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1 Introduction

In the past, there has been little contact between those linguistic traditions working on
the basis of dependency grammars (DGs), such as Meaning-Text Theory (MTT), and
those linguistic traditions working on the basis of context-free phrase-structure gram-
mars (CFGs), such as the various incarnations of Chomskyan Transformational Grammar
(which we will henceforth refer to by a recent name, “Government and Binding Theory”
or “GB”).! The linguistic insights from one tradition have generally not been transferred
to the other. While this fact has been discussed in the past (see, e.g., (Nichols, 1979)),
the discussion has not specifically addressed the effect of the underlying formalisms on
the linguistic theories that are developed in them. This is not to say that the formalisms
themselves have not been compared (see (Gaifman, 1965)); however, while both MTT
and GB developed out of formal and/or computational approaches, both theories have
shed their original explicitly mathematical underpinnings. A mathematical comparison
between the underlying formal systems will therefore not tell us much about the linguis-
tics of the two theories. Instead, we must ask how the formalisms affect the linguistic
theories which are expressed in them.

The formalisms that linguistic theories use for the purpose of expressing syntactic
structure can differ in two ways. Firstly, the formalisms can differ in the type of repre-
sentation they use. A phrase-structure grammar postulates the existence of non-terminal
syntactic categories, while a dependency grammar does not. Secondly, the linguistic the-
ories can differ in how they use the syntactic formalism they have chosen. Chomskyan
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approaches follow a generativist approach, while MTT does not. As has been pointed
out previously (Kunze, 1972:p.10), these two issues — the definition of the formalism
itself and how it is used by a linguistic theory — are orthogonal. It is perfectly possible
to define a generative DG; see for instance (Hays, 1964). While the difference between
a generativist and a non-generativist approach will have profound methodological (and
perhaps philosophical) implications for the resulting linguistic theories, in this paper we
will concentrate on the representational difference in the formalisms themselves.

It has often been observed that a key linguistic difference between MTT (and other
dependency-based theories) on the one hand and GB on the other hand is the central role
that the lexicon plays in MTT, but not in GB (see, e.g., (Sgall, 1996)). We claim that
this difference is not coincidental, but due to a mathematical property of the underlying
formalisms: context-free phrase-structure grammars cannot be the basis of a lexicon-
oriented linguistic theory (in a technical sense, which we will define in the next section),
while dependency grammars must be.? An attempt to “lexicalize” CFGs leads naturally
to a more powerful phrase-structure system called Tree Adjoining Grammars (TAGs).?
In Section 2, we will show that TAGs show many important similarities to DGs. These
similarities have two beneficial results: firstly, we are able to apply formal results from
the mathematical study of phrase-structure grammars to DGs; secondly, we are able to
transfer linguistic analyses made in one framework to the other framework. In Section 3,
we will illustrate these points by looking at two non-projective syntactic constructions.

Our major goal in this paper is to study the interaction between formal systems and
linguistic theories, and to explore how results in the framework of one theory can be
expressed in the particular formal context of other theories. Such work provides insights
into those aspects, linguistic and formal, that appear to be invariant across a class of
formalisms. The reader should not interpret our goal as suggesting that MTT needs
to adopt a phrase-structure representation for whatever reason! We do not address the
question of whether phrase structure is necessary for linguistic theory, and leave this
issue to others.

2 Dependency, Phrase Structure and the Lexicon

One of the most important features of MTT is the central role that the lexicon plays
(see e.g. (Mel’éuk & Polguere, 1987); in fact, much of the MTT literature deals with
the lexicon). For syntactic purposes, it contains information about the subcategorization
frame of a lexeme, and how the arguments are realized (case assignment and function
words). The importance of the lexicon for syntactic theories has also been increasingly
recognized in the American linguistic traditions. We will take it as a given, and address
the question how a phrase structure-based syntactic theory can be adapted to a lexical
approach. It turns out that there are intrinsic, formal problems. These problems have
been investigated in detail by (Schabes, 1989); for a summary of some of the mathemat-
ical properties of tree grammars including lexicalization, see (Joshi & Schabes, 1991).
We will provide a brief discussion here.

If we want to analyze how formal systems can be used for linguistic theories, we must

2From a historical perspective, it presumably was the interest in developing a lexicon-oriented lin-
guistic theory that led to the use of a dependency grammar for MTT. However, in this paper we take a
synchronic view.

