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Managed execution environments such as Microsoft's Combamguage Runtime
(CLR) and Sun Microsystems’ Java Virtual Machine (JVM) pda/a number of
services — including but not limited to application isabatj security sandboxing and
structured exception handling — that are aimed primarigrdiancing the robustness
of managed applications. However, none of these servicestlyi enables perform-
ing autonomic diagnostics, reconfigurations or repairshenmanaged applications
and its constituent subsystems and components.

In this paper we examine how the facilities of a managed di@ctenvironment
can be leveraged to support autonomic system adaptatiartgyparly runtime re-
configurations and repairs. We describe a framework we havelapedKheiron,
which uses these facilities to dynamically attach/detatlersgine capable of per-
forming reconfigurations and repairs on a target systemewhilontinues executing.
Kheiron is lightweight, and transparent to the applicatianwell as the managed
execution environment: it does not require recompilatibthe application nor spe-
cially compiled versions of the managed execution runtir®er initial prototype
was implemented for the CLR. To evaluate the prototype baéyoyn examples, we
searched on SourceForge for potential target systemsdgliggplemented on the
CLR that might benefit from runtime adaptation. We report anexperience using
Kheiron to facilitate runtime reconfigurations in a systdrattwas developed and is
in use by others: the Alchemi Enterprise Grid Computing 8ystleveloped at the
University of Melbourne, Australia [1].
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1.1 Introduction

A self-healing system “...automatically detects, diagrsoand repairs localized hard-
ware and software problems” [2]. Thus we expect a self-hgaiystem to perform
runtime reconfigurations and/or repairs of its componessaat of a proactive, pre-
ventative and/or reactive response to conditions arisiitlgimits operating environ-
ment. This runtime response contrasts with the traditiaparoach to performing
system adaptations — stop the system, fix it, then restartiehwhquires scheduled
or unscheduled downtime and incurs costs that cannot albeespressed strictly
in terms of money [3, 4]. Keeping the system running whilepdtions are being
carried out (even if it means operating in a degraded mod@]]3s in many cases
more desirable since it maintains some degree of avatiabili

One software engineering challenge in implementing alsediling system is man-
aging the degree of coupling between the components treiteffstem adaptation
(collectively referred to athe adaptation engineand the components that realize
the system’s functional requirements (collectively reddrto asthe target systejn
For new systems being built from scratch, designers caerelithrdwire adaptation
logic into the target system or separate the concerns oftaiitap and target sys-
tem functionality, by means of specialized middleware |{ReServices [7] and ACT
[8] or externalized architectures that include a reconfijan/repair engine, as in
Kinesthetics eXtreme (KX) [9] or Rainbow [10]. For legacysssms — which we
define as any system for which the source code is not avajlabl®r which it is
undesirable to engage in substantial re-design and dewelafp— one is limited to
using an externalized adaptation engine.

Externalized adaptation architectures may be preferred fuumber of software
engineering reasons. Hardwiring the adaptation logidms$arget system compo-
nents limits its generalization and reuse [11]. The mixirfigcode that realizes
functional requirements and code that meets non-fundticeguirements “Code
tangling” [12]) complicates the analysis and reasoning about thecoress of the
adaptations being performed. Moreover, it becomes difftoudvolve the adaptation
facilities without affecting the execution and deploymehthe target system. Ex-
ternalized architectures allow the adaptation engine hedarget system to evolve
independently, rather than requiring that they be devel@mel deployed in tandem.

We are concerned with identifying and addressing the iotenas between the
adaptation engine and the target system, while still sgelkirminimize their cou-
pling. Examples of interaction issues include, but are inaitéd to:

1. How does the adaptation engine attach to the target sysemthat it can
effect (i.e., conduct) a reconfiguration or repair?

2. What is the scope of the adaptation actions that can beealp@ig., can we
perform reconfigurations at the granularity of entire pesgs, subsystems or
components? Can we repair whole programs, subsystemsgidinai compo-
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nents, classes, methods or statements? Further, can weeatle, update,
replace or verify the consistency of elements at the sameutarty?

3. What is the impact on the performance of the target systeemwlaptations
are/are not being performed?

4. How do we control and coordinate the adaptation engindfamthrget appli-
cation with respect to the timing of adaptation actions gitleat application
consistency must be preserved?

