
W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 1

Lecture-4

� friend functions

� friend classes

� Inheritance

� Miscellaneous topics
� static members

� this keyword

� Setting member values

� const member functions

� Function overriding and function overloading

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 2

friend functions

� What if a function genuinely needs to
have access to private data?
� E.g. showAccountInfo (Account acct)

� Need to give access ONLY to that
function, not others.

� Use friend function definition

� friend functions of a class have access
to private members of the class.

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 3

Example – friend function

class account
{
private:

int user_SSN;
int accountNumber;

public:
void deposit (int amount)
void withdraw (int amount);

friend showAccountInfo
(class Account)

};

void showAccountInfo
(Account acct)

{
cout << user_SSN << endl;
cout << accountNumber <<

endl;
}

This is valid.
Friend function can access

private members.

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 4

friend class

� Concept of friend can be extended to a class from
a function.

� A class gives access to its private members to its
friend classes.

class account class bank
{ {
… …
friend class bank }

}

Members of bank have access to private members of
account

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 5

Inheritance

� Let’s take the account example again

� There are many types of accounts
� Checking, saving, money market, IRA, etc.

� All accounts may have
� Some common members.

� Account number, user SSN, etc.

� Some class specific members.

� Method implementation may be
� Same in different classes

� Different in different classes.

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 6

Inheritance – base class & derived class

� Base class
class account
{

int user_SSN;
int accountNumber;

public:
void deposit (int amount);
void withdraw (int amount);
double computeInterest ();

};

� Derived class or child class
class checkingAccount : public account // checkingAccount is
{ // derived from account

int lastCheckCleared; // not present in account
void showAllChecksCleared();// not present in account
double computeInterest(); // defined in both classes

};

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 7

Inheritance – base class and derived
classes

� Base Class

class account
{
private:

int user_SSN;
int accountNumber;

public:
account () { }
account (int ssn, acctNum);
~account() { }
void deposit (int amount)
void withdraw (int amount);
double computeInterest();

};

� Derived (or child) class-1
class checkingAccount : public account
{

public:
int lastCheckCleared;
void showChecksCleared ();
double computeInterest ()

};

� Derived (or child) class-2
class IRA_account : public account
{

public:
void buyFund (int fund_ID);
void sellFund (int fund_ID);
double computeInterest ();

};

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 8

Inheritance – continued.

� Important points to note:
� Derived classes have access to members of
base classes in this example.

� Derived classes can have their own members.
� E.g. lastCheckCleared, showAllChecksCleared(),
buyFund(), sellFund(), etc.

� Members of one derived class are not accessible
to another

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 9

Examples

� Valid usage in an external function
� account acct(123456, 5672);

� checkingAccount ca;

� acct.deposit (700);

� acct.withdraw (300);

� ca.deposit (1000);

� ca.showAllChecksCleared()

� Invalid usage in derived class
� ca.user_SSN = 1234; // Can’t access user_SSN

� ca.accountNumber = 567;

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 10

C++ static members

� static members in C++
� Shared by all the objects of a class
� Specific to a class, NOT object of a class
� Access them using className::static_member
� E.g., myClass::staticVar, or myClass::f1
� NOT myClassObj.staticVar or myClassObj.f1()

class myClass
{
public:

static int staticVar;
static void f1();

};

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 11

this keyword

� this refers to the addrss of the current
object

� E.g.
class Account
{
private:
int balance;

public setBalance (int amount)
{
this->balance = amount;

}
};

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 12

Initializing member values

class Account
{

private:
int balance;

public:
Account () : balance (0)
{ }

Account (int amount) :
balance (amount) { }
};

class checkingAccount : public
Account

{
checkingAccount (int amount)
: Account (amount) { }

}

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 13

const member functions

class myClass
{
int a;
…
void f1() const
{ a = 3; } // Not allowed

};
� const functions can’t change any
attributes of myClass.

� f1 can’t change a in the above example

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 14

Making arguments const

class myClass
{
int a;
…
void f1(const int& i)
{ i = 3; } // not allowed

� Cannot change the value of const
arguments

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 15

Passing args. to a function … by value

� Compiler creates its own copy.
� Any changes made inside the function are not
reflected after the function.

class myClass
{

void f1(int i) // i is passed by value
{ i = 3; }

};
int x = 5;
myClass obj;
obj.f1(x);
cout << “value of x: “ << x << endl; // x is still 5

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 16

Passing args. to a function … by
reference

� Compiler takes the original object.
� Any changes made inside the function are reflected

after the function.
class myClass
{

void f1(int& i) // i is passed by reference.
{ i = 3; }

};
int x = 5;
myClass obj;
obj.f1(x);
cout << “value of x: “ << x << endl; // x is 3

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 17

Function overriding

class Account
{

protected:
double balance;

public:
void computeInterest()
{

balance = balance +
0.01 * balance;

}
};

class checkingAccount : public
Account

{
public:

void computeInterest ()
{

balance = balance +
0.03 * balance;

}
};

� Derived class can redefine (override) any function
defined in the base class.
� E.g. computeInterest below is overridden by
checkingAccount class.

W3110: Programming Languages – C++
Ramana Isukapalli Oct 01, 2013 18

Function overloading

� Possible to have multiple member functions of
the same name with different parameters
⇒⇒⇒⇒ Function overloading

class myClass
{
// f1 – overloaded function
void f1 (int i);
void f1 (int i, int j);
void f2 (int i, double j);

}