3TAG was originally introduced as a tree generating system on its own (Joshi et al., 1975). It was only
recently shown that TAGs can lexicalize CFGs. In this paper, we will only be interested in lexicalized
TAGs. For a general introduction to TAGs, see (Joshi, 1987a).



start by determining what sort of elementary structures the formalism provides, and
how these elementary structures are combined using the combining operations defined
in the formalism. We will illustrate these notions with some examples. First, consider
CFGs. In a CFG, a grammar consists of a set of rewrite rules, which associate a single
nonterminal symbol with a string of terminal and nonterminal symbols. Here is a sample
context-free grammar:

(1) a. S— NP VP
b. VP — really VP
c. VP — V NP
d. V — likes
e. NP — John

f. NP — Lyn

Each of these rules is an elementary structure in this grammar. We combine these
elementary structures by using one rule to rewrite a symbol introduced by a previous
application of some rule. For example, when we use rule (1a), we introduce the nonter-
minal symbols (or “nodes”) NP and VP. We may rewrite the VP node by using rule (1b)

r (1c). This grammar generates, among others, the following string:

(2) John really likes Lyn
Derivations in CFGs can be represented as trees: for each nonterminal node in the

tree, the daughters record which rule was used to rewrite it. The phrase-structure tree
that corresponds to sentence (2) is given in Figure 1.

/\

\ A

John redlly
/\
\ \

likes Lyn
Figure 1: Phrase Structure Tree for John really likes Lyn

Now consider a different type of mathematical formalism, Tree Substitution Gram-
mars (TSG). In a TSG, the elementary structures are phrase-structure trees. A sample
grammar is given in Figure 2. It consists of three trees, one of which is rooted in S, and
two of which are rooted in NP. Note that even though from the point of view of a CFG,
a tree is a derived object, not an elementary one, we have defined TSGs in such a way
that a tree is now an elementary object of the grammar.
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oy a, a3
S NP NP
N{\VP John Lyn
Iik‘es

Figure 2: A sample TSG

We combine elementary structures in a TSG by using the operation of substitution,
illustrated schematically in Figure 3. We can substitute tree 3 into tree « if there is a
nonterminal symbol on the frontier of & which has the same label as the root node of
B (‘A’ in Figure 3). We can then simply append 8 to « at that node. (Nodes at which
substitution is possible are called “substitution nodes” and are marked with down-arrows
(J).) A derivation in our sample TSG is shown in Figure 4. The trees representing the
two arguments of the verb like, John (a2) and Lyn (a3), are substituted into the tree
associated with the verb (1), yielding the well-formed tree ay, from which the sentence
John likes Lyn can be read off.

S A S

o B y

Figure 3: The Substitution Operation

Finally, compare the DG used for MTT to CFG and TSG. In DG, the elementary
structures are simply nodes labeled with terminal symbols, i.e., lexical items. There
are no nonterminal symbols. Nodes are composed by establishing dependency relations
between them. The result is a dependency tree.

CFGs and TSGs are weakly equivalent (they generate the same languages). However,
to a linguist, they look very different. A context-free rule contains a single “level”, i.e.,
a phrase-structure node and its daughters; an elementary tree in a TSG may be of
arbitrary height. Put differently, in TSG we have increased the “domain of locality”
of the elementary structures of the grammar. This increased domain of locality allows
the linguist to state linguistic relationships (such as subcategorization, semantic roles of
arguments, case assignment and agreement) differently in a TSG. As an example, take
agreement between subject and verb in English. The linguist working in TSG can simply
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S S
/\ /\
NP VP NP VP
A v NP John \‘/ N‘P
|
likes A likes Lyn
T2 p T3 up
John Lyn

Figure 4: Substitution of arguments into initial tree of likes

state (by using some feature-based notation) that the verb and the NP in subject position
in tree a; of Figure 2 agree with respect to number. The linguist working in CFG has a
harder time: since the verb is in rule (1d), while the subject NP is in rule (1a), he cannot
simply state the relation directly, since it is impossible to state constraints that relate
nodes in different elementary structures. Instead, the linguist must propose that the NP
in fact agrees with the VP in rule (1a), and that the VP agreement features are inherited
by its head in rule (1d). The notion that the VP (and not only the verb) agrees with the
subject is a meaningful linguistic proposition, and in fact the TSG linguist could have
adopted it as well. However, the crucial issue is that the CFG linguist, because of his
choice of formalism, was forced to adopt it, while the TSG linguist may choose to do so
or not on purely linguistic grounds.

