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1.1 Introduction

Tree Adjoining Grammar (TAG) is a constrained mathematical for-
malism that supports the development of lexicalized grammars for
natural languages. Let us examine the two key concepts contained in
this statement in more detail.

A constrained mathematical formalism is a mathematical device for
specifying sets of structures, such as sets of strings, sets of trees, sets
of feature structures, or other such sets. By “constrained” we mean that
the mathematical device cannot specify all possible sets. We say “math-
ematical formalism” because we are not (yet) talking about a linguistic
theory, just about formal ways to generate sets of structures. By using
the term “mathematical”’, we mean that the elementary structures and
the way in which they are used to create larger structures are defined
precisely.

We are interested in constrained mathematical formalisms for two
reasons:

e They are linguistically appealing because the scope of the theory
of grammar is restricted. We return to this issue in Section 1.3.

e They are computationally appealing because they allow us to de-
fine efficient processing models. We return to this issue in Sec-
tion 1.2.5 and in Section 1.6.2.

We now turn to the other key concept, lexicalization. One of the
most important developments in the study of natural language has been
the increasing emphasis on the importance of the lexicon. There are two
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types of motivation for this. First, many syntactic phenomena, including
those at the interface to semantics, can easily be described or explained
by referring to specific lexical items or classes of lexical items. For exam-
ple, some verbs take three arguments (1a) while others do not (1b and
1c), and among those that do, some allow the double-object construc-
tion (1a), while others do not (1d), instead allowing only a prepositional
object (1e).
(1) He told Mary a secret

*He saw Mary (to/from/...) a secret
*He saw a secret (to/from/...) Mary

*He divulged Mary a secret

o &0 T

He divulged a secret to Mary

The second type of motivation for studying lexicalized formalisms
comes from applications. In natural language processing, the use of cor-
pora has become popular and corpora typically consist of words. Thus,
it is desirable to develop grammars in a formalism that directly supports
the association of grammatical structure with words.

The best-known constrained mathematical formalism used for the
description of natural language syntax is the Context-Free Grammar
(CFQG). Not coincidentally, CFGs were defined by (Chomsky 1957), lay-
ing the foundation for both the formal study of natural languages within
linguistics and the study of formal languages within theoretical computer
science. While CFGs continue to be important tools in computer science,
their appeal to linguists has ebbed, for two reasons:

e CFGs appear to have the wrong descriptive level, since they do not
allow us to easily state the kind of lexical information mentioned
above.l We explore this issue more in Section 1.2.

e Starting shortly after the introduction of CFGs, there was consid-
erable debate as to whether all natural languages can be described
by a CFG. This debate appears to have ceased after (Shieber 1985)
argued that data from Swiss German can be interpreted as showing
that it cannot be generated by a CFG.

Thus, there has been a wide-spread conclusion that we need to go
beyond CFG in defining a formalism for natural language syntax. There
have been two ways in which this has been done. In the first approach,
the CFG is maintained, but a formal extension is added. In transforma-
tional grammar (Chomsky 1957), an initial structure is generated using

1GPSG (Gazdar et al. 1985) represents an attempt to overcome the descriptive
limitations of CFG.
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a CFG, which is subsequently changed by transformations. In Lexical-
Functional Grammar (LFG) (Kaplan and Bresnan 1982), the constituent
(c-) structure is described by a CFG, but its derivation is controled by
a separate functional (f-) structure. In Head-Driven Phrase Structure
Grammar (HPSG) (Pollard and Sag 1994), the CFG is (essentially) re-
tained as backbone, but it is augmented with unlimited feature struc-
tures. In all cases, the descriptive power is increased, as is the formal
power, so that the two problems described above are both overcome.
However, at the same time, the resulting formalisms are no longer con-
strained!? This was shown by (Peters and Ritchie 1973) for transfor-
mational grammar, by (Maxwell and Kaplan 1993) for LFG, and by
(Carpenter 1991) for HPSG.

In the second approach, CFG is not maintained, even as a compo-
nent. What is maintained is the spirit of CFG: a simple formalism in
which a sequence of context-free rewrite steps yields the result. This is
the approach followed by TAG, in which the string rewriting of CFG is
replaced by tree rewriting. As a result, TAG provides us with the right
descriptive level for developing a lexically-oriented representation of nat-
ural language syntax, including the interface to semantics. Specifically,
TAG allows us to develop grammars which are lexicalized, and whose
derivations represent structural information which CFGs cannot repre-
sent. At the same time, TAG is a constrained mathematical formalism
with appealing formal and computational properties.

In this chapter, we introduce TAG and describe some of the work
done using TAG. We start out in Section 1.2 by motivating and defining
TAG, and by comparing it further to CFG. We continue by discussing
the relationship between TAG and linguistic grammars in Section 1.3.
In Section 1.4 we present some variants of TAG. We then discuss the
relation of TAG to other frameworks in Section 1.5. Finally, we discuss
various applications of TAG in Section 1.6, including parsing, generation,
and psycholinguistic modeling. For other overviews of TAG, see (Joshi
et al. 1991, Joshi 1994, Frank 2000).

1.2 A Constrained Mathematical Formalism for Natural
Language

In this section, we will motivate Tree Adjoining Grammar by showing

how it arises from an attempt to lexicalize a context-free grammar.

2We observe that in the case of transformational grammar, later definitions
(“move-”) no longer are mathematical formalisms in our sense, as the definition of
the possible operations is somewhat vague. At the same time, the authors of trans-
formational grammar explicitly abandoned the attempt to provide a mathematical
formalism for natural language syntax.
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1.2.1 The Anatomy of Formal Systems

If we want to analyze how formal systems can be used for linguistic
theories, we must start by determining what sort of elementary struc-
tures the formalism provides, and how these elementary structures are
combined using the combining operations defined in the formalism. We
will illustrate these notions with some examples. First, consider CFGs.
In a CFG, a grammar consists of a set of rewrite rules, which associate
a single nonterminal symbol with a string of terminal and nonterminal
symbols. Here is a sample context-free grammar:
(2) a. S— NP VP
b. VP — really VP
c. VP — V NP
d. V — likes
e. NP — John
f. NP — Lyn
Each of these rules is an elementary structure in this grammar. We
combine these elementary structures by using one rule to rewrite a sym-
bol introduced by a previous application of some rule. For example, when
we use rule (2a), we introduce the nonterminal symbols (or “nodes”) NP

and VP. We may rewrite the VP node by using rule (2b) or (2¢). This
grammar generates, among others, the following string;:

(3) John really likes Lyn

Derivations in CFGs can be represented as trees: for each nonterminal
node in the tree, the daughters record which rule was used to rewrite it.
The phrase-structure tree that corresponds to sentence (3) is given in
Figure 1.

NPASVP
‘ /\

John really VP
/\
Y NP
| |
likes Lyn

FIGURE1 Phrase Structure Tree for John really likes Lyn
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Now consider a different type of mathematical formalism, Tree Sub-
stitution Grammars (TSG). In a TSG, the elementary structures are
phrase-structure trees. A sample grammar is given in Figure 2. It con-
sists of three trees, one of which is rooted in S, and two of which are
rooted in NP. Note that even though from the point of view of a CFG,
a tree is a derivation tree, not an elementary object or a derived object,
we have defined TSGs in such a way that a tree is now an elementary
object of the grammar, as well as the derived object.

ay a, as
S NP NP
N{\VP John Lyn
likes

FIGURE2 A sample TSG

We combine elementary structures in a TSG by using the operation
of substitution, illustrated schematically in Figure 3. We can substitute
tree 0 into tree « if there is a nonterminal symbol on the frontier of «
which has the same label as the root node of 8 (‘A’ in Figure 3). We can
then simply append 8 to « at that node.3 A derivation in our sample
TSG is shown in Figure 4. The trees representing the two arguments
of the verb like, John (a2) and Lyn (as3), are substituted into the tree
associated with the verb («1), yielding the well-formed tree oy, from
which the sentence John likes Lyn can be read off.

S A S

A -

a Y

FIGURE3 The Substitution Operation

3Nodes at which substitution is possible are called “substitution nodes” and are
marked with down-arrows (|).
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a, a,
S S
/\ /\
NPV VP NP VP
\% NPV John V NP
| | |
likes likes Lyn
“2\p “2p
John Lyn

FIGURE4 Substitution of arguments into initial tree of likes

CFGs and TSGs are weakly equivalent (i.e., they generate the same
string languages). However, to a linguist, they look very different. A
context-free rule contains a single “level”, i.e., a phrase-structure node
and its daughters; an elementary tree in a TSG may be of arbitrary
height. Put differently, in TSG we have increased the domain of lo-
cality of the elementary structures of the grammar. This increased do-
main of locality allows the linguist to state linguistic relationships (such
as subcategorization, semantic roles of arguments, case assignment and
agreement) differently in a TSG. As an example, take agreement be-
tween subject and verb in English. The linguist working in TSG can
simply state (by using some feature-based notation) that the verb and
the NP in subject position in tree o of Figure 2 agree with respect to
number. The linguist working in CFG has a harder time: since the verb
is in rule (2d), while the subject NP is in rule (2a), he or she cannot sim-
ply state the relation directly, since it is impossible to state constraints
that relate nodes in different elementary structures. Instead, the linguist
must propose that the NP in fact agrees with the VP in rule (2a), and
that the VP agreement features are inherited by its head in rule (2d).
The notion that the VP (and not only the verb) agrees with the subject
may be a meaningful linguistic proposition, and in fact the TSG linguist
could have adopted it as well. However, the crucial issue is that the CFG
linguist, because of his choice of formalism, was forced to adopt it, while
the TSG linguist may choose to do so or not on purely linguistic grounds.

Another example of the linguistic use of the extended domain of lo-
cality is subcategorization, which we already mentioned in Section 1.1.



Tree Adjoining Grammar: An Overview / 7

s s
NPOi/\VP NﬁP
V/NP%PQ V/N!:Q\pp
| | N
tell tell P NP

FIGURE5 Two trees for tell

We could associate tell with the two trees in Figure 5, while associating
divulge only with the one on the right (replacing tell with divulge).4 In
a CFG, we would need a separate system of features to control the ap-
pearance of arguments for the lexical heads (and perhaps more features
for strongly governed prepositions such as the to in this example); these
features are entirely superfluous in TSG.

1.2.2 Lexicalization

Now let us turn to our central concern, the role of the lexicon. We will
call a grammar lexicalized if every elementary structure is associated
with exactly one lexical item (which can consist of several words), and
if every lexical item of the language is associated with a finite set of
elementary structures in the grammar.

CFGs cannot be lexicalized in a linguistically meaningful manner.?
Consider the sample grammar given above in (2). We can see that no
lexical item is associated with rules (2a) and (2c); therefore, the grammar
is not lexicalized. It would be possible to combine rules (2a), (2c¢) and
(2d) into a single one:

(4) S —> NP likes NP

However, it is now impossible to correctly place the adverb really,
since a (lexicalized) rule of the form (2b) is no longer useful (the VP

4In some diagrams, we distinguish among different nodes which have the same
nonterminal node label by adding an integer to the label. These integers are not part
of the nonterminal node label, and are used for presentational purposes only.
'A CFG in Greibach Normal Form is a lexicalized CFG; however, in general,
the Greibach Normal Form of a linguistically meaningful CFG will not itself be
linguistically meaningful.
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node having been eliminated). The adverb cannot be inserted between
the subject and the verb.

There is a second way of lexicalizing a CFG: instead of merging the
two phrase-structure rules into a single rewrite rule, we can combine
them and consider the result — a fragment of a phrase structure tree —
an elementary structure. Put differently, we move from CFG to TSG.
For example, tree a; in Figure 2 is the result of combining rules (2a),
(2c) and (2d). As desired, tree oy is associated with exactly one lexical
item, the verb likes. Thus, we have now obtained a TSG from a CFG. We
can derive the sentence John likes Lyn as shown previously in Figure 4.

It turns out that a TSG is not really what we want, either: we are
again faced with the problem of getting the adverb in the right place,
since there is no node into which to substitute it.® This problem is
solved by the tree composition operation of adjunction, first introduced
by (Joshi et al. 1975). Adjunction is shown in Figure 6. Tree « (called
an “initial tree”) contains a nonterminal node labeled A (not on its fron-
tier); the root node of tree 8 (an “auxiliary tree”) is also labeled A, as is
exactly one non-terminal node on its frontier (the ‘foot node”). All other
frontier nodes are terminal nodes or substitution nodes. We take tree o
and remove the subtree rooted at its node A, insert in its stead tree
0, and then add at the footnode of 5 the subtree of o that we removed
earlier. The result is tree . As we can see, adjunction can have the effect
of inserting one tree into the center of another. Our linguistic example is
continued in Figure 7. Tree (5, containing the adverb is adjoined at the
VP node into tree ay. The result is tree as, which corresponds to sen-
tence (3). Note that as is composed of trees oy, as, s and (31, each of
which correspond to exactly one lexical item, in contrast to the grammar
given above in (2).

