On the Importance of Ezafe Construction in Persian Parsing

Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran {nourian, m_imany}@comp.iust.ac.ir

Department of Computer Science, Columbia University, New York, NY, USA rasooli@cs.columbia.edu

School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran hfaili@ut.ac.ir

Introduction

Ezafe is an unstressed vowel -e that occurs at the end of some words (-ye in some specific occasions) that links together elements belonging to a single constituent:

This construction is very useful for disambiguating syntactic structures, but Ezafe rarely appears in the written text. This relies on the fact that Persian is written in Perso-Arabic script and vowels are mostly not written. Following figures show two different readings for the same sentence with different Ezafe constructions:

. is black table+Ezafe on+Ezafe book

First reading: The book is on the black table.

black table on+Ezafe book+Ezafe

Second reading: The book on the table is black.

Data Preparation

- We attach the Ezafe indicator to the POS tags and train a sequence tagger on the new tagset.
- We have also manually Ezafe tagged all words in the Persian dependency treebank with 99.6% annotator agreement.
- We define some rules to convert a dependency tree to a shallow phrase structure. Implementation of the these rules is available in the Hazm toolkit:

https://github.com/sobhe/hazm

Python library for digesting Persian text.

Acknowledgements

We thank Computer Research Center of Islamic Sciences (CRCIS) for supporting us on corpus annotation.

Results

• 9% relative error reduction in **shallow parsing**:

Tagset	Tag Acc.	Precision	Recall	F-Measure
		89.44%		
POSe	97.33%	90.42 %	89.13 %	89.77 %

Chunking results on the Persian dependency treebank test data with automatic POS tags.

• 4.6% relative error reduction in **dependency parsing**:

Tagset	Tag Acc.	MaltParser		YaraParser		TurboParser	
		LAS	UAS	LAS	UAS	LAS	UAS
POS	98.71%	85.34%	88.80%	85.90%	89.43%	87.28%	90.59%
POSe	97.33%	$oxed{85.74\%}$	$oxed{89.24\%}$	$\boxed{86.35\%}$	89.86%	87.73%	$oxed{91.02\%}$

Dependency Parsing results on the test data with different automatic tagsets.

Analysis

Effect on the common POS tags Dependency attachment accuracy is improved by 6.5% for adjectives and 6.2% for nouns and for some tags such as determiners the Ezafe construction does not help.

Manual data investigation The main gain is on those sentences where the presence/absence of Ezafe construction is crucial for making correct decisions by the parser:

has China beaches+Ezafe from denfense

Effect on the training data size We can leverage Ezafe construction and use only 70% of the training data while reaching the accuracy of the original part of speech tagset trained on the whole data:

