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Abstract

We present a novel method for the cross-
lingual transfer of dependency parsers.
Our goal is to induce a dependency parser
in a target language of interest without
any direct supervision: instead we as-
sume access to parallel translations be-
tween the target and one or more source
languages, and to supervised parsers in
the source language(s). Our key contribu-
tions are to show the utility of dense pro-
jected structures when training the target
language parser, and to introduce a novel
learning algorithm that makes use of dense
structures. Results on several languages
show an absolute improvement of 5.51%
in average dependency accuracy over the
state-of-the-art method of (Ma and Xia,
2014). Our average dependency accuracy
of 82.18% compares favourably to the ac-
curacy of fully supervised methods.

1 Introduction

In recent years there has been a great deal of inter-
est in dependency parsing models for natural lan-
guages. Supervised learning methods have been
shown to produce highly accurate dependency-
parsing models; unfortunately, these methods rely
on human-annotated data, which is expensive to
obtain, leading to a significant barrier to the devel-
opment of dependency parsers for new languages.
Recent work has considered unsupervised meth-
ods (e.g. (Klein and Manning, 2004; Headden III
et al., 2009; Gillenwater et al., 2011; Mareček
and Straka, 2013; Spitkovsky et al., 2013; Le and
Zuidema, 2015; Grave and Elhadad, 2015)), or
methods that transfer linguistic structures across
languages (e.g. (Cohen et al., 2011; McDonald et
al., 2011; Ma and Xia, 2014; Tiedemann, 2015;
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Guo et al., 2015; Zhang and Barzilay, 2015; Xiao
and Guo, 2015)), in an effort to reduce or eliminate
the need for annotated training examples. Unfor-
tunately the accuracy of these methods generally
lags quite substantially behind the performance of
fully supervised approaches.

This paper describes novel methods for the
transfer of syntactic information between lan-
guages. As in previous work (Hwa et al., 2005;
Ganchev et al., 2009; McDonald et al., 2011; Ma
and Xia, 2014), our goal is to induce a dependency
parser in a target language of interest without any
direct supervision (i.e., a treebank) in the target
language: instead we assume access to parallel
translations between the target and one or more
source languages, and to supervised parsers in the
source languages. We can then use alignments in-
duced using tools such as GIZA++ (Och and Ney,
2000), to transfer dependencies from the source
language(s) to the target language (example pro-
jections are shown in Figure 1). A target language
parser is then trained on the projected dependen-
cies.

Our contributions are as follows:

• We demonstrate the utility of dense projected
structures when training the target-language
parser. In the most extreme case, a “dense”
structure is a sentence in the target language
where the projected dependencies form a
fully projective tree that includes all words in
the sentence (we will refer to these structures
as “full” trees). In more relaxed definitions,
we might include sentences where at least
some proportion (e.g., 80%) of the words par-
ticipate as a modifier in some dependency, or
where long sequences (e.g., 7 words or more)
of words all participate as modifiers in some
dependency. We give empirical evidence that
dense structures give particularly high accu-
racy for their projected dependencies.
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Figure 1: An example projection from English to German in the EuroParl data (Koehn, 2005). The
English parse tree is the output from a supervised parser, while the German parse tree is projected from
the English parse tree using translation alignments from GIZA++.

• We describe a training algorithm that builds
on the definitions of dense structures. The
algorithm initially trains the model on full
trees, then iteratively introduces increasingly
relaxed definitions of density. The algo-
rithm makes use of a training method that
can leverage partial (incomplete) dependency
structures, and also makes use of confidence
scores from a perceptron-trained model.

In spite of the simplicity of our approach,
our experiments demonstrate significant improve-
ments in accuracy over previous work. In ex-
periments on transfer from a single source lan-
guage (English) to a single target language (Ger-
man, French, Spanish, Italian, Portuguese, and
Swedish), our average dependency accuracy is
78.89%. When using multiple source languages,
average accuracy is improved to 82.18%. This is
a 5.51% absolute improvement over the previous
best results reported on this data set, 76.67% for
the approach of (Ma and Xia, 2014). To give an-
other perspective, our accuracy is close to that of
the fully supervised approach of (McDonald et al.,
2005), which gives 84.29% accuracy on this data.
To the best of our knowledge these are the high-
est accuracy parsing results for an approach that
makes no use of treebank data for the language of
interest.

