
Parsing with Lexicalized Probabilistic Recursive
Transition Networks

Alexis Nasr1 and Owen Rambow2

1 Lattice-CNRS (UMR 8094),
Université Paris 7, Paris, France

alexis.nasr@linguist.jussieu.fr
2 Center for Computational Learning Systems,

Columbia University, New York, NY, USA
rambow@cs.columbia.edu

Abstract. We present a formalization of lexicalized Recursive Transi-
tion Networks which we call Automaton-Based Generative Dependency
Grammar (gdg). We show how to extract a gdg from a syntactically
annotated corpus, present a chart parser for gdg, and discuss different
probabilistic models which are directly implemented in the finite au-
tomata and do not affect the parser.

1 Introduction

While finite-state methods are becoming ever more popular in natural language
processing (NLP), parsing (as opposed to chunking) has resisted the use of finite-
state methods, presumably because of the difficulty of properly modeling struc-
ture using only finite state methods (but see [1]). An early proposal to extend
finite state methods for syntax were the Recursive Transition Networks (rtns) of
Woods [2], which add a stack mechanism to a collection of finite-state automata
(fsms). rtns have been used to implement context-free grammars.

In the field of syntax, there has been much interest since the 1990’s in lexi-
calized formalisms, in which each elementary structure of a grammar formalism
represents the syntactic behavior of a single lexical item. The question arises
what happens if we add lexicalization to rtns. In this paper, we present proba-
bilistic lexicalized rtn, which we call Probabilistic Automaton-Based Generative
Dependency Grammar or pgdg. A pgdg is a collection of weighted fsms, such
that in each of these fsms, every path includes at least one lexical transition. As
with all lexicalized generative formalisms, the derivation tree is a dependency
tree. gdg as a formalization allows us to relate rtns to Tree Adjoining Gram-
mars (tag), and thus to profit from work on extracting tags from treebanks.
We show how to convert a tag extracted from a treebank into a gdg. We also
show we can vary the conversion algorithm to obtain different automata which
represent different ways of probabilistically modeling multiple attachments of
the same type (such as adjectives attaching to a noun). Thus, in our approach,
the automata represent both the algebraic part of the grammar and the prob-
abilistic model. As a result the same algorithms (for parsing and searching for
the best parses) are used for different probabilistic models.

A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.): FSMNLP 2005, LNAI 4002, pp. 156–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Parsing with Lexicalized Probabilistic Recursive Transition Networks 157

The outline of the paper is as follows. We start out by presenting related
work in section 2, and then present our definitions in section 3. We very briefly
present a simple parsing algorithm for gdg in section 4. We then turn to the
key contributions of this paper: we present probabilistic models of adjunction in
section 5, and then show how to extract a pgdg from a treebank (section 6).

2 Related Work

This work is based on previous work in string rewriting systems for dependency
grammars, as well as on the notion of Recursive Transition Networks [2]. In
this section, we quickly review the literature on such string-rewriting systems.
The formalism presented here can be seen as having some similarities with the
work of Hays and Gaifman [3, 4], who proposed generative formalisms for string
rewriting. These formalisms were basically context-free grammars in which there
is, on the right-hand side of rules, at least one terminal symbol. To overcome the
inadequacy of such formalisms, Abney [5] suggests extending the notation of [4]
with regular expressions in the right-hand side, similar to the approach used in
extended context-free grammars (for example, [6]). This approach was worked
out in some detail by Lombardo [7], and in a similar manner in previous work
by us [8], in which we present a string-rewriting version of gdg.

There has been some work on modeling syntactic dependency between words
using automata. Alshawi at al. [9] use cascaded head automata to derive de-
pendency trees, but leave the nature of the cascading under-formalized. Eisner
[10] provides a formalization of a system that uses two different automata to
generate left and right children of a head. His formalism bears some similarity
to the one we present.

3 Generative Dependency Grammars

3.1 Informal Definition

A gdg is a set of finite-state automata (fsms) of a particular type, namely
lexicalized automata. In a lexicalized automaton, every path from a start state to
a final state includes at least one lexical transition. A lexicalized automaton with
the anchor (word) m describes all possible dependents of m. Each automaton
has a name, which defines not only the part-of-speech of m, but also the active
valency of m (i.e., all word classes that can depend on it), as well as their linear
order. Thus this name can be thought of as a supertag in the sense of Bangalore
and Joshi [11], and we will adopt the name “supertag” here to avoid confusion
with simple part-of-speech tags. A sample lexicalized automaton is shown in
Figure 11. For expository purposes, in these examples, the supertags are simply
standard part-of-speech tags. The transitions of the automaton are labeled with

1 The initial state of an automaton is labeled 0 while its accepting states are indicated
in boldface. The empty transitions are represented in dotted lines.

