
W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 1

Lecture-6

� Standard template library
� vector

� list

� Iterators

� Operator overloading

� Inline functions

� Casting in C++

� Namespaces

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 2

Standard template library

� Defines many useful classes.

� Popular among them
� vector, list, map, iterators, etc.

� Each of these is a class.

� Has many useful functions.

� References:
http://www.cplusplus.com/reference/stl/

They list all the functions, coding examples and many
nice features for strings, vectors, lists and iterators.

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 3

Operator overloading

� On two objects of the same class, can we
perform typical operations like
� Assignment (=), increment (++), decrement(--)
� Write to a stream (<<)
� Reading to a stream (>>)

� Can be defined for user defined classes.
⇒⇒⇒⇒ Operator overloading

� Most of the common operators can be
overloaded.

� Operators – can be member/non-member
functions

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 4

Operator overloading … cont.

� Arity of operator
� Number of parameters required.

� Unary operators – take one argument
� E.g., ++, --, !, ~, etc.
� C unary operators remain unary in C++

� Binary operators – take two arguments.
� E.g., =, >, <, +, -, etc.
� C binary operators remain binary.

� Typical overloaded operators
� +, -, >, <, +=, ==, !=, <=, >=, <<, >>, []

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 5

Operator functions rules

� Member function operators
� Leftmost operand must be an object (or reference
to an object) of the class.

� If left operand is of a different type, operator
function must NOT be a member function

� Built-in operators with built-in data types
CANNOT be changed.

� Non-member operator function must be a
friend if
� private or protected members of that class are
accessed directly

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 6

Syntax

� Member function
return_type classname :: operatorSymbol (args)
{
// code
}

� Non-member function
return_type operatorSymbol (args)
{
// code
}

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 7

Example
class Integer

{
private:
int value;

public:
Integer (int val) : value (val) { }
void operator ++() { value++; } // Member op
friend Integer operator + // Non-member op

(const Integer& i, const Integer& j);
};

Integer operator + (const Integer&i, const Integer& j)
{

return Integer (i.value + j.value);
}

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 8

Inline functions

� Normal functions
� Carry operational overhead
� Function call, parameter passing, etc.

� Inline functions
� No overhead related to function calls
� Might be as simple as a memory access

class myClass
{

public:
int x;
inline getX () { return x; }

};

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 9

Inline functions … contd.
� Compiler decides if a function defined as
“inline” can be “inline” or not.

� Too much of code for any function
defined as inline
� Compiler may treat as a regular (non-inline)
function

� Note: Code for an inline function
� Can be in the class itself, or
� Can be in the same file as the class definition.
� CANNOT be defined in any file outside the
class definition

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 10

C++ type casting

� Casting: converting a variable/object of one
type/cast to another.

� C type casting can create run time errors in C++.

� C++ needs to casting between “related” classes

� C++ provides additional casting methods
� dynamic_cast

� static_cast

� reinterpret_cast

� const_cast

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 11

C++ type casting … contd.

� E.g., Base b, *bp; Derived d, *dp
� dynamic_cast:

� Casting from derived to base class, NOT
from base to derived to base class.

� bp = dynamic_cast <base*> (d); // Allowed
� dp = dynamic_cast <derived *>(b); // NOT allowed

� static_cast:
� Casting from base to derived and vice-versa.

� bp = dynamic_cast <base*> (d); // Allowed
� dp = dynamic_cast <derived *>(b); // allowed

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 12

Casting … contd.

� reinterpret_cast:
� Binary copy of values from one pointer to another

� Can cast any type to any other type, even for
unrelated class objects.

� Class A {.. }; Class B {..}; // not related to A

A *pa = new A;

B *pb = reinterpret_cast<B*> pa;

Suggestion: Don’t use it unless you know what you are doing.

� const_cast:
� Set or remove the const’ness of an object

� Const object can be passed as an non-const argument
to a function.

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 13

const_cast - example

#include <iostream>
using namespace std;
void myPrint (char * str)
{
cout << str << endl;

}

int main ()
{
const char * c = "sample text";
myPrint (const_cast<char *> (c));
return 0;

}

W3101: Programming Languages – C++
Ramana Isukapalli Dec 6, 2012 14

Namespaces

� A way to give “scope” to different
variables, as opposed to a global scope.
� E.g., namespace myNameSpace

{ int a, b; }

� a and b are visible ONLY in myNameSpace
� Can be accessed using the keywork “using”

� using namespace myNamespace
a = 3; b = 4;

� myNamespace::a = 3; myNamespace::b = 4;
� using myNamespace::a
cout << “value of a is: “ << a << endl;

