
Research Statement
Joshua Reich

My research on networked systems brings to-
gether computation (end hosts) and communica-
tion (network switches), two traditionally separate
areas. Hosts at the network’s edge produce and
consume packetized data, which network switches
forward. Yet, recent trends call for reassessment of
this separation between edge and network.

Cloud computing entwines computation and
communication in novel ways. Cloud technologies
shift data and processing seamlessly between lo-
cal devices and remote datacenters, while cloud-
based Virtual Machines (VMs) execute in-flight
during networked migration between hosts.

In contrast, big data magnifies the coupling be-
tween computation and communication inherent
in distributed data processing. To feasibly oper-
ate on petabytes of data, future systems may need
to transfer similarly-sized intermediate results in
tight coordination with ongoing computation.

My work integrates edge and network, enabling
systems that leverage the combined strength of
hosts and switches in tandem.

Technology trends have both driven, and been
driven by, the growth of innovative communities
such as USENIX NSDI and exciting new areas, like
Software Defined Networking (SDN), for investi-
gation. This is the space in which I work. My re-
search explores the intellectual exchange between
systems and networking in both directions, pro-
ducing designs that:

• make the edge network-aware: more tightly
coupling host OS and network stack to save
host energy [3] or accelerate host storage [4];
• use the edge to enhance the network: utiliz-

ing hosts’ local wireless interfaces to increase
network capacity [2] or coverage area [5]; and
harnessing host processing to programmatically
control and manage the network [1].

I explore problem spaces by implementing and
deploying prototypes. My systems are informed
by mathematical modeling, data analysis, and pro-
gramming language theory. This approach pro-

motes a deep understanding of technology and
serves as a concrete test of ideas—revealing unan-
ticipated insights, hidden flaws, and opportunities
for improvement.

My designs emphasize consideration of factors
that are critical to practical adoptability. This may
require contemplating how people use systems to
work [3], play [2], or program [1]. It also entails
accounting for hardware resource limitations [2],
environmental constraints [5], and compatibility
with pre-existing infrastructure [4, 2].

This combination of exploration through imple-
mentation and emphasis on practicality in design
helps me generate work with wider impact. In ad-
dition to producing high-quality publications, my
research has1:

• won awards for a running system
(MobiCom/MobiHoc ’07 Best Demo) [5]
or codebase (NSDI ’13 Community Award) [1].

• spun out a start-up (Infinio) [4].

• contributed to product distributed world-
wide (Microsoft WakeProxy) [3].

• launched an OpenSource project [1].

• generated several technology patents [2, 4].

Making Edge Systems Network-Aware

For the past several decades, networked commu-
nication has played an increasingly central role
in a steadily expanding universe of computerized
devices—desktops, laptops, smartphones, tablets,
and now, even glasses. Yet the development of net-
work sub-system software has lagged behind that
of hardware. How should we redesign and aug-
ment host operating systems to interface more co-
hesively with the network? Can we do things like
save energy or accelerate storage and virtualiza-
tion by making hosts more network-aware?
Storage Acceleration. In [4], we dramatically
accelerated the rate at which new VMs could be

1Links at http://www.cs.princeton.edu/~jreich

1

http://www.ee.columbia.edu/announcements/rubenstein_misra/index.html
https://www.usenix.org/conference/nsdi13/composing-software-defined-networks
http://www.infinio.com
http://technet.microsoft.com/en-us/library/dd8eb74e-3490-446e-b328-e67f3e85c779#BKMK_PlanToWakeClients
http://frenetic-lang.org/pyretic/
http://www.cs.princeton.edu/~jreich


launched from cloud storage. Existing hypervisor
designs assumed each VM would be executed off
a locally stored image. However, the transition to
cloud-based execution of cloned VMs resulted in
dozens, if not hundreds, of hypervisor machines
concurrently accessing a single networked storage
location. Employees arriving in the morning might
idle while their virtual desktops load, or an en-
tire e-commerce system might stall while launch-
ing new virtual servers to meet sudden demand.

We aimed to design a storage sub-system for
hosts that could utilize network access to other
hosts to quickly scale VM image access through-
put, without degrading latency. The problem was
that scalability demanded distributing content ran-
domly, while smooth VM execution required send-
ing blocks as they were accessed by the hypervisor.

To solve this problem, we collected VM image
access patterns and used them to develop an ap-
proach that bridged the conceptual space between
unstructured P2P bulk download and determin-
istic P2P video-streaming. This novel VMTorrent
design balanced the collective’s need for scalable
throughput with each individual host’s need for
low latency access. In hardware tests of up to 100
servers, our VMTorrent prototype outperformed
state-of-the-art solutions by orders of magnitude.
Energy Efficiency. In [3], we addressed
widespread power waste by enterprise hosts.
OS energy-saving mechanism designers assumed
users would access computers through locally at-
tached peripherals. The shift to remote interac-
tion broke this assumption. As a result, enterprise
users disabled OS power-saving features so their
machines would remain remotely accessible. In
response, the Wake-on-LAN (WoL) standard de-
fined special packets whose receipt would wake
the host: a mechanism broken shortly thereafter
by new standards which blocked WoL packets from
traveling across Local Area Network boundaries.

What we needed was a backwards-compatible
energy-saving architecture that accommodated
both the needs of human users and the economic
realities of the enterprise. Our solution had to be
inexpensive to install and maintain; ensure users
remote access with little or no perceptible delay;
and still produce significant energy savings.

We collected user data to determine how much
energy might be saved at various points in the de-
sign space. What we discovered was that a rela-

tively lightweight design, using edge and network-
based mechanisms in tandem, should provide sig-
nificant savings. On the OS side, we tied together
energy-saving and network subsystems, so hosts
could transmit a handoff message immediately be-
fore transitioning to energy-saving states. On the
network side, we leveraged knowledge of Ethernet
switching logic and the Address Resolution Proto-
col to redirect future traffic towards the host tak-
ing the handoff (who would wake the sleeping
host using WoL as needed) in a completely back-
wards compatible manner. Thus network hosts
could transition to energy-saving mode, while re-
maining continuously available for network ac-
cess. We deployed our prototype on over 50 user
workstations, for half-a-year at Microsoft Research
Redmond. Our measurements demonstrated that
this approach did, in fact, realize the majority of
theoretically attainable power-savings.

Edge Systems that Enhance the Network

Network infrastructure, while far more optimized
than edge hosts for forwarding packetized data, is
relatively limited in many respects. Limitations in-
clude capacity and range in wireless networks, and
computational power in both wired and wireless
networks. How might we exploit hosts with lo-
cal wireless interfaces to serve a dual-role, as both
edge consumers and network forwarders? How
can we leverage edge computation power to pro-
vide platforms that empower human programmers
to effectively control and manage the network?
Augmenting Network Capacity. In [2], we
designed protocols to increase network capacity
by disseminating high-bandwidth content (e.g.,
videos) during opportunistic meetings between
mobile hosts (e.g., smartphones).

What made this particularly difficult was that a
practical solution must consider both host storage
limitations and how human users grow impatient
while waiting for requested content.

To this end, we defined an objective function
that accounted for the effects of user impatience:
a monotonically decreasing function representing
the loss of utility as users wait for requested con-
tent. The value taken by this objective function
depended on the allocation of content to each de-
vice’s finite local cache. We demonstrated that
the optimal allocation maximizing this objective

2



function can be computed efficiently. Further, un-
der simplified assumptions, we showed that the
corresponding optimal cache allocation is known
in closed form for a general class of delay-utility
functions. Finally, we developed completely dis-
tributed protocols that provably converge to this
optimal allocation.
Extending Network Range. In [5], we developed
protocols that enabled mobile robots to form a self-
spreading wireless mesh network. Such networks
could extend the area covered beyond that of fixed
wireless infrastructure.

To realize this potential, we needed control-
plane protocols that would enable the robots to
spread, while ensuring the physical layer network
remained connected. Further, we wanted our pro-
tocol to work even in challenging environments,
containing obstacles to movement, wireless chan-
nel propagation, and/or robot localization. This
provided a serious challenge. Unlike previous
work, our connectivity algorithm could not rely
on deterministic wireless connectivity models or
knowledge of spatial coordinates.

Instead, we showed it was possible to use
knowledge of the current network connectivity
topology to predict the likelihood of partition in
the near future. Our protocol was scalable, re-
quiring each robot to learn the local (2-hop) net-
work topology, and independently decide whether
to continue movement or freeze in place. We
implemented our protocol on our mobile robotic
testbed—a first in this research area, to the best of
our knowledge. Testbed evaluation demonstrated
our protocol maintained connectivity over 99% of
the time in realistic environments, while still en-
abling significant coverage extension.
Modular SDN Programming Platforms. In [1],
we developed programmer-facing abstractions
needed to build truly modular SDN applications,
and efficient techniques for implementing these
abstractions. Before SDN, network packet process-
ing was determined by an ad hoc process which
cobbled together various decentralized routing
protocols. The emergence of OpenFlow allowed
the network data-plane to be programmed by
hosts. This enabled direct, albeit low level, control
of the network, tightly tied to hardware primitives.

The key challenges we faced were (a) designing
SDN programming abstractions that programmers
would find both intuitive and powerful, and (b)

implementing a runtime that realized those pro-
grams using low-level hardware-centric primitives,
applied asynchronously across the network.

Informed by programming language theory, our
Pyretic SDN controller platform was the first that
enabled programmers to generate almost any
packet processing behavior realizable via Open-
Flow, using only a small and intuitive set of basic
primitives and combinators. Further, Pyretic ap-
proached network virtualization in a new way, pro-
viding a proof-of-concept network hypervisor that
was simply an ordinary Pyretic application.

