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Speech Disfluency

◦ Speech text is mostly disfluent

◦ Disfluency types:

X Filled pauses; e.g. uh, um
X Discourse markers and parentheticals; e.g. I mean, you

know
X Reparandum (edited phrase)

I want a flight to Boston︸ ︷︷ ︸
Reparandum

Interregnum︷ ︸︸ ︷
uh︸︷︷︸
FP

I mean︸ ︷︷ ︸
Prn

to Denver︸ ︷︷ ︸
Repair
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Parsing Disfluent Sentences

◦ Most prior approaches focus solely on disfluency detection.

◦ Why not parse the disfluent sentence at the same time as
disfluency detection?

X This has the potential to speed-up spoken language
processing in dialogue systems.
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Parsing Disfluent Sentences

◦ Parsing spoken language is harder than written text.

Disfluencies make it much harder

◦ How about joint parsing?

Studies that only focus on disfluency detection vastly
outperform joint model approaches by 20 F score or more.
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Our Approach: Joint Parsing and Disfluency Detection

◦ Parsing and disfluency detection with high accuracy and
processing speed.

I want a flight to Boston uh I mean to Denver

I want a flight to Denver

I want a flight [to Boston]Rep. [uh]INTJ [I mean]PRN to Denver

This is the real output of our system!
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Arc-Eager Parsing [Nivre, 2004]

◦ Goal: Finding the best dependency tree

◦ Parser State: Buffer of words, stack of already processed
words and set of already made dependency arcs.

◦ Initialization: Buffer with sentence words, stack and arc-set
are empty.

◦ Final State: Stack and buffer are empty and arc-set has a set
of arcs.
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Arc-Eager Parsing

Actions in an arc-eager algorithms are:

◦ Shift: [... j]S [i k ...]B → [... j i]S [k ...]B

◦ Right-arc: [... j]S [i k ...]B → [... j i]S [k ...]B + add-arc(j,i)

◦ Left-arc: [... h j]S [i k ...]B → [...h]S [i k ...]B + add-arc(i,j)

◦ Reduce: [... h j]S [i k ...]B → [...h]S [i k ...]B

◦ Are these actions ENOUGH for disfluency detection?
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Arc-Eager Parsing

Actions in an arc-eager algorithms are:

◦ Shift: [... j]S [i k ...]B → [... j i]S [k ...]B

◦ Right-arc: [... j]S [i k ...]B → [... j i]S [k ...]B + add-arc(j,i)

◦ Left-arc: [... h j]S [i k ...]B → [...h]S [i k ...]B + add-arc(i,j)

◦ Reduce: [... h j]S [i k ...]B → [...h]S [i k ...]B
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Additional Transitions for Handling Disfluencies

◦ Three additional actions:

Intj[i]: Remove the first i words from the buffer and tag
them as interjection (Intj).

[ROOT0, want2, flight4, to5, Boston6]S [uh7, I8, mean9, to10, Denver11]B
→ Next action is Intj[1]

[ROOT0, want2, flight4, to5, Boston6]S [I8, mean9, to10, Denver11]B
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Additional Transitions for Handling Disfluencies

◦ Three additional actions:

Prn[i]: Remove the first i words from the buffer and tag
them as discourse marker (Prn).

[ROOT0, want2, flight4, to5, Boston6]S [I8, mean9, to10, Denver11]B
→ Next action is Prn[2]

[ROOT0, want2, flight4, to5, Boston6]S [to10, Denver11]B
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Additional Transitions for Handling Disfluencies

◦ Three additional actions:

X RP[i:j]: From the words outside the buffer, remove
un-removed words i to j and tag them as reparandum
(RP).

[ROOT0, want2, flight4, to5, Boston6]S [to10, Denver11]B
Candidates: RP[6:6], RP[5:6], RP[4:6], RP[3,6], ...., Intj[1], Intj[2], ..., Prn[1], Prn[2], ..., Shift, Reduce, Left-arc, Right-arc

→ Next action is RP[5:6]

[ROOT0, want2, flight4]S [to10, Denver11]B
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Let’s Practice

[ROOT0, want2, flight4]S [to5, Boston6, uh7, I8, mean9, to10, Denver11]B

Next action is right-arc:prep

[Root] I want a flight to Boston uh I mean to Denver

obj
det

root
subj
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Let’s Practice

[ROOT0, want2, flight4, to5]S [Boston6, uh7, I8, mean9, to10, Denver11]B

Next action is right-arc:pobj

[Root] I want a flight to Boston uh I mean to Denver

prep
obj

det
root

subj
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Let’s Practice

[ROOT0, want2, flight4, to5, Boston6]S [I8, mean9, to10, Denver11]B

Next action is Prn[2]

