
Ramana Isukapalli
W3101: Programming Languages – Java Feb 26, 2013 1

Lecture-5

� Misc Topics
� finalize

� Exceptions
� Finally

� Generics

Misc topics – finalize

Ramana Isukapalli
W3101: Programming Languages – Java Feb 26, 2013 3

finalize
� It is a way to clean up resources when an
object is going out of scope.

� Java has no explicit destructor as in C++
� finalize

� A function that can be defined in a class.
� Usually has resource (open file descriptors, open
sockets, etc.) clean up methods.

� Is the closest that comes to a destructor.
� Is called when Java garbage collector runs.

� Java garbage collector
� A daemon that runs to clean up resources.
� Calls finalize methods of objects that are about to
cleaned up.

Exceptions

Ramana Isukapalli
W3101: Programming Languages – Java Feb 26, 2013 5

Exceptions

� A way to handle error or unexpected conditions.
� Used to ensure that error conditions are handled

gracefully.
� In Java, there is a class called Exception that is used

to handle any generic exceptional condition.
� Exception is derived from Throwable

� Many kinds of specific exceptions are also available
� I/O exceptions
� Array out of bound exceptions
� Class not found exception
� No such method exception

� Users can define their own exceptions
� Derive their class from Exception

Ramana Isukapalli
W3101: Programming Languages – Java Feb 26, 2013 6

How to catch exceptions

� Use try catch statements
try
{
// some code

}
catch (AnyException e)
{
// Error handling code

}

� AnyException is any Exception
� Can be Java defined exception, or user
defined

Ramana Isukapalli
W3101: Programming Languages – Java Feb 26, 2013 7

Throwing Exceptions

� Throw an exception using

throw (e);

� Any exception – user defined or Java
defined exception (e) can be thrown.

Ramana Isukapalli
W3101: Programming Languages – Java Feb 26, 2013 8

Throwing exceptions … contd.
� The function that throws any exception should define it.

void function1() throws AnyException
{

// code
// in case of error conditions

throw (new AnyException());
}

� Any function calling myFunction should catch the exception
void function2 ()

{
try

{
function1()

}
catch (AnyException e) // Or parent of AnyException

{
// Error handling code

}
}

Ramana Isukapalli
W3101: Programming Languages – Java Feb 26, 2013 9

Java – finally

� finally – a way to handle any left over
(cleanup) issues.

� Should be present in the end, after
try and catch are done.

� Typically used to clean up resources,
open files, file descriptors, sockets,
etc.

Generics

Ramana Isukapalli
W3101: Programming Languages – Java Feb 26, 2013 11

Generics – motivation
� Consider the following classes to set/get values to a

variable.
class intClass
{

private Integer intval;
public void setValue (Integer i) { intval = i; }
public Integer getValue () { return (intval); }

}
class doubleClass
{

private Double dblval;
public void setValue (Double d) { dblval = d; }
public Double getValue () { return (dblval); }

}

� Same code, but two classes are used
� One for each data type

Ramana Isukapalli
W3101: Programming Languages – Java Feb 26, 2013 12

Generics motivation … cont.

� Problem here
� One class is needed for each data type.

� But the code itself is almost the same.

� Generics are used to solve this issue.

� Generics
� Generic classes that can be used with class

� Same code can be used with any class.

� Avoids code repetition.

� Similar to C++ template classes

Ramana Isukapalli
W3101: Programming Languages – Java Feb 26, 2013 13

Generics
� The problem above is that the same code is
repeated for different types

� Solution: Generic types
� Uses a “generic” (any) type as a parameter.
� Objects of any specific non-basic data types can be
instantiated. E.g.
// Generic class declaration
public class GenericClass<T>
{
// code

}

// Instantiating two object of type Integer and Double
GenericClass<Integer> gInt = new GenericClass(Integer)();
GenericClass<Double> gDbl = new GenericClass<Double>();

Ramana Isukapalli
W3101: Programming Languages – Java Feb 26, 2013 14

Generics with multiple generic types

� Use different types in the class
definition.

� E.g. for two generic types
interface Pair <k, v>

{
public k getKey();
public v getValue();

}

class OrderedPair<k, v> implements Pair<K, V>
{

..
}