2 Related Work

A number of researchers have considered the
problem of projecting linguistic annotations from
the source to the target language in a parallel cor-
pus (Yarowsky et al., 2001; Hwa et al., 2005;

Ganchev et al., 2009; Spreyer and Kuhn, 2009;
McDonald et al., 2011; Ma and Xia, 2014). The
projected annotations are then used to train a
model in the target language. This prior work in-
volves various innovations such as the use of pos-
terior regularization (Ganchev et al., 2009), the
use of entropy regularization and parallel guid-
ance (Ma and Xia, 2014), the use of a simple
method to transfer delexicalized parsers across
languages (McDonald et al., 2011), and a method
for training on partial annotations that are pro-
jected from source to target language (Spreyer and
Kuhn, 2009). There is also recent work on tree-
bank translation via a machine translation system
(Tiedemann et al., 2014; Tiedemann, 2015). The
work of (McDonald et al., 2011) and (Ma and Xia,
2014) is most relevant to our own work, for two
reasons: first, these papers consider dependency
parsing, and as in our work use the latest version of
the Google universal treebank for evaluation;1 sec-
ond, these papers represent the state of the art in
accuracy. The results in (Ma and Xia, 2014) dom-
inate the accuracies for all other papers discussed
in this related work section: they report an aver-
age accuracy of 76.67% on the languages German,
Italian, Spanish, French, Swedish and Portuguese;
this evaluation includes all sentence lengths.

Other work on unsupervised parsing has con-
sidered various methods that transfer information
from source to target languages, where parsers are
available in the source languages, but without the
use of parallel corpora (Cohen et al., 2011; Dur-

1The original paper of (McDonald et al., 2011) does not
use the Google universal treebank, however (Ma and Xia,
2014) reimplemented the model and report results on the
Google universal treebank.



rett et al., 2012; Naseem et al., 2012; Täckström
et al., 2013; Duong et al., 2015; Zhang and Barzi-
lay, 2015). These results are somewhat below the
performance of (Ma and Xia, 2014).2

3 Our Approach

This section describes our approach, giving defini-
tions of parallel data and of dense projected struc-
tures; describing preliminary exploratory experi-
ments on transfer from German to English; de-
scribing the iterative training algorithm used in our
work; and finally describing a generalization of the
method to transfer from multiple languages.

3.1 Parallel Data Definitions
We assume that we have parallel data in two lan-
guages. The source language, for which we have
a supervised parser, is assumed to be English. The
target language, for which our goal is to learn a
parser, will be referred to as the “foreign” lan-
guage. We describe the generalization to more
than two languages in §3.5.

We use the following notation. Our parallel
data is a set of examples (e(k), f (k)) for k =
1 . . . n, where each e(k) is an English sentence,
and each f (k) is a foreign sentence. Each e(k) =

e
(k)
1 . . . e

(k)
sk where e(k)i is a word, and sk is the

length of k’th source sentence. Similarly, f (k) =

f
(k)
1 . . . f

(k)
tk

where f (k)j is a word, and tk is the
length of k’th foreign sentence.

A dependency is a four-tuple (l, k, h,m) where
l ∈ {e, f} is the language, k is the sentence num-
ber, h is the head index, m is the modifier index.
Note that if l = e then we have 0 ≤ h ≤ sk and
1 ≤ m ≤ sk, conversely if l = f then 0 ≤ h ≤ tk
and 1 ≤ m ≤ tk. We use h = 0 when h is the root
of the sentence.

For any k ∈ {1 . . . n}, j ∈ {0 . . . tk}, Ak,j is
an integer specifying which word in e(k)1 . . . e

(k)
sk ,

word f (k)j is aligned to. It is NULL if f (k)j is not
aligned to anything. We have Ak,0 = 0 for all k:
that is, the root in one language is always aligned
to the root in the other language.