A formalism in which the elementary structures of a grammar are
phrase structure trees and in which the combining operations are ad-
junction and substitution is called a Tree Adjoining Grammar or
TAG. (Schabes 1989) has shown that a tree composition system is only
lexicalizable if the composition operations include aLdjunction.7 Thus,
the process of lexicalizing a CFG naturally leads to a TAG. Note that
while we can lexicalize a TAG, a TAG need not be lexicalized; to refer
specifically to a lexicalized TAG, the abbreviation LTAG is often used.

As we will see, TAGs are more powerful formally than CFGs, meaning

6Hauving two verbs like, one of which also subcategorizes for an adverb, does not
solve the problem, since it does not generalize to multiple adverbs (in addition to
bei]}g linguistically unappealing).
(Rogers 1994) and (Schabes and Waters 1995) show that TAG with adjunction
restricted in certain ways can also lexicalize a CFG. See Section 1.4.1.
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S A S
A A ==
A*
a B y

FIQURE6 The Adjunction Operation

Mg B1 e " s
NP VP realy VP* NP VP
John V NP John really VP
| |
likes Lyn \% NP

likes Lyn

FIQURE?7 Adjunction of really into initial tree

that they can derive more complex languages than CFG. They are also
more difficult to parse.

1.2.3 Derived Tree and Derivation Tree

CFG is a string-rewriting formalism (a nonterminal is replaced by a
string), and therefore a CFG derives a set of strings. TAG is a tree-
rewriting formalism (a nonterminal in a tree is replaced by an entire
tree), and therefore it derives a phrase-structure tree, called the “de-
rived tree”. (The derived tree for our example tree a5 in Figure 7.) For
both CFG and TAG, a derivation (of a string in CFG or a tree in TAG)
results in a second structure, the “derivation tree”.8 The derivation tree
records how the derived string (CFG) or derived tree (TAG) was as-
sembled from elementary rules (CFG) or elementary trees (TAG). This
structure is similar for both CFG and TAG since both are context-free

SIt is sometimes said that in a CFG, the derived tree is the same as the derivation
tree. This is not strictly speaking correct. As a string-rewriting formalism, a CFG
does not produce any derived tree at all, only a derived string.
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rewriting systems:9 we can perform a rewrite operation independently
of the context of the symbol in the string (CFG) or tree (TAG) that
we are rewriting, as long as the label matches the right-hand side of the
rule (CFG) or the root node label (TAG).

We note at this point an issue in terminology that may cause con-
fusion. In a CFG, nonterminal nodes must be rewritten in a derivation
for the derivation to terminate successfully, while terminal nodes may
never be rewritten. Thus, a derived string in a CFG always contains only
terminal symbols. However, the derived trees in a TAG contain both ter-
minal and nonterminal symbols. The apparent difference can easily be
explained: the notions of “terminal symbol” and “nonterminal symbol” in
TAG do not actually refer to tree rewriting, but are used in the same way
in TAG elementary and derived trees as they appear in CFG derivation
trees. In a TAG, a terminal symbol may never be rewritten, but not all
nonterminal symbols must or even may be rewritten. We will return to
this issue after we have introduced the notion of adjunction constraint
in Section 1.2.4.

Because a TAG can be lexicalized, there is an important difference in
the linguistic use of the derivation tree for CFG and TAG. Indeed, the
derivation tree of a CFG derivation is a phrase-structure tree like the
derived tree of TAG. In the derivation tree of TAG, each of the elemen-
tary trees used in the derivation is represented by a single node. If the
grammar is lexicalized, we can identify this node by the name of the tree
and the (base form of the) lexeme with which it is lexicalized. If a tree
t1 is substituted or adjoined into a tree ¢, then the node representing t;
becomes a dependent of the node representing ¢, in the derivation tree.
Furthermore, the arcs between nodes are annotated with the position in
the “target tree” at which substitution or adjunction takes place.10 In the
TAG literature, this annotation is in the form of the tree address of the
node (using a formal notation to uniquely identify nodes in trees, with-
out reference to linguistic concepts). The derivation tree for the example
derivation above is shown in Figure 8 on the left. However, in analogy
to notation used in linguistic literature, we can simply assign grammat-
ical function labels to argument positions, and introduce the convention
that all other positions are attribute positions, marked as Adjunct. The

In the term “context-free grammar”, the “string-rewriting” is implicit since no
ot}ll r rewriting systems were known when CFG was first defined.

n the standard definition of adjunction, only one tree may adjoin or substitute
at a given node. (Schabes and Shieber 1994) propose that more than one modifier
auxiliary tree (see Section 1.3.1 for an informal definition) may adjoin at a single
node. This is useful since otherwise chains of modifiers are adjoined into each other,
arguably not resulting in a linguistically informative derivation structure (see below).
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“linguistic” derivation tree for the example derivation above is shown in
Figure 8 on the right. In usual TAG notation, the node address for sub-
ject, adjunct and object are respectively 1, 2, 2.2. We can see that the
derivation structure is a dependency tree which closely resembles the
structures proposed in dependency grammars, such as (Mel’¢uk 1988).
We return to the relation between TAG and dependency grammars in
Section 1.5.1.

like like
1 2 SUBJ ADJUNCT
22 OBJ
John Lyn really John Lyn really

FIGURES Derivation Tree for John really likes Lyn (left) and linguistic
interpretation (right)

1.2.4 Adjunction Constraints and Features

Nodes in elementary trees can be annotated with adjunction constraints.
There are three types of constraints:

e Selective adjoining constraint (SA). The SA constraint is a list of
auxiliary trees which may be adjoined at the node (or a list of
initial trees which may be substituted).

e Null adjoining constraint (NA). The NA constraint is a special
case of the SA constraint, namely a SA constraint with an empty
list: no adjunction is possible at this node.

e Obligatory adjunction constraint (OA). This constraint is a boolean
which says whether or not adjunction at this node is obligatory.

A node cannot both have an NA constraint and an OA constraint.
Thus, we have four options: a node has no constraint; a node has a non-
obligatory SA constraint (usually written SA(G4, ..., 8,) where (4, ...,
B, are the trees which may be adjoined at the node); a node has an
obligatory SA constraint, usually written QOA(f1, ..., 8,); or a node has
an NA constraint. An example is shown in Figure 9. The initial tree o
has a non-finite verb, so in order to complete the derivation of a sentence
an auxiliary tree must be adjoined. Two adjunctions are possible: either
the passive auxiliary is or the perfective auxiliary has (we disregard
morphological variation for now).

Note that an NA node is, from the tree-rewriting perspective, a non-
terminal symbol (since it cannot be rewritten), while an OA node is
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s VP VP
/N /N /N
NPy VP oa(g. B) Aux  VP' Aux  VP'

‘ 102

\ has is
|

seen

FIGURE9 Forcing the adjunction of an auxiliary using the obligatory
adjoining constraint

a nonterminal symbol for tree rewriting (it must be rewritten). Nodes
marked with no constraints or with an SA constraint represent either
nonterminal or terminal nodes for tree rewriting. Thus we see that
adjunction constraints in TAG play the same role as the nontermi-
nal/terminal distinction in CFG, namely that of regulating derivations.

(Vijay-Shanker 1987) proposes to annotate each node not with an
adjunction constraint, but with feature structures, or more specifically,
with two feature structures, called the top feature structure and the bot-
tom feature structure. In linguistic applications, the top feature structure
of a node describes (roughly speaking) the relation of the node to the
tree above it, while the bottom feature structure describes the relation
of the node to the subtree below it. During a derivation, when an auxil-
iary tree (3 is adjoined at a node 7, the top feature structures of  and of
the root of 3 are unified, and the bottom feature structures of  and of
the footnode of § are unified. (This is shown schematically in Figure 10,
where v represents unification.) If unification fails, the adjunction can-
not be performed. At the end of a derivation, at all nodes all top and
bottom feature structures are unified. If unification fails at at least one
node, the derivation is not yet complete.

While adding feature structures to nodes increases the generative
capacity of TAG greatly (TAG becomes undecidable), (Vijay-Shanker
1987) shows that if the feature structures are non-recursive (i.e., bounded
in size by some constant fixed for each grammar), the resulting system
has the same formal properties as TAG with adjunction constraints. In
fact, the effects of adjunction constraints can be obtained with non-
recursive feature structures, and vice versa. To see this, consider our
example from earlier, now expressed using feature structures rather than
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2
A
t1
Am
3
A p3

tlvt2
A o

t3
Ablvb3

FIQURE10 Schematic depiction of use of feature structures in adjunction

adjoining constraints (Figure 11). (The example is intended only to show
how the feature structures work; we omit much linguistic detail.) The
top feature structure on the VP node in tree a specifies [ tense:+ |,

reflecting the fact that above this node, the tree behaves like a tensed
clause (it has a subject). The bottom feature structure on the same VP
node specifies [ tense:— ], reflecting the fact that the tree rooted at

the VP nodes does not, in fact, contain any tense element (the anchor
of the tree, seen, is not a tensed verb form). Now, the top and bottom
feature structures cannot unify, and therefore, in order to use tree « in a
derivation, a tree must be adjoined at the VP node. We thus obtain the
effect of the obligatory adjoining constraint. If we adjoin trees (3; or fa,
the derivation can terminate: the top feature structure of the VP node
of o can unify with the top feature structures of the roots of these two
trees (because, in this particular grammar, the value for tense is not

specified), and the bottom feature structure of the VP node can unify
with the bottom feature structures of the root nodes of these two trees
(again, because no value is specified), so adjunction is possible. Then
(after substituting a subject at the NP node), at the end of the derivation
we can unify all top and bottom feature structures. However, adjunction
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a B 1 B 2
[tense: + ] [tense: ] [tense: ]
S [tense+ ] VP [ense:+ ] VP Fenser + ]
NP} VP E:i q A‘ux VP*[I:j % Arx VP g:i %
\ has is
|
seen B 3
vp [tense ]
[ISTISEZ - ]
i VT
been

FIGURE11 Forcing the adjunction of an auxiliary using bounded feature
structures

of (5 is not successful: while the adjunction is initially possible, at the end
of the derivation we cannot unify the feature structures at the higher VP
node. We thus obtain the effect of the obligatory adjoining constraint.

But note that in the case where we want to adjoin 3, we can save the
derivation by adjoining at its root node (31, to obtain a sentence such
as Matthew has been seen. This derivation cannot easily be obtained
using adjunction constraints. Another example of the convenience of
feature structures as compared to adjunction constraints can be seen
from Figure 12. Here, we specify tense: [1] both in the bottom feature
structure of the S node and the top feature structure of the VP node.
This means that the values of the tense feature in these two feature
structures must be identical (but more is not specified). Thus, we force
the adjunction of the auxiliary either at the S node, or at the VP node,
but disallow adjunction at both nodes. As a result, we can derive has
John seen and John has seen, but not has John has seen, nor John
seen. If we had only adjunction constraints, the grammar would need to
include a special tree which requires adjunction at the S node as opposed
to the VP node. For these reasons, non-recursive feature structures have
become standard in linguistic uses of TAG.

(Vijay-Shanker 1992) observes that the feature structures, rather
than the nodes themselves, are controling the derivation, and suggests
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a B 1 B 2
Y I i ]
/\ [tense: [l]] /\ [tense: - ] /\ [tense: R ]
NPy V‘P [rose - ] A‘ux VP [ine ] A‘ux VP*Dm: ]
\‘/ has is
seen B, [es= ] B, [ew= ]
S [tense: + ] S [tense: + ]
ATy AN
S [l ] P e ]
| |
has is

FIGURE12 Forcing the adjunction of an auxiliary using bounded feature
structures

that each node in a TAG tree should be split up into two quasi-nodes,
each associated with exactly one feature structure, yielding quasi-trees.
The relation between the two quasi-nodes is one of (not necessarily im-
mediate) domination: the two quasi-nodes in a pair may coincide, or
other nodes may come between them (through adjunction), but they
will always be in a domination relation. D-Tree Substitution Grammar
(Rambow et al. 1995) and Tree Description Grammar (Kallmeyer 1996)
can be seen as a formalism based on quasi-trees rather than trees (see
Section 1.4.2).

1.2.5 Formal Properties

In this section, we summarize the main formal results about TAGs. A
general overview can be found in (Joshi et al. 1991).