In [13] we presented a framework to partially address qaestl, 2 and 3, in the
context of target systems that run in a managed executionoanment. Our main
focus there was on evaluating performance overhead, usiad computationally-
intensive scientific applications written in C#. In this pagve present a case study
geared towards exploring some of the issues associatece¥gttting consistency-
preserving reconfigurations (question 4) in a “real-lifgs®m, also augmented us-
ing our framework. We chose Alchemi because it meets ounieahcriteria, and is
publicly available and apparently actively used.

Our Kheiron prototype uses the profiling facility (accessiia the profiler API)
of Microsoft’s managed execution environment — the Commanduage Runtime
(CLR) —to track the application’s execution, and effectaraes via bytecode rewrit-
ing and creating/augmenting the metadata associated witlules, types and meth-
ods. Conceptually, our approach could be applied to otheaged execution envi-
ronments, e.g., Sun Microsystems’ Java Virtual MachineMy)\\Ve chose CLR for
our first prototype due to certain technical limitations afstJVM implementations,
which we elaborate in [14]; we are currently developing asigr of Kheiron that
targets the JVM and will attempt to work around those lintas.

Kheiron facilitates attaching an externalized adaptagiogine to a running appli-
cation. The adaptation engine can then perform targetifspeonsistency checks,
reconfigurations and/or repairs over individual compos@md sub-systems before
detaching. Kheiron remains transparent to the applicati@not necessary to mod-
ify the target system’s source code to facilitate attaclietaching the adaptation
engine or to enable adaptation actions. Further, the atitapganay be fine-grained,
e.g., replacing individual method bodies as well as entmamonents. When no
adaptations are being performed, Kheiron’s impact on thgetasystem is small,
around~5% or less runtime overhead (see [13] for details). Fin#fg,main point
of this paper, it allows adaptations to be enacted at weletstood control points
during target system execution, necessary to maintainrg#ensistency.

The remainder of this chapter is organized as folloyk:2 covers some back-
ground on .NET and the CLR'’s execution modgl.3 explains how Kheiron works.
§1.4 describes the target system we selected for our casg gtedAlchemi Enter-
prise Grid Computing System, and outlines the steps indoireeconfiguring that
system at runtime§1.5 provides detailed performance measurements and &slua
the impact of Kheiron on the target systegi..6 briefly discusses related work. Fi-
nally, §1.7 presents our conclusions and directions for future work
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1.2 Background
1.2.1 Common Language Runtime Basics

The CLR is the managed runtime environment in which .NET iappbns execute.
It provides an operating layer between .NET applications tie underlying op-
erating system [15]. The CLR takes on the responsibility @vjaling services
such as application isolation, security sandboxing andage collection. Managed
.NET applications are calledssembliesnd managed executables are caliead-
ules Within the CLR, assemblies executedpplication domainswhich are logical
constructs used by the runtime to provide isolation fronepthanaged applications.

.NET applications, as generated by the various compiletsténget the CLR, are
represented in an abstract intermediate form. This reptasen is comprised of two
main elementsmetadataand managed codeMetadata is “...a system of descrip-
tors of all structural items of the application — classesirtmembers and attributes,
global items...and their relationships” [15]okensare handles to metadata entries,
which can refer to types, methods, members, etc. Tokenssagkinstead of point-
ers so that the abstract intermediate representation isonyemodel independent.
Managed code “...represents the functionality of the apfithn’s methods...encoded
in an abstract binary format known as Microsoft Intermesliahnguage (MSIL)”
[15]. MSIL, also referred to as bytecode, is a set of absiresttuctions targeted at
the CLR. .NET applications written in different languages énteroperate closely,
calling each other’s functions and leveragirgss-language inheritang¢eince they
share the same abstract intermediate representation.

1.2.2 Common Language Runtime Execution Model

Two major components of the CLR interact with metadata ariddmgde during exe-
cution, theloaderand thgust-in-time (JIT) compilerThe loader reads the assembly
metadata and creates an in-memory representation and lafythe various classes,
members and methods on demand as each class is refereneetT Tompiler uses
the results of the loader and compiles the bytecode for eathad into native as-
sembly instructions for the target platform. JIT comp@atinormally occurs only
the first time the method is called in the managed applicati©@ompiled methods
remain cached in memory, and subsequent method calls juegtigliinto the native
(compiled) version of the method, skipping the JIT compilastep, see Figure 1.1.

