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Abstract

We introduce a novel method to jointly parse
and detect disfluencies in spoken utterances.
Our model can use arbitrary features for pars-
ing sentences and adapt itself with out-of-
domain data. We show that our method, based
on transition-based parsing, performs at a high
level of accuracy for both the parsing and
disfluency detection tasks. Additionally, our
method is the fastest for the joint task, running
in linear time.

1 Introduction

Detecting disfluencies in spontaneous speech has
been widely studied by researchers in different com-
munities including natural language processing (e.g.
Qian and Liu (2013)), speech processing (e.g. Wang
et al. (2013)) and psycholinguistics (e.g. Finlayson
and Corley (2012)). While the percentage of spo-
ken words which are disfluent is typically not more
than ten percent (Bortfeld et al., 2001), this addi-
tional “noise” makes it much harder for spoken lan-
guage systems to predict the correct structure of the
sentence.

Disfluencies can be filled pauses (e.g. “uh”, “um”,
“huh”), discourse markers (e.g. “you know”, “I
mean”) or edited words which are repeated or cor-
rected by the speaker. For example, in the follow-
ing sentence, an edited phrase or reparandum inter-
val (“to Boston”) occurs with its repair (“to Den-
ver”), a filled pause (“uh”) and discourse marker (“I

∗ The first author worked on this project while he was a
research intern in CoreNL research group, NLU lab, Nuance
Communications, Sunnyvale, CA.

mean”).1

I want a flight to Boston︸ ︷︷ ︸
Reparandum

Interregnum︷ ︸︸ ︷
uh︸︷︷︸
FP

I mean︸ ︷︷ ︸
DM

to Denver︸ ︷︷ ︸
Repair

Filled pauses and discourse markers are to some
extent a fixed and closed set. The main challenge
in finding disfluencies is the case where the edited
phrase is neither a rough copy of its repair or has any
repair phrase (i.e. discarded edited phrase). Hence,
in previous work, researchers report their method
performance on detecting edited phrases (reparan-
dum) (Johnson and Charniak, 2004).

In contrast to most previous work which focuses
solely on either detection or on parsing, we intro-
duce a novel framework for jointly parsing sentences
with disfluencies. To our knowledge, our work is
the first model that is based on joint dependency and
disfluency detection. We show that our model is ro-
bust enough to detect disfluencies with high accu-
racy, while still maintaining a high level of depen-
dency parsing accuracy that approaches the upper
bound. Additionally, our model outperforms prior
work on joint parsing and disfluency detection on
the disfluency detection task, and improves upon this
prior work by running in linear time complexity.

The remainder of this paper is as follows. In §2,
we overview some the previous work on disfluency
detection. §3 describes our model. Experiments are
described in §4 and Conclusions are made in §5.

1In the literature, edited words are also known as “reparan-
dum”, and the fillers are known as “interregnum”. Filled pauses
are also called “Interjections”.
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2 Related Work

Disfluency detection approaches can be divided into
two different groups: text-first and speech first
(Nakatani and Hirschberg, 1993). In the first ap-
proach, all prosodic and acoustic cues are ignored
while in the second approach both grammatical and
acoustic features are considered. For this paper, we
focus on developing a text-first approach but our
model is easily flexible with speech-first features be-
cause there is no restriction on the number and types
of features in our model.

Among text-first approaches, the work is split
between developing systems which focus specifi-
cally on disfluency detection and those which couple
disfluency detection with parsing. For the former,
Charniak and Johnson (2001) employ a linear clas-
sifier to predict the edited phrases in Switchboard
corpus (Godfrey et al., 1992). Johnson and Char-
niak (2004) use a TAG-based noisy channel model
to detect disfluencies while parsing with getting n-
best parses from each sentence and re-ranking with
a language model. The original TAG parser is not
used for parsing itself and it is used just to find
rough copies in the sentence. Their method achieves
promising results on detecting edited words but at
the expense of speed (the parser has a complexity of
O(N5). Kahn et al. (2005) use the same TAG model
and add semi-automatically extracted prosodic fea-
tures. Zwarts and Johnson (2011) improve the per-
formance of TAG model by adding external lan-
guage modeling information from data sets such as
Gigaword in addition to using minimal expected F-
loss in n-best re-ranking.

Georgila (2009) uses integer linear programming
combined with CRF for learning disfluencies. That
work shows that ILP can learn local and global con-
straints to improve the performance significantly.
Qian and Liu (2013) achieve the best performance
on the Switchboard corpus (Godfrey et al., 1992)
without any additional data. They use three steps for
detecting disfluencies using weighted Max-Margin
Markov (M3) network: detecting fillers, detecting
edited words, and refining errors in previous steps.