Weak and Strong Generative Capacity

The set of languages generated by a TAG, L(TAG), includes the set
of languages generated by a context-free grammar, £L(CFG). This can
easily be seen: given a context-free grammar, we create a new tree ad-
joining grammar by taking each context-free rewrite rule of the form
A — « (where « is an arbitrary string made up of nonterminal and
terminal strings) and transform it into an initial tree with root labeled
A and daughter nodes labeled (from left to right) with the symbols in «.
Nonterminal symbols become substitution nodes. Derivations in the thus
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created TAG proceed entirely using substitution, mirroring that in the
corresponding CFG exactly. However, TAG can also generate languages
which a CFG cannot. To see this, consider the grammar in Figure 13. If
we adjoin tree 3 into itself at the center node labeled A repeatedly, and
then adjoin the resulting tree into tree o at the end of the derivation,
we can derive any string in the language count-4 = {a"b"c"d"|n > 0}.
This language, as is well known, is not in £(CFG). (Note that the other
two nodes labeled A in 3 are marked with the null-adjunction constraint,
so no other derivations are possible. It is not known whether a TAG
without null-adjunction constraints can generate count-4 .)

a: B:

a d
€ A
b c
A NA

FIGURE13 A TAG for the language count-4

The grammar in Figure 13 generates a string language that a CFG
cannot generates, and thus shows that the weak generative capacity of
TAG exceeds that of CFG. But in addition it of course also generates
a tree language that a CFG cannot generate, and thus shows that the
strong generative capacity of TAG exceeds that of crg. U1 However, there
are also tree adjoining grammars that generate string languages which
a context-free grammar can generate, but that generate tree languages
which no context-free grammar can generate. An example is shown in
Figure 14, which generates the string language count-2 = {a"b"|n > 0}
which is clearly a context-free language. However, the generated tree
language cannot be generated by any CFG: to generate the kind of trees
generated by the grammar in Figure 14, the context-free grammar would
first need to count how many a’s it has generated, before generating the

11Terminology is a bit sloppy here: a CFG does not actually derive a tree; rather,
the tree is the derivation tree for a CFQG, as discussed in Section 1.2.3. We use the
sloppy terminology for convenience in this section.
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same number of b’s. Clearly, a CFG cannot do this.

a: B:

a
€ A
b
A NA

FIGURE14 A TAG for the language count-2 which derives trees a CFG
cannot derive

There are languages which are not in £(TAG), i.e., which cannot be
generated by any TAG. Among these languages is count-5 , and indeed
count-n  for any n > 5. This can be shown using the pumping lemma
for TAG (Vijay-Shanker 1987). However, by constructing an equivalent
linear bounded automaton, it is easy to show that £(TAG) C L(CSG),
i.e., any language that a TAG can generate can also be generated by
a context-sensitive (string-rewriting) grammar. (The inclusion is not
proper because of count-5 .)

While TAG can generate tree languages which no CFG can generate,
the set of derivation trees of a TAG is in fact a recognizable set (i.e., a
set of trees that can be generated by a CFG). This is not surprising, as
a TAG derivation is a context-free tree derivation in the same sense that
a CFG derivation is a context-free string derivation. Thus, in fact, TAG
and CFG have the same sets of derivation trees.

For some analyses, we are not interested in the string sets that TAG
can generate, nor in the tree sets. Instead, we are interested in how we
can derive a particular string or tree set from a given grammar. In this
case, we are interested in the derivational generative capacity of TAG
(Becker et al. 1992). Joshi et al. (in this volume) is an example of a
study of TAG based on constraints on derivations rather than on the
derived tree or string.

Finally, we observe that languages generated by TAG are semilinear:
this means that the Parikh mapping of a tree adjoining language is a
semilinear set. The Parikh mapping of a language is a set of vectors,
each of which corresponds to one string in the language and records
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how many times each of the terminal symbols of the grammar occur in
the string. A set of vectors is semilinear if it is a finite union of linear
combinations of a base set of vectors. Note that as a consequence, tree
adjoining languages, like context-free languages, are letter-equivalent to
regular languages (i.e., for each tree adjoining language L1, there is a
regular language Lo such that every member of L, is a permutation of
the terminal symbols of a member of Lo, and wvice versa).

Formal Automata for TAG

(Vijay-Shanker 1987) defines the Embedded Pushdown Automaton
(EPDA) and proves it to be formally equivalent to TAG. Like the PDA
(the automaton associated with CFG), the EPDA consists of a push-
down store, an input tape with a one-way read-only scanner, and a finite
state automaton that controls the actions of the automaton. However,
the push-down store has a more complex structure than that of a PDA:
it is a stack of stacks of stack symbols, rather than a simple stack of
stack symbols. In a move of the EPDA (called the WRAP move), the
top element of the top stack is replaced by a finite sequence of new stack
symbols, and in addition finite sequences of new stacks are inserted just
below and above the top stack.

(Schabes 1990) defines a bottom-up version of the EPDA, called
BEPDA. (Becker 1994) defines a different automaton which uses two
stacks rather than a stack of stacks.

Parsing Complexity

The recognition problem (and the parsing problem) for TAG can be
solved in polynomial time; in fact, the time complexity is in O(n®). To
see this, the standard bottom-up chart parser for CFG can be extended
to TAG (Vijay-Shanker 1987). Entries are stored in a four-dimensional
table to account for the fact that partial derivations may include a foot-
node; hence, not only are two indices needed to record the beginning
and the end of the string, but also two indices are needed to record the
beginning and the end of the string which is dominated by the footnode.
For a discussion of parsing, see Section 1.6.2.

Equivalence to Other Formalisms

As was shown in (Vijay-Shanker and Weir 1994),12 TAG is weakly equiv-
alent to three other formalisms: Linear Index Grammar (LIG), Head
Grammar (HG), and Combinatory-Categorial Grammar (CCQG). Inter-
estingly, all three formalisms and TAG had been defined independently
of each other, but all four had been inspired directly from the needs of

12Some of the results had been published in previous publications by the same
authors. The inclusion of £L(TAG) in L(HG) was first shown in (Seki et al. 1991).
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describing natural language syntax. We briefly describe the three for-
malisms and the equivalence result.

In a linear index grammar (LIG) (Gazdar 1988), a context-free gram-
mar is augmented with a stack of special stack symbols. At each rewrite
step, one or more stack symbols may be removed from the top of the
stack, one or more stack symbols may be added to the top of the stack,
and the entire stack may be copied to at most one of the newly intro-
duced nonterminal symbols.

A head grammar, defined by (Pollard 1984), is a string-rewriting
formalism in which, in addition to the simple juxtaposition provided by
context-free grammars, strings can be wrapped around other strings in a
rewrite operation. This operation of wrapping directly mirrors the effect
of adjunction.

A combinatory-categorial grammar (Steedman 1990) augments the
standard categorial grammar (which is weakly equivalent to CFG) with
a stack of categories that can be associated with a category during a
derivation and operations that allow for the manipulation of this stack.
This stack is similar to the stack of an LIG.

Pitsch (in this volume) relates TAG to a version of Hypergraph
Grammar.

Mild Context-Sensitivity

The notion of a mildly context-sensitive language was first introduced
by (Joshi 1985). The goal is specifically to describe the class of formal
languages needed (or well suited) for the description of natural language
syntax, and as a result, the criteria are not all simple formal language
criteria:

e The class of languages includes all context-free languages.
e The languages in the class are polynomially parsable.

e The languages in the class capture only certain types of depen-
dency, such as nested or cross-serial dependencies, but perhaps
not those exhibited by the mix languages (in which the strings
are composed of the same number of a fixed number of different
terminal symbols).

e The languages in the class have the constant-growth property, i.e.,
if all the strings in the language are arranged by size, then the
difference between two consecutive lengths is always bounded by
some constant (for that language). Note that the constant growth
property is a consequence of the stronger requirement of semilin-
earity.
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A formalism which generates only mildly context-sensitive languages
is also called mildly context-sensitive. TAG is mildly context-sensitive
in this sense.

1.3 Natural Language Syntax in TAG

TAG is a formalism and not a linguistic theory: TAG can be used to
model several linguistic theories (see below), and several linguistic anal-
yses are usually possible in TAG for a given phenomenon. However, the
original properties of TAG (its extended domain of locality and its lex-
icalization) have led to original analyses of some linguistic phenomena,
independently of a particular linguistic theory. This section is devoted to
the “TAG way” of dealing with lexical categories, extraction phenomena,
raising constructions and idioms. Intuitively speaking, TAGs enable one
to conjoin the merits of a constituency-based and a dependency-based
approach to syntax: the derived tree represents the constituent structure
while the derivation tree is closer to a dependency representation. Most
of the following analyses exploit this duality of TAG representations.

1.3.1 Supertags

It is well known that parts of speech tend to represent distributional
classes that are needed to describe syntactic constructions and general-
izations. It is also well known that they are not sufficient since different
items with the same part of speech may exhibit quite different syntactic
behaviors: compare the English verbs eat and think, the adverbs prob-
ably and wvery, the adjectives other and asleep. Subclassifications are
usually added (such as transitive for verbs or predicative for adjectives)
but ultimately one needs a complete description of the syntactic con-
text called for by each item (as sketched by (Chomsky 1965) with the
notion of subcategorization). It is one of the merits of the TAG formal-
ism to associate such complete syntactic descriptions with each lexical
item. In this respect, while parts of speech represent the tags associated
with each word of a language, TAG elementary trees can be seen as the
“supertags” associated with them (Srinivas and Joshi 1999).

While parts of speech are usually hybrid objects (coding some se-
mantics, and morphology on top of syntax), TAG supertags represent
more genuine syntactic classes. Examples of supertags for the previously
mentioned English items are as in Figure 15.

The adverb very only premodifies an adjective, other is only used
as a prenominal attributive adjective (cf the other persons, i.e. with a
right N rooted auxiliary tree), the adjective asleep is mainly used as a
predicative complement (cf John was asleep, i.e. with an initial A rooted
initial tree). The verb eat is used transitively (with an NP node for
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S S
N N
NPO| VP NPO| VP

N

Y NP1] Y S1*
eat think

A N
/\ /\
A N* Adv A* Adv S*

asleep ‘ ‘
other very probably

FIGURE15 Some elementary trees (=supertags) for verbs, adverbs and
adjectives

its subject and one for its object) while the verb think is used with a
sentential complement (with an S footnode); see below for the motivation
for using an auxiliary tree for verbs with a sentential complement.

Linguistic assumptions about the well-formedness of elementary trees
are usually made in order to constrain the type and the topology of the
elementary trees associated with each lexical item. Some such assump-
tions that are standardly made are the following:13

e An elementary tree is the maximal syntactic projection of a lexi-
cal item, with the possible addition of functional projections (the
“extended projection” of (Grimshaw 1991)) and an additional level
for adjuncts which determines at what nodes they can adjoin (and
in what direction).

e Auxiliary trees are used for modifiers, functional categories (deter-
miners, auxiliaries, ...), predicates with verbal complements and
raising predicates.

e A predicative lexical item has (substitution or foot) nodes for each
of its subcategorized arguments in its elementary trees (Predicate
Argument Cooccurrence Principle or PACP). If a predicative lexi-
cal item anchors an auxiliary tree, the auxiliary tree is referred to
as a predicative auziliary tree.

e An adjunct has a foot node for the category it modifies (usually
its semantic argument) in its elementary tree. Auxiliary trees an-
chored by adjuncts are referred to as modifier auxiliary trees.

BSome work challenges one or more of these traditional assumptions, for example
(Lee 1993) or (Rambow and Lee 1994) for the adjoined argument hypothesis.
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e An elementary tree is associated with some atomic (i.e., non-
compositional) semantic meaning.

Standard assumption are also made about the number of elementary
trees associated with a given predicate, and about their grouping:

e Predicates are associated with different elementary trees corre-
sponding to their different transitivity alternations (passive, mid-
dle), the different realizations of their arguments, and the different
types of clause they can anchor (relative, interrogative, ...).

e The elementary trees possibly associated with predicates with a
given subcategorization frame are gathered into tree families, The
number of elementary trees usually associated with a lexical item
comprises a certain amount of redundancy and solutions both the-
oretical and practical (for grammar development) have been pro-
posed to overcome this (see below, 1.6).

1.3.2 Extraction

The interest of using TAG in analyzing extraction phenomena was first
demonstrated in the seminal paper by (Kroch and Joshi 1985). The
extended domain of locality of TAG enables us to localize the filler-gap
dependency (or filler-head dependency) inside an elementary tree. The
relation between the extracted argument and the corresponding gap (or
the predicate that subcategorizes for it) is thus kept local and no special
device (movement or unbounded feature percolation) is needed. The
apparent long distance dependency is captured by the adjunction of the
matrix clause between the filler and the gap (or its predicate). Let us
take the example of the English interrogative clause:

(5) Which book do you know that Max read?

S
S
NP; S Vv g
/\
which book

NPO VP ‘ NPO VP

‘ /\ do ‘
Max \‘/' NP1 you Y S1*
read e’i know

FIGURE16 Adjunction of a matrix clause

The interrogative clause anchored by read is represented by an ex-
tended elementary tree and a node for the fronted wh-complement. The
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matrix clause do you know is represented by an auxiliary tree adjoining
at the S internal node. The derivation tree exhibits the correct depen-
dency between which book and read, as well as between Max and read,
as can be seen in Figure 17 on the bottom.