158 A. Nasr and O. Rambow

pairs 〈f, c〉, where f is a grammatical function (subject, object, different types
of adjuncts, etc.), and c is a supertag, or by pairs 〈LEX, m〉, where m is an anchor
of the automaton. This automaton indicates that the verb eat has a dependent
which is its subject, obligatory and non-repeatable, and whose category is noun
or pronoun; a dependent which is its object that is optional and non-repeatable;
and an adjunct prepositional phrase which is repeatable.

3210

〈SUBJ, N〉

〈SUBJ, PRO〉

〈CIRC, P 〉

SUBJ DOBJ

N N

CIRC

NN P

〈CIRC, P 〉
〈LEX, eat〉

eateat

PN

eat

CIRCSUBJ

P

SUBJ

〈DOBJ, N〉
V

CIRC DOBJ

Fig. 1. A lexicalized automaton and three elementary trees that can be derived from it

Each word (in the formal language theory sense), i.e., each sentence (in the
linguistic sense) accepted by an automaton is a sequence of pairs 〈f, c〉. Each
such sequence corresponds to a dependency tree of depth one, which we will call
an elementary tree of the grammar. Three sample elementary trees can be seen
in the lower part of figure 1. The word corresponding to the leftmost tree is:
〈SUBJ, N〉 〈LEX, mange〉 〈CIRC, P 〉.

A gdg derivation is defined like a derivation in an rtn [2]. It uses a stack,
which contains pairs 〈c, e〉 where c is the name of an automaton from the gram-
mar, and e is a state of c. When 〈c, e〉 is on the top of the stack, and a transition
of type 〈f, c′〉 goes from state e to state e′ in automaton c, 〈c, e〉 is popped and
〈c, e′〉 is pushed as well as the machine c′ in its initial state (〈c′, q〉). When we
reach an accepting state q′ in c′, the pair 〈c′, q′〉 is popped, uncovering 〈c, e′〉,
and the traversal of automaton c resumes. We need to use a stack because, as
we saw, during a derivation, several automata can be traversed in parallel, with
one invoking the next recursively.

Since our automata are lexicalized, each traversal of a non-lexical arc (i.e.,
an arc of the form 〈f, c′〉 of automaton c) corresponds to the establishment of a
dependency between the lexical anchor of c (as governor), and the lexical anchor
of automaton c′ (as dependent). Thus, the result of a derivation can be seen
as a sequence of transitions, which can be bijectively mapped to a dependency
tree.

A probabilisticgdg (pgdg), is agdg in which the automata of the grammar are
weighted finite state automata. For each state in an automaton of the grammar,

Parsing with Lexicalized Probabilistic Recursive Transition Networks 159

the weights of the outgoing arcs represent a probability distribution over possible
transitions out of that state.

3.2 The Sites of an Automaton

The transitions of a lexicalized automaton do not all play the same role. We
have already seen the lexical transitions which provide the words that anchor
the automaton. In addition, we will distinguish the argument transitions which
attach an argument as a dependent to the lexical anchor. All argument transi-
tions which share the same grammatical function label constitute an argument
site of the automaton. An example can be seen in Figure 2, where site 1 is the
subject site, while site 4 is the object site. Note that since we consider in this
example the grammatical object of eat to be optional, site 4 can be skipped using
an ε -transition.

〈CIRC, P 〉

10

〈SUBJ,PRO〉

〈CIRC, P 〉

2 3 4 5 6 7
〈LEX, eat〉

〈SUBJ, N〉

site 2 site 3 site 4 site 5site 1

〈DOBJ, N〉

Fig. 2. Sites of the automaton in figure 1

The transitions associated with adjuncts are called adjunct transitions. They
are grouped into adjunct sites, such as sites 3 and 5 in figure 2. Some adjunct
sites are repeatable, while others (such as determiners in some languages) are
not. When several dependencies are generated by the same repeatable adjunct
site, we distinguish them by their position, which we mark with integers. The
argument and adjunct sites are distinguished from the lexical transitions, which
are called lexical sites.

