
Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 1

Lecture3

� Functions

� OOP concepts of Java
� class and object

� Data abstraction
� public and private members

� Inheritance

Functions

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 3

Java functions

� A group of statements
� To perform a task

� Possibly return a value

� Unlike C, functions are part of a class in Java

� Syntax

<return_type> fn_name (arguments)

{

// function body

}

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 4

Java functions … example

import java.io.*;

public class anyClass // Define a class first
{

int square (int x) // function to compute square
{

return (x * x);
}

public static void main(String args[]) //Starting point of the program
{

int i = 5;
anyClass ac = new anyClass(); // Create an object first
int i_sq = ac.square (5); // Call its function
System.out.println ("Square of 5 is: " + i_sq);

}
}

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 5

Useful Java functions
� clone ()

� Create a copy of an existing object

� equals ()
� Checks if two objects are the same
� This is not quite the same as == operator

� finalize ()
� Called to clean up object’s resources.

� getClass ()
� Returns a class object

� hashCode ()
� Returns object’s memory address in hexadecimal

� toString ()
� Returns a string representation of the object.

OOP – Class and objects

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 7

Class and objects

� class – the basic unit of OOP in Java
� A class typically corresponds to some
meaningful entity.

� class has both data and methods.
� Attributes and methods are members
of a class

� An instance of a class is an object.
� A class uses methods to interact with
other classes/functions.

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 8

Class and objects … contd.

� Classes may have both
� Data attributes

� Can be of basic or user defined data types.
� Need to be initialized – typically done in a
constructor

� Methods
� Functions that are part of classes
� Typically interfaces to interact with other
classes and functions.

� Provide APIs to external world to access and
manipulate data attributes.

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 9

Constructor and destructor … contd.

Constructor
o A function with the same name as the class
o Called when an object is created
o A class can have more than one constructor

Destructor
o There is NO destructor in Java, equivalent to C++ destructor
o In C++

o Destructor: A function with the name ~classname()
o Called when the object goes out of scope, or deleted.

o In Java, closest equivalent is finalize() function
o Used to clean up system resources

o E.g. close open files, open sockets
o Clear screen for GUI/graphics objects.

o Called by system garbage collectors and other resource cleanup
functions.

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 10

A simple “account” example

public class Account
{
private int user_SSN; // attribute (data)
private int accountNumber; // attribute (data)
public void withdrawMoney (int amount) { .. } ; // method
public void depositMoney (int amount) { .. }; // method
public void computeInterest() { .. }; // method

public Account() { } // Constructor
public static void main (String args[]) // main function
{
Account a = new Account(); // Create a new object
System.out.println ("In account main");

}
};

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 11

Account example … contd.
import java.io.*;

public class Account
{
private int user_SSN; // attribute (data)
private int accountNumber; // attribute (data)
public myClass m = null;

// Account constructor
public Account()
{

user_SSN = -1; accountNumber = -1; // default values
}

// Account finalize function
protected void finalize()
{

System.out.println ("In Account finalize function");
}

// Account main function
public static void main (String args[])
{

Account a = new Account();
System.runFinalizersOnExit(true); // deprecated

}
};

Class definition

Constructor

finalize function

main function

Calls finalize functions

OOP – Data encapsulation

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 13

Data encapsulation

� Hide the data from end user

� Need to know what methods are
implemented

� Not how they are implemented

� Provide interfaces (APIs) to access data

� E.g. To compute interest in a bank an user
� Needs to know what function to call

� NOT how the function is implemented

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 14

Data encapsulation … contd.

Method OutputData

User

� Methods act on data to provide output.
� User needs to see only method, not data.
� User should not be affected by

� Implementation details of methods.
� Changes in implementation of methods.

Hidden from user

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 15

Data encapsulation … contd.

� Not all data needs to be hidden
� It is fine to give direct access to some data.

� Not all methods need to be given access
� Some methods may be hidden – for internal use by classes

⇒ Data and methods both need access restrictions.

� How can data/methods be hidden?
� By using access modifiers.

� Different access modifiers:
� public – accessible to every class, function

� private – accessible only to class and package

� protected – accessible to class package and subclass

� No modifier – accessible only to class and package

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 16

Access modifiers

NoNoNoYesprivate

NoNoYesYesNo
modifier

NoYesYesYesprotected

YesYesYesYespublic

otherssubclasspackageclassModifier

Source: Oracle.com

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 17

Data encapsulation in account example

In an object of account
� user_ssn and accountNumber are declared private

� Accessible only to account and nothing else.
� Methods are public

� Anyone can access them.

public class Account
{
private int user_SSN; // Accessible only to Account
private int accountNumber; // Accessible only to Account
public Account () { .. } // Accessible to all
public void withdrawMoney (int amount) { .. } ; // Accessible to all
public void depositMoney (int amount) { .. }; // Accessible to all
public void computeInterest() { .. }; // Accessible to all
…
};

Inheritance

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 19

Inheritance

� Let’s take the account example again
� There can be many types of accounts

� Checking, saving, money market, IRA, etc.

� All accounts may have
� Some common members.

� Account number, user SSN, etc.

� Some class specific members.
� Checks cleared, investment options, etc.

� Method implementation may be
� Same in different classes
� Different in different classes.

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 20

Inheritance – base class & derived class

� Base class
class account
{

private int user_SSN;
private int accountNumber;
public Account () { .. }
public void deposit (int amount) { … }
public void withdraw (int amount) { … }

};

� Derived class or child class
class checkingAccount extends account // checkingAccount is
{ // derived from account

private int lastCheckCleared; // not present in account
public void showAllChecksCleared() { } // not present in account

};

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 21

Inheritance – base class and derived classes

� Base Class

class account
{
private int user_SSN;
private int accountNumber;
public Account () { … } // code
public void deposit (int amt)
{
// code

}
public void withdraw (int amt)
{
// code

}
};

� Derived (or child) class-1
class checkingAccount extends account
{

private int lastCheckCleared;
public checkingAccount () { … };
public void showChecksCleared () { //code
}

};
� Derived (or child) class-2
class IRA_account extends account
{

public IRA_Account () { … };
public void buyFund (int fund_ID) {
//code
}
public void sellFund (int fund_ID) {
//code
}

};

Ramana Isukapalli
W3101: Programming Languages – Java Apr 07, 2011 22

Inheritance – continued.

� Important points to note:
� Derived classes have access to members of
base classes in this example.

� Derived classes can have their own members.
� E.g. showLastCheckCleared(), buyFund(),
sellFund(), etc.

� Members of one derived class are not accessible
to another.

