
Ramana Isukapalli
W3101: Programming Languages – C++

Lecture-4
 C++ string class

 Passing arguments to functions by
 Value, pointers, refences

 const member functions

 const arguments to a function

 C++ OOP features
 Data encapsulation

 public, private and protected members

 friend functions

 friend classes

 Inheritance

 Function overloading and overriding

C++ string class

W3110: Programming Languages – C++
Ramana Isukapalli

C++ strings
 C uses char arrays to represent strings

 char arrays are messy
 Need to predefine the size of array
 Size can’t be increased easily for longer

strings.
 Copying strings need to use strcpy.

 C++ strings – don’t have these issues.
 E.g. string str1 = “abc”;

 string str2 = str1;
 string str3 = str1 + “pqr”;
Much more convenient than C character arrays

Passing arguments to a function

W3110: Programming Languages – C++
Ramana Isukapalli

Passing arguments to a function
 Passing arguments to function
 By value – a local copy is made by the

function and used.
 E.g. void function_by value (int arg1)

 arg1 is passed by value

 By pointer –address of the argument is used.
 E.g. void function_by_pointer (int *arg2)

 Arg2 is passed by pointer – “*” refers to a pointer

 By reference – similar to passing by pointer
 E.g. void function_by_reference (int & arg3)

 Arg3 is passed by reference – “&” refers to reference

W3110: Programming Languages – C++
Ramana Isukapalli

Passing arguments… contd.
 void function_by_value (int arg1)
 Changes made to arg1 inside the function are

not seen outside the function.

 void function_by_pointer (int *arg2)
 Changes made to arg2 inside the function are

seen outside the function

 void function_by_reference (int & arg3)
 Changes made to arg3 inside the function are

seen outside the function

const arguments and
const member functions

W3110: Programming Languages – C++
Ramana Isukapalli

const arguments to functions

 void f1(const int a)
 {
 a = 3; // Not allowed
 }

 const arguments to a function can’t be

changed in the function.
 f1 can’t change a in the above example

W3110: Programming Languages – C++
Ramana Isukapalli

const member functions

class myClass
{
 int a;
 …
 void f1() const
 { a = 3; } // Not allowed
};
 const functions can’t change any

attributes of myClass.
 f1 can’t change a in the above example

Data encapsulation

Data encapsulation … contd.

Method Output Data

 Other classes

 Methods act on data to provide output.
 User needs to see only method, not data.
 User should not be affected by

 Implementation details of methods.
 Changes in implementation of methods.

Hidden from
other classes

CS3101: Programming Languages: C++
Ramana Isukapalli

Ramana Isukapalli
W3101: Programming Languages – C++

Data encapsulation

 Provide access restrictions to
member data and functions
 From other classes and functions.

 Implemented y using access modifiers
 public, private and protected

 Other classes, functions need to know
what methods are implemented
 Not how they are implemented

Ramana Isukapalli
W3101: Programming Languages – C++

Account example … contd.

 class has both “data” and “methods”.
 Attributes and methods are “members” of

a class
 An instance of a class is an object.
 A class should typically correspond to some

meaningful entity.
 A class uses methods to interact with

other classes/functions.
 private members accessible only to the

class (and friends)
 public members are accessible to every

class and functions

Ramana Isukapalli
W3101: Programming Languages – C++

Back to data encapsulation

 How can data be hidden?
 Only class should have access to data

 Class methods use data

 Define every class member to be one of
 public – accessible to every class, function

 private – accessible only to class and friends

 protected – accessible only to class, friends
and children

Ramana Isukapalli
W3101: Programming Languages – C++

Data encapsulation in account example

 In an object of account
 user_ssn and accountNumber are declared private

 Accessible only to account objects (and friends)

 Methods are public
 Anyone can access them.

 Example
void function1 () // function, not defined in Account
 {
 account x;
 x.user_ssn = 123; // Will NOT work
 x.computeInterest (); // Will work
}

friend functions and
friend classes

Ramana Isukapalli
W3101: Programming Languages – C++

friend functions

 What if a function genuinely needs to
have access to private data?
 E.g. showAccountInfo (Account acct)

 Need to give access ONLY to that
function, not others.

