps into the reconfiguration engine assembly where the
instance can be cached.

3. Once instances of the ManagerContainer and InternalShared classes have been
cached, the reconfiguration engine can cause the scheduler thread to exit nor-
mally by setting thestopSchedulerflag to true, allowing the thread to exit
when it next tests the while loop condition.

4. TheAlchemi.Core.Manager.ISchedulerreference stored in the InternalShared
singleton can then be replaced by another IScheduler implementation.

5. The stopSchedulerflag is set to false and the scheduler thread is restarted.

1.4.4 The Reconfiguration Engine and Replacement Scheduler

Our adaptation engine implementation, found in thePSL.Alchemi.ReconfigEngine.dll
assembly, consists of two C# classes,PSLSchedulerandReconfigEngine. The imple-
mentation was done without contacting the Alchemi developers and took about half
a day to complete. The total implementation is 465 LOC – 95 LOCfor PSLSched-
uler.csand 370 LOC forReconfigEngine.cs.

PSLScheduler implements theAlchemi.Core.Manager.ISchedulerinterface, and
is functionally equivalent to the DefaultScheduler implementation that ships with Al-
chemi, except for some extra debugging and logging facilities. As noted previously,
the goal of PSLScheduler is solely to demonstrate a successful reconfiguration – the
scheduler swap – and to exemplify how Kheiron facilitates the development of such
a reconfiguration, not to actually improve scheduling.

ReconfigEngine is responsible for caching instances of the Manager classes of
interest, ManagerContainer and InternalShared, as well aseffecting the scheduler
swap. It is implemented according to the singleton design pattern. To effect changes
on the ManagerContainer and InternalShared instances, theReconfigEngine relies
on theReflection API, since many of the key variables are private and in some cases
read-only. The ReconfigEngine sets up a communication channel after it has at-
tached to the Manager, which allows a Reconfiguration Console to send commands
to the ReconfigEngine to trigger reconfigurations (our case study did not include
sensor monitoring for those conditions under which a different scheduler would be
warranted). Table 1.1 shows the method signatures of the ReconfigEngine API.

Effecting Runtime Reconfiguration in Managed Execution Environments 13

Method
public static ReconfigEngine GetInstance()
public static void CacheManagerContainer(object o)
public static void CacheInternalShared(object o)
public void SwapScheduler()

Table 1.1: Reconfiguration Engine API

1.5 Empirical Evaluation

1.5.1 Experimental Setup

Our experimental testbed was an Alchemi cluster consistingof two Executors (Pentium-
4 3GHz desktop machines each with 1GB RAM running Windows XP SP2 and the
.NET Framework v1.1.4322), and a Manager (Pentium-III 1.2GHz laptop with 1GB
RAM running Windows XP SP2 and the same .NET Framework version).

We ran the PiCalculator sample grid application, which ships with Alchemi, mul-
tiple times while requesting that the scheduler implementation be changed during the
application’s execution. The PiCalculator application computes the value of Pi to n
decimal digits. In our tests we used the default n=100.

We swapped between the DefaultScheduler and the PSLScheduler. The two sched-
ulers are algorithmically equivalent, except that the PSLScheduler outputs extra log-
ging information to the Alchemi Manager GUI so that we could confirm that a sched-
uler swap actually occurred.

1.5.2 Results

One thing we measured was the time taken to swap the scheduler. We requested
scheduler swaps between runs of the the PiCalculator application. The time taken to
replace the scheduler instance was about 500 ms, on average;however, that time was
dominated by the time spent waiting for the scheduler threadto exit. In the worst
case, a scheduler-swap request arrived while the schedulerthread was sleeping (as it
is programmed to do for up to 1000 ms on every loop iteration),causing the request
to wait until the thread resumes and exits before it is honored. As a result we consider
the time taken to actually effect the scheduler swap (modulothe time spent waiting
for the scheduler thread to exit) to be negligible.

Table 1.2 compares the job completion times when no scheduler swap requests
are submitted during execution of the PiCalculator grid application, with job com-
pletion times when one or more scheduler swap requests are submitted. As expected,
the difference in job completion times is negligible,∼1%, since the scheduler im-
plementations are functionally equivalent. Further, swapping the scheduler had no
impact on on-going execution of the Executors, as an Executor is not assigned an
additional work unit (grid thread) until it is finished executing its current work unit.

