
COMS W3101 Programming
Language: C++ (Fall 2016)

Ramana Isukapalli

ramana@cs.columbia.edu

2

Lecture-3
 Review

 Constructor and destructor

 Data and Member functions

 Data encapsulation
 public, private and protected members

 friend functions and friend classes

 Inheritance

 Polymorphism
 Virtual functions

W3101: Programming Languages: C++
Ramana Isukapalli

Constructor and
Destructor

4

Constructor and destructor.

Constructor
o A function with the same name as the class

o Called when an object is created

o A class can have more than one constructor

Destructor
o Called when an object is cleaned up (goes out of scope)

o One class can have only one destructor

Examples
account x; // constructor code is called

account *y = new account; // constructor code is called

delete (y); // destructor code is called

W3101: Programming Languages: C++
Ramana Isukapalli

5

Constructor and destructor, contd.
Constructor code
 Constructor-1
 account::account()
 { user_ssn = -1; accountNumber = -1; }
 // OR
 account::account() : user_ssn (-1),

 accountNumber(-1) { }
 // Constructor-2
 account::account (int ssn, int acctNum)
 {
 user_ssn = ssn;
 accountNumber = acctNum;
 }
Destructor code
 account::~account()
 { // Any memory/resource cleanup, etc. }

W3101: Programming Languages: C++
Ramana Isukapalli

6
Ramana Isukapalli

W3101: Programming Languages – C++

“Account” example

class account
{
 private:
 int user_SSN; // data
 int accountNumber; // data
 public:
 account(); // Constructor-1
 account(int m, int n); // Constructor-2
 ~account(); // Destructor
 void withdrawMoney (int amount); // method
 void depositMoney (int amount); // method:
 void showAccountType(); // method
};

7

Account example … contd.

 class has both “data” and “methods”.
 Attributes and methods are “members” of

a class
 An instance of a class is an object.
 A class should typically correspond to some

meaningful entity.
 A class uses methods to interact with

other classes/functions.
 private members accessible only to the

class (and friends)
 public members are accessible to every

class and functions

W3101: Programming Languages: C++
Ramana Isukapalli

Data encapsulation

9

Data encapsulation … contd.

Public methods
and members Input/

Output

Private
members

 Private members are hidden from other classes, fns.
 Public Methods act on data to provide output.
 External classes, functions have access to public

methods

CS3101: Programming Languages: C++
Ramana Isukapalli

Other classes
or functions Class

10

Data encapsulation, contd.

 How can data be hidden?
 Only class should have access to data

 Class methods use data

 Define every class member to be one of
 public – accessible to every the class, other

classes, functions and friends

 private – accessible only to class and friends

 protected – accessible only to class, friends
and children

W3101: Programming Languages: C++
Ramana Isukapalli

11

Data encapsulation in account example

 In an object of account
 user_ssn and accountNumber are declared private

 Accessible only to account objects (and friends)

 Methods are public
 Anyone can access them.

 Example
void function1 () // function, not defined in Account
 {
 account x;
 x.user_ssn = 123; // Will NOT work
 x.showAccountType(); // Will work
}

W3101: Programming Languages: C++
Ramana Isukapalli

friend functions and
friend classes

13

friend functions

 What if a function genuinely needs to
have access to private data?
 E.g. showAccountInfo (Account acct)

 Need to give access ONLY to that
function, not others.

 Use friend function definition

 friend functions of a class have access
to private members of the class.

W3101: Programming Languages: C++
Ramana Isukapalli

14

Example – friend function

class account
{
private:
 int user_SSN;
 int accountNumber;
public:
 void deposit (int amount)
 void withdraw (int amount);
friend showAccountInfo

(class Account);
};

void showAccountInfo
(Account acct)

{
 cout << user_SSN << endl;
 cout << accountNumber <<

 endl;
}

This is valid.
Friend function can access

private members.

W3101: Programming Languages: C++
Ramana Isukapalli

15

friend class

 Concept of friend can be extended to a class from
a function.

 A class gives access to its private members to its
friend classes.

class account class bank
{ {
 … …
 friend class bank }
}

Members of bank have access to private members of

account
W3101: Programming Languages: C++

Ramana Isukapalli

16

Inheritance – base class & derived class

 Base class
class account
{
 int user_SSN;
 int accountNumber;
public:
 void deposit (int amount);
 void withdraw (int amount);
 void showAccountType();
};

 Derived class or child class
class checkingAccount : public account // checkingAccount is
{ // derived from account
 int lastCheckCleared; // not present in account
 void showAllChecksCleared(); // not present in account
 void showAccountType(); // defined in both classes
}; W3101: Programming Languages: C++

Ramana Isukapalli

17

Inheritance – base class and derived
classes

 Base Class

class account
{
private:
 int user_SSN;
 int accountNumber;
 int balance;
public:
 account () { }
 account (int ssn, acctNum);
 ~account() { }
 void deposit (int amount)
 void withdraw (int amount);
 void showAccountType();
};

 Derived (or child) class-1
class checkingAccount : public account
{
public:
 int lastCheckCleared;
 void showChecksCleared ();
 void showAccountType()
};

 Derived (or child) class-2
class IRA_account : public account
{
public:
 void buyFund (int fund_ID);
 void sellFund (int fund_ID);
 void showAccountType ();
};

W3101: Programming Languages: C++
Ramana Isukapalli

18

Inheritance – continued.

 Important points to note:
 Derived classes have access to members of

base classes in this example.

 Derived classes can have their own members.
 E.g. lastCheckCleared, showAllChecksCleared(),

buyFund(), sellFund(), etc.

 Members of one derived class are not accessible
to another

W3101: Programming Languages: C++
Ramana Isukapalli

19

Examples

 Valid usage in an external function
 account acct(123456, 5672);

 checkingAccount ca;

 acct.deposit (700);

 acct.withdraw (300);

 ca.deposit (1000);

 ca.showAllChecksCleared()

 Invalid usage in derived class
 ca.user_SSN = 1234; // Can’t access user_SSN

 ca.accountNumber = 567;

W3101: Programming Languages: C++
Ramana Isukapalli

Polymorphism &
virtual functions

21

virtual functions

 Function “void showAccountType()” is
defined in both base and child classes.
 Supposed to return different values

 virtual void Account::showAccountType()
{ cout << “Account” << endl; }

 void CheckingAccount:: showAccountType()
 { cout << “Checking Account” << endl; }

 void IRA_Account:: showAccountType ()
 { cout << “IRA Account” << endl; }

W3101: Programming Languages: C++
Ramana Isukapalli

22

virtual functions … contd.

main()
{
 Account *x = new CheckingAccount();
 x→showAccountType();
 // Will this print “Account” or “Checking

Account”?
}
 This will print

 Account, if the function is NOT virtual
 Checking Account, if the function is defined

virtual

W3101: Programming Languages: C++
Ramana Isukapalli

23

Why are virtual functions needed?

 Mainly to enforce class specific
functional implementation.

 Should not call base class function
from a child object.

 An account object may take different
“forms” at different times
 Checking account, IRA account, etc.
 showAccountType() should compute

derived class specific function.

⇒ Polymorphism
W3101: Programming Languages: C++

Ramana Isukapalli