Now let us turn to our central concern, the role of the lexicon. We will call a grammar
“lexicalized” if every elementary structure is associated with exactly one lexical item,
and if every lexical item of the language is associated with a finite set of elementary
structures in the grammar. Clearly, dependency grammars (including MTT) are nat-
urally lexicalized in this sense, since the elementary structures simply are the lexical
items.

The case is more complex for a CFG. Consider the sample grammar given above in
(1). We can see that no lexical item is associated with rules 2a and 2c; therefore, the
grammar is not lexicalized. It would be possible to combine rules 2a, 2c and 2d into a
single one:

(3) S —» NP likes NP

However, it is now impossible to correctly place the adverb really, since a (lexicalized)
rule of the form (1b) is no longer useful (the VP node having been eliminated). The
adverb cannot be inserted between the subject and the verb.

There is a second way of lexicalizing a CFG: instead of merging the two phrase-
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structure rules into a single rewrite rule, we can combine them and consider the result
— a fragment of a phrase structure tree — an elementary structure. Put differently, we
move from CFG to TSG. For example, tree a; in Figure 2 is the result of combining rules
(1a), (1c) and (1d). As desired, tree «; is associated with exactly one lexical item, the
verb likes. Thus, we have now obtained a TSG from a CFG. We can derive the sentence
John likes Lyn as shown previously in Figure 4.

It turns out that a TSG is not really what we want, either: we are again faced with
the problem of getting the adverb in the right place, since there is no node into which to
substitute it.* This problem is solved by the tree composition operation of adjunction,
introduced in the framework of Tree Adjoining Grammars (TAG). Adjunction is shown
in Figure 5. Tree o (called an “initial tree”) contains a non-terminal node labeled A; the
root node of tree B (an “auxiliary tree”) is also labeled A, as is exactly one non-terminal
node on its frontier (the “foot node”). All other frontier nodes are terminal nodes or
substitution nodes. We take tree a and remove the subtree rooted at its node A, insert
in its stead tree 3, and then add at the footnode of 8 the subtree of a that we removed
earlier. The result is tree . As we can see, adjunction can have the effect of inserting
one tree into the center of another. Our linguistic example is continued in Figure 6. Tree
(1 containing the adverb is adjoined at the VP node into tree ay. The result is tree as,
which corresponds to sentence (2). Note that ay is composed of trees ay, as, az and Sy,
each of which correspond to exactly one lexical item, in contrast to the grammar given
above in (1).

S A S

A =>

a B Y
Figure 5: The Adjunction Operation

A formalism in which the elementary structures of a grammar are trees and in which
the combining operations are adjunction and substitution is called a TAG. (Schabes,
1989) has shown that a tree composition system is only lexicalizable if the composition
operations include adjunction.® Thus, the process of lexicalizing a CFG naturally leads
to a TAG. TAGs are more powerful formally than CFGs, meaning that they can derive
more complex languages than CFG. They are also more difficult to parse. Several other
proposals have been made to adapt phrase-structure grammars to a lexical approach, in-
cluding categorial formalisms such as CCG (Steedman, 1991), and non-transformational
phrase structure grammars such as LFG (Bresnan & Kaplan, 1982) and HPSG (Pol-
lard & Sag, 1987). Interestingly, the underlying formalisms of these frameworks are also
more powerful than CFG. For a summary of mathematical and computational proper-
ties of TAGs and some related phrase-structure formalisms, see (Joshi et al., 1991); for

4Having two verbs like, one of which also subcategorizes for an adverb, does not solve the problem,
since it does not generalize to multiple adverbs (in addition to being linguistically unappealing).

5(Schabes & Waters, 1993) show that a restricted form of adjunction, in which the footnode of
auxiliary trees is always in the rightmost or leftmost position on the frontier, can also lexicalize a CFG.
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a, B, Og
P . NPASVP

John V NP John really VP
| | T
Y NP
| |

likes Lyn

Figure 6: Adjunction of really into initial tree

a discussion of the relation between TAG and categorial systems, see (Joshi & Kulick,
1995).