1.2.3 The CLR Profiler and Unmanaged Metadata APIs

The CLR Profiler APIs allow an interested party (a profilerctdlect information
about the execution and memory usage of a running applicalibere are two rel-
evant interfacestCorProfilerCallback which a profiler must implement, an@or-
Profilerinfo, which is implemented by the CLR. Implementors of ICorPesfall-
back (also referred to as tmmtifications API[16]) can receive notifications about
assembly loads and unloads, module loads and unloads, lokdss and unloads,
function entry and exit, and JIT compilations of method lesdiThe ICorProfiler-
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Il Other code Execute
SampleClass s = new SampleClass();
s.doSomethingUseful();

I More code

Find member
doSomethingUseful()
in memory

Do JIT-Compile
of MSIL

Jump to JIT -Compiled
native bly version
of the method

FIGURE 1.1
Overview of the CLR Execution Cycle

Info interface is used by the profiler to obtain details abparticular events; for
example, when a module has finished loading, the CLR will tbedl CorProfiler-
Callback::ModuleLoadFinished implementation provided by the profiler, passing
themodulelD. The profiler can then ud€orProfilerinfo::GetModulelnfo to get
the module’s name, path and base load address.

The unmanaged metadata APIs are low-level interfaces theide fast access to
metadata, allowing users to emit/import data to/from th&RQL7]. There are two
such interfaces of interedtMetaDataEmitand IMetaDatalmport IMetaDataEmit
generates new metadata tokens as metadata is written, WhetaDatalmport re-
solves the details of a supplied metadata token.

1.3 Adaptation Framework Prototype Overview

Our Kheiron prototype for CLR is implemented as a single dyitdinked library
(DLL), which includes a profiler that implements ICorPrafilallback. It consists
of 3157 lines of C++ code, and is divided into four main cormgrus:

e TheExecution Monitor receives “module load”, “module unload” and “mod-
ule attached to assembly” events, JIT compilation evemts,fanction entry
and exit events from the CLR.

e TheMetadata Helperwraps the IMetaDatalmport interface and is used by the
Execution Monitor to resolve metadata tokens to less arypthod names
and attributes.

e Internal book-keeping structures store the results of metadata resolutions
and method invocations, as well as JIT compilation times.

e TheByte-code and Metadata Transformerwraps the IMetaDataEmit inter-
face to write new metadata, e.g., adding new methods to aagdeadding
references to external assemblies, types and methodsolyaherates, inserts
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and replaces bytecode in existing methods as directed liyxbeution Mon-

itor. Bytecode changes are committed by causing the CLRTtadinpile the
modified methodsgain(referred to hereafter as-JIT).

1.3.1 Model of Operation

Application! Method JIT Compile Function Function
Module Class Load
Load Invoke if necessary Enter Exit

FIGURE 1.2

First Method Invocation in a Managed Application

Kheiron performs operations on types and methods at vasiages in the method
invocation cycle, shown in Figure 1.2, to make them capableteracting with an
adaptation engine. In particular, to enable an adaptatigine to interact with a
class instance, Kheiron augments the type definition to heldhécessary “hooks”.
Augmenting the type definition is a two-step operation.

Step loccurs at the end of Stage 1, module load time, in Figure 1.2er\Whe
loader loads a module, the bytecode for the method bodieseofmiodule’s types
is laid out in memory. The starting address of the first bytiecmstruction in a
method body is referred to as tiRelative Virtual AddresgRVA) of the method.
Once the method bodies have been laid out in memory, Kheilde ahat we call
shadow methodaisingIMetaDataEmit::DefineMethod, for each of the original
public and/or private methods of the type. A shadow methageshall the properties
(attributes, signature, implementation flags and RVA) ef tbrresponding original
method — except the name. By sharing (borrowing) the RVA efdtiginal method,
the shadow method thus points at the method body of the atigiathod. Figure 1.3,
transition A to B, shows an example of adding a shadow mett®ainpleMethod
for an original methoGampleMethod

It should be noted that extending the metadata of a type bingdtew meth-
ods must be done before the type definition is installed inGbR — signaled by a
ClassLoadFinished event. Once a type definition is ingtattelist of methods and
members becomes read-only: further requests to define nelodseor members
are silently ignored even though the call to the API appdyéaticceeds”.

Step 2of type augmentation occurs the first time an original metedéiT-compiled,
Stage 4 in Figure 1.2. Kheiron uses bytecode-rewriting tvedt the original method
body into a thinwrapperthat calls the shadow method, as shown in Figure 1.3, tran-
sition B to C. Kheiron allocates space for a new method boslys the Byte-code &
Metadata Transformer to generate the sequence of bytenstitadtions to call the
shadow method, and sets the new RVA for the original methqubtot at its new
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A B C

Prepare Create
Shadow Shadow

MSIL :> MSIL :>
Method Method

body body

MSIL
Method
body

AN

_SampleMethod
RVA

SampleMethod
RVA

FIGURE 1.3

Preparing and Creating a Shadow Method

method body.