4 Parsing with fsms

The parsing algorithm is a simple extension of the chart parsing algorithm for
context-free grammar (CFG). The difference is in the use of finite state machines
in the items in the chart. In the following, we will call an fsm a t-fsm if its
supertag is t. If T is the parse table for input sentence W = w1 · · ·wn and gdg

G, then Ti,j contains (M, q) where M is a t-fsm and q is one of the accepting
states of M , iff we have a complete derivation of substring wi · · · wj such that
the root of the corresponding dependency tree is the lexical anchor of M with
supertag t. If Ti,j contains (M, q1), if there is a transition in M from q1 to
q2 labeled t, and if Tj+1,k contains (M ′, q′) where M ′ is a t-fsm and q′ is an
accepting state, then we add (M, q2) to Ti,k. Note that because our grammars

160 A. Nasr and O. Rambow

are lexicalized, each such step corresponds to one attachment of a lexical head
to another as a dependent.

Before starting the parse, we create a tailored grammar by selecting those
automata associated with the words in the input sentence. An important ques-
tion is how to associate automata with words in a sentence; we do not discuss
this issue in this paper, and refer to the literature on supertagging (for example,
[11]). The parsing algorithm is extended to lattice input in the usual manner.
The lattice represents several supertag sequences that can be associated to the
sentence to parse. At the end of the parsing process, a packed parse forest has
been built. The nonterminal nodes are labeled with pairs (M, q) where M is an
fsm and q a state of this fsm. Obtaining the dependency trees from the packed
parse forest is performed in two stages. In a first stage, a forest of binary phrase-
structure trees is obtained from the packed forest and in a second stage, each
phrase-structure tree is transformed into a dependency tree.

In order to deal with pgdg, we extend our parser by augmenting entries in the
parse table with probabilities. The algorithm for extracting parses is augmented
to choose the best parse (or n-best parses) in the usual manner.

5 Probabilistic Models

The parser introduced in Section 4 associates to a supertag sequence S =S1 . . . Sn

one or several analyses. Each analysis A can be seen as a set of n−1 attachment
operations (either adjunction or substitution) and the selection of one supertag
token as the root of the analysis (the single supertag that is not attached in
another supertag). For the sake of uniformity, we will consider the selection of
the root as a special kind of attachment, A is therefore of cardinality n.

From a probabilistic point of view, each attachment operation is considered
as an event and an analysis A as the joint event A1, . . . , An. A large range of dif-
ferent models can be used to compute such a joint probability, from the simplest
which considers that all events are independent to the model that considers that
they are all dependent. The two models that we describe in this section vary
in the way they model multiple adjuncts attaching at the same adjunct site.
Put differently, the internal structure of repeatable adjunct sites is the only dif-
ference between the models. The reason to focus on this phenomenon comes
from the fact that it is precisely at this level that much of the structural am-
biguity occurs. The two models described below consider that attachments at
argument sites are independent of all the other attachments that make up an
analysis.

What is important is that the models we present in this section change the
automata, but the changes are fully within sites; if we abstract to the level of
sites, the automata are identical. Note that this hypothesis is not entailed by
the pgdg formalism, one can produce a pgdg which changes the topology of
the automata.

The two models for adjunction will be illustrated on a simple example where
two automata c1 and c2 are candidates for attachment at a given repeatable

Parsing with Lexicalized Probabilistic Recursive Transition Networks 161

adjunct site (which we will simply refer to as a “site”). Both sites can generate
(c1|c2)∗ but associate different probabilities to the generated strings. Recall that
when several adjunctions occur at the same site, the first one is said to be
of order 1, the second of order 2 and so on. The two models described below
differ mainly in the fact the the first one (the positional model) focuses on the
nature of the attachment at order i (how probable is it to have an attachment at
order i) as well as on the number of attachments (how probable is it to have n
attachments on this site). The second model (the bigram model) focuses on the
dependency between an attachement and the preceding one (how probable is it
to have a prepositional attachment following another prepositional attachment
or an adjectival one). Both models have been used extensively in probabilistic
models for parsing, but our use is slightly different as we only use these models
for ordering within the same adjunct site. In the context of standard probabilistic
context-free grammars, these models are ususally used to model the entire right-
hand side of context-free rules.