S

NP; S
A /\
Which V S

book ‘
do NPO VP

you V S1

N\
think NP0 VP

Max V NP1

read e;
read-n0Vnl

book-NP(1) Max-NP small(2.1) think-n0Vs1(2)

which-D(0) (0)do you(2.1)

FIQURE17 Derived tree (above) and derivation tree (below)

One may notice that, as in modern versions of HPSG or LFG, no
trace is needed and the same representation without an empty NP would
be as satisfactory as the previous one from the TAG point of view. An ad-
vantage of this analysis, as pointed out by (Kroch and Joshi 1985, Kroch
1987), is that no additional constraint on movement (or feature percola-
tion) is needed to handle syntactic constraints on extraction (or island
constraints). They can be represented as constraints on the topology of
elementary trees. To rule out wh-fronting out of wh-islands in English for
example, one rules out elementary trees with several fronted nodes for
arguments (marked for the wh-feature). The constraints will be different
for languages allowing for such phenomena. For example, in Romanian
we can have multiple wh-fronting in one clause. Thus, we would not be
able to rule out wh-movement from wh-islands in the same way that we
do in English — but crucially, Romanian does allow wh-movement from
wh-islands, and there is nothing we need to rule out!
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1.3.3 Raising Constructions

The relevance of TAG to raising constructions was also demonstrated
by (Kroch and Joshi 1985). It essentially draws upon the GB analysis
(the raised argument is not subcategorized for by the raising verb) while
avoiding the difficulties of a deep structure with a S argument (difficulties
pointed out by (Bresnan 1982) among others). The main intuition is that
raising verbs are adjoined to S-rooted elementary trees projected by the
infinitival (or gerund) verb. An example is shown in Figure 18, with
the raising verb can adjoining to the VP node in the elementary tree
anchored by swim.

derived tree

S VP = S
NP| VP vV  Vp* NP VP
R A

can V VP

NP \‘/

‘ swim ‘
John

John can swim

derivation tree
swim

(NP)John can(V)

FIQURE18 Raising construction

In the derivation tree, it is clear that there is no dependency be-
tween the raised argument (here the subject) and the raising predicate
(here can). The dependency relation between the raised subject and the
bare infinitive is thus kept local. One thus avoids the difficulties of the
mapping between syntactic argument and semantic arguments (raising
verbs being special cases of verbs not assigning semantic roles to all their
subcategorized argument) found in LFG or HPSG (cf Pollard and Sag
1994’s raising principle). Agreement is handled by features which can
be shared between the subject node and the upper part of the VP node
(automatically updated in case of an adjunction of a raising verb). For
English auxiliaries, which can be analyzed as a special form of raising
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verbs,14 alternative adjunction to the S root node is also allowed (for Did
John arrive on time?). For other languages, further distinctions may be
made between raising verbs (see (Abeillé 1991) for French).

For cases of object raising, one can distinguish tough constructions,
and exceptional case marking (ECM) verbs. For tough constructions,
one can define an auxiliary tree for adjoining the tough adjective, which
takes the infinitive as its argument (Abeillé 1991).

derivation tree

NP
NP~ /\ VP book-N
B R DN |
N /\ A VP* to-read-n0Vn1(0)
| vV NP1 | |
book \ ‘ difficult difficult-Avp1(2)
to-read e;

FIGURE19 Tough adjectives

Non-tough adjectives (like possible), on the other hand, only adjoin
to N. One thus avoids the idiosyncrasies associated with the traditional
tough movement:

(6) a. It is possible / easy to fire John
b. John is * possible / easy to fire
For ECM verbs, one has to resort to the small clause analysis: the
ECM takes a sentential complement, with the “raised” argument in the
same elementary tree as the infinitival (as is done in the XTAG grammar
(XTAG-Group 1999)).15
There is thus no direct link with the passive that some ECM verbs
allow for:
(7) a. They expected John to arrive any minute
b. John was expected to arrive any minute

In the XTAG grammar, the passive of ECM verbs is analyzed as a
reduced subject raising construction (with the same auxiliary tree as

14Auxiliaries are typically distinguished from raising verbs by assuming that the
former do not have any arguments of their own and simply modify the semantic
content of the verbal head they are adjoined into. This is not true for true raising
verbs, which in addition to the verbal head they adjoin into can also have additional
arguments: John seems to all of us to have left. Such sentences can be derived as
shown in Figure 18.
or an analysis of ECM verbs in analogy to raising-to-subject verbs (using an
extension of TAG), see (Kroch and Rambow 1994).
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/S\ /S\
NPO| VP NPO| VP

/ vV S1* v
NP | NP |

‘ expect \ to-swim
we John

FIGURE20 Derivation of ECM construction
seem).

VP
N\
A% VP
is \‘/ VP*

expected

FIGURE21 Auxiliary tree for the passive of an ECM verb

The same holds for copular constructions, which are analyzed as
raising constructions, headed by the predicative complement, with the
copular verb adjoining between the subject and the predicative anchor
(cf (XTAG-Group 1999)).

In related work, (Harley and Kulick 1998) discuss the issue of raising
verbs in VSO languages such as Welsh, which appears to require multi-
component TAG (see Section 1.4.2).

1.3.4 Idioms

Non compositional or semi-compositional phenomena are always a chal-
lenge for formal models. LTAG offers an interesting way of representing
idiomatic expressions which are non compositional from the semantic
point of view but follow regular syntactic rules. Expressions like to pull
NP’s leg or to take advantage of NP need to be decomposed syntacti-
cally (to explain the associated passive or relative clause) but not se-
mantically.l Abeillé and Schabes (1991, 1996), Abeillé (1995) proposes
to associate with such expressions multi-anchored extended elementary
trees such as those in Figure 22.

16Some authors have challenged the view that all idioms are non compositional.
The proposed TAG representation is especially suited for those that are not.
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S
N NPOLAVP

A% NP
‘ /\ take N PP

‘ advantage P NP1]
NP1|’s leg \f
o

FIGURE22 Elementary trees for idiomatic expressions

On the one hand, their regular syntactic topology make them reg-
ular candidates for most syntactic rules, on the other hand their being
elementary trees makes them semantic atoms. The derivation tree shows
this semantic unity, and ambiguous expressions with either a literal or
an idiomatic interpretations (like to pull one’s leg) can be disambiguated
only if one looks at the associated derivation tree (Figure 23).

Literal reading Idiomatic reading
pull-n0Vn1l pull-leg-n0Vdn1N
/\ /\
Mary-NP(1) leg-NP(2.1) Mary-NP(1) John-NP(2.2.1.1)
\
’s-D(0)
|
John-NP(1)

FIGURE23 Two derivations trees for Mary pull John's leg

The literal reading correspond to the derivation starting from the
transitive tree for the verb pull which has two arguments: Mary and leg,
both substituted. The idiomatic reading correspond to a more compact
derivation tree,starting with the multi-anchored idiomatic tree with only
two arguments being substituted: Mary and John. It is worth noting that
the associated derived trees are the same.

1.3.5 Cross-Serial Dependencies in Dutch

As in other verb-final languages such as German, embedded clauses in
Dutch can occur before the (clause-final) verb in a recursively embedded
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construction. However, the order of the verbs in the two languages differ:
while in German, the dependencies between the verbs and their argu-
ments are nested, they are cross-serial in Dutch.17 Consider the following
sentence:

(8) ...omdat Wim Jan Marie de kinderen zag helpen
...because Wim Jan Marie the children saw to help

leren zwemmen
to teach to swim

...because Wim saw Jan help Marie teach the children to swim

The LTAG analysis in Figure 24 is based on those proposed in (Joshi
1987a, Kroch and Santorini 1991). The main verb of each clause is
“raised”, an analysis proposed independently of the TAG analysis in the
GB literature. We then adjoin each clause into its immediately depen-
dent clause at the S node immediately below the root node. This “pushes”
both verbs away from their nominal arguments, even though they orig-
inate in the same elementary structure. The order of the verbs in the
final sentence simply follows from the way the elementary structures are
adjoined; no global word-order rules are necessary.

Note that, as in the case of long-distance wh-extraction discussed
above, the correct word order falls out from the phrase structure speci-
fied in the elementary trees projected from lexical items; no system for
relating trees or parts of trees beyond the formal operations of adjunc-
tion and substitution are needed.

1.3.6 Other Syntactic Issues

Many other syntactic issues have been studies in the extended TAG
framework. We mention only some. (Heycock 1987) studies the Japanese
causative. (Rambow and Lee 1994) and (Rambow 1994a) discuss scram-
bling in German and Korean. Hockey and Mateyak (in this volume)
use a system of features to account for determiners in English. Finally,
Mahootian and Santorini (in this volume) use TAG as a model for the
grammar of bilingual speakers, and show how TAG makes correct pre-
dictions about intra-sentential code-switching.

1.3.7 Semantics

With idiomatic expressions, one sees that TAG syntactic analyses may
lead to semantic-like representations: the derivation trees represent

17(Shieber 1985) used similar data from Swiss German to show that CFG is not
powerful enough to derive these constructions. It is therefore particularly interesting
that we can give an simple account in LTAG.
e would like to thank Hotze Rullmann and Marc Verhagen for helping us with
this example.
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|
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Wim Jan Marie

S S
A /\
S \% S \%
NP VP leren NP VP  zwemmen
T | |
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| |
/f\ € €
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de kinderen

FIGURE24 TAG Derivation for Sentence (8)

predicate-argument structures. Whether TAG derivation trees represent
“deep” syntactic relations or semantic relations is a matter of debate
(Rambow and Joshi 1994a, Candito and Kahane 1998). Also see Sec-
tion 1.5.1 for a related discussion of TAG and dependency grammars.

The interest of LTAGs for underspecified semantic representations
has been stressed by (Joshi and Vijay-Shanker 1999, Kallmeyer and Joshi
1999) and for lexical semantics by (Palmer and Rosenzweig, 1996, Palmer
et al., this volume).

TAG has also been used for more detailed semantic analysis of quan-
tifier scope (Shieber and Schabes 1990, Rambow 1994b, Rambow and
Satta 1996) and of connectors and their discourse function (Jayez and
Rossari, in this volume, Danlos, in this volume, Webber and Joshi, 1998,
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Gardent and Webber, 1998). These studies often use an extended version
of the formalism (notably synchronous TAGs, see Section 1.4.4).

1.4 Variants of TAGs

We have been presenting so far the “classical” version of tree adjoining
grammars. Several variants have been proposed: some have a restrictive
generative power (and are most useful to improve the efficiency of im-
plementations), some have an extended generative power and are used
to increase the linguistic expressivity of the basic TAG formalism.

1.4.1 Constraining the Power of TAGs

Chomsky and Schutzenberger (1963) argue that regular languages may
be sufficient to model speaker’s performance. More recently, some au-
thors have proposed to use restrictive formalisms (equivalent to regular
languages or to a subclass of context-free languages) for natural language
processing (Gross 1989, Roche and Schabes 1997). Restrictive variants
have been defined for TAG as well. Schabes and Waters (1995) pro-
pose a variant equivalent to Context-Free Grammar which they have
called Tree Insertion Grammar or TIG. TIGs use both substitution and
adjunction, with some constraints on the latter. Schabes and Waters
distinguish between three formal types of auxiliary trees: left auxiliary
trees (with the foot node as the leftmost frontier node); right auxiliary
trees (with the foot node as the rightmost frontier node); and wrapping
auxiliary trees (with the footnode surrounding by other frontier nodes).
While the three types are allowed in standard TAGs, only the first two
are in TIG. So the elementary trees in a TIG are either initial trees, left
auxiliary trees or right auxiliary trees. Further constraints in TIG are
the following, so it is not possible to derive a wrapping auxiliary tree:
a left auxiliary tree cannot adjoin to the spine of a right auxiliary tree,
and a right auxiliary tree cannot adjoin to the spine of a right auxiliary
tree. Although this model has not been used for parsing, nor to build
any sizable grammar, it may be motivated from the linguistic point of
view. TAG grammars for natural languages make little use of wrapping
auxiliary trees. An example of such an elementary tree would be that
of a verb with a sentential complement and a second prepositional com-
plement: the foot node for the S complement (in case of an extraction)
would be surrounded by the verbal head and the second complement, as
in:

(9) What did Peter say that Mary loves to his parents?

But such sentences are not very natural, and preposing the second
complement is usually prefered, as pointed out by (Kuno 1973) who



Tree Adjoining Grammar: An Overview / 31

proposes a no-internal-gap constraint:
(10) What did Peter say to his parents that Mary loves?

The restriction on not combining auxiliary trees of different types is
more artificial, given the standard definition of adjunction (where mul-
tiple adjuncts of the same head are supposed to adjoin to one another’s
root). It is only viable given the revised definition of derivation of Sch-
abes and Shieber 1994, which Schabes and Waters retain for TIG.

(Rogers 1994) proposes an alternative way of lexicalizing CFG, which
he calls Regular-Form TAG. A TAG is in regular form if the following
condition holds: whenever an auxiliary tree is derivable that has on its
spine a node 7 (other than root and foot node) that has the same label as
the root and foot node, then the grammar can also derive the auxiliary
tree that consists of the original tree but with the part below n removed
(i.e., n is now the footnode). This condition is a closure condition on
the set of elementary trees of the grammar and is thus more difficult to
verify than the conditions of TIG. However, Rogers shows that Regular
Form is decidable. Regular form serves as a normal form for TAGs which
derive local sets (just as regular grammars serve as a normal form for
CFGs which derive regular languages). Regular-Form TAG is potentially
appealing since it is less restrictive than TIG, and in particular the
linguistic cases that are troublesome for TIG do not, in themselves, pose
a problem for Regular-Form TAG.

Frank (in this volume) offers a regular version of TAGs, using only
substitution and the Kleene star operation, which, he argues, is suitable
for modeling child grammar at a stage where no proper subordination
is used (only coordination or juxtaposition). Harbusch (in this volume)
defines related schema-tag type formalisms based on TAG.

1.4.2 Extending the Power of TAG

While for many purposes the full power of TAG is not needed, there
are constructions in different languages for which TAG cannot provide
a satisfactory analysis, and extensions to TAG are needed to capture
them. An example of such a construction is picture-NP extraction:

(11) This building, John bought a picture of.

Here, this building is the (prepositional) complement of the noun
picture, and therefore the NP node into which it is substituted should
originate in the same elementary tree as the head noun picture.lg How-

19Here, we are analyzing picture as a noun that takes a complement noun intro-
duced with a preposition, similar to the cases shown in Section 1.3.4. Instead, we
could also analyze the construction by saying that of this building is an adjunct
prepositional phrase to the noun picture. This is a linguistic choice, not a formal one,
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ever, then we cannot derive the sentence, since in that case we would
have to adjoin the tree for bought into the tree for a picture of. This
is impossible, however, since the footnode on the tree for bought would
have to be labeled NP while the root would need to be labeled S, as
shown in Figure 25. But TAG requires root and foot nodes to have the
same label, so the tree shown in Figure 25 is not a valid auxiliary tree.

S
/\
NP, | NP
/\
NP PP
VA NN s
Dety N P NP1 TN
| | | NPO} VP
picture of € /\
! . NP1*
|
buy

FIGURE25 Impossible extraction from Picture-NP in TAG: illegal auxiliary
tree (right)

In order to account for cases such as these, (Weir 1988) proposes
several extensions to TAG called “multi-component TAG” or MC-TAG.
These extensions have in common that the elementary structures are no
longer trees, but sets of trees. In tree-local multicomponent TAG,20 all
members of an elementary set must adjoin simultaneously into a single
elementary tree. In set-local multicomponent TAG,21 all members of a
derived set of trees must adjoin simultaneously into trees from a single
elementary set.22 As an example, consider the solution to the derivation
of sentence (11), shown in Figure 26. Here, we have split up the tree
for picture of into two trees and grouped them in one set. We adjoin
the extracted NP at the root of the tree for bought, and substitute the

angd we could make the same formal point using either analysis.
he term “tree-local” was proposed by Stuart Shieber and corresponds to “Type
17 in (Weir 1988, p.31ff).
Weir’s “Type 2”.
For practical purposes, this definition must be extended to allow for substitution
as well. Furthermore, we need to be able to define dominance constraints between
the components of a tree set — see below.
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other part containing the noun and the preposition. Note that we have
adjoined and substituted the two parts of the tree set for picture of into
the same tree: this is a tree-local multicomponent TAG derivation.

s
NPO} VP
/\
v NP1,
|
buy
s NP

()

FIGURE26 Extraction from Picture-NP in tree-local multicomponent TAG

The derivation remains tree-local for more complex cases of extrac-
tion:

(12) a. This building, John bought a copy of picture of
b. This building, John bought a copy of a facsimile of a picture of
Co...

These sentences can be obtained by adjoining a structure such as
that shown in Figure 27. This tree is adjoined to the root node of the
initial tree for picture of (the second tree in the set in Figure 26), prior
to the adjunction and substitution of the two trees from that tree set
into the initial tree for bought. The derivation remains tree-local, since
all components of the set are combined with the same elementary tree.
Clearly, in English, the adjunction of trees such as that in Figure 27 can
be iterated, yielding the sentences in (12).

Indeed, a vast majority of linguistic constructions that cannot be
derived in TAG can be derived in tree-local MC-TAG. For a phenomenon
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NN

Dety N P NP
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copy of

FIQURE27 Auxiliary tree for copy of

that may require set-local MC-TAG, see the discussion by Bleam (in this
volume) of clitic climbing in Romance.

Both tree-local MC-TAG and set-local MC-TAG preserve a notion of
locality in derivation. By this term, we mean the fact that elementary
structures combine in certain restricted ways which ensure that nodes
from one elementary structure are related simultaneously to nodes from
a single second elementary structure. (Clearly, in simple TAG as in CFG,
there is locality in derivation simply because the elementary structures
consists of coherent pieces of structure.) Because of the locality of deriva-
tion, derivations in tree-local and in set-local MC-TAG can always be
represented as a tree, and the set of derivation trees can be generated by
a CFG. (Vijay-Shanker et al. 1987) generalize this notion to the class of
Linear Context-Free Rewriting Systems (LCFRS), which are equivalent
to the independently defined multiple context-free grammar (MCFG)
(Seki et al. 1991). These formalisms generate only languages which are
semilinear, context-sensitive, and polynomially parsable, as do TAGs.
In fact, it can be shown that tree-local MC-TAG is weakly equivalent
to TAG (i.e., it generates the same string languages as TAG), while
set-local MC-TAG is weakly equivalent to LCFRS/MCFG.

We can also define multicomponent versions of TAG in which locality
of derivation is abandoned. Non-local MC-TAG (Weir’s Type 3) is such
a non-local MC-TAG: here, all members of one set must be adjoined
simultaneously, but there is no restriction on where the adjunction takes
place. Non-local MC-TAG generates non-semi linear languages, and they
generate languages that are NP—complete.23 If the requirement that all
members of a set be adjoined simultaneously is abandoned along with
locality in derivation, one obtains V-TAG (Rambow 1994a). V-TAG,

BThese results follow from results in (Dassow and P3un 1989, p.26) and (Dahlhaus
and Warmuth 1986). See (Rambow 1994a) for a complete discussion.
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when lexicalized, is polynomially parsable and generates only semi-linear
languages. (Rambow and Lee 1994) use V-TAG to show how to derive
sentences in the free constituent-order languages German and Korean.

V-TAG also formalizes the notion that the adjunction of different ele-
ments of a set of trees can be restricted by dominance constraints. Such
dominance constraints can be used to impose c-command restrictions
between a displaced constituent and its trace (i.e., its usual position) or
its lexical governor. For example, in Figure 26, we would want a domi-
nance constraint between the two trees in the set, specifically, between
the foot node of the auxiliary tree rooted in S and the root node of the
initial tree rooted in NP.

D-Tree Substitution Grammar (DSG)24 (Rambow et al. 1995) and
Tree Description Grammar (TDG) (Kallmeyer 1996) use a notion of
underspecified dominance (related to the dominance constraint of V-
TAG) in order to define a formalism whose elementary structures are not
trees, but tree descriptions, or underspecified trees. They are combined
using a generalized form of substitution (and, in some versions, sister-
adjunction for linguistic adjuncts).

1.4.3 Relaxing Precedence

In many different frameworks, it is common to allow for the linear order
of sister constituents to be specified (and underspecified) by separate
statements of linear precedence (LP statements), rather than specify
both domination and linear precedence at the same time as in the case
in TAG. A variant of TAG that allows for a separate statement of LP
rules, called LD /LP-TAG (Linear Dominance/Linear Precedence TAG),
was first proposed by (Joshi 1987b). (Becker et al. 1991) introduce a
slight variant, called FO-TAG (Free-Order TAG), and show how FO-
TAG can be used to handle German word order variation. A FO-TAG
grammar consists of a set of elementary structures. Each elementary
structure is a pair consisting of a linear dominance (LD) structure (i.e.,
an unordered tree) and corresponding linear precedence (LP) rules. The
LD structure (which will, imprecisely, be referred to as a “tree” here) is
either an initial or an auxiliary tree. The LP rules may relate any two
nodes of the tree unless one linearly dominates the other. As a result, we
can have “tangled” trees such as the one shown in Figure 28. However,
these precedence rules can only be stated with respect to the nodes of a
single elementary structure; it is not possible to relate nodes in different
structures. In determining a possible surface order for a FO-TAG tree, we
must follow the Consistency Condition, which states that if two nodes are

DS is also called D-Tree Grammar (DTG) in earlier papers.
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ordered by an LP constraint, then all pairs of nodes linearly dominated
by the two nodes inherit the LP constraint. A sample elementary tree is
shown in Figure 28 for the German verb versprechen ‘to promise’. (The
bar separates the specification of the ID structure on the left from the
LP rules on the right.)

CP
/\ NP, < V
NP, < V
SPEC (o
IP,<V
/\ V < INFL
COMP < IP,
COMP IP,A
SPEC I’
VP /NINFLY
habe
VP
VP
AA
ZANP,Y ANNP Y P, | v ()

versprochen

FIGURE28 Sample FO-TAG elementary tree with integrity constraint and
tangled arcs

Note that if a node 77 at which adjunction or substitution takes place
is unordered with respect to some other node 72 in its own elementary
tree, then any two nodes in the tree adjoined or substituted at 7; are
individually unordered with respect to 72, meaning that one node in
the adjoined or substituted tree could precede 7> and the other could
follow 72. This effect, “indeterminacy”, is overridden by the “integrity
constraint”, written as A. If we have AX for some node X, then any
node not in the subtree rooted at X must either precede or follow every
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node in the subtree rooted in X.

Because of the integrity constraints on the nodes labeled NP3, the
strings dominated by this nodes will always remain “intact” and no other
string can be interposed between the determiner dem and the noun
Kunden.

Adjunction and substitution are defined as in the case of regular
TAG, except that the linear precedence rules of the derived tree must
be stated separately. The set of LP rules of the derived tree is the union
of the sets of LP rules of the two original trees. (In the case of adjunction,
copies of those rules affecting the node at which adjunction takes place
must be added to reflect the “splitting” of that node.) Furthermore,
because of the Consistency Condition, any LP rule that relates the node
at which adjunction or substitution takes places is inherited by all nodes
in the adjoined or substituted tree.

(Poller 1994) proposes a simplified version of LD/LP-TAG called
LD/TLP-TAG, in which only sister nodes may be ordered through LP
rules. Thus, LD/TLP-TAG does not allow tangled arcs, as do LD/LP-
TAG and FO-TAG. LD/TLP-TAG necessarily obeys the Consistency
Condition.

While LD/TLP-TAG is formally equivalent to TAG, little is known
about the formal properties of LD/LP-TAG and FO-TAG. (Poller 1994)
also defines a parser for LD/TLP-TAG, while (Minnen 1994) proposes a
parser for a version of LD /TLP-TAG which allows tangled arcs, but only
within elementary trees. Both parsers have the same time-complexity as
the Earley-style parser of (Schabes 1990) for TAG, namely O(n°) in the
worst case.

1.4.4 Synchronous TAG

In synchronous TAG, two independent TAG grammars are “synchro-
nized” by pairing trees from the two grammars. The pairing relation
need not be bijective. In each pair of trees, nodes from one tree are
furthermore related to nodes from another tree (again, not necessarily
in a bijection). During a derivation, two trees are derived in parallel,
one using only trees from the first grammar, the other using only trees
from the second grammar. The derivation starts with two paired initial
trees. When adjunction or substitution happens at a node in one tree,
and this node is related to a node in the paired tree, then adjunction
or substitution must happen in the other tree at a related node as well,
and furthermore, the two trees being adjoined or substituted must be
paired.25 This basic principle is shown in Figure 29.

2’5Simi1ar systems have been defined for other formalisms as well, for example fi-
nite state transducers (automata for paired regular languages which are widely used
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blinked

FIGURE29 Synchronization of a syntactic tree (left) with a tree representing
its semantics (right); both the VP node and the S node are linked to the
same node in the semantics

An important question is what happens to “unused” links. The ques-
tion arises in cases in which several links impinge on one node, as is the
case in Figure 29. Only one of these links is used up in an adjunction
or substitution. In the first definition for synchronous TAG, (Shieber
and Schabes 1990) allow these unused links to be transferred to the tree
that is being adjoined or substituted. They use this mechanism to de-
rive different orderings of raised quantifiers (see Section 1.3.7). However,
as (Shieber 1994) shows (using adjunction constraints), this synchro-
nization increases the generative capacity of each of the synchronized
grammars (i.e., the synchronization does not have the weak language
preservation property). (Shieber 1994) proposes a new definition (iso-
morphic synchronous TAG) in which the unused links are removed after
a rewrite step. (Shieber defines this system by equivalently requiring the
derivation trees of the two derivations to be isomorphic.) However, as
Shieber points out, the new definition no longer allows for the represen-
tation of certain phenomena, including the ordering of raised quantifiers,
and of several non-isomorphic phenomena in translation.

Several authors have since attempted to overcome the descriptive lim-
itations of isomorphic synchronous TAG, while avoiding the explosion
in generative capacity of the original definition. Harbusch and Poller (in

in computational linguistics) and pushdown transducers and syntaz directed transla-
tion schemata (SDTS) (Aho and Ullman 1969) which translate between context-free
languages.
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this volume) propose Dynamic Link Synchronous Tree—Adjoining Gram-
mar in which the links required for rewriting can be created dynamically.
(Rambow and Satta 1996) synchronize two multicomponent TAG sys-
tems (see Section 1.4.2). And (Dras 1999) suggests a synchronous deriva-
tion of the derivation tree using a metagrammar. Synchronous TAGs
have been used extensively, for modeling semantics (see Section 1.3.7
for references), for generation (Section 1.6.3) and most prominently for
machine translation (Section 1.6.4).