 Use friend function definition

 friend functions of a class have access
to private members of the class.

Ramana Isukapalli
W3101: Programming Languages – C++

Example – friend function

class account
{
private:
 int user_SSN;
 int accountNumber;
public:
 void deposit (int amount)
 void withdraw (int amount);
friend showAccountInfo

(class Account)
};

void showAccountInfo
(Account acct)

{
 cout << user_SSN << endl;
 cout << accountNumber <<

 endl;
}

This is valid.
Friend function can access

private members.

Ramana Isukapalli
W3101: Programming Languages – C++

friend class

 Concept of friend can be extended to a class from
a function.

 A class gives access to its private members to its
friend classes.

class account class bank
{ {
 … …
 friend class bank }
}

Members of bank have access to private members of

account

Ramana Isukapalli
W3101: Programming Languages – C++

Examples

 Valid usage in an external function
 account acct(123456, 5672);

 checkingAccount ca;

 acct.deposit (700);

 acct.withdraw (300);

 ca.deposit (1000);

 ca.showAllChecksCleared()

 Invalid usage in derived class
 ca.user_SSN = 1234; // Can’t access user_SSN

 ca.accountNumber = 567;

Inheritance

W3110: Programming Languages – C++
Ramana Isukapalli

Inheritance – base class & derived class

 Base class
class account
{
 int user_SSN;
 int accountNumber;
public:
 void deposit (int amount);
 void withdraw (int amount);
 double computeInterest ();
};

 Derived class or child class
class checkingAccount : public account // checkingAccount is
{ // derived from account
 int lastCheckCleared; // not present in account
 void showAllChecksCleared();// not present in account
 double computeInterest(); // defined in both classes
};

W3110: Programming Languages – C++
Ramana Isukapalli

Inheritance – base class and derived
classes

 Base Class

class account
{
private:
 int user_SSN;
 int accountNumber;
public:
 account () { }
 account (int ssn, acctNum);
 ~account() { }
 void deposit (int amount)
 void withdraw (int amount);
 double computeInterest();
};

 Derived (or child) class-1
class checkingAccount : public account
{
public:
 int lastCheckCleared;
 void showChecksCleared ();
 double computeInterest ()
};

 Derived (or child) class-2
class IRA_account : public account
{
public:
 void buyFund (int fund_ID);
 void sellFund (int fund_ID);
 double computeInterest ();
};

W3110: Programming Languages – C++
Ramana Isukapalli

Inheritance – continued.

 Important points to note:
 Derived classes have access to members of

base classes in this example.

 Derived classes can have their own members.
 E.g. lastCheckCleared, showAllChecksCleared(),

buyFund(), sellFund(), etc.

 Members of one derived class are not accessible
to another

W3110: Programming Languages – C++
Ramana Isukapalli

Examples

 Valid usage in an external function
 account acct(123456, 5672);

 checkingAccount ca;

 acct.deposit (700);

 acct.withdraw (300);

 ca.deposit (1000);

 ca.showAllChecksCleared()

 Invalid usage in derived class
 ca.user_SSN = 1234; // Can’t access user_SSN

 ca.accountNumber = 567;

Function overloading and
function overriding

W3110: Programming Languages – C++
Ramana Isukapalli

Function overloading

 Functions with the same name but with
 Different number of arguments or

 Different types of arguments

E.g. int add (int a, int b, int c) { return (a+b+c); }

 int add (int a, int b) { return (a + b); }

double add (double a, double b) { return (a + b); }

 Here “add” is an overloaded function

W3110: Programming Languages – C++
Ramana Isukapalli

Function overriding
 Functions defined in parent class and re-

implemented by the child class.
E.g. class Bird

 {

 int canFly() { return (1); }

 }

 class Penguin

 {

 int canFly () { return (0); }

 }

Here, “canFly” is an overridden by the child class, Penguin

