
COMS W3101 Programming
Language: C++ (Fall 2016)

Ramana Isukapalli

ramana@cs.columbia.edu

2

Lecture-3
 Review

 Constructor and destructor

 Data and Member functions

 Data encapsulation
 public, private and protected members

 friend functions and friend classes

 Inheritance

 Polymorphism
 Virtual functions

W3101: Programming Languages: C++
Ramana Isukapalli

Constructor and
Destructor

4

Constructor and destructor.

Constructor
o A function with the same name as the class

o Called when an object is created

o A class can have more than one constructor

Destructor
o Called when an object is cleaned up (goes out of scope)

o One class can have only one destructor

Examples
account x; // constructor code is called

account *y = new account; // constructor code is called

delete (y); // destructor code is called

W3101: Programming Languages: C++
Ramana Isukapalli

5

Constructor and destructor, contd.
Constructor code
 Constructor-1
 account::account()
 { user_ssn = -1; accountNumber = -1; }
 // OR
 account::account() : user_ssn (-1),

 accountNumber(-1) { }
 // Constructor-2
 account::account (int ssn, int acctNum)
 {
 user_ssn = ssn;
 accountNumber = acctNum;
 }
Destructor code
 account::~account()
 { // Any memory/resource cleanup, etc. }

W3101: Programming Languages: C++
Ramana Isukapalli

6
Ramana Isukapalli

W3101: Programming Languages – C++

“Account” example

class account
{
 private:
 int user_SSN; // data
 int accountNumber; // data
 public:
 account(); // Constructor-1
 account(int m, int n); // Constructor-2
 ~account(); // Destructor
 void withdrawMoney (int amount); // method
 void depositMoney (int amount); // method:
 void showAccountType(); // method
};

7

Account example … contd.

 class has both “data” and “methods”.
 Attributes and methods are “members” of

a class
 An instance of a class is an object.
 A class should typically correspond to some

meaningful entity.
 A class uses methods to interact with

other classes/functions.
 private members accessible only to the

class (and friends)
 public members are accessible to every

class and functions

W3101: Programming Languages: C++
Ramana Isukapalli

Data encapsulation

9

Data encapsulation … contd.

Public methods
and members Input/

Output

Private
members

 Private members are hidden from other classes, fns.
 Public Methods act on data to provide output.
 External classes, functions have access to public

methods

CS3101: Programming Languages: C++
Ramana Isukapalli

Other classes
or functions Class

10

Data encapsulation, contd.

 How can data be hidden?
 Only class should have access to data

 Class methods use data

 Define every class member to be one of
 public – accessible to every the class, other

classes, functions and friends

 private – accessible only to class and friends

 protected – accessible only to class, friends
and children

W3101: Programming Languages: C++
Ramana Isukapalli

11

Data encapsulation in account example

 In an object of account
 user_ssn and accountNumber are declared private

 Accessible only to account objects (and friends)

 Methods are public
 Anyone can access them.

 Example
void function1 () // function, not defined in Account
 {
 account x;
 x.user_ssn = 123; // Will NOT work
 x.showAccountType(); // Will work
}

W3101: Programming Languages: C++
Ramana Isukapalli

friend functions and
friend classes

13

friend functions

 What if a function genuinely needs to
have access to private data?
 E.g. showAccountInfo (Account acct)

 Need to give access ONLY to that
function, not others.

 Use friend function definition

 friend functions of a class have access
to private members of the class.

W3101: Programming Languages: C++
Ramana Isukapalli

14

Example – friend function

class account
{
private:
 int user_SSN;
 int accountNumber;
public:
 void deposit (int amount)
 void withdraw (int amount);
friend showAccountInfo

(class Account);
};

void showAccountInfo
(Account acct)

{
 cout << user_SSN << endl;
 cout << accountNumber <<

 endl;
}

This is valid.
Friend function can access

private members.

W3101: Programming Languages: C++
Ramana Isukapalli

15

friend class

 Concept of friend can be extended to a class from
a function.

 A class gives access to its private members to its
friend classes.

class account class bank
{ {
 … …
 friend class bank }
}

Members of bank have access to private members of

account
W3101: Programming Languages: C++

Ramana Isukapalli

16

Inheritance – base class & derived class

 Base class
class account
{
 int user_SSN;
 int accountNumber;
public:
 void deposit (int amount);
 void withdraw (int amount);
 void showAccountType();
};

 Derived class or child class
class checkingAccount : public account // checkingAccount is
{ // derived from account
 int lastCheckCleared; // not present in account
 void showAllChecksCleared(); // not present in account
 void showAccountType(); // defined in both classes
}; W3101: Programming Languages: C++

Ramana Isukapalli

17

Inheritance – base class and derived
classes

 Base Class

class account
{
private:
 int user_SSN;
 int accountNumber;
 int balance;
public:
 account () { }
 account (int ssn, acctNum);
 ~account() { }
 void deposit (int amount)
 void withdraw (int amount);
 void showAccountType();
};

 Derived (or child) class-1
class checkingAccount : public account
{
public:
 int lastCheckCleared;
 void showChecksCleared ();
 void showAccountType()
};

 Derived (or child) class-2
class IRA_account : public account
{
public:
 void buyFund (int fund_ID);
 void sellFund (int fund_ID);
 void showAccountType ();
};

W3101: Programming Languages: C++
Ramana Isukapalli

18

Inheritance – continued.

 Important points to note:
 Derived classes have access to members of

base classes in this example.

 Derived classes can have their own members.
 E.g. lastCheckCleared, showAllChecksCleared(),

buyFund(), sellFund(), etc.

 Members of one derived class are not accessible
to another

W3101: Programming Languages: C++
Ramana Isukapalli

19

Examples

 Valid usage in an external function
 account acct(123456, 5672);

 checkingAccount ca;

 acct.deposit (700);

 acct.withdraw (300);

 ca.deposit (1000);

 ca.showAllChecksCleared()

 Invalid usage in derived class
 ca.user_SSN = 1234; // Can’t access user_SSN

 ca.accountNumber = 567;

W3101: Programming Languages: C++
Ramana Isukapalli

Polymorphism &
virtual functions

21

virtual functions

 Function “void showAccountType()” is
defined in both base and child classes.
 Supposed to return different values

 virtual void Account::showAccountType()
{ cout << “Account” << endl; }

 void CheckingAccount:: showAccountType()
 { cout << “Checking Account” << endl; }

 void IRA_Account:: showAccountType ()
 { cout << “IRA Account” << endl; }

W3101: Programming Languages: C++
Ramana Isukapalli

22

virtual functions … contd.

main()
{
 Account *x = new CheckingAccount();
 x→showAccountType();
 // Will this print “Account” or “Checking

Account”?
}
 This will print

 Account, if the function is NOT virtual
 Checking Account, if the function is defined

virtual

W3101: Programming Languages: C++
Ramana Isukapalli

23

Why are virtual functions needed?

 Mainly to enforce class specific
functional implementation.

 Should not call base class function
from a child object.

 An account object may take different
“forms” at different times
 Checking account, IRA account, etc.
 showAccountType() should compute

derived class specific function.

⇒ Polymorphism
W3101: Programming Languages: C++

Ramana Isukapalli

