
Introduction
Fully Unsupervised Parsing Models

Syntactic Transfer Models
Conclusion

Methods in Unsupervised Dependency Parsing

Mohammad Sadegh Rasooli

Candidacy exam
Department of Computer Science

Columbia University

April 1st, 2016

Mohammad Sadegh Rasooli Methods in Unsupervised Dependency Parsing



Introduction
Fully Unsupervised Parsing Models

Syntactic Transfer Models
Conclusion

Overview

1 Introduction
Dependency Grammar
Dependency Parsing

2 Fully Unsupervised Parsing Models
Unsupervised Parsing
Depndency Model with Valence (DMV)
Common Learning Algorithms for DMV
Discussion

3 Syntactic Transfer Models
Approaches in Syntactic Transfer
Direct Syntactic Transfer
Annotation Projection
Discussion

4 Conclusion

Mohammad Sadegh Rasooli Methods in Unsupervised Dependency Parsing



Introduction
Fully Unsupervised Parsing Models

Syntactic Transfer Models
Conclusion

Dependency Grammar
Dependency Parsing

Dependency Grammar

I A formal grammar introduced by
[Tesnière, 1959] inspired from the
valency theory in Chemistry
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Dependency Parsing

I State-of-the-art parsing models are very accurate
I Requirement: large amounts of annotated trees

I ≤50 treebanks available, '7000 languages without any
treebank

I Treebank development: an expensive and time-consuming
task

I Five years of work for the Penn Chinese Treebank
[Hwa et al., 2005]

I Unsupervised dependency parsing is an alternative
approach when no treebank is available
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Unsupervised Parsing

I Goal: Develop an accurate parser without annotated data
I Common assumptions

I Part-of-speech (POS) information is available
I Raw data is available
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Initial Attempts

I The seminal work of
[Carroll and Charniak, 1992] and
[Paskin, 2002] tried different
techniques and achieved interesting
results

I Their models could not beat the
baseline of attaching every word to
the next word

Learning Language

Supervised NLP Unsupervised NLP
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DMV: the First Breakthrough

I Dependency model with valence (DMV)
[Klein and Manning, 2004] is the first model that could beat
the baseline

I Most papers extended the DMV either in the inference
method or parameter definition

Mohammad Sadegh Rasooli Methods in Unsupervised Dependency Parsing



Introduction
Fully Unsupervised Parsing Models

Syntactic Transfer Models
Conclusion

Unsupervised Parsing
Depndency Model with Valence (DMV)
Common Learning Algorithms for DMV
Discussion

The Dependency Model with Valence

I Input x, output y, p(x, y|θ) = p(y(0)|$, θ)
I θc for dependency attachment
I θs for stopping getting dependents
I adj(j): true iff xj is adjacent to its parent
I depdir(j) set of dependents for xj in direction dir

Recursive calculation

P (y(i)|xi, θ) =
∏

dir∈{←,→}

θs(stop|xi, dir, [depdir(i)
?
= ∅])

×
∏

j∈ydir(i)

(1− θs(stop|xi, dir, adj(j)))

× θc(xj |xi, dir)× P (y(j), θ)
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DMV: A Running Example

ROOT PRN VB DT NN

P (y
(0)

) = θc(VB|ROOT,→)× P (y
(2)|VB, θ)

P (y
(2)|V B, θ) =θs(stop|VB,←, true)× (1− θs(stop|VB,←, false))

×θc(PRN|VB,←)× P (y
(1)|PRN, θ)

×θs(stop|VB,→, true)× (1− θs(stop|VB,→, false))

×θc(NN|VB,→)× P (y
(4)|NN,θ)

P (y
(1)|PRN, θ) =θs(stop|PRN,←, false)× θs(stop|PRN,→, false)

P (y
(4)|NN, θ) =θs(stop|NN,←, true)× (1− θs(stop|NN,←, false))

×θc(DT |NN,←)× P (y
(3)|DT, θ)

×θs(stop|NN,→, false)

P (y
(3)|DT, θ) =θs(stop|DT,←, false)× θs(stop|DT,→, false)
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DMV: Parameter Estimation

I Parameter estimation based on occurrence counts; e.g.

