i Lecture-4

= Inheritance - review.
= Polymorphism - review
= Virtual functions
= Abstract classes

= Miscellaneous Topics
= Function Overloading and Overriding
= this keyword
= static members
inline functions
Passing arguments by values and reference

Ramana Isukapalli
W3101: Programming Languages — C++

Inheritance - base class & derived class

= Base class
class account
{
int user_SSN;
int accountNumber;
public:
void deposit (int amount);
void withdraw (int amount);
void showAccountType():
}:
= Derived class or child class
class checkingAccount : public account // checkingAccount is

{ // derived from account
int lastCheckCleared; // not present in account
void showAllChecksCleared(); // not present in account
void showAccountType(). // defined in both classes

}' Ramana Isukapalli

W3101: Programming Languages — C++

Inheritance - base class and derived

classes

Base Class

class account

{

private:

int user_ SSN;
int accountNumber:;
int balance;

public:

account () { }

account (int ssn, acctNum);
~account() { }

void deposit (int amount)
void withdraw (int amount);
void showAccountType():

= Derived (or child) class-1
class checkingAccount : public account
{
public:
int lastCheckCleared;
void showChecksCleared ();
void showAccountType():

};

= Derived (or child) class-2
class IRA_account : public account
{
public:
void buyFund (int fund_ID):
void sellFund (int fund_ID);
void showAccountType():
}.

Ramana Isukapalli

W3101: Programming Languages — C++

i Inheritance - continued.

= Important points to note:

= Derived classes have access to members of
base classes in this example.

= Derived classes can have their own members.

= E.g. lastCheckCleared, showAllChecksCleared(),
buyFund(), sellFund(), etc.

« Members of one derived class are not accessible
to another

Ramana Isukapalli
W3101: Programming Languages — C++

i Examples

= Valid usage in an external function
= account acct(123456, 5672);
= checkingAccount ca;
= acct.deposit (700);
= acct.withdraw (300);
= ca.deposit (1000);
= ca.showAllChecksCleared()

s Invalid usage in derived class
= ca.user SSN = 1234; // Can't access user SSN
= ca.accountNumber = 567;

Ramana Isukapalli
W3101: Programming Languages — C++

Polymorphism &

!'_ virtual functions

i virtual functions

= Function "double showAccountType()" is
defined in both base and child classes.

= Supposed to return different values
= virtual void Account:ishowAccountType()
{ cout << "Account” << endl; }

= void CheckingAccount::showAccount Type()
{ cout «« "Checking Account” <« endl; }

= void TRA_Account::showAccount Type()
{ cout <« "TRA Account "<« endl ; }

W3101 - Programming Languages, C++
Ramana Isukapalli

i virtual functions ... contd.

main()

{

Account *x = new CheckingAccount():
x—showAccount Type();
// What will this print?

}
= This will print
= Account, if the function is NOT virtual
= Checking Account , if it is defined virtual

W3101 - Programming Languages, C++
Ramana Isukapalli

i Why are virtual functions needed?

= Mainly to enforce class specific
functional implementation.

= Should not call base class function
from a child object.

= An account object may take different
“forms” at different times
= Checking account, IRA account, etc.
= showAccountType() should use derived
class specific function.

= Polymorphism

W3101 - Programming Languages, C++
Ramana Isukapalli

i Abstract classes

= Consider an object of Account.

= It makes sense to have
= A specific type (e.g., checking) of account
= Not just a generic account object.
= A user should be able to create
= Specific object types.
= NOT generic objects.

s An abstract class is the generic class.

W3101 - Programming Languages, C++
Ramana Isukapalli

i Abstract classes ... contd.

= Properties of abstract classes.
= Defines a generic base class
= Class definition has attributes and methods
= Other classes are derived from it.

= Derived classes implement the methods
defined in abstract class.

= Can NOT instantiate objects of base class.

= Can instantiate only objects of derived
classes.

W3101 - Programming Languages, C++
Ramana Isukapalli

i How do we create abstract classes?
= Set ANY virtual function to O.

s Pure virtual function - value of function=10
= NO BODY for function

class Account

{
}

class CheckingAccount : public Account

{
}

Account X; // Will NOT work.
CheckingAccounty; // Will work.

W3101 - Programming Languages, C++
Ramana Isukapalli

virtual void showAccountType () = 0;

void showAccountType (){ ... }

!'_ Miscellaneous Topics

i Function overloading

= Functions with the same name but with
= Different number of arguments or
= Different types of arguments
E.g. int add (int q, int b, int ¢) { return (a+b+c); }
int add (int a, int b) { return (a + b); }
double add (double a, double b) { return (a + b); }

s Here "add" is an overloaded function

W3110: Programming Languages — C++
Ramana Isukapalli

i Function overriding

= Functions defined in parent class and re-
implemented by the child class.

E.g. class Bird

{
int canFly() { return (1); }

}

class Penguin : public Bird

{
int canFly () { return (0); }

}

Here, "canFly" is an overridden by the child class, Penguin

W3110: Programming Languages — C++
Ramana Isukapalli

i this keyword

= this refers to the address of the current object

o E.g.
class Account
{
private:
int balance;
public:
setBalance (int amount)
{
this->balance = amount;
}
%

W3110: Programming Languages — C++
Ramana Isukapalli

i C++ static members

= static members in C++
= Shared by all the objects of a class
= Specific to a class, NOT object of a class
= Access them using className::static_member
= E.g.,, myClass::staticVar, or myClass::f1()

class myClass
{
public:
static int staticVar;
static void f1();

W3110: Programming Languages — C++
Ramana Isukapalli

i Inline functions

= Normal functions

= Carry operational overhead

= Function call, parameter passing, etc.
= Inline functions

= No overhead related to function calls

= Might be as simple as a memory access
class myClass

{

public:
int x;
inline int getX () { return x; }

W3101: Programming Languages — C++
Ramana Isukapalli

Inline functions ... contd.

= Compiler decides if a function defined as
“inline"” can be “inline" or not.

= Too much of code for any function
defined as inline

= Compiler may treat as a regular (non-inline)
function
= Note: Code for an inline function
= Can be in the class itself, or
= Can be in the same file as the class definition.

« CANNOT be defined in any file outside the
class definition

W3101: Programming Languages — C++
Ramana Isukapalli

i Passing args. to a function ... by value

Compiler creates a copy when function is called.

= An charéqes made inside the function are not
lected after the function.

class myClass

{
void f1(int i) // i is passed by value
{i=3)
).
int x = 5;
myClass obj;
obj.f1(x);

cout << “value of x: "<« x <« endl: // x is still 5

W3101 - Programming Languages, C++
Ramana Isukapalli

Passing args. to a function ... by
reference

= Compiler takes the original object.

= Any changes made inside the function are reflected
after the function.

class myClass

{
void f1(int& i) // i is passed by reference.
{i=3;}
).
int x = 5;
myClass obj;
obj.f1(x);

cout <«< “value of x: "<« x<«<endl: // xis 3

W3101 - Programming Languages, C++
Ramana Isukapalli