In our experiments we use intersected align-
ments from GIZA++ (Och and Ney, 2000) to pro-
vide the Ak,j values.

2With one exception: on Spanish, using the CoNLL defi-
nition of dependencies. The good results from (Ma and Xia,
2014) on the universal dependencies for Spanish may show
that the result on the CONLL data is an anomaly, perhaps
due to the annotation scheme in Spanish being different from
other languages.

3.2 Projected Dependencies
We now describe various sets of projected depen-
dencies. We use D to denote the set of all de-
pendencies in the source language: these depen-
dencies are the result of parsing the English side
of the translation data using a supervised parser.
Each dependency (l, k, h,m) ∈ D is a four-tuple
as described above, with l = e. We will use P to
denote the set of all projected dependencies from
the source to target language. The set P is con-
structed from D and the alignment variables Ak,j

as follows:

P = {(l, k, h,m) : l = f

∧ (e, k, Ak,h, Ak,m) ∈ D}

We say the k’th sentence receives a full parse
under the dependencies P if the dependencies
(f, k, h,m) for k form a projective tree over the
entire sentence: that is, each word has exactly one
head, the root symbol is the head of the entire
structure, and the resulting structure is a projec-
tive tree. We use T100 ⊆ {1 . . . n} to denote the
set of all sentences that receive a full parse under
P . We then define the following set,

P100 = {(l, k, h,m) ∈ P : k ∈ T100}

We say the k’th sentence receives a dense parse
under the dependencies P if the dependencies of
the form (f, k, h,m) for k form a projective tree
over at least 80% of the words in the sentence. We
use T80 ⊆ {1 . . . n} to denote the set of all sen-
tences that receive a dense parse under P . We then
define the following set,

P80 = {(l, k, h,m) ∈ P : k ∈ T80}

We say the k’th sentence receives a span-s parse
where s is an integer if there is a sequence of at
least s consecutive words in the target language
that are all seen as a modifier in the set P . We use
Ss to refer to the set of all sentences with a span-s
parse. We define the sets

P≥7 = {(l, k, h,m) ∈ P : k ∈ S7}

P≥5 = {(l, k, h,m) ∈ P : k ∈ S5}

P≥1 = {(l, k, h,m) ∈ P : k ∈ S1}

Finally, we also create datasets that only include
projected dependencies that are consistent with re-
spect to part-of-speech (POS) tags for the head and



modifier words in source and target data. We as-
sume a function POS(k, j, i) which returns TRUE
if the POS tags for words f (k)j and e(k)i are consis-
tent. The definition of POS-consistent projected
dependencies is then as follows:

P̄ = {(l, k, h,m) ∈ P :

POS(k, h,Ak,h) ∧ POS(k,m,Ak,m)}

We experiment with two definitions for the POS
function. The first imposes a hard constraint, that
the POS tags in the two languages must be identi-
cal. The second imposes a soft constraint, that the
two POS tags must fall into the same equivalance
class: the equivalence classes used are listed in
§4.1.

Given this definition of P̄ , we can create sets
P̄100, P̄80, P̄≥7, P̄≥5, and P̄≥1, using analogous
definitions to those given above.

3.3 Preliminary Experiments with Transfer
from English to German

Throughout the experiments in this paper, we used
German as the target language for development of
our approach. Table 1 shows some preliminary re-
sults on transferring dependencies from English to
German. We can estimate the accuracy of depen-
dency subsets such as P100, P80, P≥7 and so on
by comparing these dependencies to the depen-
dencies from a supervised German parser on the
same data. That is, we use a supervised parser to
provide gold standard annotations. The full set of
dependencies P give 74.0% accuracy under this
measure; results for P100 are considerably higher
in accuracy, ranging from 83.0% to 90.1% depend-
ing on how POS constraints are used.

As a second evaluation method, we can test
the accuracy of a model trained on the P100 data.
The benefit of the soft-matching POS definition
is clear. The hard match definition harms perfor-
mance, presumably because it reduces the number
of sentences used to train the model.