θc(wj |wi,→) =
count(wi → wj)∑
w′∈V count(wi → w′)

I In an unsupervised setting, we can use dynamic
programming (the Inside-Outside algorithm
[Lari and Young, 1990]) to estimate model parameters θ
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Problems with DMV

I A non-convex optimization problem for
DMV

I Local optima is not necessarily a global
optima

I Very sensitive to the initialization

I Encoding constraints is not embedded in the original model

I Lack of expressiveness

I Low supervised accuracy (upperbound)

I Needs inductive bias
I Post-processing the DMV output by

fixing the determiner-noun direction
gave a huge improvement
[Klein and Manning, 2004]

DET NOUN
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Extensions to DMV

I Changing the learning algorithm from EM
I Contrastive estimation [Smith and Eisner, 2005]

I Bayesian models [Headden III et al., 2009, Cohen and Smith, 2009a,

Blunsom and Cohn, 2010, Naseem et al., 2010,

Mareček and Straka, 2013]

I Local optima problem
I Switching between different objectives [Spitkovsky et al., 2013]

I Lack of expressiveness
I Lexicalization [Headden III et al., 2009]

I Parameter tying [Cohen and Smith, 2009b, Headden III et al., 2009]

I Tree substitution grammars [Blunsom and Cohn, 2010]

I Rereanking with a richer model [Le and Zuidema, 2015]
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Extensions to DMV

I Inductive bias
I Adding constraints

I Posterior regularization [Gillenwater et al., 2010]
I Forcing unambiguity [Tu and Honavar, 2012]
I Universal knowledge [Naseem et al., 2010]

I Stop probability estimation from raw text
[Mareček and Straka, 2013]

I Alternatives to DMV
I Convex objective based on convex hull of plausible trees

[Grave and Elhadad, 2015]
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Common Learning Algorithms for DMV

I Expectation maximization (EM) [Dempster et al., 1977]

I Posterior regularization (PR) [Ganchev et al., 2010]

I Variational Bayes (VB) [Beal, 2003]

I PR + VB [Naseem et al., 2010]
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Expectation Maximization (EM) Algorithm

I Start with initial parameters θ(t) in iteration t = 1

I Repeat until θ(t) ' θ(t+1)

I E step: Maximize the posterior probability

∀i = 1 . . . N ; ∀y ∈ Yxi

q
(t)
i ← pθ(t)(y|x) =

pθ(t)(xi, y)∑
y′∈Yxi

pθ(t)(xi, y
′)

I M step: Maximize the parameter values θ

θ(t+1) ← arg max
θ

N∑
i=1

∑
y∈Yxi

q
(t)
i (y) log pθ(xi, y)

I t← t+ 1
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Expectation Maximization (EM) Algorithm

I Start with initial parameters θ(t) in iteration t = 1

I Repeat until θ(t) ' θ(t+1)

I E step: Maximize the posterior probability

∀i = 1 . . . N ; ∀y ∈ Yxi

q
(t)
i ← pθ(t)(y|x) =

pθ(t)(xi, y)∑
y′∈Yxi

pθ(t)(xi, y
′)

Another interpretation of the E step [Neal and Hinton, 1998]

q(t) ← arg min
q

KL(q(Y ) || pθ(t)(Y |X))

I t← t+ 1
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Expectation Maximization (EM) Algorithm

I Start with initial parameters θ(t) in iteration t = 1
I Repeat until θ(t) ' θ(t+1)

M step

Optimal parameters for a categorical distribution is achieved by
normalization:

θ(t+1)(y|x) =

∑N
i=1 q

(t)
i (y|x)∑

y′
∑N
i=1 q

(t)
i (y′|x)

I M step: Maximize the parameter values θ

θ(t+1) ← arg max
θ

N∑
i=1

∑
y∈Yxi

q
(t)
i (y) log pθ(xi, y)

I t← t+ 1
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Posterior Regularization

I Prior knowledge as constraint

I Just affects the E step and the M step remains unchanged
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Posterior Regularization

Original objective

q(t) ← arg min
q

KL(q(Y ) || pθ(t)(Y |X))