Like a CFG, a TAG derives a phrase-structure tree, called the “derived tree”. (The
derived tree for our example is the right tree in Figure 6.) In addition to the derived
(phrase-structure) tree, a second structure is built up, the “derivation tree”. The deriva-
tion tree records how the derived tree was assembled from elementary trees. In this
structure, each of the elementary trees is represented by a single node. Since the gram-
mar is lexicalized, we can identify this node with the (base form of the) lexeme of the
corresponding tree.% If a tree t; is substituted or adjoined into a tree t5, then the node
representing t; becomes a dependent of the node representing ¢5 in the derivation tree.
Furthermore, the arcs between nodes are annotated with the position in the “target tree”
at which substitution or adjunction takes place. In the TAG literature, this annotation
is in the form of the tree address of the node (using a formal notation to uniquely iden-
tify nodes in trees, without reference to linguistic concepts). However, in analogy to
the MTT notation, we can simply assign numbers to argument positions, and introduce
the convention that all other positions are attribute positions, marked as ATTR. The
derivation tree for the example derivation above is shown in Figure 7. We can see that
the derivation structure is a dependency tree which closely resembles the Deep-Syntactic
Representation (DSyntR) of MTT.

like

1 2 ATTR

John Lyn really
Figure 7: Derivation Tree for John really likes Lyn
The resemblance between the derivation structure and the DSyntR is not a coinci-

dence. It is a direct result of lexicalization. We would like to summarize some striking
similarities between an MTM of a language and a TAG grammar for that language.

1. Asin the case of an MTM, a grammar in the TAG formalism consists of a lexicon,

6This is not exactly what is done in the TAG literature, but the difference is purely notational.
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whose elementary structures are combined by some very simple rules of composition
(substitution and adjunction in the case of TAG).

2. The function words are included in the elementary structures of the lexemes that
require them in their subcategorization frame, i.e., they are represented in the
lexical entries for content words, not separately. They are therefore not represented
in the derivation structure, just as they are not represented in the DSyntR. (For
an example of an elementary tree which includes a function word, see tree f; in
Figure 9; also see derivation structure in Figure 10.)

3. A verb subcategorizes for its arguments — there must be exactly one constituent
for each of its obligatory arguments. Adjuncts are not subcategorized for and
there is no (syntactic) limit on their number. In MTT, this is reflected by the fact
that there may an unbounded number of ATTR subtrees, while there is only one
subtree for each of the numeric arc labels. In TAG, this distinction is captured
by the fact that arguments are substituted, a unique and obligatory step, while
adjuncts are adjoined, a recursive but optional step.

4. In a TAG, the lexicon consists of one tree family for each lexeme, each tree family
containing trees for the syntactic variants of the lexeme (active/passive voice, wh-
questions for each argument, “topicalization” (fronting) for each argument etc.).
As in the case of MTT, certain syntactic paraphrases can be handled by general
rules (“metarules”, (Becker, 1993)). Lexical functions and syntactic paraphrases
that use lexical functions have not yet been introduced in the TAG framework, but
they could be integrated in a straightforward way.

5. Idioms (phrasemes) have been discussed both within the TAG framework (Abeillé
& Schabes, 1989) and in MTT (Mel’¢uk, 1988:p.60). Both frameworks can ac-
count for idioms in a natural and similar way, namely by postulating elementary
structures that (non-compositionally) contain more than one lexeme.

However, there are some important differences between the two approaches:

1. In TAG, word order must be determined at the same time as dependency. This
process cannot be separated into two steps, as in MTT.” This means that the
lexicon in a TAG grammar for a specific language must contain more syntactic
information than a lexicon in the MTT framework: not only must it contain in-
formation about subcategorization and function words, the trees themselves must
also contain enough information so that the word order comes out right.

2. While substitution of a tree ¢; into tree t; corresponds to a dependency of the
lexical item of t; on that of ¢5, this need not be the case in adjunction. We will see
later examples in which #; is adjoined into ¢z, but the lexical item of ¢, depends on
that of ¢;. Thus, while adjunction corresponds to the establishment of a syntactic
dependency relation, the direction of the relation cannot be determined from the
direction of the adjunction alone.

The similarities between MTT and a TAG approach, both in the linguistic approach
and in the resulting representations, allow us to use TAG as a way of relating MTT

TThere have been proposals for formal variants of TAG in which the linear precedence of nodes is
stated independently from immediate dominance; see (Joshi, 1987b; Becker et al., 1991).
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analyses to phrase-structure-based analyses. While much of the work on the interface
between syntax and semantics, on lexical functions and on syntactic paraphrases in the
MTT framework can be reformulated in terms of a TAG analysis, we will concentrate in
this paper on applying insights from TAG analyses to the MTT framework.

