Orthographic and Morphological Processing for Persian-to-English Statistical Machine Translation

Introduction

- Our goal is to improve Persian-English SMT via orthographic and morphological processing of Persian.
- Cleaning Persian orthography to improve morphological segmentation accuracy.
- Morphological segmentation of Persian words.

Persian Orthography

- Written from right to left with Perso-Arabic script.
- Has some inter-word spaces (zero-width non-joiner or semi-spaces) that are not consistently used by writers.

To the day ...

Updated

Prosperous

Persian Morphology

Adjectives

Suffix 'tar' for comparative (like "er" in English) and 'taryn' for superlative (like "est" in English)

pretty	زيبا
prettier	زيباتر
the prettiest	زيباترين

Nouns

Suffix for plural nouns

Verbs

Inflected in different combinations for tense, mood, aspect, voice and person.

nmy_xwandmš [n+ my+ xwand +m +š]

I was not reading it' [lit. 'not+ was(continous)+ read(past) + I + it'

Center for Computational Learning Systems, Department of Computer Science, Columbia University

به روز بەرور بهرور

Space Correction

This step is mostly needed for our verb morphological analyzer.

Steps

- Learn a language model from clean data.
- model and return the best spacing.

Space Correction Evaluation

- Train data: BijanKhan corpus and Persian dependency treebank.
- (all semi-spaces are turned into spaces).

Baseline Accuracy	92.20
Correction Accuracy	99.43
Correction Precision	93.11
Correction Recall	99.98
Correction F-Score	96.42

Input	از فردا نمی ترسم چراکه دیروز را دیدهام و امروز را دوست دارم		
Raw-RS	Az frdA nmy trsm crAkh dyrwz rA <i>dydh Am</i> w Amrwz rA dwst dArm		
	from tomorrow, it would not have seen am yesterday and today i love		
PerStem	Az frdA nmy trsm crAkh dyrwz rA <i>dy dh Am</i> w Amrwz rA dwst dAr m		
	from tomorrow, am not seen since yesterday and today i love		
VerhStem	Az frdA n my trs m crAkh dyrwz rA <i>dyd h Am</i> w Amrwz rA dwst dAr m		
VCIUSICIII	from tomorrow, not afraid because i have seen yesterday and today i love		
Reference	i 'm not afraid of tomorrow because <i>i have seen yesterday</i> and i like today		

Figure 1: Example output from three systems and one of the references from the dev set. As seen in the bolded and underlined words, the VerbStem system captures linguistic information and produces better translation quality.

Morpheme Segmentation

We use two morpheme segmentations:

- PerStem: a regular expression matcher that tokenizes all words.
- VerbStem: only tokenizes verbs with high accuracy. We assigned each word the POS with highest probability independent from corpus.
- Probability of each POS tag is calculated on Bijankhan corpus.

Mohammad Sadegh Rasooli, Ahmed El Kholy and Nizar Habash

Center for Computational Learning Systems, Columbia University

2. Get all possible space corrections for a sentence and rank with the language

Test data: Persian dependency treebank test data without correct spacing

Experimental Results

Development Results verbs.

Method	Raw	Raw-RS	PerStem	Clean-SS	VerbStem
BLEU	33.0	33.6	32.6	32.2	33.7

Table 1: SMT results on the dev set.

Test Results

Experimental Setup: Training data: 160K parallel sentences (3.7M words), 1k tuning, 268 dev with 3 English references, 268 blind test with 3 English references, Giza++, KenLM and Moses Decoder for phrase-based SMT.

Conclusion

- our dev set is easier in general.
- order problems.

Raw: the simple baseline, **Raw-Rs**: After turning semi-spaces into regular spaces, **PerStem**: After using PerStem, **Clean-SS**: After correcting semi-spaces and VerbStem: After correcting semi-spaces and segmenting

del	BLEU	METEOR	TER
v-RS (Baseline)	31.4	31.2	60.9
bStem (Best model)	33.3	32.2	61.1

Table 2: Results from the baseline and the best system on the blind test set.

Segmenting Persian verbs improves translation quality.

VerbStem produces a higher BLEU score improvement over the Raw-RS baseline on the blind test compared to the dev set. This may suggest that

The translation output of all current systems in this paper suffer from word