
Ramana Isukapalli
W3101: Programming Languages – C++

Lecture-4

 Inheritance – review.

 Polymorphism – review
 Virtual functions

 Abstract classes

 Miscellaneous Topics
 Function Overloading and Overriding

 this keyword

 static members

 inline functions

 Passing arguments by values and reference

Inheritance – base class & derived class

 Base class
class account
{
 int user_SSN;
 int accountNumber;
public:
 void deposit (int amount);
 void withdraw (int amount);
 void showAccountType();
};

 Derived class or child class
class checkingAccount : public account // checkingAccount is
{ // derived from account
 int lastCheckCleared; // not present in account
 void showAllChecksCleared(); // not present in account
 void showAccountType(); // defined in both classes
};

Ramana Isukapalli
W3101: Programming Languages – C++

Inheritance – base class and derived
classes

 Base Class

class account
{
private:
 int user_SSN;
 int accountNumber;
 int balance;
public:
 account () { }
 account (int ssn, acctNum);
 ~account() { }
 void deposit (int amount)
 void withdraw (int amount);
 void showAccountType();
};

 Derived (or child) class-1
class checkingAccount : public account
{
public:
 int lastCheckCleared;
 void showChecksCleared ();
 void showAccountType();
};

 Derived (or child) class-2
class IRA_account : public account
{
public:
 void buyFund (int fund_ID);
 void sellFund (int fund_ID);
 void showAccountType();
};

Ramana Isukapalli
W3101: Programming Languages – C++

Inheritance – continued.

 Important points to note:
 Derived classes have access to members of

base classes in this example.

 Derived classes can have their own members.
 E.g. lastCheckCleared, showAllChecksCleared(),

buyFund(), sellFund(), etc.

 Members of one derived class are not accessible
to another

Ramana Isukapalli
W3101: Programming Languages – C++

Examples

 Valid usage in an external function
 account acct(123456, 5672);

 checkingAccount ca;

 acct.deposit (700);

 acct.withdraw (300);

 ca.deposit (1000);

 ca.showAllChecksCleared()

 Invalid usage in derived class
 ca.user_SSN = 1234; // Can’t access user_SSN

 ca.accountNumber = 567;

Ramana Isukapalli
W3101: Programming Languages – C++

Polymorphism &
virtual functions

W3101 – Programming Languages, C++
Ramana Isukapalli

virtual functions

 Function “double showAccountType()” is
defined in both base and child classes.
 Supposed to return different values

 virtual void Account::showAccountType()
{ cout << “Account” << endl; }

 void CheckingAccount::showAccountType()
 { cout << “Checking Account” << endl; }

 void IRA_Account::showAccountType()
 { cout << “IRA Account ” << endl ; }

W3101 – Programming Languages, C++
Ramana Isukapalli

virtual functions … contd.

main()
{
 Account *x = new CheckingAccount();
 x→showAccountType();
 // What will this print?
}
 This will print
 Account, if the function is NOT virtual
 Checking Account , if it is defined virtual

W3101 – Programming Languages, C++
Ramana Isukapalli

Why are virtual functions needed?

 Mainly to enforce class specific
functional implementation.

 Should not call base class function
from a child object.

 An account object may take different
“forms” at different times
 Checking account, IRA account, etc.
 showAccountType() should use derived

class specific function.

⇒ Polymorphism

W3101 – Programming Languages, C++
Ramana Isukapalli

Abstract classes

 Consider an object of Account.

 It makes sense to have
 A specific type (e.g., checking) of account

 Not just a generic account object.

 A user should be able to create
 Specific object types.

 NOT generic objects.

 An abstract class is the generic class.

W3101 – Programming Languages, C++
Ramana Isukapalli

Abstract classes … contd.

 Properties of abstract classes.
 Defines a generic base class

 Class definition has attributes and methods

 Other classes are derived from it.

 Derived classes implement the methods
defined in abstract class.

 Can NOT instantiate objects of base class.

 Can instantiate only objects of derived
classes.

W3101 – Programming Languages, C++
Ramana Isukapalli

How do we create abstract classes?

 Set ANY virtual function to 0.
 Pure virtual function – value of function = 0
 NO BODY for function

 class Account
 {
 virtual void showAccountType () = 0;
 }
 class CheckingAccount : public Account
 {
 void showAccountType () { … }
 }

 Account x; // Will NOT work.
 CheckingAccount y; // Will work.

Miscellaneous Topics

W3110: Programming Languages – C++
Ramana Isukapalli

Function overloading

 Functions with the same name but with
 Different number of arguments or

 Different types of arguments

E.g. int add (int a, int b, int c) { return (a+b+c); }

 int add (int a, int b) { return (a + b); }

double add (double a, double b) { return (a + b); }

 Here “add” is an overloaded function

W3110: Programming Languages – C++
Ramana Isukapalli

Function overriding
 Functions defined in parent class and re-

implemented by the child class.
E.g. class Bird

 {

 int canFly() { return (1); }

 }

 class Penguin : public Bird

 {

 int canFly () { return (0); }

 }

Here, “canFly” is an overridden by the child class, Penguin

W3110: Programming Languages – C++
Ramana Isukapalli

this keyword

 this refers to the address of the current object

 E.g.

class Account
{
 private:
 int balance;
 public:
 setBalance (int amount)
 {
 this->balance = amount;
 }
};

W3110: Programming Languages – C++
Ramana Isukapalli

C++ static members

 static members in C++
 Shared by all the objects of a class
 Specific to a class, NOT object of a class
 Access them using className::static_member
 E.g., myClass::staticVar, or myClass::f1()

class myClass
{
 public:
 static int staticVar;
 static void f1();
};

W3101: Programming Languages – C++
Ramana Isukapalli

Inline functions

 Normal functions
 Carry operational overhead
 Function call, parameter passing, etc.

 Inline functions
 No overhead related to function calls
 Might be as simple as a memory access

 class myClass
 {
 public:
 int x;
 inline int getX () { return x; }
 };

W3101: Programming Languages – C++
Ramana Isukapalli

Inline functions … contd.
 Compiler decides if a function defined as

“inline” can be “inline” or not.
 Too much of code for any function

defined as inline
 Compiler may treat as a regular (non-inline)

function

 Note: Code for an inline function
 Can be in the class itself, or
 Can be in the same file as the class definition.
 CANNOT be defined in any file outside the

class definition

W3101 – Programming Languages, C++
Ramana Isukapalli

Passing args. to a function … by value

 Compiler creates a copy when function is called.
 Any changes made inside the function are not

reflected after the function.

 class myClass
 {
 void f1(int i) // i is passed by value
 { i = 3; }
 };
 int x = 5;
 myClass obj;
 obj.f1(x);
 cout << “value of x: “ << x << endl; // x is still 5

W3101 – Programming Languages, C++
Ramana Isukapalli

Passing args. to a function … by
reference

 Compiler takes the original object.
 Any changes made inside the function are reflected

after the function.
 class myClass
 {
 void f1(int& i) // i is passed by reference.
 { i = 3; }
 };
 int x = 5;
 myClass obj;
 obj.f1(x);
 cout << “value of x: “ << x << endl; // x is 3

