
COMS W3101 Programming
Language: C++ (Fall 2015)

Ramana Isukapalli

ramana@cs.columbia.edu

2

Lecture-2
 Overview of C … continued

 C character arrays

 Functions

 Structures

 Pointers

 C++ string class

 C++
 Design, difference with C

 Concepts of Object oriented Programming

 Concept of class and Object

 Constructor and destructor

 Data and Member functions

 Data encapsulation

 public, private and protected members

 W3101: Programming Languages: C++
Ramana Isukapalli

C – character arrays

4 CS3101: Programming Languages: C++
Ramana Isukapalli

C uses character arrays for strings

 C uses character arrays for strings.

 Useful string functions
 strlen – find the length of a string.

 strcmp – compares two strings
 Returns 0 if they match.

 strstr – check if a string is sub-string of
another string.

 strcat – concatenate two strings.

 Many others

C O L U M B I A

C++ string class

6

C++ strings
 C uses char arrays to represent strings

 char arrays are messy
 Need to predefine the size of array
 Size can’t be increased easily for longer

strings.
 Copying strings need to use strcpy.

 C++ strings – don’t have these issues.
 E.g. string str1 = “abc”;

 string str2 = str1;
 string str3 = str1 + “pqr”;
Much more convenient than C character arrays
 CS3101: Programming Languages: C++

Ramana Isukapalli

7

C functions
 A group of statements

 To perform a task
 Possibly return a value

 Syntax
 <return_type> fn_name (arguments)
 {
 // function body
 }

W3101: Programming Languages: C++
Ramana Isukapalli

8

C functions … example

 Example
int square (int x) /* fn to compute square*/
{
 return (x * x);
}
void main() /* Starting point of ANY C program*/
{
 int i = 5;
 int i_sq = square (5);
 cout << “square of 5: “ << i_sq << endl;
}

W3101: Programming Languages: C++
Ramana Isukapalli

9

C structs

 C struct
 used to contain > 1 basic data types

 Can contain other structs

 E.g.,
typedef struct

{

 int a, b, c;

 float x,y,z;

} myStruct;

myStruct m;

m.a = 1;

W3101: Programming Languages: C++
Ramana Isukapalli

10

C pointers

 A pointer “points” to a memory
location.
 E.g., int x; /* x is an integer */

 int *y; /* y points to an integer */

 x = 5;

 y = 6; / NOT y = 6 ! */

 Pointers can point to any data type;
 int *x; short *y; char *str;

 double *z; void *p, etc.

W3101: Programming Languages: C++
Ramana Isukapalli

11

C pointers, contd.

 Why do we need pointers?
 Mainly to manage the memory, as opposed to

the compiler managing memory.
 User needs to assign and delete memory.
 Allocate memory using malloc.
 Delete memory using free.

 Examples
 int *x = (int *) malloc (sizeof (int));
 *x = 3;
 free (x);

W3101: Programming Languages: C++
Ramana Isukapalli

12

C functions
 A group of statements

 To perform a task
 Possibly return a value

 Syntax
 <return_type> fn_name (arguments)
 {
 // function body
 }

W3101: Programming Languages: C++
Ramana Isukapalli

13

C functions … example

 Example
int square (int x) /* fn to compute square*/
{
 return (x * x);
}
void main() /* Starting point of ANY C program*/
{
 int i = 5;
 int i_sq = square (5);
 printf (“Square of 5 is: %d\n”, i_sq);
}

W3101: Programming Languages: C++
Ramana Isukapalli

14

C structs

 C struct
 used to contain > 1 basic data types

 Can contain other structs

 E.g.,
typedef struct

{

 int a, b, c;

 float x,y,z;

} myStruct;

myStruct m;

m.a = 1;

W3101: Programming Languages: C++
Ramana Isukapalli

15

C pointers

 A pointer “points” to a memory
location.
 E.g., int x; /* x is an integer */

 int *y; /* y points to an integer */

 x = 5;

 y = 6; / NOT y = 6 ! */

 Pointers can point to any data type;
 int *x; short *y; char *str;

 double *z; void *p, etc.

W3101: Programming Languages: C++
Ramana Isukapalli

16

C pointers, contd.

 Why do we need pointers?
 Mainly to manage the memory, as opposed to

the compiler managing memory.
 User needs to assign and delete memory.
 Allocate memory using malloc.
 Delete memory using free.

 Examples
 int *x = (int *) malloc (sizeof (int));
 *x = 3;
 free (x);

W3101: Programming Languages: C++
Ramana Isukapalli

C++

18

C++ ─ Philosophically different from C

 High level features of C++
 Uses concepts of “object oriented

programming” (OOP)

 Everything that works in C works in C++
 C syntax, operators, structures, control statements,

etc. work in C++

 Reverse is NOT true

 Object Oriented Programming
 Concept of class/object, methods, inheritance,

encapsulation, abstraction, polymorphism

 Key concepts in this
 Separation of data and methods

W3101: Programming Languages: C++
Ramana Isukapalli

19

Class methods
Syntax:

<ret_type> class::functionName(args)
{
 // code
}

Method code can be present in class definition

• Outside the class definition
• In a separate file

Example
void account::withdrawMoney (int amount)
{
 // code
}

W3101: Programming Languages: C++
Ramana Isukapalli

20
Ramana Isukapalli

W3101: Programming Languages – C++

A simple “account” example

class account
{
 private:
 int user_SSN; // data
 int accountNumber; // data
 public:
 void withdrawMoney (int amount); // method
 void depositMoney (int amount); // method:
 void computeInterest(); // method
};
account x; // x is an object of class “account”

Constructor and
Destructor

22

Constructor and destructor … contd.

Constructor
o A function with the same name as the class

o Called when an object is created

o A class can have more than one constructor

Destructor
o Called when an object is cleaned up (goes out of scope)

o One class can have only one destructor

Examples
account x; // constructor code is called

account *y = new account; // constructor code is called

delete (y); // destructor code is called

W3101: Programming Languages: C++
Ramana Isukapalli

23

Constructor and destructor
Constructor code
 account::account()
 { user_ssn = -1; accountNumber = -1; }

 account::account() : user_ssn (-1),

 accountNumber(-1) { }
 account::account (int ssn, int acctNum)
 {
 user_ssn = ssn;
 accountNumber = acctNum;
 }
Destructor code
 account::~account()
 { // Any memory/resource cleanup, etc. }

W3101: Programming Languages: C++
Ramana Isukapalli

24

Initializing member values

class Account
 {
 private:
 int balance;
 public:
 Account () : balance (0)
 { }
 Account (int amount) :

balance (amount) { }
 };

class checkingAccount : public

Account
{
 checkingAccount (int amount)

: Account (amount) { }
}

W3101: Programming Languages: C++
Ramana Isukapalli