SampleMethod ( args )
<room for prolog>
push args
call _SampleMethod ( args )
<room for epilog>
return value/void

FIGURE 1.4
Conceptual Diagram of a Wrapper

Kheiron’s wrappers and shadow methods facilitate the adiapt of class in-
stances. In particular, the regular structure and singlenetatement of the wrapper
method, see Figure 1.4, enables Kheiron to easily injegitatian instructions into
the wrapper as prologues and/or epilogues to shadow metiisd c

Adding a prologue to a method requires that new bytecodeuictidns prefix the
existing bytecode instructions. The level of difficulty letsame whether we aug-
ment the bytecode of the wrapper or the original method. Agldipilogues, how-
ever, presents more challenges. Intuitively, we wish teritisew instructions before
control leaves a method. In the simple case, a method hagla séturn statement
and the epilogue can be inserted just before that point. Merxvér methods with
multiple return statements and/or exception handlingimest finding every possi-
ble return point can be an arduous task [18]. Further, theuagnd packing of the
bytecode for methods that contain exception handling mestis considered a spe-
cial case that can be complicated to augment correctly [LU8jng wrappers thus
delivers a cleaner approach since we can ignore all of thepladity in the original
method.
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1.3.2 Performing an Adaptation

To initiate an adaptation, Kheiron augments the wrappensert a jump into an
adaptation engine at ttentrol point(s)before and/or after a shadow method call.
Effecting the jump into the adaptation engine is a four-gtegess.

1. Extend the metadata of the assembly currently executitigei CLR such that
a reference to the assembly containing the adaptation engiadded using
IMetaDataEmit::DefineAssemblyRef

2. UselMetaDataEmit::DefineTypeRef to add references to the adaptation en-
gine type (class).

3. Add references to the subset of the adaptation enginelsatie that we wish
to insert calls to, usingMetaDataEmit::DefineMemberRef.

4. Augment the bytecode and metadata of the wrapper funictioisert bytecode
instructions to make calls into the adaptation engine leeford/or after the
existing bytecode that calls the shadow method.

To persist the bytecode changes made to the method bodié® efrappers, the
Execution Monitor causes the CLR to re-JIT the wrapper netthe next time the
method is called (i.e., JIT-compikgain). See [14] for details on CLR re-JITs.

To transfer control to an adaptation engine, Kheiron leyesahe control-points
before and/or after calls to shadow methods. The adaptatigine can then per-
form any number of operations, such as performing consigtehecks over class
instances and components, or reconfigurations and diagao$tcomponents.

1.4 Dynamic Reconfiguration Case Study

We selected the Alchemi Enterprise Grid Computing Systedh ftom the Univer-
sity of Melbourne, Australia. Alchemi has several appeaptiharacteristics, relevant
for our case study purposes: It was developed and is cuynewintained by others,
whom we do not know and have not contacted, hence we regaa ilegacy system
upon which runtime adaptations can be carried out only viexdarnalized engine.
It is publicly available on SourceForge [20], which makegdssible for other auto-
nomic computing researchers to “repeat” our experimenti@ying their own tech-
nology for comparison purposes. Alchemi is also well-doentad, which makes it
feasible to construct plausible scenarios, where perfagmintime reconfigurations
and/or repairs on the system could result in real benefitstgareal-world users.
Alchemi is apparently being used in a nhumber of scientific eashmercial grid
applications, including an application for distributedyrgllel environmental simu-
lations at Commonwealth Scientific and Industrial Rese&@majanisation (CSIRO)
Land and Water, Australia, and a micro-array data procgssaplication for early
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detection of breast cancer developed by Satyam ComputgrefiResearch Lab-
oratory in India® Finally, Alchemi is implemented as a .NET application on &dp
the CLR, which is a prerequisite for our current prototypé&hmi is written in C#,

and leverages a number of technologies provided by the .NBf&work, including

.NET Remoting [21], multi-threading and asynchronous paagning.

