i Lecture-2

= Overview of C

= Control structures
=« if, for, while, do-while, continue, break, switch

= Pointers - malloc, free
= Functions
m C++
= Concepts of class/object
= Constructor

Ramana Isukapalli
W3101: Programming Languages — C++ Nov 8, 2012 1

i Control statements ... if

if (<expr_1>) " .Ex_ample-l
{ if (1 >])
printf (“i is larger\n”);

<body of if expr_1>
= Example-2

) if (i >))

else if(<expr_2>) .J .

{ printf (“i is larger\n”);

< body of if_exp_2> olse -

) printf (%] is larger\n”);
= Example-3

else /* default */ T

{ else if (1 > k)

}
else

Ramana Isukapalli
W3101: Pragramming Languages — C++ Nov 8, 2012

i Control statements - for

s for (<s1'ar'1'_expr'>; = Example-1/* print O t0 9 */
<termination_cond>; for (i=0:i<10;i++)

| . S {
<loop_increment>) orintf (“%d: \n", i)

{)
<body_of_for> = Example-2
} for (; ;) /* infinite loop */
{
/* do something */
}

Ramana Isukapalli
W3101: Programming Languages — C++ Nov 8, 2012 3

i Control statements - while

= Similar to for statement = Example-1/* print O to 9*/

)) i =0;
0 }Nhlle (<while_cond>) while (i < 10)
| {
<while_body> printf (“%d\n", i);
} I++
}
do . Exqmple-z o
(while (1) /* infinite loop */
{
<body_of_do> /* do something */
} while (condition); }

Ramana Isukapalli
W3101: Programming Languages — C++ Nov 8, 2012 4

i Control Statements - switch, case

int x = 2;

fwi’rch (x) switch (x)
case vall: { case 1.
<vall_body>; procedurel();
break; break;
case val?2: case 2. '
<val2_body>; procedure2(); /* executed*/
break; break;
.c'i.efaul’r: .c.i.efaul’r:
} <default_body> default_procedure();
}

Ramana Isukapalli
W3101: Programming Languages — C++ Nov 8, 2012 5

i C pointers

= A pointer "points” to a memory
location.
=« Eg.,int x; /* xisaninteger */
int *y. /* y points to an integer */
X =D,
*y=6; /*NOTy=61%/
= Pointers can point to any data type;
= int *x; short *y: char *str;
= double *z; void *p, etc.

Ramana Isukapalli
W3101: Programming Languages — C++ Nov 8, 2012

6

i C pointers, contd.

= Why do we need pointers?

= Mainly fo manage the memory, as opposed to
the compiler managing memory.

= User needs to assign and delete memory.
= Allocate memory using malloc.
= Delete memory using free.

= Examples
= int *x = (int *) malloc (sizeof (int));
*x = 3;
free (x);

Ramana Isukapalli
W3101: Programming Languages — C++ Nov 8, 2012 7

C functions

= A group of statements
= To perform a task
= Possibly return a value

= Syntax
<return_type> fn_name (arguments)

{
}

// function body

Ramana Isukapalli
W3101: Programming Languages — C++ Nov 8, 2012 8

i C functions ... example

O Example
int square (int x) /* fn fo compute square*/

{

return (x * x);

}
void main() /* Starting point of ANY C program*/
{

inti=5h;

int i_sq = square (5);
printf ("Square of 5 is: %d\n", i_sq):
}

Ramana Isukapalli
W3101: Programming Languages — C++ Nov 8, 2012 9

i C++ — Philosophically different from C

= High level features of C++

= Uses concepts of "object oriented
programming” (OOP)
= Everything that works in C works in C++

= C syntax, operators, structures, control statements,
etc. work in C++

=« Reverse is NOT true

= Object Oriented Programming

= Concept of class/object, methods, inheritance,
encapsulation, abstraction, polymorphism

= Key concepts in this
= Separation of data and methods

Ramana Isukapalli
W3101: Programming Languages — C++ Nov 8, 2012 10

i Data types, IO, control statments

= C data types, IO and control
statements work in C++

s C++ defines additional IO.

= Popular among that
= cout
= CIn
= Advantage of cout and cin over
printf, scanf
= No need for %d, %s, 7%c, etc

Ramana Isukapalli
W3101: Programming Languages — C++ Nov 8, 2012 11

i Data encapsulation

= Hide the data from end user

= Need to know what methods are
implemented

= Not how they are implemented

= E.g. To compute interest in a bank an
user

= Needs to know what function to call
= NOT how the function is implemented

Ramana Isukapalli
W3101: Programming Languages — C++ Nov 8, 2012 12

i Data encapsulation ... contd.

User

Hidden from user ‘

>

Method

> Output

= Methods act on data to provide output.
= User needs to see only method, not data.

= User should not be affected by
= Implementation details of methods.
= Changes in implementation of methods.

Ramana Isukapalli

W3101: Programming Languages — C++ Nov 8, 2012 13

