
Ramana Isukapalli 
W3101: Programming Languages – C++ 

Lecture-4 
 C++ string class 

 Passing arguments to functions by 
 Value, pointers, refences 

 const member functions 

 const arguments to a function 

 C++ OOP features 
 Data encapsulation 

 public, private and protected members 

 friend functions 

 friend classes 

 Inheritance 

 Function overloading and overriding 



C++ string class 



W3110: Programming Languages – C++ 
Ramana Isukapalli 

C++ strings 
 C uses char arrays to represent strings 

 char arrays are messy 
 Need to predefine the size of array 
 Size can’t be increased easily for longer 

strings. 
 Copying strings need to use strcpy. 

 C++ strings – don’t have these issues. 
 E.g. string str1 = “abc”; 

      string str2 = str1; 
      string str3 = str1 + “pqr”; 
Much more convenient than C character arrays 
 



Passing arguments to a function 



W3110: Programming Languages – C++ 
Ramana Isukapalli 

Passing arguments to a function 
 Passing arguments to function 
 By value – a local copy is made by the 

function and used. 
 E.g. void function_by value (int arg1) 

 arg1 is passed by value 
 

 By pointer –address of the argument is used. 
 E.g. void function_by_pointer (int *arg2) 

 Arg2 is passed by pointer – “*” refers to a pointer 
 

 By reference – similar to passing by pointer 
 E.g. void function_by_reference (int & arg3) 

 Arg3 is passed by reference – “&” refers to reference 

 



W3110: Programming Languages – C++ 
Ramana Isukapalli 

Passing arguments… contd. 
 void function_by_value (int arg1) 
 Changes made to arg1 inside the function are 

not seen outside the function. 
 

 void function_by_pointer (int *arg2) 
 Changes made to arg2 inside the function are 

seen outside the function 
 

 void function_by_reference (int & arg3) 
 Changes made to arg3 inside the function are 

seen outside the function 

 



const arguments and 
const member functions 



W3110: Programming Languages – C++ 
Ramana Isukapalli 

const arguments to functions 

 void f1(const int a) 
  { 
   a = 3; // Not allowed  
    } 
 
 const arguments to a function can’t be 

changed  in the function. 
 f1 can’t change a in the above example 



W3110: Programming Languages – C++ 
Ramana Isukapalli 

const member functions 

class myClass 
{ 
 int a; 
 … 
 void f1( ) const  
  { a = 3; } // Not allowed  
}; 
 const functions can’t change  any 

attributes of myClass. 
 f1 can’t change a in the above example 



Data encapsulation 



Data encapsulation … contd. 

Method Output Data 

 Other classes 

 Methods act on data to provide output. 
 User needs to see only method, not data. 
 User should not be affected by 

 Implementation details of methods.  
 Changes in implementation of methods. 

Hidden from 
other classes 

CS3101: Programming Languages: C++ 
Ramana Isukapalli 



Ramana Isukapalli 
W3101: Programming Languages – C++ 

Data encapsulation 

 Provide access restrictions to 
member data and functions 
  From other classes and functions. 

 Implemented y using access modifiers 
 public, private and protected 

 Other classes, functions need to know 
what methods are implemented 
 Not how they are implemented 



Ramana Isukapalli 
W3101: Programming Languages – C++ 

Account example … contd. 

 class has both “data” and “methods”. 
 Attributes and methods are “members” of 

a class 
 An instance of a class is an object. 
 A class should typically correspond to some 

meaningful entity. 
 A class uses methods to interact with 

other classes/functions. 
 private members accessible only to the 

class (and friends) 
 public members are accessible to every 

class and functions 



Ramana Isukapalli 
W3101: Programming Languages – C++ 

Back to data encapsulation 

 How can data be hidden? 
 Only class should have access to data 

 Class methods use data 

 Define every class member to be one of 
 public – accessible to every class, function 

 private – accessible only to class and friends 

 protected – accessible only to class, friends 
and children 



Ramana Isukapalli 
W3101: Programming Languages – C++ 

Data encapsulation in account example 

 In an object of account 
 user_ssn and accountNumber are declared private 

 Accessible only to account objects (and friends) 

 Methods are public 
 Anyone can access them. 
 

 Example 
void function1 ( ) // function, not defined in Account 
 { 
  account x; 
  x.user_ssn = 123; // Will NOT work 
  x.computeInterest ( ); // Will work 
} 



friend functions and 
friend classes  



Ramana Isukapalli 
W3101: Programming Languages – C++ 

friend functions 

 What if a function genuinely needs to 
have access to private data? 
 E.g. showAccountInfo (Account acct ) 

 Need to give access ONLY to that 
function, not others. 