1.4.5 Stochastic LTAGs

In a probabilistic context-free grammar (PCFG), probabilities are as-
signed to the production rules in a grammar in such a way that the
probabilities of the rules that expand a given nonterminal symbol al-
ways sum to one. Using such a grammar, a probability can be assigned
to parses of a sentence by multiplying the probability of each production
used in that derivation. It is well known that a PCFG defined in this
manner is not a good candidate for modeling natural languages, since it
is insensitive to lexical context (see (Resnik 1992) and (Charniak 1993)
for a discussion). At the same time, it is clear that models based purely
on the linear string of words and not on structural hierarchy (n-grams)
will never be able to fully capture natural language, either. As result,
recent attempts at creating stochastic models based on CFGs incorpo-
rate head information in order to overcome the disadvantages of PCFGs
(Magerman 1995, Collins 1997), and these attempts have proven quite
successful.

Because of its lexicalization, LTAG provides a different way of main-
taining both lexical context and structural hierarchy. (Resnik 1992) pro-
poses to carry over the PCFG model to LTAG in a straightforward way.
For each elementary tree in the grammar, and for each node in that
tree, we consider what operations we can perform at that node. In the
case of substitution nodes, we identify all trees that can be substituted;
in the case of adjunction nodes (without null-adjunction constraints),
we identify all trees that can be adjoined at that node. (If the node
does not have an obligatory-adjoining constraint, we also consider the
null option of not adjoining anything at that node.) For a given node,
we assign each of these possible operations at that node probabilities,
so that the probabilities of all possible operations (including the null
operation if applicable) sum to one. A derivation can be represented
as a sequence of such operations, so we can, as in the case of PCFG,
determine the probability of a derivation by multiplying the probabili-
ties of the operations performed during the derivation. (Schabes 1992),
using the same intuition, defines stochastic LTAGs (using the equiv-
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alent linear index grammar), presents an inside-outside algorithm for
reestimating a stochastic LTAG, and presents some initial results for
learning grammars from corpora. (Hwa 1998) reports on some initial
experiments using probabilistic tree insertion grammar (PTIG; see Sec-
tion 1.4.1 for a discussion of TIG), which show that it far outperforms
PCFG in achieving similar results as n-grams, while at the same time
providing rich structural accounts. (Sarkar 1998) shows conditions un-
der which a probabilistic TAG is consistent (i.e., the probabilities of all
possible derivations for a given grammar sum to one), and (Nederhof et
al. 1998) discuss the computation of prefix probabilities for probabilistic
TAG. (Neumann 1998) discusses the automatic extraction of stochastic
LTAGs from corpora.

1.5 Relation to Other Frameworks
1.5.1 Dependency Grammar

The relation between TAG and syntactic dependency was already men-
tioned in Sections 1.2.3 and 1.3.7.28 The close relation comes from the
fact that TAG can be lexicalized: when a TAG is lexicalized, each opera-
tion in that TAG (adjunction or substitution) can be seen as establishing
a direct relationship between two lexical items (those which anchor the
trees being combined). As a direct consequence of this fact, the deriva-
tion tree is a dependency tree, since we can identify its nodes with lex-
emes. But unlike dependency grammars, a TAG analysis also (at the
same time) provides a phrase-structure tree.

(Rambow and Joshi 1994a) explore the relationship between TAG
and dependency-based approaches to syntax, and observe that the TAG
derivation tree is in many ways closer to a “deep” syntactic representation
in which not all the words of the surface string are represented as nodes,
for example, the Deep-Syntactic Representation (DSyntR) of Meaning-
Text Theory (MTT) (Mel’¢uk 1988). This is because a single elementary
tree in a TAG may contain several words, i.e., several words form a
single lexeme. This is the case for strongly governed prepositions (see
Section 1.2.1) and idioms (Section 1.3.4), and in both the TAG derivation
tree and the DSyntR of MTT strongly governed prepositions are not
represented, and idioms are represented as a single node.?

The question arises why we should use a phrase-structure represen-
tation at all and not simply abandon TAG for dependency grammar and

%Dependency syntax is not a unified approach, and much rather different research
falls under this term, for example: (Mel’¢uk 1988, Hudson 1990, McCord 1990).
There is a difference in auxiliaries: these appear in the derivation tree but not in
the DSyntR of MTT.
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the ensuing representational simplification. The reason, (Rambow and
Joshi 1994a) suggest, is word order: while dependency grammars can give
an elegant account of projective word order (where the dependency tree
can project to the linear order of its words in the sentence without cross-
ing lines of projection), non-projective word order poses a problem and
requires special mechanisms, such as global word order rules (Mel’¢uk
1988) or multi-headed structures (Hudson 1990) which complicate the
formalism. In TAG, on the other hand, certain non-projective structures
(such as wh-extraction, raising, and Dutch cross-serial dependencies) can
be analyzed in exactly the same way as projective constructions, requir-
ing no further mechanism (see the discussions in Section 1.3).

(Rambow et al. 1995) point out that in certain cases, the TAG deriva-
tion structure does not correspond to the dependency structure (as typ-
ically analyzed). Instead, they use DTG, a variant of TAG that allows
more interleaving of structure (see Section 1.4.2), which allows them
to obtain the correct dependency structures. (Joshi and Vijay-Shanker
1999) address the same problem within TAG by reading off the depen-
dency structure from the spine of the derived tree, not the derivation
tree; (Schuler 1999) provides algorithms for parsing into this dependency
structure and transfer based on it using a revised notion of synchronous
TAG. (Nasr 1995) uses a tree-rewriting formalism inspired by TAG to
directly model derivations of dependency trees.

1.5.2 Generative Grammar

Generative grammar (Chomsky 1957, Chomsky 1965, Chomsky 1981,
Chomsky 1986, Chomsky 1995) has introduced two important concepts
into linguistics. One is the formal machinery employed, namely the gen-
eration of an initial structure (for example, the D-structure of (Chom-
sky 1981)) which is subsequently transformed into other structures using
rules or principles of transformation (for example, the move-« of (Chom-
sky 1981)). The second major concept is the methodology: Generative
Grammar assumes that grammar is organized into two types of entities,
principles and parameters. The principles are language-independent uni-
versals, while the values of parameters differ between languages. The
language learner succeeds in learning her mother tongue despite the
poverty of stimulus because all she needs to do is set the value of the
parameters. While the transformational approach has not been univer-
sally popular, the principles-and-parameter methodology has been more
widely adopted, for example in much work in LFG and HPSG.

For a TAG-based approach, the relevance of Generative Grammar
can also be discussed separately according to the two concepts men-
tioned above. We first discuss the importance of transformations to TAG.
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(Kroch 1987) and (1989) first explored the possibility of using transfor-
mations to derive the set of initial trees. Specifically, as in Generative
Grammar, a lexical item projects structure in a uniform manner and
then transformations (move-«) apply, deriving alternate projections for
the lexical item, or, to use standard TAG terms, the other members of
the tree family. The advantage of this approach to TAG is twofold: first,
results can be transferred from Generative Grammar to TAG-based lin-
guistic theories. Second, there is a consistent and principled account of
what the elementary structures in the TAG grammar for a particular
language are. From the point of view of Generative Grammar, there is
also a major advantage: the scope of the application of transformations
has been reduced to the elementary structures of TAG, i.e., the pro-
jections of single lexical items! This means that much of the work that
has been done in Generative Grammar on long-distance effects (e.g.,
successive-cyclic movement) can be abandoned, since its effects are ob-
tained through the use of the formal operation of adjunction. This line of
research has been explored in great detail in (Frank 1992, Frank 2000);
in this volume, the contributions by Bleam and Frank most clearly fall
into this approach. (Frank and Kroch 1995) provide a detailed discussion
of the relation between the Generalized Transformations of (Chomsky
1957), the operations of GT and adjunction of (Chomsky 1995), and
TAG.

The relevance of a principles-and-parameters methodology is, as ob-
served, independent of whether one adopts a transformational approach
in the style of Generative Grammar. The use of TAG as a language for
formulating a theory of syntax is in some sense already a very strong the-
oretical position in favor of language universals, since the claim is that
the constrained grammatical formalism represents (or captures) univer-
sal truths about syntax: we can use TAG to model natural language
syntax because natural language syntax universally obeys certain princi-
ples. The difference between TAG on the one hand and LFG, HPSG, and
Generative Grammar on the other hand is that a portion of the universal
is captured by the mathematical formalism and is not subject to linguis-
tic ‘cheorizing.28 In TAG-related non-transformational work, (Rambow
1994a) explores a completely non-transformational approach to deriv-
ing lexical derivations in a principles-and-parameters methodology using
an extension of TAG. Furthermore, all work in grammar development
(see Section 1.6.1) can be interpreted as establishing a principles-and-
parameters framework as well.

%Linguists may object to or welcome this limitation on the scope of their domain,
depending on temperament.
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1.5.3 Head-Driven Phrase Structure Grammar (HPSG)

Head-driven Phrase Structure Grammar is a surface-based, feature-
based, lexicon-driven linguistic theory which has been proposed by (Pol-
lard and Sag 1987, Pollard and Sag 1994) as an alternative to GPSG,
in order to incorporate several merits of other linguistic theories such as
LFG or GB.

As a linguistic theory, HPSG takes into account various aspects of
natural languages, including phonology, morphology, syntax, semantics
and certain aspects of discourse phenomena (Bouma et al. 1999).

Formally speaking, it is based, for its syntactic component, on partial
descriptions of phrases called Immediate-dominance (or ID) schemata,
which are equivalent to underspecified context-free rewriting rules, or el-
ementary trees of depth 1. The nodes are annotated with feature struc-
tures. Since the feature structures can be cyclic and unbounded, the
generative capacity of HPSG grammars is that of a Turing machine (as
shown by (Carpenter 1991) for the case of the subcategorization fea-
ture modified by lexical rules). As far as syntax is concerned, although
HPSG and TAG linguists may share a lot of intuitions,29 HPSG itself
as a formal model does not have the key properties of TAG:

e although lexical descriptions play a key role, HPSG grammars
are not necessarily lexicalized (some phrase structures can have
phrasal heads);

e HPSG grammars are not directly equivalent to a mathematically
constrained class of formal grammars;

e HPSG grammars do not use an extended domain of locality
(phrase structure descriptions usually only comprise immediate
constituents), though recent work on clause types proposes phrasal
descriptions referring to non-immediate constituents (Sag 1997).

Natural language processing systems using TAG can be simpler and
faster than those for HPSG, so for practical purposes, conversion of an
HPSG grammar into a TAG grammar can be tempting.30 The Verbmo-
bil spoken translation project (Kay et al. 1994) involves sizable HPSG
grammars for English, German and Japanese. The analysis module is
based on HPSG, but the generation system is based on TAG. Thus, for
generation, the HPSG grammars are converted into TAG, and (Kasper

Drhe TAG grammar for French (FTAG, see (Abeillé and Candito, in this volume))
im:%lgments certain analyses proposed in HPSG.
ince HPSG is formally more powerful than TAG, this conversion is not possi-
ble in the general case. Note also that (Makino et al. 1998) propose an alternative
conversion (from TAG to HPSG) in order to test their HPSG parser with the sizable
XTAG grammar for English.
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et al. 1995) and (Becker 1998) propose algorithms for doing so auto-
matically. The idea is to precompile several HPSG ID schemata in order
to obtain lexicalized TAG elementary trees. In a bottom-up strategy,
starting with lexical descriptions, one defines certain HPSG features as
termination features (feature lists which, when empty, correspond to a
possible root category for a TAG elementary tree). Furthermore, one
needs criteria for choosing the description of a daughter sign as a substi-
tution or foot node (a foot node is chosen when a termination feature of
the daughter and the root categories unify). As noted by Becker (1998),
this process should not be seen as grammar conversion but rather as
a preprocessing, since the output grammar still is, from the linguistic
point of view, an HPSG grammar.

1.5.4 Categorial Grammar

Categorial Grammars (CGs) are a system for syntactic calculus origi-
nally developed by logicians such as Adjukiewicz, Bar-Hillel or Lambek.
Several variants have been proposed, some equivalent to context-free
grammars, some more powerful, and some have lead to detailed lin-
guistic analyses (for example (Moortgat 1988, Morrill 1994, Steedman
1996, Steedman 1998)). In all variants, the core of the grammar is a
set of complex categories associated with the lexical entries, which are
combined using a set of formal rules which typically include functional
application and functional composition.

The relationship to TAG is interesting in that both models are math-
ematical formalisms, and both can be strictly lexicalized. There is a
natural parallelism between the complex categories of CG and TAG ele-
mentary trees since both are syntactic structured objects anchored in the
lexicon. CG’s basic logical operations also bear some similarities to TAG
adjunction (for composition) and TAG substitution (for application).