Some text-first approaches treat parsing and dis-
fluency detection jointly, though the models differ
in the type of parse formalism employed. Lease and
Johnson (2006) use a PCFG-based parser to parse

sentences along with finding edited phrases. Miller
and Schuler (2008) use a right-corner transform of
binary branching structures on bracketed sentences
but their results are much worse than (Johnson and
Charniak, 2004). To date, none of the prior joint ap-
proaches have used a dependency formalism.

3 Joint Parsing Model

We model the problem using a deterministic
transition-based parser (Nivre, 2008). These parsers
have the advantage of being very accurate while be-
ing able to parse a sentence in linear time. An ad-
ditional advantage is that they can use as many non-
local and local features as needed.

Arc-Eager Algorithm We use the arc-eager algo-
rithm (Nivre, 2004) which is a bottom-up parsing
strategy that is used in greedy and k-beam transition-
based parsers. One advantage of this strategy is that
the words can get a head from their left side, before
getting right dependents. This is particularly bene-
ficial for our task, since we know that reparanda are
similar to their repairs. Hence, a reparandum may
get its head but whenever the parser faces a repair, it
removes the reparandum from the sentence and con-
tinues its actions.

The actions in an arc-eager parsing algorithm are:
• Left-arc (LA): The first word in the buffer be-

comes the head of the top word in the stack.
The top word is popped after this action.
• Right-arc (RA): The top word in the stack be-

comes the head of the first word in the buffer.
• Reduce (R): The top word in the stack is

popped.
• Shift (SH): The first word in the buffer goes to

the top of the stack.

Joint Parsing and Disfluency Detection We first
extend the arc-eager algorithm by augmenting the
action space with three new actions:
• Reparandum (Rp[i:j]): treat a phrase (words i

to j) outside the look-ahead buffer as a reparan-
dum. Remove them from the sentence and clear
their dependencies.
• Discourse Marker (Prn[i]): treat a phrase in

the look-ahead buffer (first i words) as a dis-
course marker and remove them from the sen-
tence.
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Stack Buffer Act.
flight to Boston uh I mean ... RA
flight to Boston uh I mean to ... RA
flight to Boston uh I mean to Denver Intj[1]
flight to Boston I mean to Denver Prn[1]
flight to Boston to Denver RP[2:3]
flight to Denver RA
flight to Denver RA
flight to Denver R
flight to R
flight R

Figure 1: A sample transition sequence for the sentence
“flight to Boston uh I mean to Denver”. In the third col-
umn, only the underlined parse actions are learned by the
parser (second classifier). The first classifier uses all in-
stances for training (learns fluent words with “regular”
label).

• Interjection (Intj[i]): treat a phrase in the
look-ahead buffer (first i words) as a filled
pause and remove them from the sentence.2

Our model has two classifiers. The first classi-
fier decides between four possible actions and pos-
sible candidates in the current configuration of the
sentence. These actions are the three new ones
from above and a new action Regular (Reg): which
means do one of the original arc-eager parser ac-
tions.

At each configuration, there might be several can-
didates for being a prn, intj or reparandum, and
one regular candidate. The candidates for being
a reparandum are a set of words outside the look-
ahead buffer and the candidates for being an intj or
prn are a set of words beginning from the head of
the look-ahead buffer. If the parser decides regular
as the correct action, the second classifier predicts
the best parsing transition, based on arc-eager pars-
ing (Nivre, 2004).

For example, in the 4th state in Figure 1, there are
multiple candidates for the first classifier: regular,
“I” as prn[1] or intj[1], “I mean” as prn[2] or intj[2],
“I mean to” as prn[3] or intj[3], “I mean to Denver”
as prn[4] or intj[4], “Boston” as rp[3:3], “to Boston”
as rp[2:3], and “flight to Boston” as rp[1:3].

2In the bracketed version of Switchboard corpus, reparan-
dum is tagged with EDITED and discourse markers and paused
fillers are tagged as PRN and INTJ respectively.

Training A transition-based parser action (our
second-level classifier) is sensitive to the words in
the buffer and stack. The problem is that we do not
have gold dependencies for edited words in our data.
Therefore, we need a parser to remove reparandum
words from the buffer and push them into the stack.
Since our parser cannot be trained on disfluent sen-
tences from scratch, the first step is to train it on
clean treebank data.