3 Formal Aspects of Word Order Variation

In the previous section we have argued that analyses using lexicalized TAG and
dependency-based analyses bear striking resemblances. In this section, we will exploit
these resemblances and discuss two types of non-projective constructions. Roughly, a
dependency analysis of a sentence is “non-projective” if, when we draw projection lines
down from the nodes in the dependency tree to a linear representation of the sentence, we
cannot do so without having some projection lines cross one of the arcs of the dependency
tree. A construction is non-projective if its dependency analysis is non-projective. For a
more complete discussion, see (Mel’¢uk, 1988:p.35f).% (We will only consider deep non-
projectivity, i.e., non-projectivity which affects lexical items that are already present at
the level of DSyntR.) There are two potential problems with non-projective constructions
in a dependency-based theory:

e No parsing model for non-projective constructions is known that is computationally
“well-behaved”.

e The syntax of non-projective constructions must be expressed differently from that
of projective constructions, which is linguistically unmotivated.

We discuss the first point in more detail in Section &.1, and the second in Section 3.2.
Sections #.3 and 3.4 discuss two illustrative syntactic constructions. In Section 8.5
we present a proposal for handling certain non-projectivity within the MTT notion of
“syntagm”.

3.1 Computational Properties of Dependency Grammars

The principal reason for studying mathematical aspects of the syntactic formalism used
by a linguistic theory is probably the need to explain the computational processes in-
volved in the generation and understanding of language. While it appears that most syn-
tactic constructions in most languages are projective (Mel’¢uk & Pertsov, 1987:p.184),
many languages do have syntactic constructions (often, but not always, pragmatically
marked) that are not. It has been shown that a fully projective dependency grammar
is weakly equivalent to a CFG (Gaifman, 1965), where “weak equivalence” means that
for every DG, there is a CFG that generates exactly the same set of sentences, and v.v.
The equivalence of projective DGs and CFGs lets us transfer parsing results from CFGs
to such grammars. In particular, we know that we can parse a string in a CFG in at
most O(n?®) time, i.e. in an amount of time proportional to the cube of the length of
the input string. Though the parsing of non-projective DGs has been discussed (see
(Covington, 1990) and the references therein), to our knowledge no formal results have
been published. There is reason to believe that in the worst case they can be parsed in
a time proportional to an exponential function of the length of the input string (O(2")).

8The definition given in (Mel’¢uk, 1988:p.35f) can be shown to be equivalent to those discussed in
(Marcus, 1965).



If this worst case actually occurred in natural language parsing, then a DG would not
be a very appealing candidate for a model of human language processing.

Why is this a potential problem for MTT? Humans appear to be quite good at pars-
ing, i.e. constructing a syntactic representation for a linear string of language. If a
linguistic theory wants to account for this process, then it must be able to provide an
account of how the syntactic structures the theory postulates can be effectively and effi-
ciently constructed from the input. Even if a linguistic theory does not aim at providing
an account of human sentence processing (as in fact neither MTT nor GB do), then
it must be the case that such an account can, in principle, be found, since otherwise
the relation of the theory to observable human behavior is unclear. But an account of
human sentence processing must be inherently computational. While a mathematical
study cannot, of course, provide a computational theory of processing, it can provide
useful guidelines for the elaboration of such a theory, and thus confirm the possibility of
elaborating such a theory.

Of course, it could be argued that non-projective constructions are in fact much
more difficult for humans to process than projective ones, and that therefore the lack of
a processing account for non-projective trees is actually welcome, rather than a problem.
However, data from psycho-linguistic experiments suggests that processing difficulty does
not pattern with the projective/non-projective distinction (or, equivalently, the distinc-
tion between CFGs and more powerful formalisms). For example, (Bach et al., 1986)
show that the non-projective Dutch cross serial dependencies (which we discuss in Sec-
tion 3.4 below) are in fact easier to process than German projective nested dependencies.
(Joshi, 1990) gives a TAG-based account of these differences that crucially relies on the
fact that both constructions can be handled by the same mathematical formalism.