 Use friend function definition 

 friend functions of a class have access 
to private members of the class. 



Ramana Isukapalli 
W3101: Programming Languages – C++ 

Example – friend function 

class account 
{ 
private: 
 int user_SSN; 
 int accountNumber; 
public: 
 void deposit (int amount)  
    void withdraw (int amount); 
friend showAccountInfo 

(class Account) 
}; 

void showAccountInfo 
(Account acct) 

{ 
 cout << user_SSN << endl; 
 cout << accountNumber << 

  endl; 
} 
 
This is valid. 
Friend function can access 

private members. 



Ramana Isukapalli 
W3101: Programming Languages – C++ 

friend class 

 Concept of friend can be extended to a class from 
a function. 

 A class gives access to its private members to its 
friend classes. 

 
class account  class bank 
{     { 
  …     … 
 friend class bank } 
} 
 
Members of bank have access to private members of 

account 



Ramana Isukapalli 
W3101: Programming Languages – C++ 

Examples 

 Valid usage in an external function 
 account acct(123456, 5672); 

 checkingAccount ca; 

 acct.deposit (700); 

 acct.withdraw (300); 

 ca.deposit (1000); 

 ca.showAllChecksCleared( ) 

 Invalid usage in derived class 
 ca.user_SSN = 1234; // Can’t access user_SSN 

 ca.accountNumber = 567; 



Inheritance 



W3110: Programming Languages – C++ 
Ramana Isukapalli 

Inheritance – base class & derived class 

 Base class 
class account 
{ 
 int user_SSN; 
 int accountNumber; 
public: 
 void deposit (int amount); 
 void withdraw (int amount); 
 double computeInterest ( ); 
}; 

  Derived class or child class 
class checkingAccount : public account // checkingAccount is 
{                // derived from account 
 int lastCheckCleared;  // not present in account 
 void showAllChecksCleared( );// not present in account 
 double computeInterest( ); // defined in both classes 
}; 



W3110: Programming Languages – C++ 
Ramana Isukapalli 

Inheritance – base class and derived 
classes 

 Base Class 
 
class account 
{ 
private: 
 int user_SSN; 
 int accountNumber; 
public: 
 account ( ) { } 
 account (int ssn, acctNum); 
 ~account( ) { } 
 void deposit (int amount)  
   void withdraw (int amount); 
 double computeInterest( ); 
}; 

 Derived (or child) class-1 
class checkingAccount : public account 
{ 
public: 
 int lastCheckCleared; 
 void showChecksCleared ( );  
 double computeInterest ( )  
};  
 
 
 Derived  (or child) class-2 
class IRA_account : public account 
{ 
public: 
 void buyFund (int fund_ID); 
 void sellFund (int fund_ID); 
 double computeInterest ( ); 
}; 



W3110: Programming Languages – C++ 
Ramana Isukapalli 

Inheritance – continued. 

 Important points to note: 
 Derived classes have access to members of 

base classes in this example. 

 Derived classes can have their own members. 
 E.g. lastCheckCleared, showAllChecksCleared( ), 

buyFund( ), sellFund( ), etc. 

 Members of one derived class are not accessible 
to another 



W3110: Programming Languages – C++ 
Ramana Isukapalli 

Examples 

 Valid usage in an external function 
 account acct(123456, 5672); 

 checkingAccount ca; 

 acct.deposit (700); 

 acct.withdraw (300); 

 ca.deposit (1000); 

 ca.showAllChecksCleared( ) 

 Invalid usage in derived class 
 ca.user_SSN = 1234; // Can’t access user_SSN 

 ca.accountNumber = 567; 



Function overloading and 
function overriding 



W3110: Programming Languages – C++ 
Ramana Isukapalli 

Function overloading 

 Functions with the same name but with 
 Different number of arguments or 

 Different types of arguments 

E.g.  int add (int a, int b, int c) { return (a+b+c); } 

        int add (int a, int b)          { return (a + b);  } 

double add (double a, double b) { return (a + b); } 

 Here “add” is an overloaded function 



W3110: Programming Languages – C++ 
Ramana Isukapalli 

Function overriding 
 Functions defined in parent class and re-

implemented by the child class. 
E.g.  class Bird 

         { 

             int canFly( ) { return (1); } 

         } 

        class Penguin 

         { 

            int canFly ( ) { return (0); } 

         } 

Here, “canFly” is an overridden by the child class, Penguin 


