
Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         1

Lecture5 – OOP concepts in Java

� Object Oriented Programming in Java
� Review

� Concept of class/object
� Constructors

� Data encapsulation

� Inheritance

� Abstract classes and Interfaces

� Polymorphism

� Other features of Java
� static, final, finalize

� Exceptions



Data encapsulation – review



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         3

Data encapsulation

� Hide the data from end user

� Need to know what methods are 
implemented

� Not how they are implemented

� Provide interfaces (APIs) to access data

� E.g. To compute interest in a bank an user
� Needs to know what function to call

� NOT how the function is implemented



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         4

Data encapsulation … contd.

Method OutputData

User

� Methods act on data to provide output.
� User needs to see only method, not data.
� User should not be affected by

� Implementation details of methods. 
� Changes in implementation of methods.

Hidden from user



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         5

Data encapsulation … contd.

� Not all data needs to be hidden
� It is fine to give direct access to some data.

� Not all methods need to be given access
� Some methods may be hidden – for internal use by classes

⇒ Data and methods both need access restrictions.

� How can data/methods be hidden?
� By using access modifiers.

� Different access modifiers:
� public – accessible to every class, function

� private – accessible only to class and package

� protected – accessible to class package and subclass

� No modifier – accessible only to class and package



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         6

Access modifiers

NoNoNoYesprivate

NoNoYesYesNo 
modifier

NoYesYesYesprotected

YesYesYesYespublic

otherssubclasspackageclassModifier

Source: Oracle.com



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         7

Data encapsulation in account example

In an object of account
� user_ssn and accountNumber are declared private

� Accessible only to account and nothing else.
� Methods are public

� Anyone can access them.

public class Account
{
private  int user_SSN; // Accessible only to Account
private  int accountNumber; // Accessible only to Account
public   Account ( ) { .. } // Accessible to all
public   void withdrawMoney (int amount) { .. } ; // Accessible to all
public   void depositMoney (int amount)    { .. };  // Accessible to all
public   void computeInterest( )               { .. };  // Accessible to all
…
};



Inheritance



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         9

Inheritance

� Let’s take the account example again
� There can be many types of accounts

� Checking, saving, money market, IRA, etc.

� All accounts may have
� Some common members.

� Account number, user SSN, etc.

� Some class specific members.
� Checks cleared, investment options, etc.

� Method implementation may be
� Same in different classes
� Different in different classes.



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         10

Inheritance – base class & derived class

� Base class
class account
{

private int user_SSN;
private int accountNumber;
public Account ( ) { .. }
public void deposit (int amount)    { … }
public void withdraw (int amount) { … }

};

� Derived class or child class
class checkingAccount extends account // checkingAccount is
{ // derived from account

private int lastCheckCleared; // not present in account
public  void showAllChecksCleared( ) { } // not present in account

};



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         11

Inheritance – base class and derived classes

� Base Class

class account
{
private int user_SSN;
private int accountNumber;
public Account ( ) { … } // code
public  void deposit (int amt)
{
// code

} 
public void withdraw (int amt)
{
// code

}
};

� Derived (or child) class-1
class checkingAccount extends account
{

private int lastCheckCleared;
public checkingAccount ( ) { … };
public void showChecksCleared ( ) { //code
}

}; 
� Derived  (or child) class-2
class IRA_account extends account
{

public IRA_Account ( ) { … };
public void buyFund (int fund_ID)  { 
//code
}
public void sellFund (int fund_ID)  { 
//code
}

};



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         12

Inheritance – continued.

� Important points to note:
� Derived classes have access to members of 
base classes in this example.

� Derived classes can have their own members.
� E.g. showLastCheckCleared( ), buyFund( ), 
sellFund( ), etc.

� Members of one derived class are not accessible 
to another.



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         13

Examples

� Valid usage in an external function
� Account acct = new Account ( );

� checkingAccount ca = new checkingAccount ( );

� acct.deposit (700);

� acct.withdraw (300);

� checkingAccount.deposit (1000);

� checkingAccount.withdraw (600);

� Invalid usage in an external function
� acct.user_SSN = 1234; // Can’t access user_SSN

� acct.accountNumber = 567;



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         14

Inheritance … Object class

� In Java Object is the base class for 
every Java class.

� Object is a built-in class.

� Defines useful functions.
� hashCode

� toString

� equals

� notify, etc.



Polymorphism



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         16

Polymorphism

� Poly – many, Morphism – ability to take 
many forms
� Ability of objects to behave differently

� Achieved by using different 
implementations of the same function in 
different classes.

� Parent class defines and implements a 
function in one way.

� Child classes can override the function.