Throughout the rest of this paper, we use the
soft POS constraints in all projection algorithms.3

3.4 The Training Procedure

We now describe the training procedure used in
our experiments. We use a perceptron-trained
shift-reduce parser, similar to that of (Zhang and
Nivre, 2011). We assume that the parser is able

3The hard constraint is also used by Ma and Xia (2014).

Inputs: Sets P100, P80, P≥7, P≥5, P≥1 as de-
fined in §3.2.

Definitions: Functions TRAIN, CDECODE,
TOP as defined in §3.4.

Algorithm:

1. θ1 = TRAIN(P100)

2. P1
100 = CDECODE(P80 ∪ P≥7, θ

1)

3. θ2 = TRAIN(P100 ∪ TOP(P1
100, θ

1))

4. P2
100 = CDECODE(P80 ∪ P≥5, θ

2)

5. θ3 = TRAIN(P100 ∪ TOP(P2
100, θ

2))

6. P3
100 = CDECODE(P≥1, θ

3)

7. θ4 = TRAIN(P100 ∪ TOP(P3
100, θ

3))

Output: Parameter vectors θ1, θ2, θ3, θ4.

Figure 2: The learning algorithm.

to operate in a “constrained” mode, where it re-
turns the highest scoring parse that is consistent
with a given subset of dependencies. This can be
achieved via zero-cost dynamic oracles (Goldberg
and Nivre, 2013).

We assume the following definitions:

• TRAIN(D) is a function that takes a set of de-
pendency structures D as input, and returns a
model θ as its output. The dependency struc-
tures are assumed to be full trees: that is, they
correspond to fully projected trees with the
root symbol as their root.

• CDECODE(P, θ) is a function that takes a
set of partial dependency structures P , and
a model θ as input, and as output returns a
set of full trees D. It achieves this by con-
strained decoding of the sentences inP under
the model θ, where for each sentence we use
beam search to search for the highest scoring
projective full tree that is consistent with the
dependencies in P .

• TOP(D, θ) takes as input a set of full trees
D, and a model θ. It returns the top m high-
est scoring trees in D (in our experiments we
usedm = 200, 000), where the score for each
tree is the perceptron-based score normalized
by the sentence length. Thus we return the



POS Constraints
P dense P100 Train on P100#sen Acc. #sen Acc. #sen Acc.

No Restriction 968k 74.0 65k 81.4 23k 83.0 69.5
Hard match 927k 80.1 26k 88.0 8k 90.1 68.0
Soft match 904k 80.0 52k 84.9 18k 85.8 70.6

Table 1: Statistics showing the accuracy for various definitions of projected trees: see §3.2 for definitions
of P , P100 etc. Columns labeled “Acc.” show accuracy when the output of a supervised German parser
is used as gold standard data. Columns labeled “#sen” show number of sentences. “dense” shows
P100 ∪ P80 ∪ P≥7 and “Train” shows accuracy on test data of a model trained on the P100 trees.

200,000 trees that the perceptron is most con-
fident on.4

Figure 2 shows the learning algorithm. It gener-
ates a sequence of parsing models, θ1 . . . θ4. In the
first stage of learning, the model is initialized by
training on P100. The method then uses this model
to fill in the missing dependencies on P80 ∪ P≥7

using the CDECODE method; this data is added
to P100 and the model is retrained. The method is
iterated, at each point adding in additional partial
structures (note that P≥7 ⊆ P≥5 ⊆ P≥1, hence at
each stage we expand the set of training data that
is parsed using CDECODE).

3.5 Generalization to Multiple Languages
We now consider the generalization to learning
from multiple languages. We again assume that
the task is to learn a parser in a single target lan-
guage, for example German. We assume that we
now have multiple source languages. For exam-
ple, in our experiments with German as the target,
we used English, French, Spanish, Portuguese,
Swedish, and Italian as source languages. We as-
sume that we have fully supervised parsers for all
source languages. We will consider two methods
for combining information from the different lan-
guages:

Method 1: Concatenation In this approach, we
form sets P , P100, P80, P≥7 etc. from each of
the languages separately, and then concatenate5

the data to give new definitions of P , P100,P80,
P≥7 etc.

