-1-1-1-

# Syntactic Reordering of Source Sentences for Statistical Machine Translation

Mohammad Sadegh Rasooli

Columbia University

rasooli@cs.columbia.edu

April 9, 2013

## Overview

#### First Paper: Collins, et al. (2005)

- The Role of Syntax in SMT
- Syntactic Preprocessing Approaches
- Clause Restructing
- Experiments
- Discussion

#### Second Paper: P. Xu, et al., (2009).

- Approaches to Syntactic Reordering
- Translation Between SVO and SOV Languages
- Precedence Reordering Based on a Dependency Parser
- Experiments
- Discussion

# M. Collins, et al.: Clause Restructuring for Statistical Machine Translation. ACL 2005.

- In the original phrase-base SMT, syntax is not taken into acount.
- Phrase-based systems have limited potential to model word-order differences between languages.
  - The word order differences between languages are considered as distortion.
  - Each reordering rule adds distortion penalties to the overall score of the translation model.

#### English

I will pass on to you the corresponding comments, so that you can adopt them perhaps in the vote.

#### German

I will to you the corresponding comments pass on, so that you them perhaps in the vote adopt can.

- Changing the word order of one of the languages or both, to make their word order more similar to each other.
- Syntax-Based MT Approaches
  - Make use of bitext grammars to parse both parts.
  - Change the syntax of target language alone.
    - Transform the translation problem into a parsing problem.
  - Reranking methods
    - Select between N-best results of the phrase-based system, using syntactic information.
- Preprocessing Approaches
  - The source language sentences are modified before translation.
  - This approach is used in this paper.

#### English

I will pass on to you the corresponding comments, so that you can adopt them perhaps in the vote.

#### German

I will to you the corresponding comments pass on, so that you them perhaps in the vote adopt can.

#### German (Preprocessed)

I will pass on to you the corresponding comments, so that you can adopt them perhaps in the vote.

- Steps (both in training and decoding)
  - Parse the source sentence.
  - 2 Apply reordering rules on the source sentence.
  - 3 Use phrase-based models.

### Example Parse Tree



3

• • • • • • • • • • • •

| Transformation | Example                                                                                                                                                                                                                                  |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Verb Initial   | Before:         Ich werde Ihnen die entsprechenden Anmerkungen aushaendigen,           After:         Ich werde aushaendigen Ihnen die entsprechenden Anmerkungen,           I         shall be passing on to you         some comments, |  |  |  |
| Verb 2nd       | Before:       damit Sie uebernehmen das eventuell bei der Abstimmung koennen.         After:       damit koennen         Sie uebernehmen das eventuell bei der Abstimmung .       so that could you adopt this perhaps in the voting.    |  |  |  |
| Move Subject   | Before: damit koennen <u>Sie</u> uebernehmen das eventuell bei der Abstimmung.<br>After: damit <u>Sie</u> koennen uebernehmen das eventuell bei der Abstimmung .<br>so that you could adopt this perhaps in the voting.                  |  |  |  |
| Particles      | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                     |  |  |  |
| Infinitives    | Before:     Ich werde der Sache nachgehen dann,       After:     Ich werde nachgehen look into       I     will       Iook into     the matter then,                                                                                     |  |  |  |
| Negation       | Before: Wir konnten einreichen es <u>nicht</u> mehr rechtzeitig,<br>After: Wir konnten <u>nicht</u> einreichen es mehr rechtzeitig,<br>We could not hand it in in inten                                                                  |  |  |  |

Table 1: Examples for each of the reordering steps. In each case the item that is moved is underlined.

#### Experimental setup

- Data: Europarl Corpus.
- 751,088 parallel sentence.
- Evaluation on 2000 sentences.
- Average sentence length: 28 words
- Baseline: no reordering phrase-based system.
- Results (BLEU score)
  - Basline: 25.2%
  - Reordering: 26.8%

- Two annotators judged 100 sentences (10 to 20 words in length; chosen at random).
- Three versions: Human, baseline, reordered.
- Judgments: Worse/better or equal.

|             | Better | Equal | Worse |
|-------------|--------|-------|-------|
| Annotator 1 | 40%    | 40%   | 20%   |
| Annotator 2 | 44%    | 37%   | 19%   |

#### Human

i think it is wrong in principle to have such measures in the european union.

#### Reordered

i believe that it is wrong in principle **to take** such measures in the european union.