In the second step, we adapt parser weights by
training it on disfluent sentences. Our assumption
is that we do not know the correct dependencies be-
tween disfluent words and other words in the sen-
tence. At each configuration, the parser updates it-
self with new instances by traversing all configura-
tions in the sentences. In this case, if at the head of
the buffer there is an intj or prn tag, the parser allows
them to be removed from the buffer. If a reparan-
dum word is not completely outside the buffer (the
first two states in Figure 1), the parser decides be-
tween the four regular arc-eager actions (i.e. left-
arc, right-arc, shift, and reduce). If the last word
pushed into the stack is a reparandum and the first
word in the buffer is a regular word, the parser re-
moves all reparanda at the same level (in the case of
nested edited words), removes their dependencies to
other words and push their dependents into the stack.
Otherwise, the parser performs the oracle action and
adds that action as its new instance.3

With an adapted parser which is our second-level
classifier, we can train our first-level classifier. The
same procedure repeats, except that instances for
disfluency detection are used for updating param-
eter weights for the first classifier for deciding the
actions. In Figure 1, only the oracle actions (under-
lined) are added to the instances for updating parser
weights but all first-level actions are learned by the
first level classifier.

4 Experiments and Evaluation

For our experiments, we use the Switchboard corpus
(Godfrey et al., 1992) with the same train/dev/test
split as Johnson and Charniak (2004). As in that

3The reason that we use a parser instead of expanding all
possible transitions for an edited word is that, the number of reg-
ular actions will increase and the other actions become sparser
than natural.
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work, incomplete words and punctuations are re-
moved from data (except that we do not remove in-
complete words that are not disfluent4) and all words
are turned into lower-case. The main difference with
previous work is that we use Switchboard mrg files
for training and testing our model (since they con-
tain parse trees) instead of the more commonly used
Swithboard dps text files. Mrg files are a subset of
dps files with about more than half of their size.
Unfortunately, the disfluencies marked in the dps
files are not exactly the same as those marked in
the corresponding mrg files. Hence, our result is not
completely comparable to previous work except for
(Kahn et al., 2005; Lease and Johnson, 2006; Miller
and Schuler, 2008).

We use Tsurgeon (Levy and Andrew, 2006) for
extracting sentences from mrg files and use the
Penn2Malt tool5 to convert them to dependencies.
Afterwards, we provide dependency trees with dis-
fluent words being the dependent of nothing.

Learning For the first classifier, we use averaged
structured Perceptron (AP) (Collins, 2002) with a
minor modification. Since the first classifier data is
heavily biased towards the “regular label”, we mod-
ify the weight updates in the original algorithm to 2
(original is 1) for the cases where a “reparandum”
is wrongly recognized as another label. We call
the modified version “weighted averaged Perceptron
(WAP)”. We see that this simple modification im-
proves the model accuracy.6 For the second classi-
fier (parser), we use the original averaged structured
Perceptron algorithm. We report results on both AP
and WAP versions of the parser.

Features Since for every state in the parser config-
uration, there are many candidates for being disflu-
ent; we use local features as well as global features
for the first classifier. Global features are mostly
useful for discriminating between the four actions
and local features are mostly useful for choosing a
phrase as a candidate for being a disfluent phrase.
The features are described in Figure 2. For the sec-
ond classifier, we use the same features as (Zhang
and Nivre, 2011, Table 1) except that we train our

4E.g. I want t- go to school.
5http://stp.lingfil.uu.se/˜nivre/

research/Penn2Malt.html
6This is similar to WM3N in (Qian and Liu, 2013).

Global Features
First n words inside/outside buffer (n=1:4)
First n POS i/o buffer (n=1:6)
Are n words i/o buffer equal? (n=1:4)
Are n POS i/o buffer equal? (n=1:4)
n last FG transitions (n=1:5)
n last transitions (n=1:5)
n last FG transitions + first POS in the buffer (n=1:5)
n last transitions + first POS in the buffer (n=1:5)
(n+m)-gram of m/n POS i/o buffer (n,m=1:4)
Refined (n+m)-gram of m/n POS i/o buffer (n,m=1:4)
Are n first words of i/o buffer equal? (n=1:4)
Are n first POS of i/o buffer equal? (n=1:4)
Number of common words i/o buffer words (n=1:6)
Local Features
First n words of the candidate phrase (n=1:4)
First n POS of the candidate phrase (n=1:6)
Distance between the candidate and first word in the buffer

Figure 2: Features used for learning the first classifier.
Refined n-gram is the n-gram without considering words
that are recognized as disfluent. Fine-grained (FG) tran-
sitions are enriched with parse actions (e.g. “regular:left-
arc”).

parser in a similar manner as the MaltParser (Nivre
et al., 2007) without k-beam training.