[Root] I want a flight to Boston I mean to Denver

pobjprep
obj

det
root

subj
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Let’s Practice

[ROOT0, want2, flight4, to5, Boston6]S [to10, Denver11]B

Next action is RP[5:6]

[Root] I want a flight to Boston to Denver

pobjprep
obj

det
root

subj
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Let’s Practice

[ROOT0, want2, flight4, to5, Boston6]S [to10, Denver11]B

Deleting words and dependencies

[Root] I want a flight to Boston to Denver

pobjprep
obj

det
root

subj
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Let’s Practice

[ROOT0, want2, flight4, to10]S [Denver11]B

Next action is right-arc:pobj

[Root] I want a flight to Denver

prep
obj

det
root

subj
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Two Classifiers for Learning the Model

◦ Instead of having one complete joint model, we have two
classifiers that each classifier has its own features and label
set.

State

C1

Parse RP[i:j] IJ[i]DM[i]

C2

LA RA RSH

(a) A structured cascade with two classifiers.

IJ[i]

C3

DM[i]

Parse

C5

C2

IJDM

C1 Other

C4 RP

C6

RLARA SH

RP[i:j]

State

(b) A structured cascade with six classifiers.

Figure 4: Two kinds of cascades for disfluency learning. Circles are classifiers and light-colored blocks
show the final decision by the system.

GIC[6]
• C2: GB[4/4], GT[5], GTP[5], GGT[5],

GGTP[5], GN[4], GNR[4], GPNPW[4/4],
LD, LN[24/24]

• C3: GB[4/4], GT[5], GTP[5], GGT[5],
GGTP[5], GN[4], GNR[4], GPNPW[4/4],
LD, LN[12/12]

• C4: GBPF, GS[4/6], GT[5], GTP[5],
GGT[5], GGTP[5], GN[4], GNR[4],
GIC[13]

• C5: GBPF
• C6: GBPF, LL[4/6], GPNPW[4/4], LN[6/6],

LD, LIC[13]

Joint Parser We use the union of features from
baseline classifiers C1 and C2 from the two cas-
cades learner.JRT: this

is the
parser re-
ferred to
in the be-
ginning of
Section 4
right?

JRT: this
is the
parser re-
ferred to
in the be-
ginning of
Section 4
right?

JRT: for
all the fea-
ture con-
figurations
above,
how were
they fig-
ured out?

JRT: for
all the fea-
ture con-
figurations
above,
how were
they fig-
ured out?

5.2 Learning
Averaged Structured Perceptron (Collins, 2002)
is a discriminative supervised learning method
which empirically converges very quickly. We use
this algorithm for learning the weights of our fea-
tures for all of our classifiers.

One of the main issues with detecting reparan-
dum is sparsity: speech repairs happen X% of
the time in the Switchboard corpus. Qian and

JRT: we
need to
change
this!

JRT: we
need to
change
this!

Liu (2013) try to change the update weight for

reparandum misclassification in training and see
that this would improve the results. We also re-
alize that changing of the weight for reparandum
candidate for the cases where a “reparandum” is
wrongly recognized as another label. This method
is similar to weighted Perceptron (Cavallanti et al.,
2007) and we call the modified version “weighted
averaged Perceptron (WAP)”. We can see that this
minor modification to the algorithm improves the
results significantly.

6 Experiments and Evaluation

6.1 Data Preperation
Most previous work on disfluency detection has
used the Switchboard corpus (Godfrey et al.,
1992) with the train/dev/test splits from (Johnson
and Charniak, 2004). Unfortunately, comparabil-
ity in this task is hampered by the fact that there
are two data formats in Switchboard: dps and
mrg. There are twice as many dps files as mrg
files; i.e. mrg files are a subset of dps files. Dps
files have part of speech tag information in addi-
tion to disfluencies tags, while mrg files have part
of speech tags and bracketed trees. Furthermore,
there is no complete one-to-one mapping between
dps and mrg files, since the sentence boundaries
differ slightly, and dps annotation of parentheti-
cal disfluencies is more fine-grained. There are
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Features

◦ We use two kinds of features for the first classifier: local and
global.

work, incomplete words and punctuations are re-
moved from data (except that we do not remove in-
complete words that are not disfluent4) and all words
are turned into lower-case. The main difference with
previous work is that we use Switchboard mrg files
for training and testing our model (since they con-
tain parse trees) instead of the more commonly used
Swithboard dps text files. Mrg files are a subset of
dps files with about more than half of their size.
Unfortunately, the disfluencies marked in the dps
files are not exactly the same as those marked in
the corresponding mrg files. Hence, our result is not
completely comparable to previous work except for
(Kahn et al., 2005; Lease and Johnson, 2006; Miller
and Schuler, 2008).