1.4.1 Alchemi Architecture

Alchemi Manager

Alchemi Aw\ a
Grid

Alchoml User . hcaion
Aklu i Tooks

Alchemi Executors

FIGURE 1.5
Alchemi Architecture — Source: User Guide for Alchemi 1.0 [22]

The Alchemi Grid follows a master-worker parallel programgyparadigm, where
a central component (the Manager) dispatches independéataf parallel execu-
tion (grid threads) to be executed on grid nodes (Execytees) Figure 1.5. The
Manager is responsible for providing the services assediafith the execution of
grid applications and their constituent grid threads. Ihitars the status of the Ex-
ecutors registered with it, and schedules grid threadsrnt@nuthem. Executors ac-
cept grid threads from the Manager, execute them, and rétarcompleted threads
to the Manager. An Executor can be configured as eitleglicated i.e., managed
centrally where the Manager “pushes” a computation to a» witdicated Executor
whenever its scheduling requires ;mm-dedicatedwhere the Executor instead polls
the Manager and hence “pulls” some computational work onlyngj idle periods,
e.g., when a screen saver is active.

*A list of projects using Alchemi can be found at http://wwwlami.net/projects.html.
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1.4.2 Motivation behind Reconfiguring Alchemi

The Alchemi Manager is clearly a key subsystem and, withérMlanager, the sched-
uler —which makes all the grid work allocation decisions a k&y component. As in
any resource allocation scenario, the scheduling strasegitical to the overall effi-
cacy of the system. Further, the efficacy of any particulaedaling algorithm may
depend on factors that can vary quite dynamically withinghd, such as the arrival
times and rate of jobs submitted for execution, the comjmrtat weight of individ-
ual work units, the set of currently available Executorg] #me overall workload
placed on Executors at any point in time. The current versfakichemi (v1.0 beta)
provides a default scheduler, embodied inDefaultScheduleclass, that schedules
grid threads on a Priority and First Come First Served (FQ¥8)s, in that order.
This scheduling algorithm is fixed at compile-time and usedughout the execu-
tion lifetime. However, Alchemi conveniently provides deduling API that allows
custom schedulers to be written.

We do not address whether a one-size-fits-all schedulingrittign could be im-
plemented to take into account all operating conditions @h#inds of submitted
application mixes, but instead intend to enable the Alchdamager to switch auto-
nomically among different scheduling algorithms, eacteptally tuned for specific
conditions and workloads, as the state of the system chafigessame scheduler-
swapping provisions could also be used to avert or alle\satmtions in which (a
subset of) Executors misbehave — for reasons varying fraseanfiguration, to the
occasional bug in the code of grid threads for some appdicatito malicious inter-
ference by rogue Executor nodes — in ways that cannot be imatebddetected by
the monitoring capabilities of the Manager. (In AlchemijyoBxecutor liveness is
currently considered).

In the next section we describe a proof-of-concept experisiease study that
demonstrates how Kheiron can be used to facilitate runtegnenfiguration, specifi-
cally replacement of the Alchemi scheduler, without any ifications to the source
code of the target system nor the underlying CLR managediérecenvironment.
We show how our adaptation engine attached via Kheiron is tbtransparently
swap scheduler implementations on the fly, which would enaklisting Alchemi
installations to take advantage of multiple alternativieesiuling algorithms without
having to re-compile and re-install any system componeifs. also discuss how
the reconfigurations are carried out in a way that presehegansistency of the
running grid application, as well as the overall distriloliggid system.

We should stress that our case study focuses on the fegsilfileffecting such
consistency-preservingeconfigurations of a legacy software system like Alchemi
running in a managed execution environment. We do not atldhess the optimiza-
tion issues implied by the concept of dynamic scheduleaphent. We claim only
that Kheiron facilitates the development of specific rerasdiuch as optimization:
for instance, our approach could enable an adaptive sctresivapping scheme that
could ensure the grid’s performance across a vast rangeptitagions and condi-
tions, which remains an open and interesting research.i¥geelso do not address
here other plausible applications of runtime adaptatioghsas patching potential
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security vulnerabilities as in [38], although we anticp#tat the same basic frame-
work should work.

1.4.3 Reconfiguring Alchemi

To swap the grid scheduler in a running instance of the Aléhgid, we need to
implement the reconfiguration engine that interacts witbh&mi's Manager com-
ponent. Using Kheiron, our CLR profiler described in Sectiod, we can dynam-
ically attach/detach such an adaptation engine implerdeagea separate assembly
to/from a running managed application in a fairly mechanizay. However, a first
important step is to carefully plan the interactions betwd running application,
the reconfiguration engine and the CLR, in such a way thatdieayot compromise
the integrity of either the managed application or the CLR.

