i Lecture4

= Misc topics

= static, this, super, final
s Abstract classes
= Interfaces

= Packages

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 1

i Static members

Specific to class, not individual objects
Common to all objects

Can be used with data or functions.

E.g. main function is static

class staticExample

{
staticExample() { }
static int static_var = 1;
static void static_fn() { }
public static void main (String args[])
{
System.out.printin (static_var); // No object is created
static_fn(): // No object is created
}
3

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 2

i final in Java

= final can have several meanings in Java
= final class cannot be extended

= final methods cannot be overridden by members
of child classes

= final variables can only be assigned once

public final class myClass // Cannot be extended

{
public static final PT = 3.1415926

public static final someFinalMethod() { ...}

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 3

i this in Java

= this refers to the current object.
public class Point
{
public int x = O;
public inty = O;
//constructor-1
public Point(int a, int b)
{
this.x = a; // means x = q;
this.y = b; // means 'y = b;
}
// constructor-2
public Point ()
{
this (0, 0); // call constructor-1 with (0O, 0)
}
}

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 4

super in Java

= super is a way to call parent’s functions/data

. public class Browser extends Window
class Window {

{

private String browserType:

private int length = O; - . -
public Browser(int |, int w)

private int width = O;

//constructor {
public Window (int |, int w) // Call parent constructor
ih' length = | super (I, w):
iIs.length = |; . ",
this.width = w; } browserType = "Firefox";
}

// function printProperties
public void printProperties ()

public void printProperties()

{
// Call parent function

super.printProperties();

. length + % + width): System.out.printin ("browserType:

+ browserType):
) }
}

Ramana Isukapalli
W3101: Programming Languages — Java

{
S¥sfem.ouf.println ("Dimensions:
}

Feb 19, 2013

5

!'_ Abstract class

i Abstract classes

= Consider an object of Account.

» It makes sense to have
= A specific type (e.g., checking) of account
= Not just a generic account object.

s A user should be able to create
= Specific object types.
= NOT generic objects.

= An abstract class is the generic class.
= Cannot create objects of this class

= Classes derived from the abstract classes

are specific objects.

= Can create objects of the derived classes.

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 7

i Abstract classes ... contd.

= Abstract class
= A class that has abstract keyword (prefix)

= May have the following methods:
= abstract - no implementation, only declaration
= non-abstract - have implementation

= Cannot be instantiated

= Can be extended by (non) abstract
subclasses

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 8

i Abstract class - Example

abstract class shape class square extends shape
{ {
abstract int findArea(); private int length;
public String showShape() public square () { length = -1; }
{ public int findArea ()
return ("defaultShape"); {
} return (length * length);
). }
public String showShape ()
{
return ("square”);
}
%

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 9

i Abstract class ... Example-2

GraphicObject

J

Rectangle

Line

Bezier

Circle

abstract class 6raphicObject

{

int x, y:

// non-abstract method

// has actual code
void moveTo (int x1, int y1)

{...1}

// abstract methods
// No code or implementation
abstract void draw();
abstract void resize();

}

Source: Oracle.com

class Circle extends GraphicObject

{
void draw () { ... }

void resize (){ ... }

};

class Rectangle extends GraphicObject

{
void draw() { ... }

void resize() { ... }

} .

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 10

!'_ Interfaces

i Java interfaces

= Interface

= Similar to abstract class
= Cannot be instantiated.

= Difference
= Member functions can only be defined.
= No implementation for ANY member function.

= Derived classes need to implement
functions.

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 12

i Interface ... example

interface myInterface class myClass implements
{ myInterface

void functionl1(); {

int function2(); void functionl()
} {

System.out.printin ("fn1");

Note: No implementation } .

for functionl or int function2()

{
System.out . printin ("fn2");

return (1);

}

function2

}

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 13

Multiple inheritance in Java

= Java allows implementation of multiple
interfaces.

= class myClass implements intfcl, intfc2
is allowed
= Java does not allow extension of more than
one class.

= class myClass extends classi, class2
iIs NOT allowed.

= Extension of one class, implementation of
multiple interfaces is allowed.

= Class myClass extends classl, implements
interfacel, implements interface?2

Is allowed.

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 14

!'_ Packages

i Packages

= A way of grouping different (related)
classes in Java.

= Java itself provides many packages
= E.g. Math, I/0, Exception, etc.

» Packages are used to provide

= Access restrictions
= Namespace management

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 16

How to create packages

: Simpl?/ put “package” in the beginning of a class (should be the
first line).

package example_package
class myClassl

{
}

package example_package
class myClass?2

{
}

// Code

// Code

= myClassl and myClass2 are now part of example_package
= A package typically has many classes.

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 17

Creating packages example

ackage graphics;
public interface Draggable { . . . }

package graphics;
public abstract class Graphic { . . . }

package graphics;
public class Circle extends Graphic implements Draggable { . . . }

package graphics;
public class Rectangle extends Graphic implements Draggable { . . . }

package graphics;
public class Point extends Graphic implements Draggable { . . . }

Source: oracle.com

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 18

Using classes from external packages

= Use import keyword.
= Can import the entire package. E.g.,
= import java.lang.*;
= import mypackage.*;
= Or, can import specific classes in a package
= import mypackage.myclass;

= E.g. Use math functions.
import java.lang.math;
public class myClass

{
public double computeArea (int r)
{
return (math.PT * r * r);
}
}

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 19

i Packages ... contd.

= Packages can be created, included ina
hierarchical way
= E.g., com. mycompany.mypackage
= Package from mycompany
= com.anothercompany.package
= Package from anothercompany.

= They can be included as

= import com.mycompany.mypackage
= import com.anothercompany.mypackage

Ramana Isukapalli
W3101: Programming Languages — Java Feb 19, 2013 20