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         17

Polymorphism
public class Account
{

public Account() { }

public void showAccountType ( ) 
{

System.out.println ("Account");
}

public static void main (String args[ ])
{

Account a  = new Account();
Account ca = new CheckingAccount( );
Account sa = new SavingsAccount( );
a.showAccountType( );  //Account
ca.showAccountType( ); //CheckingAccount
sa.showAccountType( ); //SavingsAccount

}
};

class CheckingAccount extends Account
{

public CheckingAccount() { }

public void showAccountType ( )
{

System.out.println ("CheckingAccount");
}

};

class SavingsAccount extends Account
{

public SavingsAccount( ) { }

public void showAccountType ( )
{

System.out.println ("SavingsAccount");
}

};



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         18

Polymorphism … contd.

� In the previous example
� a, ca and sa are defined of type Account
� But they each executed a different showAccountType
function.

� a executed the function in class Account
� ca executed the function in class CheckingAccount
� sa executed the function in class SavingsAccount.

� Reason this is possible
� Each object is created differently
� a is created as Account, ca as CheckingAcocunt, sa as 
SavingsAccount

� This is an example of late binding or runtime binding
� At runtime, objects are bound to the correct type and the 
corresponding function is executed.



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         19

Executing a member function

� In any class, when a member function is 
called,
� The member function of the most specific 
class is executed.

� E.g. object o is created of type class c
� If a member function o.f( ) is called, 
function in c is executed, if it exists.

� Otherwise, the function f( ) in the 
closest parent in the hierarchy is 
executed.



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         20

Overloaded functions

� A function with the same function name
� With different arguments

� Same number of arguments, but different types
� Different number of arguments

� E.g.
class foo
{

void overloadedFn(int a) {… };
void overloadedFn(String s) {…};
void overloadedFn( ) {…};
void overloadedFn(int a, double b) {…};

}



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         21

Abstract classes

� Consider an object of Account.
� It makes sense to have 

� A specific type (e.g., checking) of account
� Not just a generic account object.

� A user should be able to create
� Specific object types.
� NOT generic objects.

� An abstract class is the generic class.
� Cannot create objects of this class

� Classes derived from the abstract classes 
are specific objects.
� Can create objects of the derived classes.



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         22

Abstract classes … contd.

� Abstract class
� A class that has abstract keyword (prefix)

� May have the following methods:
� abstract – no implementation, only declaration 

� non-abstract – have implementation

� Cannot be instantiated

� Can be extended by (non) abstract 
subclasses



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         23

Abstract class – Example
abstract class shape
{
abstract int findArea( );
public String showShape( )
{

return (“defaultShape”);
}

};

class square extends shape
{
private int length;
public square ( ) { length = -1; }
public int findArea ( )
{
return (length * length);

}
public String showShape ( )
{
return (“square”);

}
};



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         24

Abstract class … Example-2

class Circle extends GraphicObject

{ 

void draw ( ) { ... }

void resize ( ) { ... }

};

class Rectangle extends GraphicObject

{ 

void draw( ) { ... } 

void resize( ) { ... }

} ;

abstract class GraphicObject

{

int x, y;

// non-abstract method

// has actual code

void moveTo (int x1, int y1)

{ ... }

// abstract methods

// No code or implementation

abstract void draw(  );

abstract void resize( ); 

}

Source: Oracle.com



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         25

Java interfaces

� Interface
� Similar to abstract class

� Cannot be instantiated.

� Difference
� Member functions can only be defined.

� No implementation for ANY member function.

� Derived classes need to implement 
functions.



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         26

Interface … example

interface myInterface

{

void function1( );

int function2( );

}

Note:  No implementation 
for function1 or 
function2

class myClass implements 
myInterface

{

void function1( )

{

System.out.println (“fn1”);

}

int function2( )

{

System.out.println (“fn2”);

return (1);

}

}



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         27

Multiple inheritance in Java
� Java allows implementation of multiple 
interfaces.
� class myClass implements intfc1, intfc2
is allowed

� Java does not allow extension of more than 
one class.
� class myClass extends class1, class2
is NOT allowed.

� Extension of one class, implementation of 
multiple interfaces is allowed.
� Class myClass extends class1, implements 
interface1, implements interface2
is allowed.



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         28

final in Java

� final can have several meanings in Java
� final class cannot be extended

� final methods cannot be overridden by 
members of child classes

� final variables can only be assigned once
public final class myClass // Cannot be extended

{

public static final PI = 3.1415926

public static final someFinalMethod( ) { …}

}



Ramana Isukapalli
W3101: Programming Languages – Java Apr  21, 2011         29

Static members
� Specific to class, not individual objects
� Common to all objects
� Can be used with data or functions.
� E.g. main function is static

class staticExample
{

staticExample( ) { }
static int static_var = 1;
static void static_fn( ) { }
public static void main ( String args[ ] )
{
System.out.println (static_var); // No object is created
static_fn( ); // No object is created

}
};