Method 2: Voting In this case, we assume
that each target language sentence is aligned to
a source language sentence in each of the source
languages. This is the case, for example, in the

4In cases where |D| < m, the entire set D is returned.
5That is, dependency structures projected from different

languages are taken to be entirely separate from each other.

Europarl data, where we have translations of the
same material into multiple languages. We can
then create the set P of projected dependencies
using a voting scheme. For any word (k, j) seen
in the target language, each source language will
identify a headword (this headword may be NULL
if there is no alignment giving a dependency). We
simply take the most frequent headword chosen by
the languages. After creating the set P , we can
create subsets such as P100, P80, P≥7 in exactly
the same way as before.

Once the various projected dependency training
sets have been created, we train the dependency
parsing model using the algorithm given in §3.4.

4 Experiments

We now describe experiments using our approach.
We first describe data and tools used in the exper-
iments, and then describe results.

4.1 Data and Tools

Data We use the EuroParl data (Koehn, 2005)
as our parallel data and the Google universal tree-
bank (v2; standard data) (McDonald et al., 2013)
as our evaluation data, and as our training data for
the supervised source-language parsers. We use
seven languages that are present in both Europarl
and the Google universal treebank: English (used
only as the source language), and German, Span-
ish, French, Italian, Portuguese and Swedish.

Word Alignments We use Giza++6 (Och and
Ney, 2000) to induce word alignments. Sentences
with length greater than 100 and single-word sen-
tences are removed from the parallel data. We fol-
low common practice in training Giza++ for both
translation directions, and taking the intersection
of the two sets as our final alignment. Giza++ de-

6http://www.statmt.org/moses/giza/
GIZA++.html



L
en→trgt concat→trgt voting→trgt

θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

de 70.56 72.86 73.74 74.32 73.47 75.17 75.59 76.34 78.17 79.29 79.36 79.68
es 75.69 77.27 77.29 78.17 79.53 79.57 79.67 80.28 79.82 80.76 81.16 80.86
fr 77.03 78.54 78.70 79.91 81.23 81.79 82.30 82.24 82.17 82.75 82.47 82.72
it 77.35 78.64 79.06 79.46 81.49 82.25 82.02 82.49 82.58 82.95 83.45 83.67
pt 75.98 77.96 78.29 79.38 80.29 81.73 81.53 82.23 80.12 81.70 81.69 82.07
sv 78.68 80.28 80.81 82.11 82.53 83.78 83.83 83.80 82.85 83.76 83.85 84.06

avg 75.88 77.59 77.98 78.89 79.76 80.72 80.82 81.23 80.95 81.87 82.00 82.18

Table 2: Parsing accuracies of different methods on the test data using the gold standard POS tags.
The models θ1 . . . θ4 are described in §3.4. “en→trgt” is the single-source setting with English as the
source language. “concat→trgt” and “voting→trgt” are results with multiple source languages for the
concatenation and voting methods

fault alignment model is used in all of our experi-
ments.

The Parsing Model For all parsing experiments
we use the Yara parser7 (Rasooli and Tetreault,
2015), a reimplementation of the k-beam arc-eager
parser of Zhang and Nivre (2011). We use a beam
size of 64, and Brown clustering features8 (Brown
et al., 1992; Liang, 2005). The parser gives per-
formance close to the state of the art: for example
on section 23 of the Penn WSJ treebank (Marcus
et al., 1993), it achieves 93.32% accuracy, com-
pared to 92.9% accuracy for the parser of (Zhang
and Nivre, 2011).

POS Consistency As mentioned in §3.2, we de-
fine a soft POS consistency constraint to prune
some projected dependencies. A source/target lan-
guage word pair satisifies this constraint if one of
the following conditions hold: 1) the POS tags for
the two words are identical; 2) the word forms for
the two words are identical (this occurs frequently
for numbers, for example); 3) both tags are in one
of the following equivalence classes: {ADV ↔
ADJ} {ADV ↔ PRT} {ADJ ↔ PRON} {DET
↔ NUM} {DET ↔ PRON} {DET ↔ NOUN}
{PRON↔NOUN} {NUM↔X} {X↔ .}. These
rules were developed primarily on German, with
some additional validation on Spanish. These
rules required a small amount of human engineer-
ing, but we view this as relatively negligible.

