
COMS W3101 Programming
Language: C++ (Fall 2015)

Ramana Isukapalli

ramana@cs.columbia.edu

2

Lecture-3
 Constructor and destructor review

 Data and Member functions review

 Data encapsulation
 public, private and protected members

 friend functions and friend classes

 Inheritance

W3101: Programming Languages: C++
Ramana Isukapalli

3
Ramana Isukapalli

W3101: Programming Languages – C++

A simple “account” example

class account
{
 private:
 int user_SSN; // data
 int accountNumber; // data
 public:
 void withdrawMoney (int amount); // method
 void depositMoney (int amount); // method:
 void computeInterest(); // method
};
account x; // x is an object of class “account”

4

Class methods
Syntax:

<ret_type> class::functionName(args)
{
 // code
}

Method code can be present in class definition
• Outside the class definition
• In a separate file

Example
void account::withdrawMoney (int amount)
{
 // code
}

W3101: Programming Languages: C++
Ramana Isukapalli

Constructor and
Destructor

6

Constructor and destructor … contd.

Constructor
o A function with the same name as the class

o Called when an object is created

o A class can have more than one constructor

Destructor
o Called when an object is cleaned up (goes out of scope)

o One class can have only one destructor

Examples
account x; // constructor code is called

account *y = new account; // constructor code is called

delete (y); // destructor code is called

W3101: Programming Languages: C++
Ramana Isukapalli

7
Ramana Isukapalli

W3101: Programming Languages – C++

Back to “account” example

class account
{
 private:
 int user_SSN; // data
 int accountNumber; // data
 public:
 account(); // Constructor-1
 account(int m, int n); // Constructor-2
 ~account(); // Destructor
 void withdrawMoney (int amount); // method
 void depositMoney (int amount); // method:
 void computeInterest(); // method
};

8

Constructor and destructor
Constructor code
 Constructor-1
 account::account()
 { user_ssn = -1; accountNumber = -1; }
 // OR
 account::account() : user_ssn (-1),

 accountNumber(-1) { }
 // Constructor-2
 account::account (int ssn, int acctNum)
 {
 user_ssn = ssn;
 accountNumber = acctNum;
 }
Destructor code
 account::~account()
 { // Any memory/resource cleanup, etc. }

W3101: Programming Languages: C++
Ramana Isukapalli

Data encapsulation

10

Data encapsulation … contd.

Public methods Output Private
members

 Private members are hidden from other classes, fns.
 Public Methods act on data to provide output.
 External classes, functions have access to public

methods
 User should not be affected by

 Implementation details of public methods.
 Changes in implementation of methods.

CS3101: Programming Languages: C++
Ramana Isukapalli

Other classes
or functions

Class

11

Data encapsulation

 Provide access restrictions to
member data and functions
 From other classes and functions.

 Implemented y using access modifiers
 public, private and protected

 Other classes, functions need to know
what methods are implemented
 Not how they are implemented

W3101: Programming Languages: C++
Ramana Isukapalli

12

Account example … contd.

 class has both “data” and “methods”.
 Attributes and methods are “members” of

a class
 An instance of a class is an object.
 A class should typically correspond to some

meaningful entity.
 A class uses methods to interact with

other classes/functions.
 private members accessible only to the

class (and friends)
 public members are accessible to every

class and functions

W3101: Programming Languages: C++
Ramana Isukapalli

13

Back to data encapsulation

 How can data be hidden?
 Only class should have access to data

 Class methods use data

 Define every class member to be one of
 public – accessible to every the class, other

classes, functions and friends

 private – accessible only to class and friends

 protected – accessible only to class, friends
and children

W3101: Programming Languages: C++
Ramana Isukapalli

14

Data encapsulation in account example

 In an object of account
 user_ssn and accountNumber are declared private

 Accessible only to account objects (and friends)

 Methods are public
 Anyone can access them.

 Example
void function1 () // function, not defined in Account
 {
 account x;
 x.user_ssn = 123; // Will NOT work
 x.computeInterest (); // Will work
}

W3101: Programming Languages: C++
Ramana Isukapalli

friend functions and
friend classes

16

friend functions

 What if a function genuinely needs to
have access to private data?
 E.g. showAccountInfo (Account acct)

 Need to give access ONLY to that
function, not others.

 Use friend function definition

 friend functions of a class have access
to private members of the class.

W3101: Programming Languages: C++
Ramana Isukapalli

17

Example – friend function

class account
{
private:
 int user_SSN;
 int accountNumber;
public:
 void deposit (int amount)
 void withdraw (int amount);
friend showAccountInfo

(class Account)
};

void showAccountInfo
(Account acct)

{
 cout << user_SSN << endl;
 cout << accountNumber <<

 endl;
}

This is valid.
Friend function can access

private members.

W3101: Programming Languages: C++
Ramana Isukapalli

18

friend class

 Concept of friend can be extended to a class from
a function.

 A class gives access to its private members to its
friend classes.

class account class bank
{ {
 … …
 friend class bank }
}

Members of bank have access to private members of

account
W3101: Programming Languages: C++

Ramana Isukapalli