3.2 Word Order Rules and Non-Projectivity

Non-projectivity also has an unappealing effect on linguistic description. In MTT, word
order is not stated at the deep-syntactic level of representation, but is introduced by
the Surface-Syntactic Component. The basic rules for stating linear order are the “syn-
tagms”, local rules which linearly order two nodes linked by a dependency relation.
As discussed in (Mel’¢uk & Pertsov, 1987:p.180), word-order rules for unbounded non-
projective constructions cannot be stated as syntagms, or as conditions on syntagms.
(Here, “unbounded non-projectivity” means that there is no limit on the number of lexi-
cal items simultaneously in violation of projectivity.) Instead, they must be stated in sep-
arate global rules. The existence of two types of word-order rules to specify the possible
word orders in a language® is not fully satisfactory: it is motivated not by any linguistic
considerations, but only by the mathematical properties of the underlying dependency
formalism; and it contradicts the spirit of Mel’¢uk’s Principle of Maximal Localization
(Mel’¢uk, 1988:p.383). One may therefore ask whether the syntagms can be expanded in
some manner to handle certain types of (linguistically relevant) non-projectivity as well.

We will illustrate the problem in the following two subsections. In Section 3.5 we
present a proposal, derived from TAG, for handling certain types of deep non-projectivity
using syntagms.

9(Mel’¢uk, 1988:p.85) lists global word order rules which determine the best word order among many
possible ones — this is quite a different matter, and the use of a different type of rule is linguistically
motivated.
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YOU | ;@M\
| I MARY | LIKE
1 | SARAH

Figure 8: DSyntR for Sentence (4)

B]_ BZ al
S S S
NPV VP NPV VP NPV S
\% S \% S NPV VP
| N | N N
think Comp S clams Comp S \% NP
| | |
that that likes €
a, a, a, ag
NP NP NP NP
| |
you Mary who Sarah

Figure 9: TAG derivation for Sentence (4)

3.3 Embedded wh-words in English

Like in many other languages, wh-words in English questions generally must appear in
sentence-initial position. This is also true in the case that the wh-word is an argument
of an embedded verb. Strikingly, there is no bound on the depth of the embedding:

(4) Who do you think that Mary claimed that Sarah liked?

In (4), the wh-word is an argument of the most deeply embedded verb like, thus
causing non-projectivity, as can be seen in Figure 8. A TAG can capture the long-distance
dependency naturally, since the recursive adjunction operation allows an unbounded
number of clauses to intervene between directly dependent lexemes. An analysis of wh-
movement in the TAG framework has been proposed by (Kroch, 1987); our analysis
(Figure 9) is a slight variation of his analysis. We first substitute all nominal arguments
into their respective verbal trees, and then adjoin the intermediate claim-clause (32) into
the most deeply embedded like-clause (a;) at the S node immediately below the root
node. This has the effect of separating the wh-word from its verb, even though they
originated in the same structure. We then subsequently adjoin the matrix think-clause
(81) into the intermediate claims clause.

11



1 s
Mary think
1
you

Figure 10: TAG derivation tree for Sentence (4)

The derivation leads to two structures: the derivation tree in Figure 10, and the
derived tree in Figure 11. The derivation structure records the sequence of adjunctions
and substitutions that leads to the derived tree, while the derived tree in Figure 11 shows
the phrase structure and thus the word order of the final sentence. These two structures
exist in parallel; we do not have to determine the word order from the dependency-based
derivation tree as a separate step.

The reader will observe that, contrary to the example of sentence (2), the derivation
structure (given in Figure 10) does not correspond directly to the DSyntR: the direction
of adjunction between the verbs (more precisely, the trees anchored in verbs) does not
correspond to the direction of the dependency.!® Why is this? We have seen that nominal
arguments are substituted into verbal trees, and that adjuncts are adjoined into trees
they modify. In both instances, the derivation structure corresponds to the dependency
structure (as in Figure 7). However, in the analysis for embedded clauses we have given
here, we adjoin the matrix clause into the dependent clause at its S node. Thus, in the
derivation structure, the node for the matrix verb dominates the node for the embedded
verb. We annotate the arcs between such nodes in the derivation tree (Figure 10) with
an ‘S’ rather than with an MTT-style annotation. This difference, however, does not
affect the point we would like to make in this paper: what is central to this exposition
is that a derivation in a TAG is like a dependency analysis in that it establishes direct
relation between lexical items. The direction of adjunctions need not correspond to the
direction of the dependency, as long as the latter can be retrieved from the former by
some linguistically motivated simple procedure. For example, in our case, the actual
dependency structure can be derived trivially: arcs marked ‘S’ are simply inverted.!!

We can make two observations. First, because the construction can be represented
by a TAG, we can parse this type of non-projectivity in O(n®) time. Second, we can

10For many constructions, the exact dependency analysis is often a matter of discussion. However, in
the case at hand, the issue is quite uncontroversial.