Parameter Tuning We used German as a tar-
get language in the development of our approach,
and in setting hyper-parameters. The parser is

7https://github.com/yahoo/YaraParser
8https://github.com/percyliang/

brown-cluster

trained using the averaged structured perceptron
algorithm (Collins, 2002) with max-violation up-
dates (Huang et al., 2012). The number of iter-
ations over the training data is 5 when training
model θ1 in any setting, and 2, 1 and 4 when train-
ing models θ2, θ3, θ4 respectively. These values
are chosen by observing the performance on Ger-
man. We use θ4 as the final output from the train-
ing process: this is found to be optimal in English
to German projections.

4.2 Results

This section gives results of our approach for the
single source, multi-source (concatenation) and
multi-source (voting) methods. Following pre-
vious work (Ma and Xia, 2014) we use gold-
standard part-of-speech (POS) tags on test data.
We also provide results with automatic POS tags.

Results with a Single Source Language The
first set of results are with a single source lan-
guage; we use English as the source in all of these
experiments. Table 2 shows the accuracy of pa-
rameters θ1 . . . θ4 for transfer into German, Span-
ish, French, Italian, Portuguese, and Swedish.
Even the lowest performing model, θ1, which is
trained only on full trees, has a performance of
75.88%, close to the 76.15% accuracy for the
method of (Ma and Xia, 2014). There are clear
gains as we move from θ1 to θ4, on all languages.
The average accuracy for θ4 is 78.89%.

Results with Multiple Source Languages, us-
ing Concatenation Table 2 shows results using
multiple source languages, using the concatena-
tion method. In these experiments for a given
target language we use all other languages in our



Model en→ trgt concat voting sup(1st) sup(ae)

de 73.01 74.70 78.77 80.29 84.25
es 76.31 78.33 79.17 82.17 84.66
fr 77.54 79.71 80.77 81.33 84.95
it 78.14 80.82 82.03 83.90 87.03
pt 78.14 80.81 80.67 84.80 88.08
sv 79.31 80.81 82.03 81.12 84.87

avg 77.08 79.20 80.57 82.27 85.64

Table 3: Parsing results with automatic part of speech tags on the test data. Sup (1st) is the supervised
first-order dependency parser (McDonald et al., 2005) and sup (ae) is the Yara arc-eager parser (Rasooli
and Tetreault, 2015).

Model ge15 zb15 zb s15 mph11 mx14 en→ trgt concat voting sup(1st) sup(ae)

de 51.0 62.5 74.2 69.77 74.30 74.32(+0.02) 76.34(+2.04) 79.68(+5.38) 81.65 85.34

es 59.2 78.0 78.4 68.72 75.53 78.17(+2.64) 80.28(+4.75) 80.86(+5.33) 83.92 86.69

fr 59.0 78.9 79.6 73.13 76.53 79.91(+3.38) 82.24(+5.71) 82.72(+6.19) 83.51 86.24

it 55.6 79.3 80.9 70.74 77.74 79.46(+1.72) 82.49(+4.75) 83.67(+5.93) 85.47 88.83

pt 57.0 78.6 79.3 69.82 76.65 79.38(+2.73) 82.23(+5.58) 82.07(+5.42) 85.67 89.44

sv 54.8 75.0 78.3 75.87 79.27 82.11(+2.84) 83.80(+4.53) 84.06(+4.79) 85.59 88.06

avg 56.1 75.4 78.4 71.34 76.67 78.89(+2.22) 81.23(+4.56) 82.18(+5.51) 84.29 87.50

Table 4: Comparison to previous work: ge15 (Grave and Elhadad, 2015, Figure 4), zb15 (Zhang and
Barzilay, 2015), zb s15 (Zhang and Barzilay, 2015, semi-supervised with 50 annotated sentences),
mph11 (McDonald et al., 2011) and mx14 (Ma and Xia, 2014) on the Google universal treebank v2.
The mph11 results are copied from (Ma and Xia, 2014, Table 4). All results are reported on gold part
of speech tags. The numbers in parentheses are absolute improvements over (Ma and Xia, 2014). Sup
(1st) is the supervised first-order dependency parser used by (Ma and Xia, 2014) and sup(ae) is the Yara
arc-eager supervised parser (Rasooli and Tetreault, 2015).

data as source languages. The performance of θ1

improves from an average of 75.88% for a sin-
gle source language, to 79.76% for multiple lan-
guages. The performance of θ4 gives an additional
improvement to 81.23%.

