
Ramana Isukapalli
W3101: Programming Languages – C++

Lecture-4

 Inheritance.

 Polymorphism
 Virtual functions

 Abstract classes

Inheritance – base class & derived class

 Base class
class account
{
 int user_SSN;
 int accountNumber;
public:
 void deposit (int amount);
 void withdraw (int amount);
 double computeInterest ();
};

 Derived class or child class
class checkingAccount : public account // checkingAccount is
{ // derived from account
 int lastCheckCleared; // not present in account
 void showAllChecksCleared(); // not present in account
 double computeInterest(); // defined in both classes
};

Ramana Isukapalli
W3101: Programming Languages – C++

Inheritance – base class and derived
classes

 Base Class

class account
{
private:
 int user_SSN;
 int accountNumber;
 int balance;
public:
 account () { }
 account (int ssn, acctNum);
 ~account() { }
 void deposit (int amount)
 void withdraw (int amount);
 double computeInterest();
};

 Derived (or child) class-1
class checkingAccount : public account
{
public:
 int lastCheckCleared;
 void showChecksCleared ();
 double computeInterest ()
};

 Derived (or child) class-2
class IRA_account : public account
{
public:
 void buyFund (int fund_ID);
 void sellFund (int fund_ID);
 double computeInterest ();
};

Ramana Isukapalli
W3101: Programming Languages – C++

Inheritance – continued.

 Important points to note:
 Derived classes have access to members of

base classes in this example.

 Derived classes can have their own members.
 E.g. lastCheckCleared, showAllChecksCleared(),

buyFund(), sellFund(), etc.

 Members of one derived class are not accessible
to another

Ramana Isukapalli
W3101: Programming Languages – C++

Examples

 Valid usage in an external function
 account acct(123456, 5672);

 checkingAccount ca;

 acct.deposit (700);

 acct.withdraw (300);

 ca.deposit (1000);

 ca.showAllChecksCleared()

 Invalid usage in derived class
 ca.user_SSN = 1234; // Can’t access user_SSN

 ca.accountNumber = 567;

Ramana Isukapalli
W3101: Programming Languages – C++

Polymorphism &
virtual functions

W3101 – Programming Languages, C++
Ramana Isukapalli

virtual functions

 Function “double computeInterest()” is
defined in both base and child classes.
 Supposed to return different values

 virtual double Account::computeInterest ()
{ return 0; }

 double CheckingAccount::computeInterest ()
 { return 10.0; }

 double IRA_Account::computeInterest ()
 { return 100.0; }

W3101 – Programming Languages, C++
Ramana Isukapalli

virtual functions … contd.

main()
{
 Account *x = new CheckingAccount();
 x→computeInterest();
 // Will this return 0 or 10.0?
}
 This will return
 0, if the function is NOT virtual
 10.0, if the function is defined virtual

W3101 – Programming Languages, C++
Ramana Isukapalli

Why are virtual functions needed?

 Mainly to enforce class specific
functional implementation.

 Should not call base class function
from a child object.

 An account object may take different
“forms” at different times
 Checking account, IRA account, etc.
 computeInterest() should compute

derived class specific function.

⇒ Polymorphism

W3101 – Programming Languages, C++
Ramana Isukapalli

Abstract classes

 Consider an object of Account.

 It makes sense to have
 A specific type (e.g., checking) of account

 Not just a generic account object.

 A user should be able to create
 Specific object types.

 NOT generic objects.

 An abstract class is the generic class.

W3101 – Programming Languages, C++
Ramana Isukapalli

Abstract classes … contd.

 Properties of abstract classes.
 Defines a generic base class

 Class definition has attributes and methods

 Other classes are derived from it.

 Derived classes implement the methods
defined in abstract class.

 Can NOT instantiate objects of base class.

 Can instantiate only objects of derived
classes.

W3101 – Programming Languages, C++
Ramana Isukapalli

How do we create abstract classes?

 Set ANY virtual function to 0.
 Pure virtual function – value of function = 0
 NO BODY for function

 class Account
 {
 virtual double computeInterest () = 0;
 }
 class CheckingAccount : public Account
 {
 double computeInterest () { … }
 }

 Account x; // Will NOT work.
 CheckingAccount y; // Will work.

