i Lecture-4

= Inheritance .. review.

0 POIYI’\'\OFPhiSﬂ'\
= Virtual functions

= Abstract classes

= const member functions

= const arguments to a function

= Function overloading and overriding

Ramana Isukapalli
W3101: Programming Languages — C++

Inheritance - base class & derived class

= Base class
class account
{
int user_SSN;
int accountNumber;
public:
void deposit (int amount);
void withdraw (int amount);
double computeInterest ():
}:
= Derived class or child class
class checkingAccount : public account // checkingAccount is

{ // derived from account
int lastCheckCleared; // not present in account
void showAllChecksCleared(); // not present in account
double computeInterest(): // defined in both classes

}' Ramana Isukapalli

W3101: Programming Languages — C++

Inheritance - base class and derived

classes

= Base Class

class account

{

private:
int user_SSN;
int accountNumber;
int balance;

public:
account () { }
account (int ssn, acctNum);
~account() { }
void deposit (int amount)
void withdraw (int amount);
double computeInterest():

= Derived (or child) class-1
class checkingAccount : public account
{
public:
int lastCheckCleared;
void showChecksCleared ():
double computeInterest ()

};

= Derived (or child) class-2
class IRA_account : public account
{
public:
void buyFund (int fund_ID):
void sellFund (int fund_ID);
double computeInterest ():

}:

Ramana Isukapalli

W3101: Programming Languages — C++

i Inheritance - continued.

= Important points to note:

= Derived classes have access to members of
base classes in this example.

= Derived classes can have their own members.

= E.g. lastCheckCleared, showAllChecksCleared(),
buyFund(), sellFund(), etc.

« Members of one derived class are not accessible
to another

Ramana Isukapalli
W3101: Programming Languages — C++

i Examples

= Valid usage in an external function
= account acct(123456, 5672);
= checkingAccount ca;
= acct.deposit (700);
= acct.withdraw (300);
= ca.deposit (1000);
= ca.showAllChecksCleared()

» Invalid usage in derived class
= ca.user SSN = 1234; // Can't access user SSN
= ca.accountNumber = 567;

Ramana Isukapalli
W3101: Programming Languages — C++

Polymorphism &

!'_ virtual functions

i virtual functions

= Function "double computeInterest()" is
defined in both base and child classes.

= Supposed to return different values

= virtual double Account::computeInterest ()
{ return O; }

= double CheckingAccount::computeInterest ()
{ return 10.0; }

= double TRA_Account:icomputeInterest ()
{ return 100.0; }

W3101 - Programming Languages, C++
Ramana Isukapalli

i virtual functions ... contd.

main()

{

Account *x = new CheckingAccount();

x—computeInterest();
// Will this return O or 10.0?

}

= This will return
= 0, if the function is NOT virtual
= 10.0, if the function is defined virtual

W3101 - Programming Languages, C++
Ramana Isukapalli

i Why are virtual functions needed?

= Mainly to enforce class specific
functional implementation.

= Should not call base class function
from a child object.

= An account object may take different
“forms" at different times
= Checking account, IRA account, etc.

= computeInterest() should compute
derived class specific function.

= Polymorphism

W3101 - Programming Languages, C++
Ramana Isukapalli

i Abstract classes

= Consider an object of Account.

= It makes sense to have
= A specific type (e.g., checking) of account
= Not just a generic account object.
= A user should be able to create
= Specific object types.
= NOT generic objects.

s An abstract class is the generic class.

W3101 - Programming Languages, C++
Ramana Isukapalli

i Abstract classes ... contd.

= Properties of abstract classes.
= Defines a generic base class
= Class definition has attributes and methods
= Other classes are derived from it.

= Derived classes implement the methods
defined in abstract class.

= Can NOT instantiate objects of base class.

= Can instantiate only objects of derived
classes.

W3101 - Programming Languages, C++
Ramana Isukapalli

i How do we create abstract classes?
= Set ANY virtual function 1o O.

s Pure virtual function - value of function=0
= NO BODY for function

class Account

{
}

class CheckingAccount : public Account

{
}

Account x; // Will NOT work.
CheckingAccount y; // Will work.

W3101 - Programming Languages, C++
Ramana Isukapalli

virtual double computeInterest ()= 0;

double computeInterest (){ .. }

const arguments and

!'_ const member functions

i const arguments to functions

void fl(const int a)
{

}

a=3;// Not allowed

= const arguments to a function can't be
changed in the function.

= f1 can't change a in the above example

W3110: Programming Languages — C++
Ramana Isukapalli

i const member functions

class myClass

{

int a;

;.oid f1() const
{a=3;}// Not allowed
}:

= const functions can't change any
attributes of myClass.

= f1 can't change a in the above example

W3110: Programming Languages — C++
Ramana Isukapalli

Function overloading and

!'_ function overriding

i Function overloading

= Functions with the same name but with
= Different number of arguments or
= Different types of arguments
E.g. int add (int q, int b, int ¢) { return (a+b+c); }
int add (int a, int b) { return (a + b); }
double add (double a, double b) { return (a + b); }

s Here "add" is an overloaded function

W3110: Programming Languages — C++
Ramana Isukapalli

i Function overriding

= Functions defined in parent class and re-
implemented by the child class.

E.g. class Bird

{
int canFly() { return (1); }

}

class Penguin : public Bird

{
int canFly () { return (0); }

}

Here, "canFly" is an overridden by the child class, Penguin

W3110: Programming Languages — C++
Ramana Isukapalli