Results with Multiple Source Languages, us-
ing Voting The final set of results in Table 2 are
for multiple languages using the voting strategy.
There are further improvements: model θ1 has av-
erage accuracy of 80.95%, and model θ4 has aver-
age accuracy of 82.18%.

Results with Automatic POS Tags We use our
final θ4 models to parse the treebank with auto-
matic tags provided by the same POS tagger used
for tagging the parallel data. Table 3 shows the re-
sults for the transfer methods and the supervised
parsing models of (McDonald et al., 2011) and
(Rasooli and Tetreault, 2015). The first-order su-
pervised method of (McDonald et al., 2005) gives
only a 1.7% average absolute improvement in ac-

curacy over the voting method. For one language
(Swedish), our method actually gives improved
accuracy over the 1st order parser.

Comparison to Previous Results Table 4 gives
a comparison of the accuracy on the six languages,
using the single source and multiple source meth-
ods, to previous work. As shown in the table, our
model outperforms all models: among them, the
results of (McDonald et al., 2011) and (Ma and
Xia, 2014) are directly comparable to us because
they use the same training and evaluation data.
The recent work of (Xiao and Guo, 2015) uses the
same parallel data but evaluates on CoNLL tree-
banks but their results are lower than Ma and Xia
(2014). The recent work of (Guo et al., 2015)
evaluates on the same data as ours but uses differ-
ent parallel corpora. They only reported on three
languages (German: 60.35, Spanish: 71.90 and
French: 72.93) which are all far bellow our re-
sults. The work of (Grave and Elhadad, 2015) is
the state-of-the-art fully unsupervised model with



L
en → trg concat voting

P80 ∪ P≥7 P100 P80 ∪ P≥7 P100 P80 ∪ P≥7 P100

sen# dep# len acc. sen# len acc. sen# dep# len acc. sen# len acc. sen# dep# len acc. sen# dep# acc.
de 34k 9.6 28.3 84.7 18k 6.8 85.8 98k 9.4 28.8 84.1 51k 6.3 88.0 75k 10.8 23.5 84.5 47k 8.2 91.4
es 108k 10.9 31.4 87.3 20k 7.4 89.4 536k 11.0 31.8 86.3 89k 7.5 89.8 346k 17.0 28.5 86.1 109k 12.1 89.2
fr 70k 10.1 32.8 85.8 13k 6.7 84.1 342k 10.5 33.0 87.5 47k 6.9 89.5 303k 14.9 29.9 87.4 78k 11.7 91.2
it 57k 10.0 31.2 84.4 9k 6.3 76.9 434k 11.1 31.3 84.7 70k 7.4 87.2 301k 15.2 28.5 84.5 101k 12.4 87.9
pt 489k 10.0 31.0 85.2 10k 6.0 84.0 462k 11.1 31.3 81.4 77k 7.3 85.4 222k 12.4 30.3 81.3 39k 8.8 85.8
sv 81k 10.4 25.8 83.1 30k 7.4 87.8 255k 9.5 23.6 84.6 79k 6.8 89.7 211k 12.2 25.2 84.2 86k 9.5 88.8

avg 140k 10.2 30.1 85.1 17k 6.8 84.7 354k 10.4 30.0 84.8 69k 7.0 88.3 243k 13.7 27.6 84.7 77k 10.4 89.0

Table 5: Table showing statistics on projected dependencies for the target languages, for the single-
source, multi-source (concat) and multi-source (voting) methods. “sen#” is the number of sentences.
“dep#” is the average number of dependencies per sentence. “len” is the average sentence length. “acc.”
is the percentage of projected dependencies that agree with the output from a supervised parser.

minimal linguistic prior knowledge. The model of
(Zhang and Barzilay, 2015) does not use any paral-
lel data but uses linguistic information across lan-
guages. Their semi-supervised model selectively
samples 50 annotated sentences but our model out-
performs their model.