1

P (o1 = c1)

P (o1 = c2)

P (o2 = c1)

P (o2 = c2)

P (no = 1|no > 0)

P (no = 0)

P (no > 1|no > 0)P (no > 0)
2 3 4 5

P (no > 2|no > 1)

P (no = 2|no > 1)

P (on = c2)

P (on = c1)

6 7

Fig. 3. Repeatable site with two distinguished positions

5.1 Model 1: Positional Model

The automaton for a repeatable site with two positions is shown in Figure 3. It
consists of a series of transitions between consecutive pairs of states. The first
“bundle” of transitions models the first attachment at the site, the second bun-
dle, the second attachment, and so on, until the maximum number of explicitly
modeled attachments is reached. The number of explicitly modeled attachments
is a parameter of the model. This limit on the number of attachments concerns
only the probabilistic part of the automaton, more attachments can occur on
this node, but their probabilities will not be distinguished. These additional at-
tachments correspond to the loops on state 6 of the automaton. ε-transitions
allow the attachments to stop at any moment by transitioning to state 7. Un-
der Model 1, the probability of the sequences c1c2 and c1c2c1c2 being adjoined
are:

P (c1c2) = P (o1 = c1) × P (o2 = c2) × P (no = 2)

P (c1c2c1c2) = P (o1 = c1) × P (o2 = c2) × P (on = c1) × P (on = c2) × P (no > 2)

162 A. Nasr and O. Rambow

Where variables o1 and o2 represent the first and second order adjunctions. Vari-
able on represents adjunctions of order higher than 2. Variable no represents the
total number of adjunctions performed.

5.2 Model 2: N-Gram Model

The previous model takes into account the nature of an attachment at a given
order as well as the total number of attachements but disregards the nature
of the attachments that happened before (or after) a given attachment. The
model described here is, in a sense, complementary to the previous one since
it takes into account, in the probability of an attachment, the nature of the
n − 1 attachments that occurred before and ignores the order of the current
attachment. The probability of a series of attachments on the same side of the
same node will be computed by an order-n Markov chain. The order of the
Markov chain is a parameter of the model. The first order Markov chain for our
sample repeatable site is represented as a finite state automaton in Figure 4. The
transitions with probabilities P (x|START) (P (END|x), respectively) correspond to
the occurrence of automaton x as the first (the last, respectively) attachment
at this node and the transition with probability P (END|START) corresponds to
the null adjunction (the probability that no adjunction occurs at a node). The
probability of the sequence c1c2c1c2 being adjoined is now:

P (c1c2c1c2) = P (c1|START) × P (c2|c1) × P (c1|c2) × P (c2|c1) × P (END|c2)

3

41

2
P (c1|START)

P (c1|c1)

P (c2|c2)

P (END|START)

P (c1|c2)

P (END|c1)

P (END|c2)

P (c2|c1)

P (c2|START)

Fig. 4. Repeatable site with bigram modeling

6 Extracting a pgdg From a Corpus

We first describe the algebraic part of the extraction process, then briefly de-
scribe the estimation of the parameters of the probabilistic models.

6.1 Basic Approach

To extract a gdg (i.e., a lexicalized rtn) from the Penn Treebank (PTB), we
first extract a tag, and then convert it to a gdg. We make the detour via tag

Parsing with Lexicalized Probabilistic Recursive Transition Networks 163

for the following reason: we must extract an intermediate representation first in
any case, as the automata in the gdg may refer in their transitions to any other
automaton in the grammar. Thus, we cannot construct the automata until we
have done a first pass through the treebank. We use tag as the result of the first
pass because this work has already been done, and we can reuse previous work,
specifically the approach of Chen [12] (which is similar to that of Xia et al. [13]
and that of Chiang [14]). Note that the different models discussed in Section 5
only affect the manner in which the tag grammar extracted from the corpus is
converted to an fsm; the parsing algorithm (and code) is always the same.

We first briefly describe the work on tag extraction, but refer the reader to
the just cited literature for details. For our purposes, we optimize the head perco-
lation in the grammar extraction module to create meaningful dependency struc-
tures, rather than (for example) maximally simple elementary tree structures.
For example, we include long-distance dependencies (wh-movement, relativiza-
tion) in elementary trees, we distinguish passive transitives without by-phrase
from active intransitives, and we include strongly governed prepositions (as de-
termined in the PTB annotation, including passive by-phrases) in elementary
verbal trees as secondary lexical heads. Generally, function words such as auxil-
iaries or determiners are dependents of the lexical head,2 conjunctions (including
punctuation functioning as conjunction) are dependent on the first conjunct and
take the second conjunct as their argument, and conjunction chains are repre-
sented as right-branching rather than flat.

