
Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 1

Lecture-2

� Overview of C
� Control structures

� if, for, while, do-while, continue, break, switch

� Pointers – malloc, free

� Functions

� C++
� Concepts of class/object

� Constructor

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 2

Control statements … if

if (<expr_1>)

{

<body of if_expr_1>

}

else if(<expr_2>)

{

< body of if_exp_2>

}

…

else /* default */

{

…

}

� Example-1

if (i > j)

printf (“i is larger\n”);

� Example-2

if (i > j)

printf (“i is larger\n”);

else

printf (“j is larger\n”);

� Example-3

if (i > j)

…

else if (i > k)

…

else

…

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 3

Control statements – for

� for (<start_expr>;

<termination_cond>;

<loop_increment>)

{

<body_of_for>

}

� Example-1 /* print 0 to 9 */

for (i = 0; i < 10; i++)

{

printf (“%d: \n”, i);

}

� Example-2

for (; ;) /* infinite loop */

{

/* do something */

}

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 4

Control statements – while

� Similar to for statement

� while (<while_cond>)

{

<while_body>

}

do

{

<body_of_do>

} while (condition);

� Example-1 /* print 0 to 9 */
i = 0;
while (i < 10)
{

printf (“%d\n”, i);
i++;

}
� Example-2

while (1) /* infinite loop */
{

/* do something */
}

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 5

Control Statements – switch, case

switch (x)
{

case val1:
<val1_body>;
break;

case val2:
<val2_body>;
break;

…
default:

<default_body>
}

int x = 2;
switch (x)
{

case 1:
procedure1();
break;

case 2:
procedure2(); /* executed*/
break;

…
default:

default_procedure();
}

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 6

C pointers

� A pointer “points” to a memory
location.
� E.g., int x; /* x is an integer */

int *y; /* y points to an integer */

x = 5;

y = 6; / NOT y = 6 ! */

� Pointers can point to any data type;
� int *x; short *y; char *str;

� double *z; void *p, etc.

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 7

C pointers, contd.

� Why do we need pointers?
� Mainly to manage the memory, as opposed to
the compiler managing memory.

� User needs to assign and delete memory.
� Allocate memory using malloc.
� Delete memory using free.

� Examples
� int *x = (int *) malloc (sizeof (int));
*x = 3;
free (x);

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 8

C functions
� A group of statements

� To perform a task
� Possibly return a value

� Syntax
<return_type> fn_name (arguments)

{
// function body

}

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 9

C functions … example

� Example
int square (int x) /* fn to compute square*/
{
return (x * x);

}
void main() /* Starting point of ANY C program*/
{
int i = 5;
int i_sq = square (5);
printf (“Square of 5 is: %d\n”, i_sq);

}

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 10

C++ ─ Philosophically different from C

� High level features of C++
� Uses concepts of “object oriented
programming” (OOP)

� Everything that works in C works in C++
� C syntax, operators, structures, control statements,
etc. work in C++

� Reverse is NOT true

� Object Oriented Programming
� Concept of class/object, methods, inheritance,
encapsulation, abstraction, polymorphism

� Key concepts in this
� Separation of data and methods

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 11

Data types, IO, control statments

� C data types, IO and control
statements work in C++

� C++ defines additional IO.
� Popular among that

� cout
� cin

� Advantage of cout and cin over
printf, scanf
� No need for %d, %s, %c, etc

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 12

Data encapsulation

� Hide the data from end user

� Need to know what methods are
implemented

� Not how they are implemented

� E.g. To compute interest in a bank an
user
� Needs to know what function to call

� NOT how the function is implemented

Ramana Isukapalli
W3101: Programming Languages – C++ Nov 8, 2012 13

Data encapsulation … contd.

Method OutputData

User

� Methods act on data to provide output.
� User needs to see only method, not data.
� User should not be affected by

� Implementation details of methods.
� Changes in implementation of methods.

Hidden from user