117t is also possible to define a new phrase-structure tree-rewriting system based on TAG so that
the derivation ezactly reflects dependency. Such a system, called DTG, is defined in (Rambow et al.,
1995). The derivation structure in DTG is exactly the DSyntR of MTT. To our knowledge, DTG is the
first phrase-structure system whose definition is directly and explicitly motivated by considerations of
dependency.
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NP S
‘ /\
who NP VP
‘ /\
you V S
‘ /\
think Comp S
‘ /\
thaa NP VP
‘ /\
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‘ /\
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‘ /\
that NP VP
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Sarah V NP
| |
likes €

Figure 11: TAG derived tree for Sentence (4)
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Figure 12: DSyntR for Sentence (5)

state the word-order rules locally in the tree associated with one clause: in tree ag in
Figure 9, the wh-word has been moved to the front of the clause. This local operation
becomes a non-projective one through adjunction. In MTT, we need a global rule (as
opposed to a syntagm) to place the wh-word in sentence-initial position.

3.4 Embedded Clauses in Dutch

As in German, embedded clauses in Dutch can occur before the (clause-final) verb in a
recursively embedded construction. However, the order of the verbs in the two languages
differ: while in German, the dependencies between the verbs and their arguments are

nested, they are cross-serial in Dutch. Consider the following sentence:!?

(5) ...omdat Wim Jan Marie de kinderen zag helpen leren  zwemmen
..because Wim Jan Marie the children saw to help to teach to swim

..because Wim saw Jan help Marie teach the children to swim

This construction is one of the well-known non-projective constructions (see e.g.
(Mel’éuk, 1988:p.38)), as can be seen in Figure 12.'3 Our TAG analysis in Figure 13
is based on those proposed in (Joshi, 1987a; Kroch & Santorini, 1991). The main verb
of each clause is “raised”, an analysis proposed independently of the TAG analysis in
the GB literature. We then adjoin each clause into its immediately dependent clause
at the S node immediately below the root node. This “pushes” both verbs away from
their nominal arguments, even though they originate in the same elementary structure.

12We would like to thank Hotze Rullmann and Marc Verhagen for helping us with this example.

13Tn this and other DSyntRs, actants that are deleted at subsequent stages (i.e., at the Surface-
Syntactic Representation, SSyntR) are represented in parentheses. Furthermore, in DSyntR trees we
follow the common practice of labeling nodes with the infinitives of verbs, while for TAG trees we
will label nodes with the fully inflected form. Note that the non-projectivity of the construction is
independent of the particular analysis chosen for “control” verbs of various types.
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The order of the verbs in the final sentence simply follows from the way the elementary
structures are adjoined; no global word-order rules are necessary.

S
/\
S
N
NPV VP
/\
S
NP
Wim
S
/\
S
N
NP VP
T
PRO NPV S
A
NP
PN
de kinderen

Figure 13: TAG Derivation for Sentence (5)

Again, we can make two observations. First, this type of non-projectivity can be
parsed in O(n®) time. Second, in the TAG analysis, the word-order rules can be expressed
as local constraints on clause-sized structures, while in the MTT analysis, we need to
resort to non-local rules to describe the word order of the construction.

3.5 Localizing Syntactic Rules

As we have seen, in the case of wh-words and Dutch embedded clauses, MTT’s syntagms
cannot express the syntax of the constructions (though of course they can express the
SOV order found in a single clause), while the TAG approach lets us localize the word-
order rules within the elementary structure for a verb (just as the SOV order is localized
in elementary trees). Can we transfer the TAG approach to MTT? We propose to asso-
ciate pairs of strings (i.e., the Deep-Morphological Representation or DMorphR, which
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1
X _a_
verb If X W(N) ,
(i-1)th completive <=> Y1, X+Y2 a= 1st compl or a=pred,
then W+...+Y1
Y verb-inf
2.
X verb If a=ith compl or a=pred
a <=>Y, X andthereisnoY  orp-inf
such that X Y
Y noun
3.
X verb <=>-- X If X has no dependents at all

Figure 14: Syntagm for Dutch Embedded Clauses

is a linearized sequences of SSyntR nodes), rather than just single strings, with nodes of
the dependency tree. This approach is inspired by a generalization of CFG, called Head
Grammar (HG) (Pollard, 1984), which has been shown to be formally equivalent to TAG
(Weir et al., 1986). Basically, a HG provides a dependency tree and rules how to com-
pute the final string (or “yield”). This string is computed bottom-up; with each node is
associated a pair of string segments. As we go up the dependency tree, we compute the
yield for each new node, based on the yields of its daughter nodes. The segments can
be shifted around according to certain rules, and new terminal symbols added, but the
segments may not be broken up. We see that this is exactly how the syntagms of MTT
operate (see, e.g., (Mel’¢uk, 1967)), except that in the syntagms, each node is associated
with one string, while in the case of HG, there are two strings.