Consequently, we — as the developers of the adaptationetgipe attached by
Kheiron — must gather some knowledge about the system. f&adlgi we need
details about how the Alchemi Manager component worksiquagtrly the execution
flow in the Manager from startup to shutdown. That enable® udentify potential
“safe” control points where reconfiguration actions caretplace. We also need to
identify those classes the adaptation engine must intesititto effect the scheduler
swap. The final step is to implement the special-purposenfegoation engine
based on what we learn about the system.

In particular, we learned that when the Alchemi Manageragst (by running the
Alchemi.Manager.exeassembly), an instance of tManagerContaineclass, from
the Alchemi.Core.dll assembly), is created. The instance of the ManagerContaine
class represents the Manager proper. On startupMteagerContainer::Start()
routine performs a set of initialization tasks:

1. An object is registered with the .NET Remoting servicdewdng Executors
to interact with the Manager instance.

2. A singleton instance of thimternalSharedclass is created, holding a refer-
ence to the scheduler implementation being used (among thtings). The
concrete scheduler implementation is referenced as armwitation of the
Alchemi.Core.Manager.ISchedulerinterface, which standardizes the sched-
uler API [19].

3. Two threads, the scheduler thread and the watchdog thaeadtarted. The
scheduler thread runs tanagerContainer::ScheduleDedicated(jnethod,
which loops “forever” on a flag member variablstopScheduler It period-
ically retrieves the scheduler implementation from theinalShared single-
ton instance and queries it forlzedicatedScheduleA DedicatedSchedule is
a <Grid Thread ID, Executor IB tuple specifying where the selected grid
thread should be scheduled to run. The watchdog thread herddanager-
Container::Watchdog() method, which loops “forever” on thetopWatchdog
flag member variable, periodically checking the status dickted Executors.

Based on this Manager startup sequence, we outline belotasks involved in
performing a scheduler swap:
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1. Use Kheiron to insert a prologue into tianagerContainer::Start() method
such that it jumps into the reconfiguration engine assemhiresthe instance
of the ManagerContainer can be cached.

2. Use Kheiron to insert a prologue into the constructor fer internalShared
class such that it jumps into the reconfiguration engineraBewhere the
instance can be cached.

3. Once instances of the ManagerContainer and Interna8luéasses have been
cached, the reconfiguration engine can cause the scheklrdadtto exit nor-
mally by setting thestopSchedulerflag to true, allowing the thread to exit
when it next tests the while loop condition.

4. TheAlchemi.Core.Manager.ISchedulereference stored in the InternalShared
singleton can then be replaced by another IScheduler imgrigation.

5. The_stopSchedulerflag is set to false and the scheduler thread is restarted.

1.4.4 The Reconfiguration Engine and Replacement Scheduler

Our adaptation engine implementation, found inRi8t.. Alchemi.ReconfigEngine.dll
assembly, consists of two C# clasgeS|L. SchedulemndReconfigEngineThe imple-
mentation was done without contacting the Alchemi devat®pead took about half
a day to complete. The total implementation is 465 LOC — 95 f@PSLSched-
uler.csand 370 LOC foReconfigEngine.cs

PSLScheduler implements thédchemi.Core.Manager.ISchedulerinterface, and
is functionally equivalent to the DefaultScheduler impartation that ships with Al-
chemi, except for some extra debugging and logging feedlitAs noted previously,
the goal of PSLScheduler is solely to demonstrate a suadessbnfiguration — the
scheduler swap — and to exemplify how Kheiron facilitatesdivelopment of such
a reconfiguration, not to actually improve scheduling.

ReconfigEngine is responsible for caching instances of thedder classes of
interest, ManagerContainer and InternalShared, as weadffasting the scheduler
swap. Itis implemented according to the singleton desigtepa To effect changes
on the ManagerContainer and InternalShared instancefebenfigEngine relies
on theReflection APlsince many of the key variables are private and in some cases
read-only. The ReconfigEngine sets up a communication ehafter it has at-
tached to the Manager, which allows a Reconfiguration Censosend commands
to the ReconfigEngine to trigger reconfigurations (our casdysdid notinclude
sensor monitoring for those conditions under which a déiféischeduler would be
warranted). Table 1.1 shows the method signatures of theriRg&ngine API.
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Method

public static ReconfigEngine Getinstance()
public static void CacheManagerContainer(object o)
public static void CachelnternalShared(object o)
public void SwapScheduler()

Table 1.1: Reconfiguration Engine API

1.5 Empirical Evaluation
1.5.1 Experimental Setup

Our experimental testbed was an Alchemi cluster consistibhgo Executors (Pentium-
4 3GHz desktop machines each with 1GB RAM running Windows RR 8nd the
.NET Framework v1.1.4322), and a Manager (Pentium-Ill H2G@ptop with 1GB
RAM running Windows XP SP2 and the same .NET Framework vejsio

We ran the PiCalculator sample grid application, which skigh Alchemi, mul-
tiple times while requesting that the scheduler implem@nide changed during the
application’s execution. The PiCalculator applicatiomputes the value of Pi to n
decimal digits. In our tests we used the default n=100.