Several papers have given a closer look at the relationship between
LTAG and some versions of CG (see for example (Abruschi et al. 1999)).
From a formal point of view, one can see CG analyses as deduction
trees and this logical proof approach to parsing can be adapted to TAG.
(Joshi and Kulick 1997) precompile some parts of CG deduction trees
using TAG’s extended elementary trees for this purpose. From the CG
point of view, one can make more precise the generative capacity of CG
variants (and extend to them existing parsing algorithms, as was done
by (Vijay-Shanker and Weir 1994) for Combinatorial Categorial Gram-
mars). Doran and Srinivas (in this volume) use the close connection be-
tween CCG and TAG to compile the XTAG grammar into CCG format,
thus obtain a wide-coverage categorial grammar for English. From the
TAG point of view, one can adapt some successful CG analyses such as



Tree Adjoining Grammar: An Overview / 45

those proposed for non-constituent coordination (as was done by (Joshi
and Schabes 1992)) and this is what Steedman (in this volume) proposes
for control and binding phenomena.

1.5.5 Lexical-Functional Grammar (LFG)

LFG (Kaplan and Bresnan 1982) is based on the now fairly standard
assumption that there are several interrelated but independent levels
of representation. LFG’s c-structure is a representation of phrase struc-
ture, and is derived by the underlying context-free grammar (CFG).
f-structure is a representation of the functional structure of a sentence,
using categories such as Subject, Object, and so on. C- and f-structure

are related by functional constraints associated with CFG rules, called
functional schemata. As has been discussed in the LFG and related liter-
ature (Maxwell and Kaplan 1993), parsing grammars that are associated
with functional constraints is computationally costly, the time complex-
ity being exponential in the length of the input string in the worst case.

(Kameyama 1986), (Burheim 1996) and (Rambow 1996) discuss ways
of combining LFG with TAG. The underlying intuition is the same: the
CFG-based characterization of c-structure is replaced with a TAG. In
LFG terms, in a TAG we “pre-assemble” into a single tree all those
c-structure rules whose left-hand side nonterminal will be associated
with the same f-structure predicate through the use of the T=| equation
(which indicates syntactic projection in LFG). In a TAG derivation, the
action of substituting or adjoining a tree to another corresponds directly
to making the lexical item of the first tree an argument or an adjunct
of the lexical item of the second tree. Thus, roughly speaking, the re-
quirements of coherence (only one constituent can fill a certain gram-
matical role) and completeness (each obligatory grammatical role must
be filled), which in LFG must be stipulated, are corollaries of the defi-
nition of TAG (since substitution nodes require substitution of exactly
one tree). (Kameyama 1986) and (Burheim 1996) discuss ways of de-
riving an f-structure which is a feature structure, while (Rambow 1996)
proposes that the derivation structure can simply serve as f-structure
(re-entrancy in the f-structure being in practice restricted to bounded
phenomena such as control). Reformulating LFG in this manner provides
for polynomial parsing algorithms for LFG.

However, many grammars in the LFG framework cannot be expressed
in such a TAG-like manner. There are two reasons for this. First, the
same functional schema can be used at different nodes in a derivation
tree which themselves are associated with the same f-structure. This
will have the effect of inducing two dependent derivations from two dif-
ferent nodes, and has been used in the LFG literature to handle the
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crossing dependencies of Dutch (Bresnan et al. 1983). While TAG can
handle these Dutch constructions (see Section 1.3.5), it cannot derive
the phrase structure proposed by (Bresnan et al. 1983), which has two
“spines”, one carrying the nouns, and the other carrying, in the same
order, the verbs. These types of cases can, however, be derived by set-
local multicomponent TAG and the formalisms equivalent to it, MCFG
and LCFRS (see Section 1.4.2). (Seki et al. 1993) show that a particu-
lar type of restricted LFG is weakly equivalent to MCFG/LCFRS. This
is significant, since MCFG/LCFRS, like TAG, has restricted generative
capacity and is polynomially parsable.

The second reason why many LFG grammars cannot simply be con-
verted to a TAG grammar is the use of functional uncertainty (Kaplan
and Zaenen 1989) in functional schemata. In functional uncertainty, a
functional equation uses regular expressions, which are interpreted as
a shorthand for an infinite set of “ordinary” functional equations. This
device is used in LFG grammars to handle long-distance extraction of
wh-words in English, and for a variety of word order phenomena in West
Germanic (Zaenen and Kaplan 1995). Using functional equations such
as |=7 xcomp® object, one can specify that, for instance, the filler
at a specifier position of CP (i.e., the left daughter of an S node) is in
fact the object of an arbitrarily deeply embedded clause (designated by
xcomp). Functional uncertainty is not considered by (Seki et al. 1993)
and cannot in general be modeled by set-local multicomponent TAG:
(Vijay-Shanker and Joshi 1989) show that functional uncertainty is a
corollary in TAG, but this is of course only true for those cases in which
TAG can provide an analysis of long-distance extraction. It is easy to
construct formal-language examples that LFG with functional uncer-
tainty can derive, but TAG cannot. Furthermore, as (Becker et al. 1991)
and (Rambow et al. 1995) argue, there are linguistic examples in which
TAG cannot provide a linguistically motivated analysis; functional un-
certainty can derive these cases. (Rambow 1996) proposes a version of
DSG (Section 1.4.2) in which dominance links can be annotated with reg-
ular expressions, which retains the polynomial parsability of lexicalized
DSG, and which can be used to model LFG with functional uncertainty.

1.6 Applications

LTAGs have been used for several applications in natural language pro-
cessing. We briefly overview here their application for grammar devel-
opment, parsing, generation and machine translation.
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1.6.1 Grammar development

LTAGs have been used to develop sizable grammars for several natural
languages. These grammars have been developed from scratch, starting
from some more abstract level of representation, or starting from an ex-
isting grammar in another formalism. The LTAG grammars can be used
directly for parsing, translation or generation applications (see below),
or simply as input for other grammar developments projects, such as a
sizable CCG grammar (see Doran and Srinivas, in this volume).

The XTAG System

The XTAG system (see (Doran et al., this volume) and (XTAG-Group
1999)) is the most complete TAG workbench currently available (oth-
ers are being built, for example (Lopez 1999)). It includes a graphical
interface (Paroubek et al. 1992), a parser (Schabes 1994) and a lexicon
compiler. It is a resource-independent platform which can be used for
a variety of languages. In its English version, it also includes a part-of-
speech tagger and a supertagger. It divides the internal representation
of a lexicalized TAG into three files, which can be developed and main-
tained independently:

e a morphological lexicon which associates the full inflected forms of
a language with their lemma, part of speech and some features;

e a syntactic lexicon which associates each lemma with its schematic
tree or tree family and some features;

e schematic trees usually organized into tree families which gather
trees instantiating regular syntactic alternations for a given sub-
categorization frame.

The three resources are compiled to produce the lexicalized TAG
used for parsing (or supertagging). An example is shown in Figure 30.

g b:<mode>= =
<VVh>: x
t:<mode>==2
WI}\TISL <IuIm>= w
t: =z < > = 1
Sha V bis ok~ ind PP
<num>= w <terse>= Inp
<hums= <nune>= sing
<peas>=3
Prep N1|
|
parlait a

FIGURE30 An example of elementary tree
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Figure 31 shows the three pieces of information that represent it
internally (from FTAG, see (Abeillé and Candito, in this volume)). The
inflected form parlait (‘talked’) points to the lemma PARLER in the
morphological lexicon, that selects the n0Vanl family in the syntactic
lexicon, with a dative complement and the preposition @ (t0) as a co-
anchor.

Morphological lexicon
parlait : PARLER, V S bziwlb:fz

{<mode> = ind, /l\
<tense> = imp,
NO| tr<mode>= 2

T v VR R

rs> = v =

p gt <pas>=y

Syntactic lexicon \

/PARLER/, V : n0Vanl a
{NO.t <hum>= +}

FIGURE31 Three sources of information for the tree of Figure 30

Machine-Aided Grammar Development

Even with this internal division of labor, elementary tree sketches are
complex objects which encode different types of syntactic information
usually distinguished in other formalism: word order, subcategorization,
transitivity alternation, syntactic realization of each argument, type of
clause, and so on. This leads to a multiplication of elementary trees (a
sizable LTAG easily comprises 1000 elementary trees) and to an impor-
tant redundancy between them. This situation has lead some authors
to propose a more abstract level of representation for elementary trees:
(Vijay-Shanker and Schabes 1992, Candito 1996, Xia et al. 1998) and
(Becker, in this volume). All these proposals borrow some representa-
tional mechanism from other frameworks: the GPSG metarules, the LFG
lexical rules, the HPSG type hierarchy and inheritance. From the theo-
retical point of view, these proposals help express syntactic generaliza-
tions hidden in the elementary trees (for example across tree families).
From the practical point of view, they enable the grammar writer to
specify only parts of the different elementary trees which are automat-
ically unified and compiled. The general idea is to adapt for LTAGs
the classification mechanisms used for the lexicon in other frameworks
(such as HPSG). The difficulty is that the elementary trees in a TAG
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are more complex objects than just categories or features structures.
Abstracting away the feature equations associated with each elementary
tree is not the most difficult part. Having them also share some of their
topology calls for a tree representation language such as (Rogers and
Vijay-Shanker 1994). (Vijay-Shanker and Schabes 1992) propose to de-
compose the elementary trees using precedence, immediate dominance
and unspecified dominance relations, and to organize them in a type hi-
erarchy where some of their topological properties can be shared. They
use lexical rules for transitivity alternations such as passive.

Candito (1996, 1999)(Candito 1996, Candito 1999) proposes a uni-
versal three-dimensional classification for lexicalized grammars, which
she calls a metagrammar (MG). MG comprises one dimension for basic
subcategorization information, one for function redistribution (or tran-
sitivity alternations) and one for the syntactic realization of heads and
arguments (extraction, cliticization...), and each elementary tree inherits
from the 3 dimensions (see Abeillé and Candito (in this volume) for an
example of MG for French). Given her functional approach to subcate-
gorization, she can use strict inheritance mechanisms (without defaults)
and dispense with lexical rules. She also offers a tool for automatically
generating a complete (or partial) LTAG starting with MG. (Xia et al.
1998) propose a similar, but independently developed, approach.

Becker (in this volume) proposes metarules operating on portions of
elementary trees in order to automatically augment or modify an exist-
ing LTAG. Since the metarules operate on finitely bounded trees, they do
not increase the generative capacity of the formalism (contrary to GPSG
metarules). Evans et al. (in this volume) propose to use DATR as a met-
alanguage to code and maintain LTAGs. They use default mechanisms
and lexical rules.

Current TAG grammars are available for English, French, Italian,
Korean. Others are being developed for Chinese, Portuguese and Ger-
man.

Grammar Migration

Grammar migration — exporting the syntactic resources from one
framework or platform to another — has been a subject of study for
quite a while. Two experiments have been made to produce a sizable
TAG starting from a sizable HPSG grammar, namely (Kasper et al.
1995) for English, and (Becker et al. 1998) for German. See Section 1.5.3
for a fuller presentation.

It is worth noting that TAG grammars themselves are syntactic
databases which can be reused for other formalisms. Doran and Srinivas
(in this volume) present the automatic development of a Combinatory
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Categorial grammar (CCG) starting with the English XTAG.

1.6.2 Parsing

In this section, we first survey the theoretical literature on TAG recoog-
nition and parsing algorithms, and then turn to implementations and
practical issues.

Theoretical Work

Several recognition and parsing algorithms have been defined for
TAG. The basic bottom-up chart parser (Vijay-Shanker 1987) proceeds
bottom-up in recognizing the elementary trees used in a derivation, and
also proceeds bottom-up in assembling these elementary trees into a
derivation. Items representing recognized subtrees are stored in a four-
dimensional table to account for the fact that partial derivations may
include a footnode; hence, not only are two indices needed to record the
beginning and the end of the derived substring, but also two indices are
needed to record the beginning and the end of the string which is domi-
nated by the footnode. The most complex operation is that of adjunction
of an auxilary tree into an auxiliary tree, in which case items with four
indices must be matched with items with two independent indices (rep-
resenting the other auxiliary tree’s footnode), giving us a O(n%) time
complexity (worst and best case).

Three different Earley-style algorithms (that combine bottom-up
parsing with top-down prediction on derived trees) have been proposed.
(Schabes and Joshi 1988) present an algorithm whose worst-case time
complexity is in O(n?). However, average case run time is better, and
furthermore the algorithm has the wvalid prefix property: processing the
input string left-to-right, the algorithm rejects an input string as soon as
the prefix it has read is not the prefix of any string in the language being
recognized (or parsed). The algorithm of (Schabes 1994) reduces time
complexity to O(n%) at the cost of giving up the valid prefix property.
(Nederhof 1999) presents an algorithm that has the valid prefix property
and has worst-case time complexity in O(n°).

A head-driven algorithm was first proposed by (Lavelli and Satta
1991). The algorithm extends parses along the path from the anchor of
an elementary tree to its root by performing adjunctions. (van Noord
1994) introduces the notion of “headed TAG” in order to define a head-
corner parser for TAG. In a headed TAG, each anchor of an initial tree
is a head corner for its root, while in an auxiliary tree the foot node
must be a head corner. All these algorithms achieve a worst-case O(n°)
time complexity.