In the second step, we directly compile this tag into a set of fsms which
constitute the gdg and which are used in the parser. An fsm is built for each
elementary tree of the tag, during its depth-first traversal. In most cases, the
tree traversal proceeds from the root to the root in a depth-first manner (but
excluding the root and foot nodes of adjunct auxiliary trees). Non-leaf nodes
are visited twice: first during the downward traversal, and then again during
upward traversal. Special attention must be paid to predicative auxiliary trees,
i.e., trees which are headed by a predicate that has a clausal argument. For
predicative auxiliary trees which are left auxiliary trees (in the sense of [15],
i.e., all nonempty frontier nodes are to the left of the footnode), the traversal
ends at the footnode. For right auxilary predicative trees (which do not occur
for English), the traversal would start at the footnode.

Each time a node is visited in the depth-first traversal, a site is built in the
corresponding automaton. Each transition in the site corresponds to an attach-
ment that can be performed at the node, or to a lexical transition. If the node
visited is a substitution node of category X , a substitution site will be created
in the fsm. The transitions in the substitution site are labeled with all the ini-
tial trees of the tag whose root has category X . If the leaf node is the lexical
root of the elementary tree, a lexical site is created with one transition, labelled
with the lexical anchor, if the elementary tree is lexicalized, or with the special

2 This is a linguistic choice and not forced by the formalism or the PTB. We prefer
this representation as the resulting dependency tree is closer to predicate-argument
structure.

164 A. Nasr and O. Rambow

t4 t28 t30t2

S

NP↓ VP

V♦ NP↓

HEAD

HEAD

N ♦

NP VP

VP∗ AdvP

Adv♦

HEAD

VP

VP∗ PP

P♦ NP↓

HEAD

Fig. 5. Sample small grammar: trees for a transitive verb, a nominal argument, and
two VP adjuncts from the right

symbol HEAD in the case of a tree schema. Finally, internal nodes of the elemen-
tary tree give rise to adjunction sites in the automaton. In the basic model in
which adjunctions are modeled as independent events, we proceed as follows. To
each non-leaf state, we add one self loop transition for each tree in the gram-
mar that can adjoin at that state from the specified direction (e.g., for a state
representing a node on the downward traversal, the auxiliary tree must adjoin
from the left), labeled with the tree name. In Section 5, we discussed two other
models that treat non-leaf nodes in a more complex manner. We omit a dull
discussion of their construction, which is straightforward.

The result of this phase of the conversion is a set of FSMs, one per elementary
tree of the grammar, whose transitions refer to other FSMs. We give a sample
grammar in 5 and the result of converting one of its trees to an fsm in Figure 63.

6.2 Parameter Estimation

During the extraction of the tagfrom the corpus, three kinds of counts are
collected for each elementary tree schema T of the grammar: the number of times
T has been selected as a root of a derivation tree, the number of substitutions of
another elementary tree schema at the different substitution nodes of T , and the
number of adjunctions of other elementary tree schemas at the internal nodes
of T . Along with the last type of counts, the direction of the adjunction (left
or right) is specified, as well as the order of the adjunction and the n preceding
adjunctions of the same direction at this node.

These counts are used to estimate the root selection probabilities of the au-
tomata (the probability that an elementary tree schema constitues the root of
a derivation tree) as well as the probabilities of their transitions. The initial
probabilities, as well as the substitution and the adjunction probabilities in
the positional models are estimated using simple add-one smoothing (actually,
add-X smoothing with X tuned to 0.00001 on a development corpus), with the

3 Due to space scarseness, we do not label the arcs of the automata of figure 6 with
both probabilities and (function, supertag) pairs.