#### Baseline

i believe that it is wrong in principle such measures in the european union to take.

- Authors use sign test for statistical significance.
  - f(x) is + if better than baseline, f(x) is if worse; and f(x) is = if equal
  - $p_+$ : probability of (f(x) is +) and  $p_-$ : probability of f(x) is minus
- BLEU does not have per-sentence evaluation.
- Authors create an artificial comparison:
  - *s* baseline BLEU score
  - *s<sub>i</sub>* baseline BLEU score except the sentence *i* translated by the reordered model.
  - f(x) is + is  $s_i > s$ ; f(x) is is  $s_i < s$ .
- 52.85% improved, 36.4% worse than baseline and 10.75% equal.
- With 95% confidence, this method improves the baseline.

- The method clearly improves the baseline.
- The rules are language-specific (even cannot be used for English to German translation).
- The authors did not try to learn reordering rules automatically.

P. Xu, et al., Using a dependency parser to improve SMT for subject-object-verb languages. NAACL 2009.

- Explicitly model phrase reordering distances; e.g. distance based distortion models.
- Syntactic analysis of the target language into both modeling and decoding.
- Reordering source sentences based on syntactic analysis
  - This paper uses this approach

- Subject-Verb-Object (SVO) and Subject-Object-Verb (SOV) are two common word order in the world languages.
- English is SVO and Korean is SOV.
  - "John hit the ball." vs. "John the ball hit."
- When the sentences get longer, the cost of moving structures during decoding (in phrase-based models) can be quite high.
  - "English is used as the first or second language in many countries around the world."

 $\rightarrow$  "is used" should skip 13 words to go to the end of the sentence.

# Precedence Reordering Based on a Dependency Parser

- The children of each word have some relative ordering.
- A **Precedence reordering rule** is a mapping from *T* to a set of tuples {(*L*, *W*, *O*)}
  - T: POS tag
  - L: Dependency label
  - W: Weight indicating the order (highest to lowest)
    - Children with the same weights are ordered according to the order defined in the rule.
    - Why not explicitly pre-define unequal weights?
  - O: order type
    - NORMAL: preserve the original order
    - RESERVE: flip the order
- If a node is not listed in the rules, W = 0 and O = NORMAL
- Use **self** to refer to the head node itself.
- Punctuations and conjugations disallow movements across them.

| Т                | (L, W, O)              |  |  |
|------------------|------------------------|--|--|
|                  | (advcl, 1, NORMAL)     |  |  |
|                  | (nsubj, 0, NORMAL)     |  |  |
|                  | (prep, 0, NORMAL)      |  |  |
| VD*              | (dobj, -1, NORMAL)     |  |  |
| VD.              | (prt, -2, REVERSE)     |  |  |
|                  | (aux, -2, REVERSE)     |  |  |
|                  | (auxpass, -2, REVERSE) |  |  |
|                  | (neg, -2, REVERSE)     |  |  |
|                  | (self, -2, REVERSE)    |  |  |
|                  | (advcl, 1, NORMAL)     |  |  |
|                  | (self, -1, NORMAL)     |  |  |
| H or US or UP    | (aux, -2, REVERSE)     |  |  |
| 33 01 333 01 33K | (auxpass, -2, REVERSE) |  |  |
|                  | (neg, -2, REVERSE)     |  |  |
|                  | (cop, -2, REVERSE)     |  |  |
|                  | (prep, 2, NORMAL)      |  |  |
| NN or NNS        | (rcmod, 1, NORMAL)     |  |  |
|                  | (self, 0, NORMAL)      |  |  |
| IN or TO         | (pobj, 1, NORMAL)      |  |  |
| 1,0110           | (self, -1, NORMAL)     |  |  |

Table 1: Precedence Rules to Reorder English to SOV Language Order (These rules were extracted manually by a bilingual speaker after looking at some text book examples in English and Korean, and the dependency parse trees of the English examples.)