A different type of algorithm was first proposed by (Harbusch 1990)
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and subsequently studied by (Poller 1994) and (Poller and Becker 1998).
Here, a context-free grammar called the kernel grammar is created,
which can derive all of the elementary trees in the TAG grammar. The
input is parsed with the kernel gramar, and in a second step those deriva-
tions are eliminated from the context-free parse forest which are not
compatible with the TAG grammar. The time complexity of this algo-
rithm is also in O(n®).

Several other parsing algorithms for TAG have been proposed ex-
ploiting the similarity between TAG parsing and other computations.
(Vijay-Shanker and Weir 1993) propose a bottom-up algorithm on the
derived tree which is inspired by the equivalence of TAG to linear in-
dex grammar (LIG, see Section 1.2.5). The O(n®) algorithm extends the
algorithm for context-free grammar by using pointers to track the de-
velopment of the stack of index symbols. (Boullier 1999) exploits the
equivalence of TAG to a restricted version of range concatenation gram-
mars to present a O(n%) parsing algorithm for TAG.

It is striking that no parsing algorithm has been found for gen-
eral TAG with worst-case time complexity better than O(n%). It turns
out that this is probably not a coincidence. (Satta 1994) shows that a
TAG parsing algorithm that is faster than O(n°) implies that we have
a Boolean matrix multiplication algorithm that is faster than O(n?).
Such algorithms are hard to find, and those that have been presented
have high constants making them unappealing for practical computa-
tion. Therefore, finding a better TAG parser is also a hard probelm, and
it is unlikely that a simple and practical algorithm will be found which
significantly improves on the O(n%) time complexity (which no current
algorithm beats).

As noted in Section 1.4.1, several restricted versions of TAG have
been proposed specifically in order to reduce the parsing complexity.
(Schabes and Waters 1995) and (Rogers 1994) propose restricted ver-
sions of TAG without full adjunction that generate only context-free lan-
guages and that can be parsed in O(n?) time, while (Satta and Schuler
1998) allow full adjunction, but only at one node of the spine of an
auxiliary tree, thus reducing the time complexity of parsing to O(n®).

For deterministic parsing, (Schabes and Vijay-Shanker 1990) explore
the use use the bottom-up embedded pushdown automaton in an LR
parsing algorithm for TAG, but (Kinyon 1997) discusses problems of
corectness in this approach. She proposes a way to incorporate lexical-
ization information offline into an LR table, in order to reduce conflicts
online via filtering. (Nederhof 1998) presents an implemented LR, parser
based using the pushdown automaton for linear index grammars, and
finds the LR tables to be “prohibitively large” for a grammar the size of
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the XTAG grammar. (Prolo 2000) proposes a modified algorithm that
greatly reduces the number of states.

Implementations

We now turn now to implemented parsers used in implemented sys-
tems and/or with wide coverage. The XTAG system (see Section 1.6.1
for a fuller description) includes an implementation of the Earley-style
parser of (Schabes 1994). (See (Doran et al. 1994) for a discussion of
the results of this parser on corpora.) Like all parsers discussed in the
theoretical section above (except the deterministic parsers), this parser
returns all possible parses, unranked. (Doran et al. 1994) report that
XTAG finds an average of 7.46 parses for a corpus of 18,730 sentences
from the Wall Street Journal. Since typically in applications, the goal is
not to obatin all possible syntactic analyses for the input but rather a
single one (which can then be used as the basis for further processing), a
significant body of work has been performed to address this issue. (Srini-
vas et al. 1995) propose a set of domain-independent but language- and
grammar-specific heuristics to rerank parses in a postprocessing step.
(Kinyon 1999) extends this approach by using insights gained from psy-
cholinguistics. Specifically, she adapts the well-known principles of min-
imal attachment and right associataion to derivation trees (rather than
derived trees), and also incorporates a preference for initial trees (i.e.,
arguments) over adjunct trees.

A different approach in chosen in supertagging:31 instead of choosing
among several candidate parses, supertagging eliminates possible parses
from the outset. (Srinivas and Joshi 1999) propose to associate lexical
items in the input string with the names of elementary trees in a TAG
grammar, which function as syntactially rich descriptions (hence the
term “supertag”). By using stochastic techniques to assign supertags to
lexemes, the actual parsing becomes nearly trvial since the supertags
already contain extensive syntactic information. If supertagging (assign-
ing tags to lexemes) were pefect, any TAG parser could be used to de-
rive the parse, but since suppertagging (using trigrams with smoothing
on 1,000,000 word training corpus) achieves only about 92% accuracy,
(Srinivas and Joshi 1999) propose instead to use a heuristic linear-time
“lightweight dependency analyzer” to derive the parse tree. (Chen et al.
1999) investigate ways of improving supertagging accuracy.

Several other practical aspects of using TAG parsers in applications
have been discussed in the literature. (Lopez et al. 1999) discuss issues

‘ﬂNote that the “tag” in “supertagging” is not the abbreviation with the meaning
“tree adjoining grammar”, but rather the noun with the meaning “attached informa-
tion”.
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related to extracting an LTAG grammar for a sublanguage. (Lopez and
Roussel 1998) discuss issues related to parsing of spontaneous spoken
language with TAG, such as self repair and repitition. Issac and Fou-
queré (in this volume) use a bottom-up TAG parser in an application
for learning lexical items in a foreign language.

1.6.3 Generation

(Joshi 1987b) claims that TAG has properties that make it particu-
larly suited as a syntactic representation for generation. Specifically, its
extended domain of locality is useful in generation for localizing syn-
tactic properties (including word order as well as agreement and other
morphological processes), and lexicalization is useful for providing an
interface from semantics (the derivation tree represent the sentence’s
predicate-argument structure). Indeed, generation was the first applica-
tion to use TAG as a grammatical framework: (McDonald and Meteer
1990) (a project that started in the early 80s) use TAG in a generation
project aimed at modeling human sentence production (also see (Meteer
1992) for an overview and (McDonald and Pustejovsky 1985) for a dis-
cussion specifically of the role of TAG).

A series of projects at the University of the Saarland and at the DFKI
have used TAG as the underlying formalism in sentence generation for a
sequence of applications (Harbusch et al. 1991, Wahlster et al. 1993, Kil-
ger 1994). One of the emphases in this work has been on incremental
generation, requiring modifications to TAG to allow for the permutation
of constituents and the representation of underspecification. The for-
malism discussed by Harbusch (in this volume) is motivated by (among
others) considerations of incremental generation. More recently, (Becker
et al. 1998) describe a (non-incremental) system which transforms a se-
mantic representation (used as the interlingua) to a surface form (also
see (Becker 1998)). The syntactic generator proper produces a surface
string from the dependency representation, by choosing trees for each
node in the dependency using a best-first-search strategy. The grammar
used in the syntactic generator is a TAG grammar compiled from an
HPSG grammar in a manner similar to that described in (Kasper et al.
1995).

In other work, (Yang et al. 1991) present a system in which a
systemic-functional network is combined with a lexicalized TAG gram-
mar: the systemic-functional network is used to choose realization fea-
tures based in functional criteria; these features are in turn used to
choose elementary trees. (Shieber and Schabes 1991) use synchronous
TAG (see Section 1.4.4) to map from a semantic representation to the
syntactic representation provided by TAG; as is the case with other
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synchronous TAG applications, their approach provides for reversibility
(the same grammar can be used for parsing as well). (Stone and Doran
1997, Stone and Webber 1998) extend lexicalized TAG with features de-
signed to describe semantic and pragmatic interpretation to guide syn-
tactic and lexical choice during sentence planning. (Nicolov and Mellish
2000) use the TAG-related formalism DSG (see Section 1.4.2) in a sys-
tem that generates English sentences from conceptual graphs. Finally,
Danlos (in this volume) presents G-TAG, an extension of TAG which
allows her to extend lexicalization beyond the traditional domain of the
sentence by encoding the syntax of clausal connectives and of multi-
sentential text, and by representing the conceptual-semantic interface in
the formalism as well.

1.6.4 Machine Translation

(Abeillé et al. 1990) have proposed to use LTAG for machine translation.
The proposed application is based on synchronous TAG (Section 1.4.4)
in the following way:

e bilingual dictionaries are seen as correspondences between lexical-
ized elementary trees (or their tree families);

e the parsing and generation phases are based on the monolingual
TAG grammars (and systems) developed independently of each
other;

e the transfer component is replaced by the synchronization of the
monolingual TAG derivations,

e some transfer principles may be added to match feature equations
or different members of tree families (for example when passive
exists in the source language but not in the target language).

The advantages of such an approach include:

e it is modular (a module for a given language can be reused with
another paired language);

e it is reversible;

e one can reuse TAG grammars and lexicons developed in a monolin-
gual perspective, as well as TAG parsing and generation modules;

e it is based on derivation and not derived structures, thus minimiz-
ing the structural mismatches between the paired languages;

e it is lexicalized, so one can easily incorporate all the lexical id-
iosyncrasies often found when translating natural languages.

For paired sentences from different languages, derivation trees are
usually closer than derived (or phrase structure) trees because the deriva-
tion trees express pure lexical argument structure rather than syntactic
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detail (see Section 1.2.3). For example, even when a simple verb has to
be translated into a phrasal expression (light verb construction) in the
target language, or when a direct objet must be translated as a prepo-
sitional object, the derivation trees are often identical (or very similar).
Relevant examples include the English /French pairs (E) commute = (F)
faire la navette, (E) allude to = (F) faire allusion o, or (E) resemble =
(F) ressembler a

In addition, structural divergences in different languages (Dorr 1994)
can often be handled by simply linking up nodes in trees in a non-
canonical manner. Complex restructuring rules that are often necessary
in other MT systems can thus be avoided, since in the TAG approach,
there is no requirement that elementary or derived trees be identical.
For example, in the following the subject of English miss becomes the
prepositional object of French manguer 4, and the direct object in En-
glish becomes the subject in French.

(13) (F) Jean manque & Marie = (E) Marie misses Jean

The solution in synchronous TAG is shown in Figure 32. Note that
this pair of trees can be used for translation in either direction.

(Shieber 1994) proposes to view the synchronous derivations as iso-
morphic (same number of nodes and same dominance relations), but
Harbusch and Poller (in this volume) show counter-examples and pro-
pose an alternative implementation (also see Section 1.4.4 for a fuller
discussion of synchronous TAG).

Another advantage of using LTAGs is that lexicalized elementary
trees provide an extended domain of locality for lexical disambiguation.
Frequently, one word in the source language corresponds to several words
in the target language, but often the correct word can be chosen as a
function of a complement of the word. For example, English wear may be
translated into Japanese as kaburu or haku, but the choice can be made
dependeing on the direct object (the first is used for items worn on the
head). Palmer et al. (in this volume) show how to exploit the extended
domain of locality of TAG by associating a rich array of semantic features
with verbs and their arguments in the context of an English to Chinese
MT system. These semantic features guide the lexical choice.

1.6.5 Psycholinguistic Modeling

The psycholinguistic relevance of tree adjoining grammars has been stud-
ied by (Joshi 1990, Kim et al. to appear, Kinyon 1999). Joshi (1990)
shows that a performance model based ob the embedded push-down
automaton associated with TAG predicts that Dutch crossed-serial de-
pendencies are easier to parse that German nested dependencies, which
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Paired Elementary trees:

manque
Prep NP1] NP1]
\

NP NP— NP NP
Jean Marie Marie Jean

Paired Derived trees:

NPO VP
NPO Vv PP
RN

N
Jean mar‘lque Prep NFI \‘/ Nf‘)l

N . Marie misses Jean
a Marie J

Paired Derivations trees:

manque-a miss

(1) Jean Marie (3.2) (2.2) Jean Marie (1)

FIGURE32 Bilingual synchronous derivations

is what psycholinguistic studies have shown (Bach et al. 1986). (Ram-
bow and Joshi 1994b) extend the model to make predictions about ac-
ceptability of German sentences with various word orders. Kim et al.
emphasize the importance of lexical triggers for parsing and propose a
TAG-based connectionist model. Kinyon (1999) shows the importance
of the notion of derivation tree in LTAG, which makes the correct pre-
dictions for parsing preferences and garden path effects (better than the
derived phrase structure tree). For example, the preference for substi-
tution over adjunction explains the well known preference for argument
over adjunct interpretation, while the preference for the derivation tree
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with fewer nodes (fewer operations) mirrors the well known prefence for
idiomatic over literal interpretations.

Joshi et al. (in this volume) show that LTAG modeling can pre-
dict the agrammaticality of German long distance scrambling up to two
levels of embedding, a result usually attributed to performance effects.
Frank (in this volume) models the diferent stage of syntax acquisition
for children as coming not from different grammars but from differ-
ent operations available at each stage: first iteration (or reduplication),
then substitution, and finally adjunction. It mirrors Kinyon’s proposal
for parsing preferences, also based on the fact that substitution is less
costly than adjunction.
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