Parsing with Lexicalized Probabilistic Recursive Transition Networks 165

0 1 2
〈PREP, t4〉〈LEX, HEAD〉

0 1
〈LEX, HEAD〉

4
〈LEX, HEAD〉〈SUBJ, t4〉

1 2 3
〈DOBJ, t4〉

P (no = 0)

P (o1 = t30) P (o2 = t30)

tM2
2

t30t4 = t28

tM1
2

P (no = 1|no > 0)

P (no = 2|no > 1)

P (o1 = t28)
×P (no > 0)

×P (no > 0)

P (on = t28)

P (on = t30)
×P (no > 1)

P (o2 = t28)
×P (no > 1)

5 6 70

P (t30|START)

P (t30|t30)

P (t28|t28)

P (END|START)

P (t30|t28)

P (END|t30)

P (END|t28)

〈LEX, HEAD〉〈SUBJ, t4〉
1 2 3

4

5

P (t28|t30) 6
〈DOBJ, t4〉

0

1

P (t28|START)

P (no > 2|no > 1)

Fig. 6. fsms derived from the grammar in figure 5. Two versions of tree t2 has been
built, corresponding to models 1 and 2.

quantities added to the counts optimized on a developpment corpus. The adjunc-
tion probabilities in the N -gram models are smoothed using linear interpolation
with lower order N -grams.

7 Conclusion

We have presented a probabilistic generative formalism for dependency gram-
mars which can be seen as a probabilistic lexicalized version of Recursive Tran-
sition Networks. The topology of the automata that constitue the grammars
can be modified in order to account for different probabilistic models. Two such
models have been discussed. We showed how pgdg can be extracted from a tree-
bank. Empirical results using gdg on the Penn Treebank have been presented
in [8] and results on a French treebank can be found in [16].

Further work on this topic will focus on the coupling of a supertagger with
the parser and the developpment of other probabilistic models.

References

1. Rambow, O., Bangalore, S., Butt, T., Nasr, A., Sproat, R.: Creating a finite-
state parser with application semantics. In: Proceedings of the 19th International
Conference on Computational Linguistics (COLING 2002), Taipei, Republic of
China (2002)

166 A. Nasr and O. Rambow

2. Woods, W.A.: Transition network grammars for natural language analysis. Com-
mun. ACM 3 (1970) 591–606

3. Hays, D.G.: Dependency theory: A formalism and some observations. Language
40 (1964) 511–525

4. Gaifman, H.: Dependency systems and phrase-structure systems. Information and
Control 8 (1965) 304–337

5. Abney, S.: A grammar of projections. Unpublished manuscript, Universität
Tübingen (1996)

6. Madsen, O., Kristensen, B.: LR-parsing of extended context-free grammars. Acta
Informatica 7 (1976) 61–73

7. Lombardo, V.: An Earley-style parser for dependency grammars. In: Proceedings
of the 16th International Conference on Computational Linguistics (COLING’96),
Copenhagen (1996)

8. Nasr, A., Rambow, O.: Supertagging and full parsing. In: Proceedings of the Work-
shop on Tree Adjoining Grammar and Related Formalisms (TAG+7), Vancouver,
BC, Canada (2004)

9. Alshawi, H., Bangalore, S., Douglas, S.: Learning dependency translation models
as collections of finite-state head transducers. cl 26 (2000) 45–60

10. Eisner, J.M.: Three new probabilistic models for dependency parsing: An explo-
ration. In: Proceedings of the 16th International Conference on Computational
Linguistics (COLING’96), Copenhagen (1996)

11. Bangalore, S., Joshi, A.: Supertagging: An approach to almost parsing. Compu-
tational Linguistics 25 (1999) 237–266

12. Chen, J.: Towards Efficient Statistical Parsing Using Lexicalized Grammatical
Information. PhD thesis, University of Delaware (2001)

13. Xia, F., Palmer, M., Joshi, A.: A uniform method of grammar extraction and its
applications. In: Proc. of the EMNLP 2000, Hong Kong (2000)

14. Chiang, D.: Statistical parsing with an automatically-extracted tree adjoining
grammar. In: 38th Meeting of the Association for Computational Linguistics
(ACL’00), Hong Kong, China (2000) 456–463

15. Schabes, Y., Waters, R.C.: Tree Insertion Grammar: A cubic-time, parsable formal-
ism that lexicalizes Context-Free Grammar without changing the trees produced.
Computational Linguistics 21 (1995) 479–514

16. Nasr, A.: Analyse syntaxique probabiliste pour grammaires de dTpendances ex-
traites automatiquement. Habilitation a diriger des recherches, UniversitT Paris 7
(2004)

	Introduction
	Related Work
	Generative Dependency Grammars
	Informal Definition
	The Sites of an Automaton

	Parsing with fsms
	Probabilistic Models
	Model 1: Positional Model
	Model 2: N-Gram Model

	Extracting a pgdg From a Corpus
	Basic Approach
	Parameter Estimation

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