Compared to the results of (McDonald et al.,
2011) and (Ma and Xia, 2014) which are directly
comparable, there are clear improvements across
all languages; the highest accuracy, 82.18%, is a
5.51% absolute improvement over the average ac-
curacy for (Ma and Xia, 2014).

5 Analysis

We conclude with some analysis of the accuracy
of the projected dependencies for the different lan-
guages, for different definitions (P100, P80 etc.),
and for different projection methods. Table 5 gives
a summary of statistics for the various languages.
Recall that German is used as the development
language in our experiments; the other languages
can be considered to be test languages. In all cases
the accuracy reported is the percentage match to a
supervised parser used to parse the same data.

There are some clear trends. The accuracy of
the P100 datasets is high, with an average accuracy
of 84.7% for the single source method, 88.3% for
the concatenation method, and 89.0% for the vot-
ing method. The voting method not only increases
accuracy over the single source method, but also
increases the number of sentences (from an aver-
age 17k to 77k) and the average number of depen-
dencies per sentence (from 6.8 to 10.4).

The accuracy of the P80 ∪ P≥7 datasets is
slightly lower, with around 83-87% accuracy for
the single source, concatenation and voting meth-
ods. The voting method gives a significant in-
crease in the number of sentences—from an av-

erage of 140k to 243k. The average sentence
length for this data is around 28 words, consid-
erably longer than the P100 data; the addition of
longer sentences is very likely beneficial to the
model. For the voting method the average number
of dependencies is 13.7, giving an average density
of 50% on these sentences.

The accuracy for the different languages, in par-
ticular for the voting data, is surprisingly uniform,
with a range of 85.8-91.4% for the P100 data, and
81.3-87.4% for the P80 ∪ P≥7 data. The number
of sentences for each language, the average length
of those sentences, and average number of depen-
dencies per sentence is also quite uniform, with
the exception of German, which is a clear outlier.
German has fewer sentences, and fewer dependen-
cies per sentence: this may account for it having
the lowest accuracy for our models. Future work
should investigate why this is the case: one hy-
pothesis is that German has quite different word
order from the other languages (it is V2, and verb
final), which may lead to a degradation in the qual-
ity of the alignments from GIZA++, or in the pro-
jection process.

Finally, figure 3 shows some randomly selected
examples from the P100 data for Spanish, giving
a qualitative feel for the data obtained using the
voting method.

6 Conclusions

We have described a density-driven method for
the induction of dependency parsers using paral-
lel data and source-language parsers. The key
ideas are a series of increasingly relaxed defini-
tions of density, together with an iterative train-
ing procedure that makes use of these definitions.
The method gives a significant gain over previous
methods, with dependency accuracies approach-



El informe presentado por la red abarca una serie de temas muy vasta . ROOT

(a)

La Comisión debe proponer medidas para corregir estas verdaderas desviaciones . ROOT

(b)

Podrı́a lograr sus fines si los distintos paı́ses de la Unión partieran del mismo punto . ROOT

(c)

Hemos visto cooperación entre estos paı́ses en esta área . ROOT

(d)

Confirma la importancia de abordar el desafı́o de la sostenibilidad con una combinación de consolidación fiscal y reformas estructurales . ROOT

(e)

Figure 3: Randomly selected examples of Spanish dependency structures derived using the voting
method. Dashed/red dependencies are mismatches with the output of a supervised Spanish parser; all
other dependencies match the supervised parser. In these examples, 92.4% of dependencies match the
supervised parser; this is close to the average match rate on Spanish of 89.2% for the voting method.

ing the level of fully supervised methods. Future
work should consider application of the method to
a broader set of languages, and application of the
method to transfer of information other than de-
pendency structures.
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