We use Tsurgeon (Levy and Andrew, 2006) for
extracting sentences from mrg files and use the
Penn2Malt tool5 to convert them to dependencies.
Afterwards, we provide dependency trees with dis-
fluent words being the dependent of nothing.

Learning For the first classifier, we use averaged
structured Perceptron (AP) (Collins, 2002) with a
minor modification. Since the first classifier data is
heavily biased towards the “regular label”, we mod-
ify the weight updates in the original algorithm to 2
(original is 1) for the cases where a “reparandum”
is wrongly recognized as another label. We call
the modified version “weighted averaged Perceptron
(WAP)”. We see that this simple modification im-
proves the model accuracy.6 For the second classi-
fier (parser), we use the original averaged structured
Perceptron algorithm. We report results on both AP
and WAP versions of the parser.

Features Since for every state in the parser config-
uration, there are many candidates for being disflu-
ent; we use local features as well as global features
for the first classifier. Global features are mostly
useful for discriminating between the four actions
and local features are mostly useful for choosing a
phrase as a candidate for being a disfluent phrase.
The features are described in Figure 2. For the sec-
ond classifier, we use the same features as (Zhang
and Nivre, 2011, Table 1) except that we train our

4E.g. I want t- go to school.
5http://stp.lingfil.uu.se/˜nivre/

research/Penn2Malt.html
6This is similar to WM3N in (Qian and Liu, 2013).

Global Features
First n words inside/outside buffer (n=1:4)
First n POS i/o buffer (n=1:6)
Are n words i/o buffer equal? (n=1:4)
Are n POS i/o buffer equal? (n=1:4)
n last FG transitions (n=1:5)
n last transitions (n=1:5)
n last FG transitions + first POS in the buffer (n=1:5)
n last transitions + first POS in the buffer (n=1:5)
(n+m)-gram of m/n POS i/o buffer (n,m=1:4)
Refined (n+m)-gram of m/n POS i/o buffer (n,m=1:4)
Are n first words of i/o buffer equal? (n=1:4)
Are n first POS of i/o buffer equal? (n=1:4)
Number of common words i/o buffer words (n=1:6)
Local Features
First n words of the candidate phrase (n=1:4)
First n POS of the candidate phrase (n=1:6)
Distance between the candidate and first word in the buffer

Figure 2: Features used for learning the first classifier.
Refined n-gram is the n-gram without considering words
that are recognized as disfluent. Fine-grained (FG) tran-
sitions are enriched with parse actions (e.g. “regular:left-
arc”).

parser in a similar manner as the MaltParser (Nivre
et al., 2007) without k-beam training.

Parser Evaluation We evaluate our parser with
both unlabeled attachment accuracy of correct words
and precision and recall of finding the dependencies
of correct words.7 The second classifier is trained
with 3 iterations in the first step and 3 iterations in
the second step. We use the attachment accuracy
of the parse tree of the correct sentences (without
disfluencies) as the upper-bound attachment score
and parsed tree of the disfluent sentences (without
disfluency detection) as our lower-bound attachment
score. As we can see in Table 1, WAP does a slightly
better job parsing sentences. The upper-bound pars-
ing accuracy shows that we do not lose too much in-
formation while jointly detecting disfluencies. Our
parser is not comparable to (Johnson and Charniak,
2004) and (Miller and Schuler, 2008), since we use
dependency relations for evaluation instead of con-
stituencies.

Disfluency Detection Evaluation We evaluate
our model on detecting edited words in the sentences

7The parser is actually trained to do labeled attachment and
labeled accuracy is about 1-1.5% lower than UAS.

127
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Learning Algorithm

◦ We experimented with two learning algorithms [Collins, 2002]:

X We use averaged Perceptron [Collins, 2002] with mostly
binary features (AP).

X Changing weight updates from 1 to 2 for misclassification
of reparandum shows improvement (WAP).
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Evaluation Data and Measures

◦ Data

X We use Switchboard parsed section (mrg files) with the
same train/dev/test split as
[Johnson and Charniak, 2004]

◦ Metric

X Disfluency detection: F-score of detecting reparandum.
X Parsing: F-score of finding correct parents for fluent

words.
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Disfluency Detection

Model Model Description F-Score

[Miller and Schuler, 2008] Joint + PCFG parsing 30.6
[Lease and Johnson, 2006] Joint + PCFG parsing 62.4
[Kahn et al., 2005] TAG + LM rerank. 78.2
[Qian and Liu, 2013] IOB tagging 81.4
[Qian and Liu, 2013]–Opt. IOB tagging 82.1

Our Model AP 80.9
Our Model WAP 81.4
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Parser Evaluation

UAS LB UB Pr. Rec. F1
AP 88.6 70.7 90.2 86.8 88.0 87.4
WAP 88.1 70.7 90.2 87.2 88.0 87.6

Table 1: Parsing results. UB = upperbound (parsing clean
sentences), LB = lowerbound (parsing disfluent sentences
without disfluency correction). UAS is unlabeled attach-
ment score (accuracy), Pr. is precision, Rec. is recall and
F1 is f-score.

Pr. Rec. F1
AP 92.9 71.6 80.9

WAP 85.1 77.9 81.4
KL (2005) – – 78.2
LJ (2006) – – 62.4
MS (2008) – – 30.6

QL (2013) – Default – – 81.7
QL (2013) – Optimized – – 82.1

Table 2: Disfluency results. Pr. is precision, Rec. is recall
and F1 is f-score. KL = (Kahn et al., 2005), LJ = (Lease
and Johnson, 2006), MS = (Miller and Schuler, 2008) and
QL = (Qian and Liu, 2013).

(words with “EDITED” tag in mrg files). As we
see in Table 2, WAP works better than the original
method. As mentioned before, the numbers are not
completely comparable to others except for (Kahn
et al., 2005; Lease and Johnson, 2006; Miller and
Schuler, 2008) which we outperform. For the sake
of comparing to the state of the art, the best result
for this task (Qian and Liu, 2013) is replicated from
their available software8 on the portion of dps files
that have corresponding mrg files. For a fairer com-
parison, we also optimized the number of training
iterations of (Qian and Liu, 2013) for the mrg set
based on dev data (10 iterations instead of 30 iter-
ations). As shown in the results, our model accu-
racy is slightly less than the state-of-the-art (which
focuses solely on the disfluency detection task and
does no parsing), but we believe that the perfor-
mance can be improved through better features and
by changing the model. Another characteristic of
our model is that it operates at a very high precision,
though at the expense of some recall.

8We use the second version of the code: http://code.
google.com/p/disfluency-detection/. Results
from the first version are 81.4 and 82.1 for the default and opti-
mized settings.

5 Conclusion

In this paper, we have developed a fast, yet accurate,
joint dependency parsing and disfluency detection
model. Such a parser is useful for spoken dialogue
systems which typically encounter disfluent speech
and require accurate syntactic structures. The model
is completely flexible with adding other features (ei-
ther text or speech features).

There are still many ways of improving this
framework such as using k-beam training and decod-
ing, using prosodic and acoustic features, using out
of domain data for improving the language and pars-
ing models, and merging the two classifiers into one
through better feature engineering. It is worth noting
that we put the dummy root word in the first position
of the sentence. Ballesteros and Nivre (2013) show
that parser accuracy can improve by changing that
position for English.

One of the main challenges in this problem is
that most of the training instances are not disflu-
ent and thus the sample space is very sparse. As
seen in the experiments, we can get further improve-
ments by modifying the weight updates in the Per-
ceptron learner. In future work, we will explore
different learning algorithms which can help us ad-
dress the sparsity problem and improve the model
accuracy. Another challenge is related to the parser
speed, since the number of candidates and features
are much greater than the number used in classical
dependency parsers.
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Conclusion and Future Directions

◦ Our experiments show that our model is close to the
state-of-the-art.

◦ There are still many avenues of improving accuracy:

X Better structure: completely joint model
X Better features: prosodic features
X K-beam training and decoding
X Classifier ensemble
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Any Question?

Thanks [for]Rp. [uh]Intj for your attention
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