Figure 2: Dependency Parse Tree of an Example English Sentence

# After apply precedence rule, this will be: John the ball hit can.

- This model is more efficient than its counterpart.
- Outperforms the state-of-the-art (stronger baseline).
- It is not restricted to one language pair.
- It is possible to automatically learn precedence rules.
- Integration of the second s

- English to 5 SOV languages.
- Baseline: Maximum entropy based lexicalized phrase reordering model.
  - Maximum allowed reordering: 10.
- Parser: Deterministic transition-based dependency parser.
  - Parses in linear time.
- Another baseline: Hierarchical phrase-based system.
  - Can capture long distance reordering by using a PCFG model.
  - Uses chart parsing during decoding: slower than deterministic dependency parser.
- 9.5K English sentences (from web) as evaluation data.
  - 3,500 sentences for *dev* (to perform MERT).
  - 1,000 sentences for *test*.
  - 5,000 sentences for *blind test*.

| System           | Source | Target |
|------------------|--------|--------|
| English→Korean   | 303M   | 267M   |
| English→Japanese | 316M   | 350M   |
| English→Hindi    | 16M    | 17M    |
| English→Urdu     | 17M    | 19M    |
| English→Turkish  | 83M    | 76M    |

# Table 2: Training Corpus Statistics (#words) of Systems for 5 SOV Languages

### Results

| Language | System | dev  | test | blind  |
|----------|--------|------|------|--------|
|          | BL     | 25.8 | 27.0 | 26.2   |
|          | -LR    | 24.7 | 25.6 | 25.1   |
| Korean   | -LR+PR | 27.3 | 28.3 | 27.5** |
|          | +PR    | 27.8 | 28.7 | 27.9** |
|          | BL     | 29.5 | 29.3 | 29.3   |
|          | -LR    | 29.2 | 29.0 | 29.0   |
| Japanese | -LR+PR | 30.3 | 31.0 | 30.6** |
|          | +PR    | 30.7 | 31.2 | 31.1** |
|          | BL     | 19.1 | 18.9 | 18.3   |
|          | -LR    | 17.4 | 17.1 | 16.4   |
| Hindi    | -LR+PR | 19.6 | 18.8 | 18.7** |
|          | +PR    | 19.9 | 18.9 | 18.8** |
|          | BL     | 9.7  | 9.5  | 8.9    |
|          | -LR    | 9.1  | 8.6  | 8.2    |
| Urdu     | -LR+PR | 10.0 | 9.6  | 9.6**  |
|          | +PR    | 10.0 | 9.8  | 9.6**  |
|          | BL     | 10.0 | 10.5 | 9.8    |
|          | -LR    | 9.1  | 10.0 | 9.0    |
| Turkish  | -LR+PR | 10.5 | 11.0 | 10.3** |
|          | +PR    | 10.5 | 10.9 | 10.4** |

Table 3: BLEU Scores on Dev, Test and Blindtest for English to 5 SOV Languages with Various Reordering Options (BL means baseline, LR means maximum entropy based lexialized phrase reordering model, PR means precedence rules based preprocessing reordering.)

< ∃ >

### Results

| Language | System  | dev  | test | blind  |
|----------|---------|------|------|--------|
|          | PR      | 27.8 | 28.7 | 27.9   |
| Korean   | Hier    | 27.4 | 27.7 | 27.9   |
|          | PR+Hier | 28.5 | 29.1 | 28.8** |
|          | PR      | 30.7 | 31.2 | 31.1** |
| Japanese | Hier    | 30.5 | 30.6 | 30.5   |
| -        | PR+Hier | 31.0 | 31.3 | 31.1** |
|          | PR      | 19.9 | 18.9 | 18.8   |
| Hindi    | Hier    | 20.3 | 20.3 | 19.3   |
|          | PR+Hier | 20.0 | 19.7 | 19.3   |
|          | PR      | 10.0 | 9.8  | 9.6    |
| Urdu     | Hier    | 10.4 | 10.3 | 10.0   |
|          | PR+Hier | 11.2 | 10.7 | 10.7** |
|          | PR      | 10.5 | 10.9 | 10.4   |
| Turkish  | Hier    | 11.0 | 11.8 | 10.5   |
|          | PR+Hier | 11.1 | 11.6 | 10.9** |

Table 4: BLEU Scores on Dev, Test and Blindtest for English to 5 SOV Languages in Hierarchical Phrase-based Systems (PR is precedence rules based preprocessing reordering, same as in Table 3, while Hier is the hierarchical system.)

< A</li>

- Reordering of languages with different word orders is essential.
- The method seems to work fine for 5 languages.
- Although authors claim that the rule can be extracted automatically, they did not try.
- The improvement of the basic over hierarchical phrase-based is not significant.

# Thanks!



Image: A mathematical states of the state