Thus we were able to demonstrate that Kheiron can be used to facilitate a consistency-
preserving reconfiguration of the Alchemi Grid Manager without compromising the

14 CRC Book

run# Job Completion time (ms) w/o swapJob Completion time (ms) w/swap#Swaps
1 18.3063232 17.2748400 2
2 18.3163376 18.4665536 1
3 18.3363664 17.3148976 4
4 18.3463808 17.3148976 2
5 18.3063232 17.4150416 2
6 17.4250560 18.2662656 2
7 18.3463808 18.3163376 4
8 17.5352144 18.5266400 1
9 17.5252000 18.4965968 2
10 18.3363664 18.3463808 2
Avg 18.07799488 17.97384512 2.2

Table 1.2: PiCalculator.exe Job Completion Times

integrity of the CLR or the Alchemi Grid Manager, and by extension the Alchemi
Grid and jobs actively executing in the grid. The combination of ensuring that the
augmentations made by Kheiron to insert hooks for the adaptation engine respect the
CLR’s verification rules for type and method definitions (see[14] for details on how
we guarantee this) and relying on human analysis to determine what transformations
Kheiron should perform, and when they should be performed, can guarantee that the
operation of the target system is not compromised. Human analysis leverages the
consistency-guarantees of Kheiron with respect to the CLR,allowing the designers
of adaptations to focus on preserving the consistency of thetarget system (at the
application level) based on knowledge of its operation.

1.6 Related Work

The techniques – bytecode rewriting, metadata augmentation and method call inter-
position – used by Kheiron to attach/detach an adaptation engine to/from an applica-
tion running in a managed execution environment – are similar to techniques used by
dynamic Aspect Oriented Programming (AOP) engines. In general, AOP [12] is an
approach to designing software that allows developers to modularize cross-cutting
concerns that manifest themselves as non-functional system requirements. Modular-
ized cross-cutting concerns, “aspects”, allow developersto cleanly separate the code
that meets system requirements from the code that meets the non-functional system
requirements. In the context of adaptive systems, AOP is an approach to designing
a system such that the non-functional requirement of havingadaptation mechanisms
available is cleanly separated from the system’s functional logic. An AOP engine
is still necessary to realize the final system. AOP engines weave together the code
that meets the functional requirements of the system with the aspects that encap-
sulate the non-functional system requirements – in our caseinserting hooks where
reconfiguration and repair actions can be performed.

There are three kinds of AOP engines: those that perform weaving at compile time

Effecting Runtime Reconfiguration in Managed Execution Environments 15

(static weaving), e.g., AspectJ [23] and Aspect C# [24]; those that perform weaving
after compile time but before load time, e.g., Weave .NET [25] and Aspect.NET [26],
which pre-process .NET assemblies, operating directly on type and assembly meta-
data; and those that perform weaving at runtime (dynamic weaving) at the bytecode
level, e.g., A dynamic AOP-Engine for .NET [27] and CLAW [28]. Our adaptation
framework prototype exhibits analogous dynamic weaving functionality.

A Dynamic AOP-Engine for .NET exhibits the basic behavior necessary to enable
method call interposition before, after and around a given method. Injection and re-
moval of aspects is done at runtime using the CLR profiler API for method re-JITs
and Unmanaged Metadata APIs. However, their system requires that applications
run with the debugger enabled – which incurs as much as a 3X performance slow-
down. CLAW uses dynamically generated proxies to interceptmethod calls before
passing them on to the “real” callee. CLAW uses the CLR profiler interface and the
Unmanaged Metadata APIs to generate dynamic proxies and insert aspects. An im-
plementation of CLAW was never released and development seems to have tapered
off, so we were unable to investigate its capabilities and implementation details.

Effecting runtime reconfigurations in software systems falls under the topic of
change management[29]. Change management is a principled aspect of runtime
system evolution that helps identify what must be changed, provides a context for
reasoning about, specifying and implementing change, and controls change to pre-
serve system integrity as well as meeting extra-functionalrequirements such as avail-
ability, reliability, etc.

A number of existing systems support runtime reconfiguration at various granu-
larities. The Dynamically Alterable System (DAS) operating system [30] provides
support for reconfiguring applications by letting a module be replaced by another
module with the same interface. DAS’ replugging mechanism requires special mem-
ory addressing hardware and a complex virtual-memory architecture to work. The
DMERT operating system [31] supports the reconfiguration ofthe C functions that
make up the switching software running on AT&T’s 3B20D processor. Entire pro-
cedures can be interchanged, provided that the function signature remains constant.
DMERT uses a level of indirection between a function call andthe actual target of
a function in memory. It is, however, very specific to the telecommunications appli-
cation domain. K42 [32] is an example of an operating system that supports recon-
figuration of its constituent components by virtue of its design. Explicit component
boundaries, a notion of quiescent states (for consistency-preservation), support for
state transfers between functionally compatible components, and indirection mecha-
nisms for accessing system components all play a role in supporting reconfigurations
such as component swaps and object interposition.

Argus [33] supports coarse-grained reconfigurations in distributed systems. Argus
is a language based on Clu [34] and an underlying operating system. Argus’ unit
of reconfiguration is a “guardian”, a server that implementsa set of functions via
a set of handlers. The approaches and techniques for reconfiguring a system are
tightly tied to the Argus system and language. Conic [29, 35]provides a powerful
environment for reconfiguring distributed systems following the change management
model. However, it also restrains the language and runtime system.

16 CRC Book

1.7 Conclusions and Future Work

We describe a dynamic runtime framework, Kheiron, which uses the facilities of a
managed execution environment to transparently attach/detach an adaptation engine
to/from a target system executing in that managed environment. We also present
an example of using Kheiron in tandem with a reconfiguration engine implemen-
tation, to effect consistency-preserving reconfigurations in the Alchemi Enterprise
Grid Computing System. We leverage knowledge of the Alchemisystem obtained
form its public documentation to identify “safe” control-points during program ex-
ecution where reconfiguration actions can be performed. This approach to change
management [29] is in part motivated by the results of Gupta et al. [36], who present
a proof of the undecidability of automatically finding all the control-points in an
application where a consistency-preserving adaptation can be performed.

Our proof-of-concept case study shows the feasibility of using managed execution
environment facilities to effect runtime reconfiguration on a legacy target system.
In future work we seek to apply our approach to other managed execution environ-
ments, e.g., the Jikes Research Virtual Machine (RVM) [37] or Sun Microsystems
JVM. Further, we are interested in investigating how our adaptation framework could
be used to effect fine-grained reconfigurations or repairs co-ordinated by an existing
externalized adaptation architecture such as Rainbow [10]or KX [9]. Finally, we are
investigating whether we can develop similar techniques for effecting adaptations
in applications running in a non-managed execution environment, e.g., conventional
legacy C applications.

1.8 Acknowledgments

The Programming Systems Laboratory is funded in part by National Science Foun-
dation grants CNS-0426623, CCR-0203876 and EIA-0202063, and in part by Mi-
crosoft Research.

References

[1] The University of Melbourne, Alchemi – Plug & Play Grid Computing. Avail-
able at http://www.alchemi.net/.

[2] Jeffrey O. Kephart and David M. Chess, The Vision of Autonomic Computing,
In IEEE Computer magazine, pages 41–52, January 2003.

[3] George Candea et al., Improving Availability with Recursive Micro-Reboots:

Effecting Runtime Reconfiguration in Managed Execution Environments 17

A Soft-State Case Study, InDependable Systems and Networks – Performance
and Dependability Symposium (DNS-PDS), pages 213–248, June 2002.

[4] Mark E. Segal and Ophir Frieder, On-The-Fly Program Modification Sys-
tems for Dynamic Updating, InIEEE Software magazine, pages 53–65, March
1993.

[5] Charles Shelton and Philip Koopman, Using Architectural Properties to Model
and Measure System-wide Graceful Degradation, InProceedings of ICSE
Workshop on Architecting Dependable Systems (WADS), pages 267–289, May
2002.

[6] Philip Koopman, Elements of the Self-Healing System Problem Space, In
Proceedings of ICSE Workshop on Architecting Dependable Systems (WADS),
pages 31–36, May 2003.

[7] G. Eisenhauer and K. Schwan, An Object-Based Infrastructure for Program
Monitoring and Steering, InProceedings of the 2nd SIGMETRICS Symposium
on Parallel and Distributed Tools (SPDT98), pages 10–20, August 1998.

[8] S.M. Sadjadi and P.K.McKinley, Transparent Self-Optimization in Existing
CORBA Applications, InProceedings of the 1st IEEE International Confer-
ence on Autonomic Computing, pages 88–95, May 2004.

[9] Gail Kaiser et al., Kinesthetics eXtreme: An External Infrastructure for Mon-
itoring Distributed Legacy Systems, InProceedings of The Autonomic Com-
puting Workshop 5th Workshop on Active Middleware Services(AMS), pages
22–30, June 2003.

[10] Shang-Wen Cheng et al., Rainbow: Architecture-based Self-Adaptation with
Reusable Infrastructure, InIEEE Computer magazine, pages 46–54, October
2004.

[11] Bradley Schmerl and David Garlan, Exploiting Architectural Design Knowl-
edge to Support Self-Repairing Systems, InProceedings of the 14th Interna-
tional Conference of Software Engineering and Knowledge Engineering, pages
241–248, July 2002.

[12] Gregor Kiczales et al., Aspect-Oriented Programming,In Proceedings of
European Conference on Object-Oriented Programming, pages 220–242, June
1997.

[13] Rean Griffith and Gail Kaiser, Manipulating Managed Execution Runtimes to
Support Self-Healing Systems, InProceedings of the 2005 Workshop on De-
sign and Evolution of Autonomic Application Softwarepages 1–7, May 2005.

[14] Rean Griffith and Gail Kaiser, Adding Self-healing Capabilities to the Com-
mon Language Runtime, Technical Report CUCS-005-05, Department of
Computer Science, Columbia University in the City of New York, February
2005. Available at http://www.cs.columbia.edu/techreports/cucs-005-05.pdf.

18 CRC Book

[15] Serge Lidin, Inside Microsoft .NET IL Assembler,Microsoft Press, 2002.

[16] Microsoft, Common Language Runtime Profiling, 2002.

[17] Microsoft, Common Language Runtime Metadata Unmanaged API, 2002.

[18] Aleksandr Mikunov, Rewrite MSIL Code on the Fly with the.NET Frame-
work Profiling API, MSDN Magazine, September 2003. Available at
http://msdn.microsoft.com/msdnmag/issues/03/09/NETProfilingAPI/.

[19] Akshay Luther et al., Alchemi: A .NET-Based EnterpriseGrid Computing
System, InProceedings of the 6th International Conference on Internet Com-
puting (ICOMP’05), June 2005.

[20] Project: Alchemi [.NET Grid Computing Framework]: Summary. Available at
http://sourceforge.net/projects/alchemi/.

[21] Ingo Rammer, Advanced .NET Remoting (C# Edition) (Paperback), Apress,
April 2002.

[22] Akshay Luther et al., Alchemi: A .NET-based EnterpriseGrid System
and Framework, User Guide for Alchemi 1.0, July 2005. Available at
http://www.alchemi.net/files/1.0.beta/docs/AlchemiManualv.1.0.htm.

[23] G. Kiczales et al., An Overview of AspectJ, InProceedings of European
Conference on Object-Object Programming, pages 327–353, June 2001.

[24] Howard Kim, AspectC#: An AOSD implementation for C#,Masters Thesis,
Department of Computer Science, Trinity College, Dublin, September 2002.
Available at https://www.cs.tcd.ie/publications/tech-reports/reports.02/TCD-
CS-2002-55.pdf.

[25] Donal Lafferty et al., Language Independent Aspect-Oriented Programming,
In Proceedings of the 18th ACM SIGPLAN conference on Object-Oriented
Programming, Systems, Languages and Applications, pages 1–12, October
2003.

[26] Bjorn Rasmussen et al., Aspect.NET - A Cross-Language Aspect Weaver,
Department of Computer Science, Trinity College, Dublin, 2002.

[27] Andreas Frei et al., A Dynamic AOP-Engine for .NET, Technical Report
445, Department of Computer Science, ETH Zurich, May 2004. Available at
http://www.iks.inf.ethz.ch/publications/files/daopnet.pdf.

[28] John Lam, CLAW: Cross-Language Load-Time Aspect Weaving on Mi-
crosoft’s Common Language Runtime Demonstration at the 1stInternational
Conference on Aspect-Oriented Software Development, April 2002. Available
at http://trese.cs.utwente.nl/aosd2002/index.php?content=clawclr.

[29] J. Kramer and J. Magee, The Evolving Philosophers Problem: Dynamic
Change Management, InIEEE Transactions on Software Engineering, pages
1293–1306, November 1990.

Effecting Runtime Reconfiguration in Managed Execution Environments 19

[30] Hannes Goullon et al., Dynamic Restructuring in an Experimental Operating
Systems, InIEEE Transactions on Software Engineering, pages 298–307, July
1978.

[31] R. Yacobellis et al., The 3B20D Processor and DMERT Operating System:
Field Administration Sub-system, Bell Systems Technical Journal, pages 323–
339, January 1983.

[32] C. Soules et al., System Support for Online Reconfiguration, In Proceedings
of USENIX Annual Technical Conference, pages 141–154, June 2003.

[33] Toby Bloom, Dynamic Module Replacement in a Distributed Program-
ming System, PhD Thesis, Technical Report MIT/LCS/TR-303, MIT Lab-
oratory for Computer Science, Cambridge MA, March 1983. Available at
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-303.pdf.

[34] Barbara Liskov, A History of CLU, Technical Report MIT/LCS/TR-561, MIT
Laboratory for Computer Science, Cambridge MA, April 1992.Available at
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-561.pdf.

[35] Jeff Magee et al., Constructing Distributed Systems inConic, InIEEE Trans-
actions on Software Engineering, pages 663–675, June 1989.

[36] Deepak Gupta et al., A Formal Framework for On-line Software Version
Change, InIEEE Transactions on Software Engineering, pages 120–131,
February 1996.

[37] Jikes. Available at http://jikes.sourceforge.net/.

[38] Stelios Sidiroglou et al. Building a Reactive Immune System for Software
Services, InUSENIX Annual Technical Conference, pages 149–161, April
2005.