Modified objective

q(t) ← arg min
q

KL(q(Y ) || pθ(t)(Y |X)) + σ
∑
i

bi

s.t. ||Eq[φi(X,Y )]||β ≤ bi

σ is the regularization coefficient and bi is the proposed numerical
constraint for sentence i.
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Posterior Regularization Constraints

Modified objective

q(t) ← arg min
q

KL(q(Y ) || pθ(t)(Y |X)) + σ
∑
i

bi

Types of constraints:

I Number of unique child-head tag pairs in a sentence (less is
better) [Gillenwater et al., 2010]

I Number of preserved pre-defined linguistic rules in a tree
(more is better) [Naseem et al., 2010]

I Information entropy of the sentence (less is better)
[Tu and Honavar, 2012]
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Common Learning Algorithms for DMV

I Expectation maximization (EM) [Dempster et al., 1977]

I Posterior regularization (PR) [Ganchev et al., 2010]

I Variational Bayes (VB) [Beal, 2003]

I PR + VB [Naseem et al., 2010]
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Variational Bayes

I A Bayesian model that encodes prior information

I Just affects the M step and the E step remains unchanged
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Variational Bayes

M step

θ(t+1)(y|x) =

∑N
i=1 q

(t)
i (y|x)∑

y′
∑N

i=1 q
(t)
i (y′|x)

Modified M step in VB

θ(t+1)(y|x) =
F(αy +

∑N
i=1 q

(t)
i (y|x))

F(
∑

y′ αy′ +
∑N

i=1 q
(t)
i (y′|x))

α is the prior
F(v) = eΨ(v)

Ψ is the digamma function
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Common Learning Algorithms for DMV

I Expectation maximization (EM) [Dempster et al., 1977]

I Posterior regularization (PR) [Ganchev et al., 2010]

I Variational Bayes (VB) [Beal, 2003]

I PR + VB [Naseem et al., 2010]
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VB + PR

I Makes use of both methods [Naseem et al., 2010]:
I E step as in PR
I M step as in VB
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Discussion

I Significant improvements?
I Yes!

I Satisfying performance?
I No!

I Mostly optimized for English
I Far less than a supervised model
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Unsupervised Parsing Improvement Over Time
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Unsupervised Parsing Improvement Over Time

R
a

n
d

o
m

A
d

ja
ce

n
t

D
M

V

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
5

D
M

V
-s

u
p

er
vi

se
d

S
u

p
er

vi
se

d

30

40

50

60

70

80

90

100

30.1

33.6
35.9

40.5

u
n

la
b

el
ed

d
ep

en
d

en
cy

a
cc

u
ra

cy
o

n
W

S
J

te
st

in
g

d
a

ta

Mohammad Sadegh Rasooli Methods in Unsupervised Dependency Parsing

[Cohen et al., 2008]



Introduction
Fully Unsupervised Parsing Models

Syntactic Transfer Models
Conclusion

Unsupervised Parsing
Depndency Model with Valence (DMV)
Common Learning Algorithms for DMV
Discussion

Unsupervised Parsing Improvement Over Time
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Unsupervised Parsing Improvement Over Time
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Unsupervised Parsing Improvement Over Time
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Syntactic Transfer Models

I Transfer Learning: learn a problem X and apply to a similar
(but not the same) problem Y

I Challenges: feature mismatch, domain mismatch, and lack of
sufficient similarity between the two problems

I Syntactic transfer: Learn a parser for languages L1 . . .Lm
and use them for parsing language Lm+1

I Challenges: mismatch in lexical features, difference in word
order
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Approaches in Syntactic Transfer

I Direct transfer: train directly on treebanks for languages
L1 . . .Lm and apply it to language Lm+1

I Annotation projection: use parallel data and project
supervised parse trees in language Ls to target language
through word alignment

I Treebank translation: develop an SMT system, translate
source treebanks to the target language, and train on the
translated treebank [Tiedemann et al., 2014]
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Direct Syntactic Transfer

I A supervised parser gets input x and outputs the best tree
y∗, using lexical features φ(l)(x, y) and unlexicalized
features φ(p)(x, y):

y∗(x) = arg max
y∈Y(x)

θl · φ(l)(x,y) + θp · φ(p)(x,y)

I A direct transfer model cannot make use of lexical features.