We swapped between the DefaultScheduler and the PSLSehetiné two sched-
ulers are algorithmically equivalent, except that the PSiesluler outputs extra log-
ging information to the Alchemi Manager GUI so that we cowdfirm that a sched-
uler swap actually occurred.

1.5.2 Results

One thing we measured was the time taken to swap the schedierequested
scheduler swaps between runs of the the PiCalculator apiplic The time taken to
replace the scheduler instance was about 500 ms, on ava@gever, that time was
dominated by the time spent waiting for the scheduler thteagkit. In the worst
case, a scheduler-swap request arrived while the schetitdaxd was sleeping (as it
is programmed to do for up to 1000 ms on every loop iteratica)sing the request
to wait until the thread resumes and exits before it is hashofe a result we consider
the time taken to actually effect the scheduler swap (mothddime spent waiting
for the scheduler thread to exit) to be negligible.

Table 1.2 compares the job completion times when no schedulap requests
are submitted during execution of the PiCalculator gridliappion, with job com-
pletion times when one or more scheduler swap requestslamgtsed. As expected,
the difference in job completion times is negligible1%, since the scheduler im-
plementations are functionally equivalent. Further, quiag the scheduler had no
impact on on-going execution of the Executors, as an Exedgsitoot assigned an
additional work unit (grid thread) until it is finished exditlg its current work unit.

Thus we were able to demonstrate that Kheiron can be usedilitefz a consistency-
preserving reconfiguration of the Alchemi Grid Manager withcompromising the
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run# | Job Completion time (ms) w/o swgpJob Completion time (ms) w/swap#Swaps
1 18.3063232 17.2748400 2
2 18.3163376 18.4665536 1
3 18.3363664 17.3148976 4
4 18.3463808 17.3148976 2
5 18.3063232 17.4150416 2
6 17.4250560 18.2662656 2
7 18.3463808 18.3163376 4
8 17.5352144 18.5266400 1
9 17.5252000 18.4965968 2
10 | 18.3363664 18.3463808 2
Avg | 18.07799488 17.97384512 2.2

Table 1.2: PiCalculator.exe Job Completion Times

integrity of the CLR or the Alchemi Grid Manager, and by exien the Alchemi
Grid and jobs actively executing in the grid. The combinatid ensuring that the
augmentations made by Kheiron to insert hooks for the atiaptangine respect the
CLR’s verification rules for type and method definitions (Eb4 for details on how
we guarantee this) and relying on human analysis to determirat transformations
Kheiron should perform, and when they should be performaa guiarantee that the
operation of the target system is not compromised. Humalysiedeverages the
consistency-guarantees of Kheiron with respect to the GlBwing the designers
of adaptations to focus on preserving the consistency ofatget system (at the
application level) based on knowledge of its operation.

1.6 Related Work

The techniques — bytecode rewriting, metadata augmentatid method call inter-
position — used by Kheiron to attach/detach an adaptatigimerio/from an applica-
tion running in a managed execution environment — are sinalgechniques used by
dynamic Aspect Oriented Programming (AOP) engines. In g¢ndOP [12] is an
approach to designing software that allows developers tdutaoize cross-cutting
concerns that manifest themselves as non-functionalmsysiquirements. Modular-
ized cross-cutting concerns, “aspects”, allow develofgecteanly separate the code
that meets system requirements from the code that meet®th&inctional system
requirements. In the context of adaptive systems, AOP igpanoach to designing
a system such that the non-functional requirement of haattagptation mechanisms
available is cleanly separated from the system’s functitogic. An AOP engine
is still necessary to realize the final system. AOP enginesse/¢ogether the code
that meets the functional requirements of the system wighai$pects that encap-
sulate the non-functional system requirements — in our teseting hooks where
reconfiguration and repair actions can be performed.

There are three kinds of AOP engines: those that performiwgat compile time



Effecting Runtime Reconfiguration in Managed Executiorir&mments 15

(static weaving), e.g., AspectJ [23] and Aspect C# [24]sththat perform weaving
after compile time but before load time, e.g., Weave .NET f2fal Aspect.NET [26],
which pre-process .NET assemblies, operating directlyypa aind assembly meta-
data; and those that perform weaving at runtime (dynamiwingaat the bytecode
level, e.g., A dynamic AOP-Engine for .NET [27] and CLAW [2&)ur adaptation
framework prototype exhibits analogous dynamic weavingfionality.

A Dynamic AOP-Engine for .NET exhibits the basic behaviocemsary to enable
method call interposition before, after and around a givethwod. Injection and re-
moval of aspects is done at runtime using the CLR profiler APinfiethod re-JITs
and Unmanaged Metadata APIs. However, their system rexjtiieg applications
run with the debugger enabled — which incurs as much as a 34rpsnce slow-
down. CLAW uses dynamically generated proxies to interoagthod calls before
passing them on to the “real” callee. CLAW uses the CLR proiiiterface and the
Unmanaged Metadata APIs to generate dynamic proxies aad aspects. An im-
plementation of CLAW was never released and developmemsée have tapered
off, so we were unable to investigate its capabilities anplémentation details.

Effecting runtime reconfigurations in software systemssfahder the topic of
change managemef29]. Change management is a principled aspect of runtime
system evolution that helps identify what must be changealiges a context for
reasoning about, specifying and implementing change, anttals change to pre-
serve system integrity as well as meeting extra-functioe@irements such as avail-
ability, reliability, etc.

A number of existing systems support runtime reconfigunaibvarious granu-
larities. The Dynamically Alterable System (DAS) opergtsystem [30] provides
support for reconfiguring applications by letting a moduéerbplaced by another
module with the same interface. DAS’ replugging mechanisquires special mem-
ory addressing hardware and a complex virtual-memory tctuire to work. The
DMERT operating system [31] supports the reconfiguratiothefC functions that
make up the switching software running on AT&T'’s 3B20D premar. Entire pro-
cedures can be interchanged, provided that the functioragige remains constant.
DMERT uses a level of indirection between a function call #melactual target of
a function in memory. It is, however, very specific to the ¢elmmunications appli-
cation domain. K42 [32] is an example of an operating systehdupports recon-
figuration of its constituent components by virtue of itsigas Explicit component
boundaries, a notion of quiescent states (for consistpnesgervation), support for
state transfers between functionally compatible comptmand indirection mecha-
nisms for accessing system components all play a role inastippg reconfigurations
such as component swaps and object interposition.

Argus [33] supports coarse-grained reconfigurations imidiged systems. Argus
is a language based on Clu [34] and an underlying operatistpisy Argus’ unit
of reconfiguration is a “guardian”, a server that implememtset of functions via
a set of handlers. The approaches and techniques for regonfiga system are
tightly tied to the Argus system and language. Conic [29,[85}ides a powerful
environment for reconfiguring distributed systems follogrthe change management
model. However, it also restrains the language and runtyses.
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1.7 Conclusions and Future Work

We describe a dynamic runtime framework, Kheiron, whichsube facilities of a
managed execution environment to transparently attatdvlden adaptation engine
to/from a target system executing in that managed envirohmé/e also present
an example of using Kheiron in tandem with a reconfiguratiogie implemen-
tation, to effect consistency-preserving reconfiguraionthe Alchemi Enterprise
Grid Computing System. We leverage knowledge of the Alchgystem obtained
form its public documentation to identify “safe” controbipts during program ex-
ecution where reconfiguration actions can be performeds @pproach to change
management [29] is in part motivated by the results of Guptd ¢36], who present
a proof of the undecidability of automatically finding alletttontrol-points in an
application where a consistency-preserving adaptatiarbegperformed.

Our proof-of-concept case study shows the feasibility digisnanaged execution
environment facilities to effect runtime reconfiguration a legacy target system.
In future work we seek to apply our approach to other managedution environ-
ments, e.g., the Jikes Research Virtual Machine (RVM) [37F0on Microsystems
JVM. Further, we are interested in investigating how oupdalgon framework could
be used to effect fine-grained reconfigurations or repaisrdmated by an existing
externalized adaptation architecture such as RainbowdilRK [9]. Finally, we are
investigating whether we can develop similar techniquesefecting adaptations
in applications running in a non-managed execution enwiremt, e.g., conventional
legacy C applications.
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