Our proposal can best be illustrated by giving two syntagms (hopefully in the spirit
of (Mel’¢uk & Pertsov, 1987)) in which we use two strings associated with one node
to deal with the Dutch cross-serial dependencies (Figure 14). A dependency relation is
now linearized not as one string, but as two, which are represented as a pair, separated
by commas (e.g., Y1, Y2). Syntagm 2 takes care of the most deeply embedded clause:
the verb X is put in the second segment, while all the overt nominal arguments are
put in the first segment. Syntagm 3 applies when the most deeply embedded verb has
no dependents at all. Syntagm 1 applies to verbs that subcategorize for clauses. The
DMorphR associated with the embedded clause, Y, is in two segments, called Y1 and
Y2. The governing verb of Y, X, is added to the left of Y2. Any nominal arguments
(the subject or object) of X are added to the left of Y1. As an example, consider Dutch
sentence (5) discussed previously. We give the SSyntR in Figure 15.!4 The noun phrase
rooted in kinderen is of course linearized as de + kinderen (where we use + to denote
concatenation). The clause rooted in in zwemmen has no dependents (verbal or nominal).
Therefore, syntagm 3 applies, and we get a DMorphR consisting of two strings, — (the
empty string) and zwemmen. We then need to linearize the clause rooted in leren. Since

14The exact details, in particular the arc labels, are not of interest here. We also omit all features in
the both the syntactic and morphological representations.
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Figure 15: SSyntR for Sentence (5)

leren does have a verbal dependent (namely zwemmen), syntagm 1 applies. We have Y1
= — (the empty string) and Y2 = zwemmen. The verb leren is added to the left of Y2.
Furthermore, the condition in syntagm 1 specifies that the nominal arguments of leren
must precede Y1. We therefore obtain:

(6) DMorphR for subtree rooted in leren:
de + kinderen, leren + zwemmen
Now consider the subtree rooted in helpen. Again, syntagm 1 applies, this time with
Y1 = de + kinderen and Y2 = leren + zwemmen. Again, the head verb is added to the
left of Y2, while its nominal arguments are added to the left of Y1. We obtain:
(7) DMorphR for subtree rooted in helpen:

Jan + Marie + de + kinderen, helpen + leren + zwemmen

Finally, we apply syntagm 1 one more time for verb zien, and then the syntagm for
the SUBORDINATE-CONJUNCTIONAL SSyntRel. This latter syntagm, not given here, will
append the two parts of the DMorphR of its dependent zien node and append the omdat
node, giving us the desired result:

(8) DMorphR for subtree rooted in omdat:

omdat + Wim + Jan 4+ Marie + de + kinderen + zien + helpen + leren
+ zwemmen

Thus, we do not need to have recourse to global rules: the word-order of the sentence
is fixed in syntagms, despite the existence of unbounded deep non-projectivity. We can
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deal with embedded wh-words in a similar manner; for space limitations, we refrain from
giving the details here.

Note that our proposal does not replace the notion of syntagm as defined in the
Surface Syntactic-Component of MTT. Instead, it extends it, and it does so only in
those cases where non-projectivity occurs (the other syntagms need not be changed).
What is replaced is the notion of global ordering rules to handle cases such as English
wh-movement and Dutch verb raising.

4 Conclusion

In this paper, we have argued that the crucial difference between a CFG-based analysis
and a DG-based analysis is that the latter, but not the former, can be lexicon-based.
We have described TAG, a phrase-structure grammar which can be lexicalized, and we
have shown some similarities in linguistic analyses expressed in DGs and in TAGs. In
considering non-projective word order phenomena, we have shown that two important
results can be transferred form the TAG analysis to the MTT analysis: first, we can give
attractive upper bounds on processing complexity for specific constructions; second, we
do not need to have two types of word-order rules, syntagm-based rules and global rules.
Instead, if we extend the definition of a syntagm, all rules can be expressed locally.
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