I Direct delexicalized transfer only uses unlexicalized features
[Cohen et al., 2011, McDonald et al., 2011]
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Direct Delexicalized Transfer: Pros and Cons

Pros

I Simplicity: can employ any supervised parser

I More accurate than fully unsupervised models

Cons

I No treatment for word order difference

I Lack of lexical features
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Addressing Problems in Direct Delexicalized Transfer

Addressing problems in direct delexicalized transfer

I Word order difference

I Lack of lexical features
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The World Atlas of Language Structures (WALS)

I The World Atlas of Language Structures (WALS)
[Dryer and Haspelmath, 2013] is a large database of structural
(phonological, grammatical, lexical) properties for near 3000
languages
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Selective Sharing: Addressing Words Order Problem

I Use typological features such as the subject-verb order for
each source and target language.

I In addition to the original parameters, share typological
features for languages that have specific orderings in common

I Added features: original features conjoined with each
typological feature

I Discriminative models with selective sharing gain very high
accuracies [Täckström et al., 2013, Zhang and Barzilay, 2015]
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Addressing the Lack of Lexical Features

I Using bilingual dictionaries to transfer lexical features
[Durrett et al., 2012, Xiao and Guo, 2015]

I Creating cross-lingual word representations
I without parallel text [Duong et al., 2015]

I using parallel text [Zhang and Barzilay, 2015, Guo et al., 2016]

I Successful models use cross-lingual word representations
using parallel text

I Could we leverage more if we have parallel text?
I Yes!
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Annotation Projection

I Steps in annotation projection

1 Prepare bitext
2 Align bitext
3 Parse source sentence with a supervised parser
4 Project dependencies
5 Train on the projected dependencies
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Projecting Dependencies from Parallel Data

Bitext

Prepare bitext

The political priorities must be set by this House and the MEPs . ROOT

Die politischen Prioritäten müssen von diesem Parlament und den Europaabgeordneten abgesteckt werden . ROOT
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Projecting Dependencies from Parallel Data

Align

Align bitext (e.g. via Giza++)

The political priorities must be set by this House and the MEPs . ROOT

Die politischen Prioritäten müssen von diesem Parlament und den Europaabgeordneten abgesteckt werden . ROOT
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Projecting Dependencies from Parallel Data

Parse

Parse source sentence with a supervised parser

The political priorities must be set by this House and the MEPs . ROOT

Die politischen Prioritäten müssen von diesem Parlament und den Europaabgeordneten abgesteckt werden . ROOT
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Projecting Dependencies from Parallel Data

Project

Project dependencies

The political priorities must be set by this House and the MEPs . ROOT

Die politischen Prioritäten müssen von diesem Parlament und den Europaabgeordneten abgesteckt werden . ROOT
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Projecting Dependencies from Parallel Data

Train

Train on the projected dependencies

Die politischen Prioritäten müssen von diesem Parlament und den Europaabgeordneten abgesteckt werden . ROOT
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Practical Problems

I Most translations are not word-to-word
I Partial alignments

I Alignment errors

I Supervised parsers are not perfect

I Difference in syntactic behavior across languages
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Approaches in Annotation Projection

I Post-processing alignments with rules and filtering sparse
trees [Hwa et al., 2005]

I Use projected dependencies as constraints in posterior
regularization [Ganchev et al., 2009]

I Use projected dependencies to lexicalize a direct model
[McDonald et al., 2011]

I Entropy regularization on projected trees [Ma and Xia, 2014]

I Start with fully projected trees and self-train on partial
trees [Rasooli and Collins, 2015]
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Discussion

I Significant improvements?
I Yes!

I Satisfying performance?
I Yes!

I Mostly optimized for rich-resource languages
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Conclusion

I Read 28+ papers about
I Unsupervised dependency parsing
I Direct cross-lingual transfer of dependency parsers
I Annotation projection for cross-lingual transfer

I Seems that more effort may decrease the need for new
treebanks!
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Danke sehr
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