Unsupervised Morphology-Based Vocabulary Expansion
Mohammad Sadegh Rasooli, Thomas Lippincott, Nizar Habash, and Owen Rambow
Center for Computational Learning Systems, Columbia University
{rasooli,tom,habash,rambow}@ccls.columbia.edu

Introduction

- **Objective**
 - Creating new words to extend vocabularies for under-resourced languages
- **Approach**
 - Using unsupervised learning of morphology and using learned affixes to generate new words
- **Tools**
 - Morfessor for unsupervised Segmentation (Creutz and Lagus, 2007)
 - WFSTs for generating new words

Modeling Word Generation

- **Two Word Models for Expansion**
 - **Fixed Affix**: every word is a sequence of one/zero complex (multi-morpheme) prefix, stem and one/zero complex (multi-morpheme) suffix.
 - **Bigram Affix**: every word only has one stem and zero or more morpheme affixes.

- **Reranking Models**
 - Reranking with letter trigraph probabilities
 - Reranking with letter trigraphs at morpheme boundaries only
 - No Reranking

Experiments and Results

- We ran Morfessor on 65K to 115K tokens from seven different languages
- We evaluated on a small-sized data set (50K to 100K tokens) measuring out-of-vocabulary reduction.
- The best results use the Fixed Affix model with trigram re-ranking.
- Word precision is still a big issue (less than 30% of the top 50K generated types could be analyzed by a Turkish morphological analyzer).

Flowchart of the vocabulary expansion model

Two models of word generation from morphologically annotated data

Figure 2: Two models of word generation from morphologically annotated data. In our experiments, we ran Morfessor on 65K to 115K tokens from seven different languages. We evaluated on a small-sized data set (50K to 100K tokens) measuring out-of-vocabulary reduction. The best results use the Fixed Affix model with trigram re-ranking. Word precision is still a big issue (less than 30% of the top 50K generated types could be analyzed by a Turkish morphological analyzer).