To provide maximum accessibility to the sys-
tems and networking communities, we both em-
bedded the Pyretic language and implemented the
Pyretic runtime in a familiar general purpose lan-
guage, Python. We released Pyretic to the research
community under an open source license, and its
subsequent development has been informed by a
growing community userbase. Pyretic has been
used by roughly 1000 students taking Coursera’s
open online SDN course, and dozens more in Uni-
versity courses and academic research projects.
With each new release, Pyretic has reduced con-
troller load, processing an ever-higher proportion
of packets through the data-plane. We are refining
the Pyretic language, building a robust engine for
querying network traffic, adding new features to
the runtime, and using Pyretic to explore a variety
of open questions in controller design.

Future Work

Going forward, I intend to continue unifying edge
and network. One branch of my future work
will continue the examination, begun with Pyretic,
of network controller platform design. This study
will include exploring incorporation of dual-roled
hosts to provide network data-plane functionality.
The other branch of my research will focus on cou-
pling programmatic network control and host-based
applications to produce better distributed systems.

Network Controller Platform Design

The Pyretic platform provides a rich laboratory
for research on a wide cross-section of general
SDN programming platform challenges. Among
the questions that I intend to investigate are:

3



Distributed Controllers. The current Pyretic run-
time executes on a single host. What happens
when that host fails or becomes a bottleneck?
These are the classical distributed systems prob-
lems of high-availability and scale-out, encoun-
tered in a new setting; a setting in which clas-
sical solutions may not apply. I intend to ex-
tend integration of edge and network, by adapting
techniques from distributed systems to build fully-
distributed network control-planes.
Packet Processing at the Edge. The function-
ality offered by SDN programming platforms, in-
cluding Pyretic, primarily targets what OpenFlow’s
switch-bound programming interface can provide.
This restricts how packets can be matched, lim-
its what can be done to them, and fails to pro-
vide access to stateful packet-processing mecha-
nisms such as rate-limiters. While I am currently
exploring abstractions for utilizing switch hard-
ware features beyond what OpenFlow provides,
even full utilization of switch features will sup-
port only relatively restricted data-plane packet-
processing functionality. Might we be able to pro-
vide a significantly more flexible, feature-rich, and
efficient data-plane by incorporating edge-based
packet-processing? Can we do so without com-
promising on latency, throughput, or cost? What
abstractions might make such systems usable?
Dynamic Policy. While we have developed robust
abstractions for specifying the data-plane forward-
ing behavior desired at any given instant (static
policy), our constructs for specifying how we want
data-plane forwarding behavior to change over
time (dynamic policy) are less mature. What are
the right abstractions for specifying dynamic pol-
icy? How do we integrate additional sources of in-
formation into a dynamic policy? What guarantees
can we give about dynamic policies? Can we im-
plement these policies on switches in a way that is
both correct and efficient? And what do “correct-
ness” and “efficiency” even mean in this context?

Coupling Network Control & Edge Systems

I intend to study unification of edge and network
by investigating systems such as network-native
key-value stores that tightly couple network con-
trol with host-based systems.

The key-value store provides a powerful
paradigm for organizing and distributing storage
capacity in the datacenter. However, traditional

approaches implement such stores entirely at the
network edge. This has at least two drawbacks:

1. Host servers are entirely responsible for main-
taining an overlay mapping from data item keys
to network addresses (IP or MAC) and for for-
warding requests across that overlay (which
may require traversing multiple overlay hops).
Thus, each key-value store must implement its
own routing and forwarding logic—burdening
servers with additional load.

2. The underlying network may be used ineffi-
ciently by the overlay, resulting in (a) dupli-
cate packets, (b) sent across unnecessarily long
paths, (c) traversing unevenly utilized links.

Can we do better, building a key-value store
capable of serving as datacenter-scale distributed
shared memory? I am intrigued by the possi-
bility that both of these drawbacks might be ad-
dressed by combining content-centric networking
concepts, like those used in my VMTorrent work,
with data-plane forwarding programmability. By
embedding data names in routable packet header
fields (e.g., source IP) and programming switch
forwarding tables intelligently, might we imple-
ment a network-native key-value store that re-
duces server load while concurrently improving
network resource utilization?

References

[1] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker. Composing Software-Defined Net-
works. In USENIX NSDI, pages 1–13, April 2013.

[2] J. Reich and A. Chaintreau. The Age of Impa-
tience: Optimal Replication Schemes for Oppor-
tunistic Networks. In ACM CoNEXT, pages 85–96,
December 2009.

[3] J. Reich, A. Kansal, M. Gorackzo, and J. Padhye.
Sleepless in Seattle No Longer. In USENIX ATC,
June 2010.

[4] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra,
J. Nieh, and D. Rubenstein. VMTorrent: Scalable
P2P Virtual Machine Streaming. In ACM CoNEXT,
pages 289–300, December 2012.

[5] J. Reich, V. Misra, D. Rubenstein, and G. Zussman.
Connectivity Maintenance in Mobile Wireless Net-
works via Constrained Mobility. In IEEE Infocom,
pages 927–935, April 2011.

4