Parser Evaluation We evaluate our parser with
both unlabeled attachment accuracy of correct words
and precision and recall of finding the dependencies
of correct words.7 The second classifier is trained
with 3 iterations in the first step and 3 iterations in
the second step. We use the attachment accuracy
of the parse tree of the correct sentences (without
disfluencies) as the upper-bound attachment score
and parsed tree of the disfluent sentences (without
disfluency detection) as our lower-bound attachment
score. As we can see in Table 1, WAP does a slightly
better job parsing sentences. The upper-bound pars-
ing accuracy shows that we do not lose too much in-
formation while jointly detecting disfluencies. Our
parser is not comparable to (Johnson and Charniak,
2004) and (Miller and Schuler, 2008), since we use
dependency relations for evaluation instead of con-
stituencies.

Disfluency Detection Evaluation We evaluate
our model on detecting edited words in the sentences

7The parser is actually trained to do labeled attachment and
labeled accuracy is about 1-1.5% lower than UAS.
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UAS LB UB Pr. Rec. F2
AP 88.6 70.7 90.2 86.8 88.0 87.4
WAP 88.1 70.7 90.2 87.2 88.0 87.6

Table 1: Parsing results. UB = upperbound (parsing clean
sentences), LB = lowerbound (parsing disfluent sentences
without disfluency correction). UAS is unlabeled attach-
ment score (accuracy), Pr. is precision, Rec. is recall and
F1 is f-score.

Pr. Rec. F1
AP 92.9 71.6 80.9

WAP 85.1 77.9 81.4
KL (2005) – – 78.2
LJ (2006) – – 62.4
MS (2008) – – 30.6

QL (2013) – Default – – 81.7
QL (2013) – Optimized – – 82.1

Table 2: Disfluency results. Pr. is precision, Rec. is recall
and F1 is f-score. KL = (Kahn et al., 2005), LJ = (Lease
and Johnson, 2006), MS = (Miller and Schuler, 2008) and
QL = (Qian and Liu, 2013).

(words with “EDITED” tag in mrg files). As we
see in Table 2, WAP works better than the original
method. As mentioned before, the numbers are not
completely comparable to others except for (Kahn
et al., 2005; Lease and Johnson, 2006; Miller and
Schuler, 2008) which we outperform. For the sake
of comparing to the state of the art, the best result
for this task (Qian and Liu, 2013) is replicated from
their available software8 on the portion of dps files
that have corresponding mrg files. For a fairer com-
parison, we also optimized the number of training
iterations of (Qian and Liu, 2013) for the mrg set
based on dev data (10 iterations instead of 30 iter-
ations). As shown in the results, our model accu-
racy is slightly less than the state-of-the-art (which
focuses solely on the disfluency detection task and
does no parsing), but we believe that the perfor-
mance can be improved through better features and
by changing the model. Another characteristic of
our model is that it operates at a very high precision,
though at the expense of some recall.

8We use the second version of the code: http://code.
google.com/p/disfluency-detection/. Results
from the first version are 81.4 and 82.1 for the default and opti-
mized settings.

5 Conclusion

In this paper, we have developed a fast, yet accurate,
joint dependency parsing and disfluency detection
model. Such a parser is useful for spoken dialogue
systems which typically encounter disfluent speech
and require accurate syntactic structures. The model
is completely flexible with adding other features (ei-
ther text or speech features).

There are still many ways of improving this
framework such as using k-beam training and decod-
ing, using prosodic and acoustic features, using out
of domain data for improving the language and pars-
ing models, and merging the two classifiers into one
through better feature engineering. It is worth noting
that we put the dummy root word in the first position
of the sentence. Ballesteros and Nivre (2013) show
that parser accuracy can improve by changing that
position for English.

One of the main challenges in this problem is
that most of the training instances are not disflu-
ent and thus the sample space is very sparse. As
seen in the experiments, we can get further improve-
ments by modifying the weight updates in the Per-
ceptron learner. In future work, we will explore
different learning algorithms which can help us ad-
dress the sparsity problem and improve the model
accuracy. Another challenge is related to the parser
speed, since the number of candidates and features
are much greater than the number used in classical
dependency parsers.
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